Automorphisms of Modular Lie Algebras Daniel E. Frohardt Dept. Math Wayne State University Faculty/Administration Building Detroit, MI 48202 USA & Robert L. Griess Jr. Dept. Math University of Michigan Angell Hall Ann Arbor, MI 48104 USA Abstract: We give a short argument that certain modular Lie algebras have surprisingly large automorphism groups. ## 1. Introduction and statement of results A classical Lie algebra is one that has a Chevalley basis associated with an irreducible root system. If L is a classical Lie algebra over a field K of characteristic 0 then L has the following properties: (1) The automorphism group of L contains the Chevalley group associated with the root system as a normal subgroup with torsion quotient group; (2) L is simple. It has been known for some time that these properties do not always hold when K has positive characteristic, even when (2) is relaxed to condition (2') L is quasi-simple, (that is, L/Z(L) is simple, where Z(L) is the center of L), but the proofs have involved explicit computations with elements of the algebras. See [Stein] (whose introduction surveys the early results in this area), [Hog]. Our first result is an easy demonstration of the instances of failure for (1) or (2') by use of graph automorphisms for certain Dynkin diagrams; see (2.4), (3.2) and Table 1. Only characteristics 2 and 3 are involved here. We also determine the automorphism groups of algebras of the form \mathbf{L}/\mathbf{Z} , where \mathbf{Z} is a central ideal of \mathbf{L} and \mathbf{L} is one of the above classical quasisimple Lie algebras failing to satisfy (1) or (2'); see (3.8) and (3.9). As far as we know, existing literature deals only with the cases $\mathbf{Z} = \mathbf{Z}(\mathbf{L})$ and full arguments are not published. Our proofs use the classification of simple algebraic groups with elementary arguments from the theories of Lie algebras and finite groups, plus a few fairly well-known facts about finite subgroups of algebraic groups. Our arguments are relatively noncomputational, more nearly self-contained and shorter than earlier treatments. To keep this article brief, we do not consider the nonexceptional cases, which are dealt with in [Stein] and earlier literature, though our methods would work. We also give easy proofs of some results of [Hiss] on the action of a Chevalley group on its classical Lie algebra. It is possible that our graph automorphism technique is useful on modules other than the adjoint module. ## 2. Preliminary Results **2.1** Definition We call a Lie algebra of classical type if it has a Chevalley basis over the field K. Thus, the automorphism group of a classical type Lie algebra contains the Chevalley group of that type. **2.2 Lemma** Let σ be an automorphism of an algebra. Suppose that C is the fixed point subalgebra and $\phi(t) \in K[t]$. Then $N = Im(\phi(\sigma))$ is stable under multiplication by C. In particular, $C \cap N$ is an ideal of C. Proof Straightforward. QED The following is an immediate consequence. - **2.3** Corollary Let A be an algebra over the field K, and let σ be an automorphism of A with fixed point subalgebra C. Suppose that σ has minimal polynomial $(1-t)^k$, and let $N = Im(1-\sigma)^{k-1}$. - (i) If $C \neq N$ then C is not simple. - (ii) If $N \not\subseteq Z(C)$, Z(C) is an ideal and $C \neq N + Z(C)$, then C is not quasi-simple. - 2.4 Corollary The following Lie algebras are not quasi-simple: Types $B_n(K)$, $C_n(K)$, $F_4(K)$ when char(K) = 2. Type $G_2(K)$ when char(K) = 3. Proof Apply the previous result to the standard graph automorphisms of D_{n+1} , A_{2n-1} , E_6 , and D_4 . ## 3. The Main Results To obtain our main results, we apply the observations above to the following situation: 3.1 Definition A special quadruple is a 4-tuple (\mathbf{L}, σ, M, K) where \mathbf{L} is a classical Lie algebra over K, K is a field of characteristic p > 0, σ is a standard graph automorphism of \mathbf{L} , σ has order p, and M is the fixed point subgroup for the action of σ on the Chevalley group associated to \mathbf{L} ; M is itself a Chevalley group, associated with the fixed points of σ on the root lattice; thus, M is a group of automorphisms of the fixed point subalgebra of σ . Notice that we are identifying σ with an automorphism of the root system, say, Φ and that there is understood to be a set Π of fundamental roots and a Chevalley basis $\mathcal{B} = \{h_{\alpha}, e_{\beta} \mid \alpha \in \Pi, \beta \in \Phi\}$ permuted by σ as σ permutes the subscripts. - 3.2 Lemma Let (L, σ, M, K) be a special quadruple, $C := Ker(1 \sigma)$ and let $N = Im(1 \sigma)^{p-1}$. Then M acts on the Lie algebra C/N. Furthermore C contains a subalgebra S of classical type such that C = N + S and $S \cap N \subseteq Z(S)$ where Z(S) is the center of S. If L is of type D_n or E_6 then the root system associated to S is irreducible. For any central subalgebra Z of S, M acts faithfully on S/Z. - 3.3 Definition We call S a covering subalgebra for the quadruple (L, σ, M, K) . - **3.4** Notation Define Q := C/N. Also, when K is algebraically closed, let $A := Aut(S/Z(S))^0$; this is an algebraic group which contains an isomorphic copy of M as an algebraic subgroup. Let R be the Chevalley group associated to S; by definition, it is a subgroup of Aut(S). **Proof** [of (3.2)] It is clear that $N \subseteq C$, so that N is an ideal in C and $M \subseteq Aut(C)$ acts on C/N. The action is faithful, as we can see by passing to the algebraic closure where M becomes a direct product of simple groups. For convenience, let $H := (h_{\alpha} | \alpha \in \Pi)$ and let E_0 be the subspace spanned by $\{e_{\beta} | \beta \text{ is fixed by } \sigma\}$. Let S be the subalgebra generated by E_0 . Then $S = S \cap H \oplus E_0 \subseteq C$, and $S \cap N \subseteq \mathbf{Z}(S) \cap H$. In fact, $\{\sum_{\alpha \in \mathcal{O}} h_\alpha \mid \mathcal{O} \text{ is a regular } \sigma\text{-orbit on } \Pi\}$ is a basis for $S \cap N$. For each σ -orbit \mathcal{O} on Π , let $\bar{\mathcal{O}}$ be the smallest connected subset of nodes containing \mathcal{O} . Also let $\gamma_{\mathcal{O}} = \sum_{\beta \in \bar{\mathcal{O}}} \beta$. Then $\{\gamma_{\mathcal{O}} \mid \mathcal{O} \text{ is a } \sigma\text{-orbit on } \Pi\}$ is a fundamental system of roots for the fixed points of σ on Φ . The table below gives the type of S for each of the special quadruples. (The following observation allows the type of S to be read off the Dynkin diagram for S. If S is a quadruple of S for distinct orbits S and S is a quadruple of S or vice versa. Without loss, assume the former. Then all but two of the summands in $\gamma_{\mathcal{O}'} - \gamma_{\mathcal{O}}$ are orthogonal to all of the summands in $\gamma_{\mathcal{O}}$, so that $(\gamma_{\mathcal{O}}, \gamma_{\mathcal{O}'}) = (\gamma_{\mathcal{O}}, \gamma_{\mathcal{O}}) + (\gamma_{\mathcal{O}}, \gamma_{\mathcal{O}'} - \gamma_{\mathcal{O}}) = 2 - 2 = 0$. Suppose L has type d_4 and p=2. Let θ be the standard graph automorphism of L of order 3 (it is inverted by σ under conjugation), and let S_{θ} be the fixed points of θ on L. The θ -orbits on Φ consist of fixed points, which are also fixed by σ , and the regular orbits, each of which is a union of a fixed point of σ and a regular σ -orbit. This implies that $S_{\theta} \subseteq C$ and that $S_{\theta} \cap N = 0$. Thus there is a second possibility for S in this case, as indicated in Table 1, below. The last statement is clear since M contains a copy of the Chevalley group associated to S and M becomes simple when the field is sufficiently large. Notice that a further example of type a occurs here since $a_3 \cong d_3$. Table 1: Special quadruples and covering algebras (p=3 in the first case, p=2 in all others) | L
d₄ | | dim C | dim N | S | dim S | $\dim_{\mathbf{Z}}(\mathbf{S})$ | $\dim \mathbf{N} \cap \mathbf{S}$ | |------------------------------|-------|-------|-------|--|---------|---|-----------------------------------| | 4 | G_2 | 14 | • | a ₂ | 8 | 1 | 1 | | \mathbf{e}_{6} | F_4 | 52 | 26 | $\mathbf{d_4}$ | 28 | 2 | 2 | | $\mathbf{d}_{n+1}, n \geq 3$ | | | | | n(2n-1) | $\begin{cases} 1, n \text{ odd} \\ 2, n \text{ even} \end{cases}$ | 1 | | | | | | $\mathbf{a_1} \oplus \ldots \oplus \mathbf{a_1}$ | 3n | n | n-1 | | $\mathbf{d_4}$ | B_3 | 21 | 7 | g ₂ | 14 | 0 | 0 | 3.5 Corollary For each of the following triples (S, X, p), the Chevalley group of type X acts faithfully on the central quotient of the classical Lie algebra of type S in characteristic p. (i) $$S = a_2$$, $X = G_2$, $p = 3$. (ii) $$S = d_4$$, $X = F_4$, $p = 2$. (iii) $$S = d_n$$, $X = B_n$, $p = 2$. (iv) $$S = g_2$$, $X = B_3$, $p = 2$. It is worth mentioning that the ideal $N \cap C$ of C is associated to Chevalley basis elements for short roots in the root system inherited by C from Φ and σ . This is immediate from our procedure since short roots are associated with sums over the regular orbits for σ . Similarly, it is immediate that $N \cap C$ is stable under the Chevalley group R (and even M). This seems much easier than an argument within C since a direct verification that the above subspace is an ideal and is stable under the Chevalley group, starting from the definitions of the Chevalley basis and the Chevalley generators $x_r(t)$, would require a study of chains in the particular root systems and calculations of binomial coefficients. We have shown that each of the algebras S/Z(S) from the previous corollary admits, as automorphisms, a Chevalley group M properly containing the Chevalley group associated to the classical Lie algebra S. We next proceed to determine the full automorphism group of S/Z(S). We use algebraic group techniques to prove that the group is not bigger than the group M when the field is algebraically closed. The situation is then fairly clear for general fields since we are dealing with Chevalley groups; the occurrence of outer diagonal automorphisms here depends on the particular field. 3.6 Lemma Suppose char(K) = 2 and that L is a classical Lie algebra of type d_n , $n \ge 3$. Let h_{ij} , h'_{ij} denote the elements h_r of the Cartan subalgebra h of L given by roots $r = e_i + e_j$, $e_i - e_j$, in the usual notation [Bour]. If n is odd, Z(L) has basis $h_{ij} + h'_{ij}$, for any pair $i \ne j$. If n is even, Z(L) has basis consisting of an $h_{ij} + h'_{ij}$ as above, and $h_{12} + h_{34} + \ldots + h_{n-1,n}$. The usual graph automorphism of order 2 (associated to a determinant -1 diagonal transformation) commutates the second basis vector above to the first. As a module for the Weyl group $(\cong 2^{n-1} : Sym_n)$, the maximal trivial quotient of the Cartan subalgebra is zero. In fact, the module structure for the Weyl group on h has ascending factors of dimensions 1, n-1 for n odd and 1, 1, n-2 for n even. Proof Exercise. QED 3.7 Lemma Suppose that $Z(S) \neq 0$ and that S does not have type $a_1 \oplus ... \oplus a_1$ (so that $n \geq 3$ when S has type d_n). Then Z(S) is not complemented by an R-submodule. Proof Suppose we are in the a_2 case. Let u be a unipotent element of R with a single Jordan block of size 3 on the natural module V. It has the same Jordan canonical form on the dual module, and on the tensor of these two representations, which contains the representation on S as a constituent, it has three Jordan blocks of size 3. On S/Z(S), of dimension 7, it has at least 3 dimensions of fixed points. If there were a complement invariant under u, u would have fixed point subspace on S of dimension at least 4, a contradiction. All remaining cases satisfy char(K) = 2 and S has type d_n , for some $n \ge 3$. The previous result deals with this case. It is worth observing that the previous result gives a trivial proof of the F_4 and G_2 cases of the Hauptsatz of [Hiss], which determines the submodule structure of a classical Lie algebra with respect to its Chevalley group; for, if there were a submodule complementing the nontrivial ideal (of dimensions 26 and 7, respectively), we could descend to a covering subalgebra and its Chevalley group and contradict the previous lemma. - 3.8 Theorem If K is algebraically closed then - (i) $Aut(\mathbf{a}_2(K)/\mathbf{Z}(\mathbf{a}_2(K))) \cong G_2(K)$, for char(K) = 3. - (ii) $Aut(g_2(K)) \cong B_3(K)$, for char(K) = 2. Note that $Z(g_2(K)) = 0$ in this case. - (iii) $Aut(\mathbf{d}_4(K)/\mathbf{Z}(\mathbf{d}_4(K))) \cong F_4(K)$, for char(K) = 2. - (iv) $Aut(\mathbf{d}_n(K)/\mathbf{Z}(\mathbf{d}_n(K))) \cong B_n(K)$, for char(K) = 2, n = 3 or n > 4. **Proof** The approach to each case is similar, but the details vary. Let $(\mathbf{L}, \sigma, M, K)$ be a special quadruple with associated covering subalgebra S; use the notations of (3.4). In each case, discussed below, we show that M acts irreducibly on $\mathbb{Q}/\mathbb{Z}(\mathbb{Q}) \cong \mathbb{S}/\mathbb{Z}(\mathbb{S})$. This implies that a normal unipotent subgroup of A is trivial, so any reductive subgroup centralizing M (identified with its image in A) must be both scalar and a group of automorphisms, hence trivial. Therefore, A is semisimple (and M projects nontrivially to each factor). We also note that a maximal torus T of M acts on Q by pairwise distinct nontrivial linear characters at the root spaces and has fixed point subalgebra the Cartan subalgebra h. It follows that each of these spaces is left invariant by $C_A(T)$, as are the 1-dimensional subspaces of h obtained by bracketing a root space and its negative. Since $C_A(T)$ effects a scalar on each invariant 1-space, indecomposability of the root system implies that $C_A(T)$ acts by a scalar-valued homomorphism on h. Also, if E is any root space, the equation [h, E] = E implies that $C_A(T)$ centralizes h. In particular, the Weyl group of A acts on h. An immediate corollary is that A and M have the same Lie rank; for otherwise, the kernel of the action of a torus of $C_A(T)$ on the above fundamental root spaces and their opposites would be positive dimensional. Finally, we deduce that A is simple. We settle all cases now with the observation that, in each case, there is no embedding of M as a proper subgroup of a simple algebraic group with the same rank. It remains to verify irreducibility of M on $\mathbb{Q}/\mathbb{Z}(\mathbb{Q}) \cong \mathbb{S}/\mathbb{Z}(\mathbb{S})$. - (i) $M \cong G_2(K)$ contains a subgroup of shape $2^3 \cdot SL(3,2)$ [Gr 1990] which acts faithfully, hence irreducibly on the 7-dimensional module Q (51.7)[CuRe]. - (ii) Here, $M \cong B_3(K)$ acts on $Q \cong g_2(K)$. To show that this action is irreducible, it suffices to show that a $G_2(2)$ -subgroup X acts irreducibly. Let x be a 3-central element of X of order 3. Then $N_X(\langle x \rangle) \cong 3_+^{1+2} : [8:2]$ (the factor 8:2 is semidihedral), x is real in X, and x has fixed point subalgebra of dimension 8. If $P := O_3(N_X(\langle x \rangle))$, then any element of $P \langle x \rangle$ is real and has fixed point subalgebra of dimension 4; such elements form a single $N_X(\langle x \rangle)$ -conjugacy class. Orthogonality relations (done in characteristic 0 with Brauer characters) imply that P has 0 fixed point subalgebra on Q. This also implies that $N_X(\langle x \rangle)$ has irreducible constituents of degrees 8 and 6, and x acts trivially on the 8-dimensional constituent. Since $\langle x^X \rangle$ has index 2 in X, and since elements from the other class of elements of order 3 have fixed point subalgebras of dimension 4, it follows that this 8-dimensional constituent does not represent a composition factor for X. Therefore X must act irreducibly on Q. - (iii) A subgroup of $M \cong F_4(K)$ of shape $3^3 : SL(3,3)$ acts irreducibly on Q due to the fact that its normal subgroup of order 3^3 acts with 26 distinct nontrivial linear characters, which form an orbit under the action of SL(3,3). (iv) If n=3 then $\mathbf{Q}\cong \mathbf{g_2}(K)$ by Lemma 3.2, and the result follows from case (ii). We therefore assume that n>4. Let T be a maximal torus of $M\cong B_n(K)$. Then, $N_M(T)$ acts on the adjoint module \mathbf{C} for M with irreducible constituents corresponding to the orbits of the Weyl group $W=N_M(T)/T$ on the short and long roots, plus the constituents for the action of W on the Cartan subalgebra \mathbf{h} of \mathbf{C} . When we pass to $\mathbf{Q}=\mathbf{C}/\mathbf{N}$, we factor out the span of the short root spaces and a 1-dimensional central ideal. When we pass to the full central quotient of \mathbf{Q} we get an irreducible action of W on the image of \mathbf{h} (see (3.7). Since no Chevalley group element $x_r(t)$ of M, for r fixed by σ , leaves invariant the image of \mathbf{h} in \mathbf{Q} , we deduce irreducibility of M on $\mathbf{Q}/\mathbf{Z}(\mathbf{Q})$, as required. Finally, we determine automorphism groups for most remaining central quotients of the covering subalgebras from Table 1 (we exclude just line 4). The essential case is that of an algebraically closed field. - **3.9 Theorem** Let S be a covering subalgebra from Table 1 with S/Z(S) simple, and let Z be a central ideal properly contained in Z(S). Assume that K is algebraically closed. Then $Aut(S/Z)^0$ is given by the natural action of R, where R is the Chevalley group associated to S, except in the cases - (i) S has type d_4 and Z is one of three particular one-dimensional ideals, in which case $Aut(S/Z)^0$ corresponds to one of the three natural type B_4 subgroups between the images of R and $M \cong F_4(K)$ in $Aut(S/Z(S))^0$. - (ii) S has type d_n , for even $n \ge 2$, dim Z = 1 and $Aut(S/Z) \cong B_n(K)$. **Proof** Let **Z** be a central ideal proper in **Z**(S) and $A = Aut(S/Z)^0$. We deal with the various cases of **Z**(S) $\neq 0$ indicated in Table 1. Note that if **Z**₁ is any central ideal, the natural map from $\{\alpha \in Aut(S) \mid \alpha \text{ leaves } \mathbf{Z}_1 \text{ invariant } \}$ to Aut(S/Z) is a monomorphism since S is perfect. Thus, identifying groups with their images in Aut(S/Z(S)), we get containments $R \subseteq A \subseteq M$. We determine the middle group for all relevant **Z**. Case 1. $$S = a_2(K)$$, for $char(K) = 3$. Here, dim Z = 0. Suppose that R < A. Then, $A = M \cong G_2(K)$. Let B be a subgroup of A isomorphic to $2^3 \cdot SL(3,2)$. Then, $O_2(B)$ operates fixed point freely on S/Z(S) and so leaves invariant a unique complement V to Z(S) in S. The subgroup A_V of A leaving V invariant is an algebraic subgroup of A. If A_V is positive dimensional, then an argument similar to that of (3.8) shows that A_V must be simple since it contains B and has rank at most B. Table 1 of (1.8)[Gr 1990] implies that $A_V = M$, a contradiction to (3.7). We conclude that A_V is finite. The action of the 14-dimensional group A on a 6-dimensional space of complements in B to B (this is equivalent to an action on a 6-dimensional affine space of vectors in the dual space of B) therefore has 0-dimensional fiber, a contradiction. Case 2. $$S = d_n(K)$$, for $char(K) = 2$. Identify M with Aut(S/Z(S)). The image X of $Aut(S/Z)^0$ in M is an algebraic group between R and M, so is either R or a natural B_n subgroup, or possibly $M \cong F_4(K)$ when n = 4. The latter possibility for X is quickly eliminated by arguing as in Case 1, with a subgroup $3^3 : SL(3,3)$ in the role of B, using Table 2 of (1.8)[Gr 1990]. Consider the possibility that $X \cong B_n(K)$. Then, X and R share a maximal torus and so the Weyl group of X acts on the image in S/Z of a Cartan subalgebra of S. We assume that this action extends that of the Weyl group of R by a determinant -1 diagonal transformation in the usual description of the root system of type d_n . When triality is present (for us, this means $M \cong F_4(K)$), we may need to use triality to assume the above. If $n \geq 2$ is even, dim $\mathbf{Z} = 0$ is impossible, by the way the graph automorphism of \mathbf{d}_n acts on the elements of (3.6), since we would then have a nontrivial homomorphism of $B_n(K)$ to GL(2, K). So, if n is even, dim $\mathbf{Z} = 1$. This case occurs, by Table 1. What is needed now is the result that such a \mathbf{Z} must be the span of $h_{ij} + h'_{ij}$, in the notation of (3.6). This follows from the way the graph automorphism acts on $h_{12} + ... + h_{n-1,n}$ modulo \mathbf{Z} . If n is odd, $n \geq 3$ and the only possibility here is $\mathbf{Z} = 0$. We show that $X \cong B_n(K)$ is impossible. Let T be the 1-dimensional torus in X whose fixed point subgroup has semisimple part Y isomorphic to $B_{n-1}(K)$. Without loss, Y corresponds to a subset of n-1 nodes of the Dynkin diagram for X. We may assume that the subgroup generated by root groups associated to the long roots in the root system for Y is in R. These roots therefore correspond to a subset of the given Chevalley basis and we have an associated classical subalgebra $C_{\mathbf{Q}}(T)$ of type \mathbf{d}_{n-1} . Since n-1 is even and since Y acts on $C_{\mathbf{Q}}(T)$, we have a contradiction to the previous paragraph, the case dim $\mathbf{Z} = 0$. #### 4. References - [Atlas 1985] J.H. Conway, R.T. Curtis, S.P. Norton, R.P. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985. - [Bour 1968] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4,5 et 6, Hermann, Paris, 1968. - [CuRe 1962] C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. - [Gor 1968] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. - [Gr 1990] R.L. Griess, Jr., Elementary Abelian p-subgroups of Algebraic Groups, preprint, (1990), . - [Hog 1982] G.M.D. Hogeweij, Almost-classical Lie algebras. I & II, Akad. van Wetenschappen, Amsterdam, Series A, 85(1982), 441-460. - [Hiss 1984] G. Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math., 42(1984), 408-416. - [Stein 1961] R. Steinberg, Automorphisms of Classical Lie Algebras, Pacific J. Math., 11(1961), 1119-1129. Received October 10, 1991 Revised April 20, 1992