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Abstract: We give a short argument ,that certain modular Lie algebras have sur­
prisingly large automorphism groups. 

1. Introduction and statement of results 

A classical Lie algebra is one that has a Chevalley basis associated with an irre­
ducible root system. If L is a classical Lie algebra over a field K of characteristic 0 
the'D.,L�has the following properties: (1) The automorphism group of L contains the 
ChevaUey group associated with the root system as a normal subgroup with torsion 
quotient grouPi (2) L is simple. It has been known for some time that these properties 
do not always hold when K has positive characteristic, even when (2) is relaxed to 
condition (2') L is quasi-simple, (that is, L/Z{L) is simple, where Z'{L) is the center of 

L), but the proofs have involved explicit computations with elements of the &lgebras. 
See [Stein] (whose introduction surveys the early results in this area ), [Hog]. 

Our first reSult is an easy demonstration of the instances of failure for (1) or (2') 
by use of graph automorphisms for certain Dynkin diagrams; see (2.4), (3.2) and Table 
1. Only characteristics 2 and 3 are involved here., 

We also determine the automorphism groups of algebras of the form L/Z, where 
Z is a centr&l ideal of Land L is one of the above classical quasisimple Lie algebras 
failing to satisfy (1) or (2'); see (3.8) and (3.9). As far as we know, existing literature 
deals only lY'ith the cases Z = Z{L) and full arguments are not published. Our proofs 
use the classification of simple algebraic groups with elementary arguments from the 
theories of Lie algebraS and finite groups, plus a few fairly well-known facts about finite 
suogroups of algebraic groups. Our arguments are relatively noncomputational, more 
nearly self-contained and shorter than earlier treatments. To keep this article brief, we 
do not consider the nonexceptional eases, which are dealt with in [Stein] and earlier 
literature, though our methods would work. We also give easy proofs of some results of 
[Hiss] on the action of a Chevalley group on "its classical Lie algebra. It is possible that 
Q'gr graph automorphism technique is useful on modules other than the adjoint module. 

2. Preliminary Results 

2.1 Definition We call a Lie algebr� of classical type jf it has a Chevalley basis over 
the field K. 
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Thus, the automorphism group of a classical type Lie algebra contains the Chevalley 
group of that type. 

2.2 Lem.ma Let u be an automorphism of an algebra. Suppose that C is the fixed 
point subalgebra and q,(t) E K[t] . Then N = Im(q,(u» is stable under mUltiplication 
by C. In particular, C n N is an ideal of C. 

Proof Straightforward. 
·f 

. QED 

The following is an immediate consequence. 

2.3 Corollary Let A be an algebra over the field K, and let u be an automorphism 
of A with fixed point subalgebra C. Suppose that u has minimal polynomial (1 - t)l:, 
and let N = fm(l- u)J:-1. 

(i) If C :f: N then C is not simple. 

(ii) If N � Z(C), Z(C) is an ideal and C:f: N + Z(C), then C is not quasi-simple. 

2.4 Corollary The following Lie algebras are not quasi-simple: 

Types Bn(K), Cn(K), F4(K) when char(K) = 2. 

Type G2(I() when char(K) = 3. 

Proof Apply the previous result to the standard graph automorphisms of Dn+1' A2n-l, 
E6, and D4- • QED 

3. The Main Results 

To obtain our main results, We apply the observations above to the following situ­
ation: 

3.1 Definition A special quadruple is a 4-tuple (L, u, M, K) where L is a classical Lie 
algebra over K, K is a field of characteristic p > O,.u is a standard graph automorphism 
ofL, u has order p, and M is the fixed point subgroup for the action of u on the Chevalley 
group associated to L; M is itself a Chevalley group, associated with the fixed points of 
u on the root lattice; thus, M is a group of automorphisms of the fixed point subalgebra 
ofu. 

Notice that we are identifying u with an automorphi§m of the root syste�, say, � 
and that there is understood to be a set IT of fundamentaLroots and a Chevalley basis 
B = {hen e/3 I ex E IT, f3 E �} permuted by u as 0' permutes the subscripts. 

3.2 Lemma Let (L, 0', M, K) be a special quadruple, C := Ker(l - 0') and let 
N = fm(l - 0'),-1. Then M acts on the Lie algebra C/N. Furthermore C contains 
a subalgebra S of classical type such that C = N + S and S n N � Z(S) where Z(S) 
is the center of S. If L is of type Dn or E6 then the root system associated to S is 
irreducible. For any central subalgebra Z of S, M acts faithfully on S/Z. 

. 

3.3 Definition We call S a covering subalgebra for the quadruple (L, 0', M, K). 

3.4 Notation Define Q := C/N. Also, when K is algebraically closed, let A := 

Aut(S/Z(S»O; this is an algebraic group which contains an isomorphic copy of M as 
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an algebraic subgroup. Let R be the Chevalley group associated to Sj by definition, it 
is a subgroup of Aut(S). 

Pioof ,[of(3.2)] It is clear that N � C, so that N is an ideal in C and M � Aut(C) acts 
on C IN. The action is faithful, as we can see by passing to the algebraic closure where 
M becomes a direct product of simple groqps. For convenience, let H := (hala E 0) 
and let Eo be the subspace spanned by {e" I {3 is fixed by O'}. 

Let S be the subalgebra generated by Eo. Then S = S n H $ Eo o� C, and 
S n N � Z(S) n H. In fact, {LaeO ha lOis a regular O'-orbit on II} is a basis for 
SnN. 

For each O'-orbit 0 on II, let 0 be the smallest connected subset of nodes containing 
O. Also let 'Yo = E"et' {3. Then ho lOis a O'-orbit on II} is a fundamental system 
of roots for the fixed points of 0' on�. The table below gives the type of S for each 
of the special quadruples. (The following observation allows the type of S to be read 
off; the Dynkin diagram for L. If p = 2 and 0 n 0' :f:. 0 for distinct orbits 0 and 
0', then 0 C 0' or vice versa. Without loss, assume the former. Then all but two 
of the summands in 'Yo' - 'Yo are orthogonal to all of the summands in 'YO, so that 
('Yo, 'Yo') = ('Yo, 'Yo) + ('Yo, 'Yo' - 'Yo) = 2 - 2 = 0.) 

Suppose L has type d4 and p = 2. Let 0 be the standard graph automorphism of 
L of order 3 (it is °inverted by 0' under conjugation), and let S9 be the fixed points of 
{} on L. The {}-orbits on � consist of fix� points, which are also fixed by 0', and the 
regular orbits, each of which is a union of a fixed point of 0' and a regular O'-orbit. This 
implies that S9 � C and that S9 n N = O. Thus there is a second possibility for S in 
this case, as indicated in Table I, below. 

The last statement is clear since M contains a copy of the Chevalley group associ­
ated to Sand M becomes simple when the field is sufficiently large. 

Notice that a further example of type a occurs here since a3 � d3. QEP 

Table 1: Special quadruples and covering algebras 
(p = 3 in the first case, p = 2 in all others) 

oL M dimC dimN S dimS dim Z(S) dim NnS 
d4 G2 14 7 a2 8 1 

e6 F4 52 26 d4 28 2 

dn+lIn � 3 Bn 02n2 + n 2n+ 1 dn n(2n _0 1) { I,n odd 
2, n even 

a2n-l, n � 2 Cn 2n2 +n 2n2 -n-l al $ ... $a1 3n n 
d4 B3 21 7 g2 14 0 

3.5 Corollary For each of the following triples (S, X,p) , the Chevalley group of 
type X acts faithfully on the central quotient of the classical Lie algebra of type S oin 
characteristic p. 

(i) S = a2, X = G2, P = 3. 

(ii) S = d4, X = F4, P = 2. 

(iii) S = dn, X = Bn, p = 2. 

1 

2 

1 

n-l 
0 



342 Daniel E. Frohardt and Robert L Griess Jr. 

(iv) S = ga, X = 138, p =  2. 

It is worth mentioning that the ideal Nne of C is associated to Chevalley basis 
elements for short roots in the root system inherited by C from (J and 0'. This is 
immediate from our proeedure since short roots are associated with sums over the 
regular orbits for 0' • Similarly, it is immediate that Nne is stable under the Chevalley 
group R (and even M). This seems much easier than an argument within C since a 
direct verification that the above subspace is an ideal and is stable under the Chevalley 
group, starting from the definitions of the Chevalley basis and the Chevalley.generators 
aI,.(t), would require a study of chains in the particular root systems and calculations 
of binomial coefficients. 

We have shown that each of the algebras S/Z(S) from the previous corollary ad­
mits, as automorphisms, a Chevalley group M properly containing the Chevalley group 
assoeiated to the classical Lie algebra S. We next proeeed to determine the full auto­
morphism group of S/Z(S). We use algebraic group techniques to prove that the group 
is not bigger than the group M when the field is algebraically closed. The situation 
is then fairly clear for general fields since we are dealing with Chevalley groups; the 
occurrence of outer diagonal automorphisms here depends on the particular field. 

3.6 Lemma Suppose char(K) = 2 and that L is a c1assic8l Lie algebra of type dB, 
n � 3. Let hij, h�i denote the elements h,. of the Cartan subalgebra h ofL given by roots 
r = 6i + ej, ei - ej, in the usual notation {Bour}. lfn is odd, Z(L) has basis hii + h�i' 
for any pair i � j. If n is even, Z(L) has basis consisting of an hij + h�j as above, 
and hi:! + h34 + . . . + hn-1,n. The usual graph automorphism of order 2 (associated to 
a determinant -1 diagonal transformation) commutates the second basis vector aboV!'! 
to the first. As a module for the' Weyl group (!:! 2n-1 

: Symn), the maximal trivial 
quotient of the Cartan subalgebra is zero. In fact,the module structure for the Weyl 
group on h has ascending factors of dimensions 1, n - 1 for n odd and 1,1, n - 2 for n 
even. 

Proof Exercise. 

3.7 Lemma Suppose that Z(S) � 0 and that S does not have type a1 e ... e a1 (so 
that n � 3 when S has type dn). Then Z(S) is not complemented by an R-submodule. 

Proof Suppose we are in the a2 case. Let u be a unipotent element of R with a single 
Jordan block of size 3 on the natural module V. It has the same Jordan canonical form 
on the dual module,.and on the tensor of these two representations, which contains the 
representation on S as a constituent, it has three Jordan bloeks of size 3. On S/Z(S), 
of dimension 7, it has at least 3 dimensions of fixed points. If there were a. complement 
invariant under u, u would have fixed point subspace on S of dimension at least 4, a 
contradiction. 

All remaining cases satisfy char(K) = 2 and S has type dn, for some n � 3. The 
previous result deals with this ease. QED 

It is worth observing that the 'previous result gives a trivial proof of the F4 and 
G2 cases of the Hauptsatz of [Hiss], which determines the submodule structure of a 
classical Lie algebra with respect to its Cheva.lley group; for, if there were a submodule 
complementing the nontrivial.ideal (of dimensions 26 and 7/ respectively), we could 
descend to a covering subalgebra and its Chevalley group and contradict the previous 
lemma. 
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3.8 'Theorem If K is algebraically closed then 

(i) Aut(a2(KJ/Z(a2(J<») e!! G2(K), for char(J<) = a. 

(ii) Aut(82(K» e!! Ba(K), for char(K) = 2. Note that Z(82(I{») = 0 in this case. 

'(iii) Aut(d4(K)/Z(d4(J<))) e!! F4(K�, for char(K) = 2. 

(iv) Aut(dn(K)/Z(dn(K») � Bn{I<), for char(K) = 2, n = 3 or n > 4. 
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'Proof The approach to each case is similar, but the details vary. Let (L, (1, M, K) be 
a special quadruple with associated covering subalgeora S; use the notations of (3.4). 
,In ell.Ch �ase, discussed: below, we show that M acts irreducibly on Q/Z(Q) !:!! SiZeS). 
This implies that a normal unipotent subgroup of A is trivial, so any reductive subgroup 
centralizing M (identified with its image'in A) must be both scalar and' a group of 
automorphisms, hence trivial. Therefore, A is semisimple (and M projects nontrivially 
to. each factor). 

, We also note that a maximal torus T of M acts on Q by pairwise distinct nontrivial 
linear characters at the root spaces and has fixed point subalgebra the Cartan subalgebra 

h. It follows that each of these spaces is left invariant by CA(T), as are the I-dimensional 
.subspaces ofh obtained by bracketing a root space and its negative. Since C A(T) effects 
a: scalar on each invariant l-space, indecomposability of the root system implies that 
CA(T) acts by a scalar-valu�d homomorphism on h. Also, if E is an'Y root space, the 
equation [h, E] = E implies th�t CA(T) centralizes h. In particular, the .:weyl group of 
A acts on h. 

An immediate corollary is that A and M have the same Lie rankj for otherwise, 
the kernel of the action of a torus of CA(T) on the above fundamental root spaces and 
.their opposites would be positive dimensional. Finally, we deduce ,that A is simple. 

We settle all cases now with the observation that, in each case, there is no embed­
ding �f M as a proper subgroup of a simple algebraic< group with the ,same'rank. 

It remains to verify irreducibility of M on Q/Z(Q) � SiZeS). 

(i) M � G2(K) contains a subgroup of shape 2a·8L(3,2) [Gr 1990] which acts faithfully, 
hence irreducibly on the 7-dimensional module Q (51.7) [CuRe]. 

W) Here, Me!! Ba(K) acts on Q e!! �(K). To show that this action is irreducible, it 
suffices to show that a G2(2)-subgroup X acts irreducibly. Let :t be a 3-central element 
of X of order 3. Th� Nx«(z}) e!! 3�+

2 : [8: 2] (the factol: 8:2 is semidihedral), :t is real 
in X, and:t has fixed point subalgebra of dimension 8. If P := Oa(Nx«:t}), then any 
element of P - (z) is real and has fixed point subalgebra of dimension 4; such elements 
form a single N x( {z} )-conjugacy class. Orthogonality relations (done in characteristic 
o with Brauer characters) imply that P has 0 fixed point subalgebra on Q. This also 
implies that Nx({z}) has irreducible constituents of degrees 8 and 6, and z acts trivially 
on the 8-dimensional constituent. Since (:tX) has index 2 in X, and since elements from 
the other class of elements of order 3 have fixed point subalgebras of dimension 4, it 
follows that this 8-dimensional constituent does not represent a composition factor for 
X. Therefore.X must act irreducibly on Q. , 

(iii) A subgroup of M s:; F4(J<) of shape 33 : 8L(3,3} acts irreducibly on Q due to 
the' fact 'that its normal subgroup of order 33 acts with 26 distinct nontrivial linear 
characters, which form an orbit under the action of 8L(3, 3). 
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(iv) If n = 3 then Q � g2(K) by Lemma 3.2, and the result follows from case (li). 
We therefore assume that n > 4. Let T be a maximal torus 'Of M � Bn(I(). Then, 
N MeT) acts on the adjoint module C for M with irreducible constituents corresponding 
to the orbits of the Weyl group W = NM(T)IT on the short and long roots, plus the 
constituents for the action of W on the Cartan subalgebra h of C. When we pass to 
Q = C/N, we fa�tor out the span of the short root spaces and a1-dimensional central 
ideal. When we pass to the full central quotient of Q we get an irreducible action of W 
on the image of h (see (3.7). Since no Chevalley group element a: .. (t) of M, for r fixed 
by (T, leaves invariant the image of h in Q, we deduce irreducibility of M on Q/Z(Q), 
as required. QED 

Finally, we determine automorphism groups for most remaining central <J,.uotients 
o,f the covering subalgebras from Table 1 (we exclude just line 4). The essential case is 
that of an algebraically closed field. 

3.9 Theorem L�f S be a covering subalgebra from Table 1 with S/Z(S) simple, and 
let Z be a central ideal properly contained in Z(S). Assume that K is algebraically 
closed. Then Aut(S/�)O is given by the natural action of R, where R is the Cheva11ey 
group associated to S, except in the cases 

(i) S has ,type d4 and Z is one of thn:e particular one-dimensional ideals, in which 
case Aut(S/Z)O corrtlSPonds to one of the three natural type B4 subgroups between the 
images of Rand M � F4(K) in Aut(S/Z(S»o. 

(li) S has type dn, for even n � 2, dim Z = 1 and Aut(S/Z) � Bn(I(). 

Proof Let Z be a central ideal proper in Z(S) and A = Aut(S/Z)o. We deal with the 
various cases of Z(S) ::p. 0 indicated in Table 1. Note that if Zl ,is any central ideal, the 
natural map from {a E Aut(S) I a leaves Zl invariant} to Aut(S/Z) is a monomorphism 
since S is perfect. Thus, identifying groups with their images in Aut(S/Z(S), we get 
containments R � A � M. We determine the middle group for all relevant z. 

Case 1. S = 82(J(), for char(K) = 3. 

Here, dim Z = O. SuppOse that R < A. Then, A = M � G2(K). Let B be a subgroup 
of A isom<?rphic to 23• 8L(3,2). Then, 02(B) operates fixed point freely on S/Z(S) 
and so leaves invariant a unique complement V to Z(S) in S. The subgroup Av of A 
leaving V invariant is an algebraic subgroup of A. If Av is positive dimensional, then 
an argument similar to that of (3.8) shows that Av must be simple since it. contains B 
and has rank at most 2. Table 1 of (1.8)[Gr 1990] implies that Av = M, a contradiction 
to (3.7). We conclude that Av is finite. The action of the 14-dimensional group A on 
a 6-dimensional space of complements in S to Z (this is equivalent to an action on a 
6-dimensional affine space of vectors in the dual space ofS) therefore has O-dimensional 
fiber, a contradiction. 

Case 2. S = dn(I(), for char(I() = 2. 

Identify M with Aut(S/Z(S». The image X 'Of Aut(S/Z)O in M is an algebraic group 
between Rand M, so is either R or a natural Bn subgroup, or possibly M � F4(I() 
.when n = 4. The latter possibility �or X is quickly eliminated by arguing as in Case 1; 
with a subgroup 33 : 8L(3, 3) in the role of B, using Table 2 of (1.8)[Gr 1990]. 
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Consider the possibility ,that X 5:! Bn(1(). Then, X and R share a maximal torus 
and so the Weyl group of X acts on the image in S/Z of a Cartan subalgebra of S. 
We assume that this action extends that of the Weyl group of R by a determina.nt -1 
diagonal transformation in the usual description of the root system of type dn• When 
triality is present (for us, this means M 5:! F4(K». we may need to use triality to 
assume the above. 

If n � 2 is even, dim Z = 0 is impossible. by the way the graph automorphism of 
dn acts on the elements of (3.6), since we would then have a nontrivial homomorphism 
of Bn(K) to GL(2, 1(). So, ifn is even, dim Z = 1. This case occurs, by Table 1. What 
is needed now is the result that such a Z must be the span of hsj + h�i ' in the notation 
of (3.6). This follows from the way the graph automorphism acts on h12 + ... + hn-1,n 
modulo Z. 

If n is..odd, n � 3 and the only possibility here is Z = O. We show that X !:! Bn( K) 
is impossible. Let T be the I-dimensional torus in X whose fixed point subgroup has 
semisimple part Y isomorphic to Bn-1(K). Without loss, Y corresponds to a subset of 
n -1 nodes of the Dynkin diagram for X. We may assume that the subgroup generated 
by root groups associated to the long roots. in the root system for Y is in R. These roots 
therefore correspond to a subset of the given Chevalley basis and we have an associated 
classical subalgebra GQ(T) of type dn-1. Since n-l is even and since Y acts on GQ(T), 
we have a contradiction to the previous paragraph, the case dim Z = o. QEP 
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