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Abstract. We study a particular VOA which is a subVOA of theE8-lattice VOA and
determine its automorphism group. Some of this group may be seen within the group
E8(C), but not all of it. The automorphism group turns out to be the 3-transposition group
O+(10, 2) of order 22135527.17.31 and it contains the simple groupΩ+(10, 2) with
index 2. We use a recent theory of Miyamoto to get involutory automorphisms associated
to conformal vectors. This VOA also embeds in the moonshine module and has stabilizer
in MI , the monster, of the form210+16.Ω+(10, 2).

Hypotheses

We review some definitions, based on the usual definitions for the elements, products
and inner products for lattice VOAs; see [FLM].

Notation 1.2. Φ is a root system whose components have types ADE,g is a Lie
algebra with root systemΦ, Q := QΦ, the root lattice andV := VQ := S(Ĥ−) ⊗
C[Q] is the lattice VOA in the usual notation.

Remark 1.3. We display a few graded pieces ofV (⊗ is omitted, and hereQ can
be any even lattice). We writeHm for H ⊗ t−m in the usual notation for lattice
VOAs (2.1) andQm := {x ∈ Q | (x, x) = 2m}, the set of lattice vectors of typem.

V0 = C, V1 = H1,

V2 = [S2H1 +H2] +H1CQ1 + CQ2,

V3 = [S3H1 +H1H2 +H3] + [S2H1 +H2]CQ1 +H1CQ2 + CQ3,

V4 = [S4H1 + S2H1H2 +H1H3 + S2H2 +H4]+

[S3H1 +H1H2 +H3]CQ1 + [S2H1 +H2]CQ2 +H1CQ3 + CQ4.

Remark 1.4. Let F be a subgroup ofAut(g), where g is the Lie algebraV1 =
H1 + CQ1 with 0th binary composition. The fixed pointsV F of F on V form a
subVOA. We have an action ofN(F )/F as automorphisms of this sub VOA.
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Notation 1.5. For the rest of this article, we takeQ to be theE8-lattice. Take
F to be a2B-pure elementary abelian 2-group of rank 5 inAut(g) ∼= E8(C); it is
fixed point free. LetE := F ∩ T where T is the standard torus and whereF is
chosen to makerank(E) = 4. Let θ ∈ F rE; we arrange forθ to interchange the
standard Chevalley generatorsxα and x−α. See [Gr91]. The Chevalley generator
xα corresponds to the standard generatoreα of the lattice VOAVQ .

Notation 1.7. L := Q[E] ∼=
√

2Q denotes the common kernel of the lattice characters
associated to the elements ofE; in the [Carter] notation, these characters areh−1(E);
in the root lattice modulo 2, they correspond to the sixteen vectors ina maximal totally
singular subspace. Then

(1.7.1) V F1 = 0

and

(1.7.2) V F2 = S2H1 + 0 + CLθ2,

where the latter summand stands for the span of alleλ + e−λ, whereλ runs over all
the 15 ·16 = 240 norm 4 lattice vectors inL. Thus,V F2 has dimension

(

9
2

)

+ 240
2 =

36 + 120 = 156 and has a commutative algebra structure invariant underN(F ) ∼=
25+10 ·GL(5, 2). We note thatN(F )/F ∼= 210:GL(5, 2) [Gr76][CoGr][Gr91].

We will show (6.10) thatAut(V F ) ∼= O+(10, 2).

2. Inner Product.

Definition 2.1. The inner product onSnHm is 〈xn, xn〉 = n!mn〈x, x〉n . This is
based on the adjointness requirement forh⊗tk andh⊗t−k (see (1.8.15), FLM,p.29).
When k > 0, h ⊗ t−k acts like multiplication byh ⊗ t−k and, whenh is a root,
h⊗ tk acts likek times differentiation with respect toh.

Whenn = 2, this means〈x2, x2〉 = 2m2〈x, x〉. In V F2 , m = 1.

Definition 2.2. The Symmetric Bilinear Form. Source: [FLM], p.217. This form
is associative with respect to the product (Section 3). We writeH for H1. The set
of all g2 and x+

α spansV2.

(2.2.1) 〈g2, h2〉 = 2〈g, h〉2,
whence

(2.2.2) 〈pq, rs〉 = 〈p, r〉〈q, s〉 + 〈p, s〉〈q, r〉, for p, q, r, s ∈ H.

(2.2.3) 〈x+
α , x

+
β 〉 =

{

2 α = ±β
0 else

(2.2.4) 〈g2, x+
β 〉 = 0.



A VOA related to E8 with automorphism group O+(10, 2) 45

Notation 2.3. In addition, we have the distinguished Virasoro elementω and identity
I := 1

2ω on V2 (see Section 3). Ifhi is a basis forH and h∗i the dual basis, then
ω = 1

2

∑

i hih
∗
i .

Remark 2.4.

(2.4.1) 〈g2, ω〉 = 〈g, g〉

(2.4.2) 〈g2, I〉 =
1

2
〈g, g〉

(2.4.3) 〈I, I〉 = dim(H)/8

(2.4.4) 〈ω, ω〉 = dim(H)/2

If {xi | i = 1, . . . ℓ} is an ON basis,

(2.4.5) I =
1

4

ℓ
∑

i=0

x2
i

(2.4.6) ω =
1

2

ℓ
∑

i=0

x2
i .

3. The Product on V F2 .

Definition 3.1. The product on V F2 comes from the vertex operations. We give it
on standard basis vectors, namelyxy ∈ S2H1, for x, y ∈ H1 and vλ := eλ + e−λ,
for λ ∈ L2. Note that (3.1.1) give the Jordan algebra structure onS2H1, identified
with the space of symmetric8×8 matrices, and with〈x, y〉 = 1

8 tr(xy). The function
ε below is a standard part of notation for lattice VOAs.

(3.1.1) x2 × y2 = 4〈x, y〉xy, pq × y2 = 2〈p, y〉qy + 2〈q, y〉py,

pq × rs = 〈p, r〉qs + 〈p, s〉qr + 〈q, r〉ps + 〈q, s〉pr;

(3.1.2) x2 × vλ = 〈x, λ〉2vλ, xy × vλ = 〈x, λ〉〈y, λ〉vλ

(3.1.3) vλ × vµ =







0 〈λ, µ〉 ∈ {0,±1,±3};
ε〈λ, µ〉vλ+µ 〈λ, µ〉 = −2;
λ2 λ = µ.
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Convention 3.2. Recall thatL = Q[E]. Since(L,L) ≤ 2Z, we may and do assume
that ε is trivial on L× L.

4. Some Calculations with Linear Combinations of thevλ.

Notation 4.1. For a subsetM of H , there is a unique elementωM of S2H which
satisfies (1)ωM ∈ S2(span(M)); (2) for all x, y ∈ span(M), 〈x, y〉 = 〈ωM , xy〉.
We define IM := 1

2ωM . If M and N are orthogonal sets, we haveωM∪N =
ωM + ωN . Define ω′

M := ω − ωM and I′M := I − IM . This element can be
written asωM = 1

2

∑

i x
2
i , where thexi form an orthonormal basis ofspan(M).

We have〈ωM , ωM 〉 = 1
2dim span(M) and 〈IM , IM 〉 = 1

8dim span(M). Also,
〈ωM , xy〉 = 〈ωM , x′y′〉 = 〈ω, x′y′〉, where priming denotes orthogonal projection to
span(M).

Notation 4.2. e±λ := f∓
λ := 1

32 [λ2 ± 4vλ], eλ = e+λ , fλ := e−λ . If a ∈ Z or Z2,
define eλ,a to be e+λ or e−λ , as a ≡ 0, 1(mod 2), respectively; see (4.7). Also, let
e′λ,a = eλ,a+1. We defineeλ,µ to beeλ,a , wherea is 1

2 〈λ, µ〉 in caseµ is a vector in

L, and a is [λ̂, µ], where [., .] is the nonsingular bilinear form onHom(L, {±1})
gotten from 2〈., .〉 by thinking of Hom(L, {±1}) as 1

2L/L and whereλ̂ is the
character gotten by reducing the inner product with1

2λ modulo 2. Finally. letq be
the quadratic form onHom(L, {±1}) gotten by reducingx 7→ 〈x, x〉 modulo 2, for
x ∈ 1

2L.

Lemma 4.3. (i) The e±λ are idempotents.

(ii) 〈e±λ , e±µ 〉 =







1
16 λ = µ;
1

128 〈λ, µ〉 = −2;
0 〈λ, µ〉 = 0.

(iii) 〈e±λ , e∓µ 〉 =







0 λ = µ;
1

128 〈λ, µ〉 = −2;
0 〈λ, µ〉 = 0.

Proof. (i) (e±λ )2 = 1
1024 [4 ·4λ2 +16λ2±8 ·42vλ] = e±λ . (ii) and (iii) follow trivially

from (2.2).

Notation 4.4. For finite X ⊆ L, defines(X) :=
∑

x∈±X/{±1} x
2.

Lemma 4.5. If X ⊆ L2, 〈ω, s(X)〉 = 4|(±X)/{±1}| and so s(L2) = |L2|
2 ω =

120ω.

Proof. (2.2.5)

Corollary 4.6. (i) For α ∈ L2, 〈ωα, s(α)〉 = 〈ω, s(α)〉 = 4 and 〈ωα, ωα〉 = 1
2 ,

whences(α) = 8ωα = 16Iα and Iα = 1
16α

2.
(ii) 〈ωE7

, s(ΦE7
)〉 = 〈ω, s(ΦE7

)〉 = 63, whences(ΦE7
) = 18ωΦE7

;
(iii) 〈ω, s(ΦD8

)〉 = 56, whences(ΦD8
) = 56ωΦE7

.
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Notation 4.7. For ϕ ∈ Hom(L, {±1}), definef(ϕ) :=
∑

λ∈L2/{±1} ϕ(λ)vλ ,

u(ϕ) :=
∑

λ∈L2/{±1} ϕ(λ)λ2 and e(ϕ) := 1
16 I + 1

64f(ϕ). These arguments may
come from other domains, as in (4.2), and we allow mixing as ine(ϕλ), for a
characterϕ and lattice vectorλ. We prove later thate(ϕ) is an idempotent.

Lemma 4.8. Let r, s ∈ L, a, b ∈ Z and let

n(r, s, a, b) := 1
2 |{t ∈ Φ|〈r, t〉 ≡ 2a(mod 2), 〈s, t〉 ≡ 2b(mod 2)}|.

(i) Suppose that the images ofr and s in L/2L are nonzero and distinct. The
values ofn(r, s, a, b) depend only on the isometry type of the images of the ordered
pair 〈r, s〉 in L/2L and are listed below:

1
4 〈r, r〉 1

4 〈s, s〉 1
2 〈r, s〉 2n(rs00) 2n(rs01) 2n(rs10) 2n(rs11)

0 0 0 48 64 64 64
0 0 1 56 56 56 72
0 1 0 64 48 64 64
0 1 1 56 56 72 56
1 0 0 64 64 48 64
1 0 1 56 72 56 56
1 1 0 64 64 64 48
1 1 1 72 56 56 56.

(ii) If s = 0 and 〈r, r〉 = 4, then 2n(r, s, 0, 0) = 128 and 2n(r, s, 1, 0) = 112.
If s = 0 and 〈r, r〉 = 8, then2n(r, s, 0, 0) = 112 and 2n(r, s, 1, 0) = 128.

Lemma 4.9. The f(ϕ), as ϕ ranges over all nonsingular characters ofL of order
2, form a basis forCLθ2.

Proof. Use the action of the subgroup of the Weyl group stabilizing the maximal
totally singular subspaceL/2Q of Q/2Q (its shape is2−528.21+6

+ .GL(4, 2) ); it
also stabilizes the maximal totally singular subspace2Q/2L of L/2L (halve the
quadratic form onL, then reduce modulo 2). SinceWE8

induces the groupO+(8, 2)
on Q/2Q, Witt’s theorem implies that the stabilizer of a maximal isotropic subspace
is transitive on the nonsingular vectors outside it. The action of this group onL/2L
has the analogous property.

Notation 4.10. u(ϕ) :=
∑

λ∈L2/{±1} ϕ(λ)λ2 . This also makes sense forϕ ∈ L by
the identification in (4.2).

Proposition 4.11.Let α ∈ Hom(L, {±1}).
(i)

〈u(α), ω〉 =
∑

α(λ)λ2 =

{ 480 α = 1;
−32 αsingular;
32 αnonsingular.
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(ii)

u(α) =







240I if α=1;
−16I if α is singular;
−208Iα + 48I′α = −256Iα + 48I = −16α2 + 48I if α is nonsingular;

(in the third case,α is taken to be a norm 4 lattice vector inLθ ; it is well defined
up to its negative, and this suffices). Their respective norms are 57600, 256 and
1
82082 + 7

8482 = 7424 = 2829.

Proof. We deal with cases, making use of inner product results (2.2) and (2.3); at
once, we get (i). Ifu(α) were known to be a multiple ofI, this inner product
information would be enough to determineu(α). This is so foru(1) since the linear
group (isomorphic to the Weyl group ofE8 ) stabilizing L2 is irreducible and so
fixes a subspace of dimension just 1 in the symmetric square ofH . It follows that
u(1) = 240I.

Notice that in all casesu(α) = 2u′(α) − u(1), whereu′(α) :=
∑

λ∈Φ′/{±1} λ
2

and Φ′ := {λ ∈ Φ | α(λ) = 1}.
Now to evaluateu′ := u′(α) for α 6= 1. If Φ′ has typeD8, we have an

irreducible group as above and conclude thatu′(α) = bI, where b = 〈u′, I〉 =
1
2 〈u′, ω〉 = 1

256 ·4 = 112. If Φ′ has typeA1E7, we have a reducible group with two
constituents and conclude thatu′ = cIα+ dIα⊥ , where we interpretα as an element
of L2 and moreover as a root in theA1 -component ofΦ′. Since〈Iα, Iα〉 = 1

8 and
〈α2, α2〉 = 32, c = 16. SinceI = Iα+ Iα⊥ , 1

8c+
7
8d = 〈u′, I〉 = 128, whenced =

144. Thus,2u′− 240I = 32Iα+288I′α− 240I = −208Iα+48I′α = −256Iα+48I.

Lemma 4.12. f(ϕ) × f(ψ) =











































(−1)1+q(ϕψ)4(f(ϕ) + f(ψ)) + (−1)1+〈ϕ,ψ〉64vϕψ + u(ϕψ)
if ϕ 6= ψ; furthermore, this equals

−4(f(ϕ) + f(ψ)) − 16I

if ϕψ singular; and equals
4(f(ϕ) + f(ψ)) + 48I − 512eα,〈ϕ,ψ〉

if ϕψ nonsingular;
56f(ϕ) + u(1)

if ϕ = ψ.

Proof. The left side is
∑

λ

∑

µ:〈µ,λ〉=−2

ϕ(λ)ψ(µ)vλ+µ+u(ϕψ) = (for ν = λ+ µ )
∑

ν

ψ(ν)
∑

λ:〈ν,λ〉=2

(ϕψ)(λ)vν

=
∑

ν

ψ(ν)(n(ν, ϕψ, 1, 0) − n(ν, ϕψ, 1, 1))vν + u(ϕψ).

We use (4.8) and (4.9). The coefficent ofvν is 0 if ϕψ(ν) ≡ 1(mod 2). If
ϕψ(ν) ≡ 0(mod 2), then ϕ(ν) = ψ(ν); the coefficient is56ψ(ν) if ϕψ = 1,
(−1)1+q(ϕψ)8 if ϕψ 6= 1 or ν and, if ϕψ = ν , it is −56(−1)〈ϕ,ψ〉.
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Corollary 4.13. e(ϕ)2 = e(ϕ).
The 256 f(ϕ) live in CLθ , a space of dimension 120, so they are linearly

dependent. There is a natural subset which forms a basis.

Proposition 4.14. If ϕψ is singular, f(ϕ) × f(ψ) = −4(f(ϕ) + f(ψ)) − 16I and
e(ϕ) × e(ψ) = 0.

Proof. It suffices to show that(4I + f(ϕ)) × (4I + f(ψ)) = 0, or 16I + 4(f(ϕ) +
f(ψ)) + 4(−1)1+q(ϕψ)(f(ϕ) + f(ψ)) + u(ϕψ) = 0. This follows from q(ϕψ) = 0
and u(ϕψ) = −16I; see (4.12.i).

Lemma 4.15. (i) 〈f(ϕ), f(ψ)〉 =

{

240 if ϕ = ψ;
−16 if ϕψ singular;
16 if ϕψ nonsingular.

(ii) 〈e(ϕ), e(ψ)〉 =







1
16 if ϕ = ψ;

0 if ϕψ singular;
1

128 if ϕψ nonsingular.

Proof. (i) This inner product is2
∑

λ ϕψ(λ), so consider the cases thatϕψ is 1,
singular or nonsingular. One can also use (4.12) and associativity of the form. We
leave (ii) as an exercise, with (i) and (2.2).

Theorem 4.16.The 2e(ϕ) are conformal vectors of conformal weight (=central
charge) 1

2 .

Proof. By (4.10) and [Miy], Theorem 4.1, these are conformal vectors. Fixϕ.
Choose a maximal, totally singular subspace,J , of L modulo 2L. Let J be the
set of distinct linear characters ofL which containJ in their kernel. Thee(ψ), for
ψ ∈ ϕJ, are pairwise orthogonal idempotents (4.12) which sum toI (to prove this,
use the orthogonality relations for this set of 16 distinct characters). We use the fact
that conformal weight of2e(ϕ) is at least 1

2 (see Proposition 6.1 of [Miy]). Since
their conformal weights add to 8, the conformal weight ofω, we are done.

Notation 4.17. In an integral lattice, an element of norm 2 is called aroot and an
element of norm 4 is called aquoot (suggested by the term “quartic" for degree 4).

Notation 4.18. The idempotentse±λ are calledidempotents of quoot type orquooty

idempotents and thee(ϕ) are called idempotents oftout type ortooty idempotents

(suggested by “tout" or “tutti"). The set of all such is denotedQI, TI, respectively.
Set QTI := QI ∪ TI.

5. Eigenspaces.

Notation 5.1. For an elementx of a ring, adx, ad(x) denotes the endomorphism:
right multiplication byx. If the ring is a finite dimensional algebra over a field, the
spectrum of x means the spectrum of the endomorphismad(x).

The main result of this section is the following.
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Theorem 5.2. If e is one of the idempotentseλ, fλ or e(ϕ) of Section 4, its spectrum

is (11, 1
4

35
, 0120).

We prove (5.2) in steps, treating the quooty and tooty cases separately.

——————————————————————————————————

Table 5.3. The action ofad(eλ) on a spanning set. Recall thateλ = 1
32 [λ2 + 4vλ].

vector image underad(eλ) dim.

µ2 1
32 [4〈λ, µ〉λµ + 4〈λ, µ〉2vλ] =

1
8 [〈λ, µ〉λµ + 〈λ, µ〉2vλ] 36

µν 1
32 [2〈λ, µ〉λν + 2〈λ, ν〉λµ+ 4〈λ, µ〉〈λ, ν〉vλ] =

1
16 [〈λ, µ〉λν + 〈λ, ν〉λµ + 2〈λ, µ〉〈λ, ν〉vλ] 36

λ2 1
32 [16λ2 + 64vλ] = 16eλ 1

λh, 〈λ, h〉 = 0 1
328λh = 1

4λh 7

gh, 〈g, λ〉 = 〈h, λ〉 = 0 0 28

vλ 4 1
32 [4λ2 + 16vλ] = 4eλ 1

vµ, 〈λ, µ〉 = 0 0 63

vµ, 〈λ, µ〉 = −2 1
32 [4vλ+µ + 4vµ] = 1

8 [vλ+µ + vµ] 56
—————————————————————————————————–

Table 5.4. The eigenspaces ofad(eλ).

eigenvalue basis element(s) dimension

1 eλ 1
1
4 λh, 〈λ, h〉 = 0 7
1
4 vλ+µ + vµ, 〈λ, µ〉 = −2 28
0 vλ+µ − vµ, 〈λ, µ〉 = −2 28
0 gh, 〈g, λ〉 = 〈h, λ〉 = 0 28
0 vµ, 〈λ, µ〉 = 0 63
0 fλ 1

—————————————————————————————————–
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Table 5.5. The action ofad(fλ) on a spanning set. Recall thatfλ = 1
32 [λ2−4vλ] =

−eλ + 1
16λ

2 , so the table below may be deduced from Table (5.3) and (3.1.1).

vector image underad(fλ) dimension

µ2 1
4 〈λ, µ〉λµ − 1

8 [〈λ, µ〉λµ + 〈λ, µ〉2vλ] =
1
8 [〈λ, µ〉λµ− 〈λ, µ〉2vλ] 36

µν 1
8 [〈λ, µ〉λν + 〈λ, ν〉λµ]

− 1
16 [〈λ, µ〉λν + 〈λ, ν〉λµ + 2〈λ, µ〉〈λ, ν〉vλ] =
1
16 [〈λ, µ〉λν + 〈λ, ν〉λµ − 2〈λ, µ〉〈λ, ν〉vλ] 36

λ2 λ2 − 16eλ = 16fλ 1

λh, 〈λ, h〉 = 0 1
328λh = 1

4λh 7

gh, 〈g, λ〉 = 〈h, λ〉 0 28
= 0

vλ vλ − 4eλ = −4fλ 1

vµ, 〈λ, µ〉 = 0,±1 0 63

vµ, 〈λ, µ〉 = −2 1
4vµ − 1

8 [vλ+µ + vµ] = 1
8 [−vλ+µ + vµ] 56

—————————————————————————————————–

Table 5.6. The eigenspaces ofad(fλ).

eigenvalue basis element(s) dimension

1 fλ 1
1
4 λh, 〈λ, h〉 = 0 7
0 vλ+µ + vµ, 〈λ, µ〉 = −2 28
1
4 vλ+µ − vµ, 〈λ, µ〉 = −2 28
0 gh, 〈g, λ〉 = 〈h, λ〉 = 0 28
0 vµ, 〈λ, µ〉 = 0 63
0 eλ 1

—————————————————————————————————–
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Table 5.7. The action ofad(f(ϕ)) on a spanning set.

vector image underad(f(ϕ)) dim.

f(ϕ) 56f(ϕ) + u(1) 1

f(ψ), ψϕ singular −4(f(ϕ) + f(ψ)) − 16I 120

f(ψ), ψϕ nonsingular 4(f(ϕ) + f(ψ)) + 48I − 512eα,〈ϕ,ψ〉 120

u(α), α nonsingular
∑

µ ϕ(µ)
∑

λ α(λ)〈λ, µ〉2vµ =
∑

µ ϕ(µ)[48 − 16〈µ, α〉2]vµ 36

I f(ϕ) 1
—————————————————————————————————–

Proofs (5.7.1). Proofs of the above are straightforward. We give a proof only of
the formula for ξ := f(ϕ) × u(α). Clearly, ξ is a linear combination of thevλ,
so we just get its coefficent atvλ as 1

2 〈ξ, vλ〉. By associativity of the form, this
is 1

2 〈u(α), f(ϕ) × vλ〉 = 1
2 〈u(α), ϕ(λ)λ2〉. By (4.12.ii), we have an expression

for u(α). Since 〈I, λ2〉 = 2 and 〈Iα, λ2〉 = 1
2 〈λ, α〉2〈α, α〉−1 = 1

8 〈λ, α〉2 , the
respective cases of (4.12.ii) lead to12 〈u(α), ϕ(λ)λ2〉 = ϕ(λ)240,−ϕ(λ)16 and
ϕ(λ)[48 − 16〈λ, α〉2]. Only the latter case is recorded in the table sinceu(α) is
otherwise a multiple ofI.
—————————————————————————————————–
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Table 5.8. The action ofad(e(ϕ)) on a spanning set. Recall thate(ϕ) = 1
16 I +

1
64f(ϕ). We use the notationα := ϕψ, whenϕψ is nonsingular. Note that the set
of suchα2 spanS2(H).

vector image underad(e(ϕ)) dim.

f(ϕ) 15
16f(ϕ) + 15

4 I 1

f(ψ), ϕψ singular − 1
16f(ψ) − 1

4 I 120

f(ψ), ϕψ nonsingular 4e(ϕ) + 8e(ψ) − 8eα,〈ϕ,ψ〉 120

α2 if α := ϕψ nonsingular 2[e(ϕ) − e(ψ)] + 2eα,ϕ(α) 36

u(α), α nonsingular 1
16u(α) +

∑

µ ϕ(µ)[34 − 1
4 〈µ, α〉2]vµ 36

I e(ϕ) 1

e(ϕ) e(ϕ) 1

e(ψ) if ϕψ singular 0 120

e(ψ) if α := ϕψ nonsingular 2−3[e(ϕ) + e(ψ) − eα,〈ϕ,ψ〉] 120

vα = 4(e+α − e−α ) ϕ(α)1
2 [eα,〈ϕ,ψ〉 + e(ϕ) − e(ψ)] 120

eα,ϕ
1
8 [eα,〈ϕ,ψ〉 + e(ϕ) − e(ψ)] 35

e′α,ϕ 0 120
—————————————————————————————————–

Table 5.9. Eigenspaces ofad(e(ϕ)). In the table, we use the convention thatα :=
ϕψ is nonsingular. Recall thate±λ = 1

32 (λ2 ± 4eλ). Recall thatvα = 4(e+α + e−α ).

eigenvalue basis elements dimension

1 e(ϕ) 1
0 e′α,ϕ 120
1
4 −eα,ϕ + e(ψ) 35

—————————————————————————————————–
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Table 5.10. Action of Idempotents on Idempotents. Recall the definitionse±λ =
1
32 [λ2 ± 4vλ], eλ,ϕ = eλ,〈ϕ,λ〉, e(ϕ) = 1

16 I + 1
64f(ϕ). In expressions below,a and

b are integers modulo 2.

eλ,a×eµ,b =



































































0 if 〈λ, µ〉 = 0
2−10[−8λµ+ 16((−1)avλ+
(−1)bvµ + 16(−1)a+bvλ+µ] =
2−10[−4(λ+ µ)2 − (−1)a+b4vλ+µ

+4((λ2 + 4(−1)avλ)+
4(µ2 + 4(−1)bvµ)] =

2−3[eλ+µ,a+b+1 + eλ,a + eµ,b] if 〈λ, µ〉 = −2
eλ,a if (〈λ, µ〉, (−1)a+b)

= (4,0), (-4,1)
0 if (〈λ, µ〉, (−1)ab) =

(4,1), (-4,0)

e(ϕ) × e(ψ) =







e(ϕ) if ϕ = ψ
0 if ϕψ singular
2−3[e(ϕ) + e(ψ) − eϕψ,ϕ] if ϕψ nonsingular

eλ,a × e(ψ) =

{

0 [λ, ψ] = a+ 1
2−3[e(ψλ) − e(ψ) − eλ,ψ] [λ, ψ] = a.

——————————————————————————– ———————

Table 5.11. Inner Products of Idempotents

See the basic inner products in Section 2. We also need(f(ϕ), f(ψ)) from (4.15).

(eλ,a, eµ,b) = 2−9〈λ, µ〉2 + 2−5(−1)a+bδλ,µ =







2−4 λ = µ
0 λµ singular
2−7 λµ nonsingular

.

(eλ,a, e(ϕ)) =

2−8 + 2−8(−1)aϕ(α) =

{

2−7 if (−1)aϕ(α) = 1, i.e., a+ [ϕ, α] = 0
0 if (−1)aϕ(α) = −1 i.e., a+ [ϕ, α] = 1

.

(e(ϕ), e(ψ)) = 2−8 + 2−12

{ 240 ϕ = ψ
−16 ϕψ singular
16 ϕψ nonsingular

=

{

2−4

0
2−7

.
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6. Idempotents and Involutions.

Notation 6.1. The polynomialp(t) := 32
3 t

2 − 32
3 + 1 takes valuesp(0) = p(1) = 1

andp(1
4 ) = −1. For an idempotente such thatad(e) is semisimple with eigenvalues

0, 1
4 and 1, we definet(e) := p(ad(e)), an involution which is1 on the 0− and

1-eigenspaces and is−1 on the 1
4 -eigenspace. LetE± = E±(e) = E±(t(e)) denote

the ±1 eigenspace of this involution.

The main results of this section are the following.

Theorem 6.2.For a quooty or tooty idempotent,e, t(e) is an automorphism ofV F .

This follows from the theory in [Miy] and (5.2). In this section, we shall verify this
directly on the algebraV F2 only, for the e±λ and e(ϕ) and prove that these elements
are all the idempotents whose doubles are conformal vectors of conformal weight 1

2 .
See (6.5) and (6.6).

Theorem 6.3.The subgroup ofAut(V F ) generated by allt(e) as in (6.2) is iso-
morphic toO+(10, 2).

The Miyamoto theory proves that thet(e) are in Aut(V F ). It turns out that the
group they generate restricts faithfully toV F2 is faithful, and there we can identify it.

Theorem 6.4.The group generated by thet(e±λ ) is isomorphic to the maximal 2-local
subgroup ofO+(10, 2) of shape28:O+(8, 2). The normal subgroup of order28 is
generated by allt(e+λ )t(e−λ ) and acts regularly on the set of weighty idempotents. A
complement to this normal subgroup is the stabilizer of anye(ϕ), for example, the
stabilizer of e(1) (1 means the trivial character) is generated by allt(eλ,1). Such a
complement is isomorphic to the Weyl group of typeE8, modulo its center.

To verify that the involutiont(e) is an automorphism ofV F2 , it suffices to check
that E+E+ + E−E− ≤ E+ andE+E− ≤ E− .

Proposition 6.5. If e is quooty,t(e) is an automorphism ofV F2 .

Proof. This is straightforward with (6.4) and (5.4).

Proposition 6.6. If e is tooty, t(e) is an automorphism ofV F2 .

Proof. This is harder. We use (5.1), (6.4), (5.8) and (5.11). It is easy to verify that
E+ × E+ ≤ E+ . To proveE− × E− ≤ E+ , we verify that(E− × E−, E−) = 0
(this suffices since the eigenspaces are nonsingular and pairwise orthogonal); the
verification is a straightforward checking of cases. To prove thatE− × E+ ≤ E−,
we use the previous result, commutativity of the product and associativity of the form.

Table 6.7. (i) The action oft(eλ,a) on QTI:
fixed are

eµ,b if 〈µ, λ〉 = 0 or ±4; e(ϕ) if [λ, ϕ] = 0;
interchanged are
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eµ,b and eλ+µ,a+b+1 if 〈λ, µ〉 = −2; e(ϕ) and e(ϕλ) if [λ, ϕ] = 1.

(ii) The action of t(e(ϕ)) on QTI:
fixed are

all e′λ,ϕ and all e(ψ) with ϕ = ψ or ϕψ singular;
interchanged are

all e(ϕλ) and eλ,ϕ with λ a quoot.

Proof. For an involutiont to interchange vectorsx and y in characteristic not 2, it
is necessary and sufficient thatt fix x+y and negatex−y. The following is a useful
observation: since the+1 eigenspace fort = t(e) is the sum of the 0-eigenspace
and the 1

4 -eigenspace forad(e), a vectoru is fixed by t(e) iff e × u is in the
1
4 -eigenspace. Another useful observation is that ifx − y is negated, then(x − y)2

is fixed. The proof of (i) and (ii) is an exercise in checking cases.

The identification ofG, the group generated by all sucht(e), e ∈ QTI, is based
on a suitable identification of this set of involutions with nonsingular points inF10

2

with a maximal index nonsingular quadratic form.

Notation 6.8. Let T := F10
2 have a quadratic formq of maximal Witt index. Decom-

poseT = U ⊥ W , with dim(U) = 2, dim(W ) = 8, both of plus type. LetU =
{0, r, s, f}, whereq(f) = 1, q(r) = q(s) = 0. Identify W with Hom(L, {±1}).
For x ∈ V nonsingular, writex = p+ y, for p ∈ U, y ∈ W . If p = 0, correspond
x to ey,1. If p = r, correspondx to ey,0. If p ∈ {s, f}, corresponde(y) to x.
This correspondence isG-equivariant; use (6.7).

So, we have a map ofG onto O+(10, 2) by restriction toV F2 . Its kernel fixes
all of our idempotents, which spanV F2 . By Corollary 6.2 of [DGH], this kernel is
trivial. So,G ∼= O+(10, 2) and (6.3) is proven.

Proposition 6.9. G acts irreducibly onI⊥ (dimension 155).

Proof. This follows from the character table ofΩ+(10, 2), but we can give an
elementary proof.

(1) The subgroupH of (6.2) has an irreducible constituentP of dimension 120
with monomial basisvα, α ∈ L2;

(2) the squares of thevα generate the 36-dimensional orthogonal complement,
P⊥. The action fixesI and the action on the 35-dimensional spaceP⊥ ∩ I⊥ is
nontrivial, hence irreducible (the subgroupO2(H) ∼= 28 acts trivially and the quotient
H/O2(H) ∼= O+(8, 2) acts transitively on the spanning set of 120 elementsv2

α = α2,
so acts faithfully. Now, the subgroup26:O+(6, 2) ∼= 26:Sym8 has smallest faithful
irreducible degrees 28 and 35; ifH is reducible onP⊥ ∩ I⊥ , then 28 occurs andH
has an irreducibleR of dimensiond, 28 ≤ d ≤ 34 and soP⊥ ∩ R⊥ is a trivial
module of dimension36 − d ≥ 2. This is impossible sinceP⊥ is anH -constituent
of a transitive permutation module of degree 120, contradiction).

(3) We now haveV F2 = 1 + 35 + 120 as a decomposition intoH -irreducibles.
But eacht(e(ϕ)) fixes I and does not fix the 120-dimensional constitutent, whence
irreduciblity of G on I

⊥ .
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Theorem 6.10.Aut(V F ) = G ∼= O+(10, 2).

Proof. SetA := Aut(V F ). We quote Theorem (6.13) of [Miy], which says that ifX

is the set of conformal vectors of central charge1
2 , then |t(x)t(y)| ∈ {1, 2, 3}. So, if

X is a conjugacy class, it is a set of 3-transpositions. If it is not a conjugacy class, we
have a nontrivial central product decomposition of〈X〉, which is clearly impossible
sinceA acts faithfully andG acts irreducibly onV F2 . Now, the classification of
groups generated by a a class of 3-transpostions [Fi69][Fi71] may be invoked to
identify A. It is a fairly straightforward exercise to eliminate any 3-transposition
group which properly containsO+(10, 2).

7. A related subVOA of V ♮.

The VOA defined in [FLM], denotedV ♮, has the monster as its automorphism group.
One of the parabolics,P ∼= 210+16Ω+(10, 2), acts on the subVOAV ′ of fixed
points of O2(P ); the degree 2 partV ′

2 containsV F2 . In fact, V ′
2 is isomorphic

to the direct sum of algebrasV F2 (with × ) and C. The proper subVOAV ′′ of
V ′ generated by theV F2 -part is isomorphic toV F (this is so because we can see
our L = Q[E] embedded in the Leech lattice, as the fixed point sublattice of an
involution). This subVOAV ′′ contains idempotents given by formulas like ours for
quooty and tooty ones, but these idempotents have1

16 in their spectrum onV ♮ , so
the involutions associated to them by the Miyamoto theory act triviallyon V ′. The
involutory automorphisms ofV ′ given by our forumlas in Section 6 do not extend to
automorphisms ofV ♮ since otherwise the stabilizer of this subVOA inMI , the monster,
would induceO+(10, 2) on it, contrary to the above structure of the maximal 2-local
P ; we mention that the maximal 2-locals have been classifed [Mei].
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