# A vertex operator algebra related to $E_{8}$ with automorphism group $O^{+}(10,2)$ 

Robert L. Griess, Jr.


#### Abstract

We study a particular VOA which is a subVOA of the $E_{8}$-lattice VOA and determine its automorphism group. Some of this group may be seen within the group $E_{8}(\mathbb{C})$, but not all of it. The automorphism group turns out to be the 3 -transposition group $O^{+}(10,2)$ of order $2^{21} 3^{5} 5^{2} 7.17 .31$ and it contains the simple group $\Omega^{+}(10,2)$ with index 2. We use a recent theory of Miyamoto to get involutory automorphisms associated to conformal vectors. This VOA also embeds in the moonshine module and has stabilizer in $I M$, the monster, of the form $2^{10+16} . \Omega^{+}(10,2)$.


## Hypotheses

We review some definitions, based on the usual definitions for the elements, products and inner products for lattice VOAs; see [FLM].

Notation 1.2. $\Phi$ is a root system whose components have types ADE, $\mathfrak{g}$ is a Lie algebra with root system $\Phi, Q:=Q_{\Phi}$, the root lattice and $V:=V_{Q}:=\mathbb{S}\left(\hat{H}_{-}\right) \otimes$ $\mathbb{C}[Q]$ is the lattice VOA in the usual notation.

Remark 1.3. We display a few graded pieces of $V$ ( $\otimes$ is omitted, and here $Q$ can be any even lattice). We write $H_{m}$ for $H \otimes t^{-m}$ in the usual notation for lattice VOAs (2.1) and $Q_{m}:=\{x \in Q \mid(x, x)=2 m\}$, the set of lattice vectors of type $m$.

$$
\begin{gathered}
V_{0}=\mathbb{C}, \quad V_{1}=H_{1} \\
V_{2}=\left[S^{2} H_{1}+H_{2}\right]+H_{1} \mathbb{C} Q_{1}+\mathbb{C} Q_{2} \\
V_{3}=\left[S^{3} H_{1}+H_{1} H_{2}+H_{3}\right]+\left[S^{2} H_{1}+H_{2}\right] \mathbb{C} Q_{1}+H_{1} \mathbb{C} Q_{2}+\mathbb{C} Q_{3}, \\
V_{4}=\left[S^{4} H_{1}+S^{2} H_{1} H_{2}+H_{1} H_{3}+S^{2} H_{2}+H_{4}\right]+ \\
{\left[S^{3} H_{1}+H_{1} H_{2}+H_{3}\right] \mathbb{C} Q_{1}+\left[S^{2} H_{1}+H_{2}\right] \mathbb{C} Q_{2}+H_{1} \mathbb{C} Q_{3}+\mathbb{C} Q_{4}}
\end{gathered}
$$

Remark 1.4. Let $F$ be a subgroup of $\operatorname{Aut}(\mathfrak{g})$, where $\mathfrak{g}$ is the Lie algebra $V_{1}=$ $H_{1}+\mathbb{C} Q_{1}$ with $0^{t h}$ binary composition. The fixed points $V^{F}$ of $F$ on $V$ form a subVOA. We have an action of $N(F) / F$ as automorphisms of this sub VOA.

Notation 1.5. For the rest of this article, we take $Q$ to be the $E_{8}$-lattice. Take $F$ to be a $2 B$-pure elementary abelian 2-group of rank 5 in $A u t(\mathfrak{g}) \cong E_{8}(\mathbb{C})$; it is fixed point free. Let $E:=F \cap T$ where $T$ is the standard torus and where $F$ is chosen to make $\operatorname{rank}(E)=4$. Let $\theta \in F \backslash E$; we arrange for $\theta$ to interchange the standard Chevalley generators $x_{\alpha}$ and $x_{-\alpha}$. See [Gr91]. The Chevalley generator $x_{\alpha}$ corresponds to the standard generator $e^{\alpha}$ of the lattice VOA $V_{Q}$.

Notation 1.7. $L:=Q^{[E]} \cong \sqrt{ } 2 Q$ denotes the common kernel of the lattice characters associated to the elements of $E$; in the [Carter] notation, these characters are $h^{-1}(E)$; in the root lattice modulo 2 , they correspond to the sixteen vectors in a maximal totally singular subspace. Then

$$
\begin{equation*}
V_{1}^{F}=0 \tag{1.7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}^{F}=S^{2} H_{1}+0+\mathbb{C} L_{2}^{\theta} \tag{1.7.2}
\end{equation*}
$$

where the latter summand stands for the span of all $e^{\lambda}+e^{-\lambda}$, where $\lambda$ runs over all the $15 \cdot 16=240$ norm 4 lattice vectors in $L$. Thus, $V_{2}^{F}$ has dimension $\binom{9}{2}+\frac{240}{2}=$ $36+120=156$ and has a commutative algebra structure invariant under $N(F) \cong$ $2^{5+10} \cdot G L(5,2)$. We note that $N(F) / F \cong 2^{10}: G L(5,2)$ [Gr76][CoGr][Gr91].

We will show (6.10) that $\operatorname{Aut}\left(V^{F}\right) \cong O^{+}(10,2)$.

## 2. Inner Product.

Definition 2.1. The inner product on $S^{n} H_{m}$ is $\left\langle x^{n}, x^{n}\right\rangle=n!m^{n}\langle x, x\rangle^{n}$. This is based on the adjointness requirement for $h \otimes t^{k}$ and $h \otimes t^{-k}$ (see (1.8.15), FLM,p.29). When $k>0, h \otimes t^{-k}$ acts like multiplication by $h \otimes t^{-k}$ and, when $h$ is a root, $h \otimes t^{k}$ acts like $k$ times differentiation with respect to $h$.

When $n=2$, this means $\left\langle x^{2}, x^{2}\right\rangle=2 m^{2}\langle x, x\rangle$. In $V_{2}^{F}, m=1$.
Definition 2.2. The Symmetric Bilinear Form. Source: [FLM], p.217. This form is associative with respect to the product (Section 3). We write $H$ for $H_{1}$. The set of all $g^{2}$ and $x_{\alpha}^{+}$spans $V_{2}$.

$$
\begin{equation*}
\left\langle g^{2}, h^{2}\right\rangle=2\langle g, h\rangle^{2} \tag{2.2.1}
\end{equation*}
$$

whence

$$
\begin{gather*}
\langle p q, r s\rangle=\langle p, r\rangle\langle q, s\rangle+\langle p, s\rangle\langle q, r\rangle, \text { for } p, q, r, s \in H  \tag{2.2.2}\\
\left\langle x_{\alpha}^{+}, x_{\beta}^{+}\right\rangle=\left\{\begin{array}{cc}
2 & \alpha= \pm \beta \\
0 & \text { else }
\end{array}\right.  \tag{2.2.3}\\
\left\langle g^{2}, x_{\beta}^{+}\right\rangle=0 \tag{2.2.4}
\end{gather*}
$$

Notation 2.3. In addition, we have the distinguished Virasoro element $\omega$ and identity $\mathbb{I}:=\frac{1}{2} \omega$ on $V_{2}$ (see Section 3). If $h_{i}$ is a basis for $H$ and $h_{i}^{*}$ the dual basis, then $\omega=\frac{1}{2} \sum_{i} h_{i} h_{i}^{*}$.

## Remark 2.4.

$$
\begin{gather*}
\left\langle g^{2}, \omega\right\rangle=\langle g, g\rangle  \tag{2.4.1}\\
\left\langle g^{2}, \mathbb{I}\right\rangle=\frac{1}{2}\langle g, g\rangle  \tag{2.4.2}\\
\langle\mathbb{I}, \mathbb{I}\rangle=\operatorname{dim}(H) / 8  \tag{2.4.3}\\
\langle\omega, \omega\rangle=\operatorname{dim}(H) / 2 \tag{2.4.4}
\end{gather*}
$$

If $\left\{x_{i} \mid i=1, \ldots \ell\right\}$ is an ON basis,

$$
\begin{align*}
& \mathbb{I}=\frac{1}{4} \sum_{i=0}^{\ell} x_{i}^{2}  \tag{2.4.5}\\
& \omega=\frac{1}{2} \sum_{i=0}^{\ell} x_{i}^{2} \tag{2.4.6}
\end{align*}
$$

## 3. The Product on $V_{2}^{F}$.

Definition 3.1. The product on $V_{2}^{F}$ comes from the vertex operations. We give it on standard basis vectors, namely $x y \in S^{2} H_{1}$, for $x, y \in H_{1}$ and $v_{\lambda}:=e^{\lambda}+e^{-\lambda}$, for $\lambda \in L_{2}$. Note that (3.1.1) give the Jordan algebra structure on $S^{2} H_{1}$, identified with the space of symmetric $8 \times 8$ matrices, and with $\langle x, y\rangle=\frac{1}{8} \operatorname{tr}(x y)$. The function $\varepsilon$ below is a standard part of notation for lattice VOAs.

$$
\begin{align*}
x^{2} \times y^{2}=4\langle x, y\rangle x y, & p q \times y^{2}=2\langle p, y\rangle q y+2\langle q, y\rangle p y  \tag{3.1.1}\\
p q \times r s & =\langle p, r\rangle q s+\langle p, s\rangle q r+\langle q, r\rangle p s+\langle q, s\rangle p r
\end{align*}, \begin{array}{ll}
x^{2} \times v_{\lambda} & =\langle x, \lambda\rangle^{2} v_{\lambda}, \\
v_{\lambda} \times v_{\mu} & = \begin{cases}0 & \langle\lambda, \mu\rangle \in\{0, \pm 1, \pm 3\} \\
\varepsilon\langle\lambda, \mu\rangle v_{\lambda+\mu} & \langle\lambda, \mu\rangle=\langle x, \lambda\rangle\langle y, \lambda\rangle v_{\lambda} \\
\lambda^{2} & \lambda=\mu\end{cases} \tag{3.1.2}
\end{array}
$$

Convention 3.2. Recall that $L=Q^{[E]}$. Since $(L, L) \leq 2 \mathbb{Z}$, we may and do assume that $\varepsilon$ is trivial on $L \times L$.

## 4. Some Calculations with Linear Combinations of the $v_{\lambda}$ •

Notation 4.1. For a subset $M$ of $H$, there is a unique element $\omega_{M}$ of $S^{2} H$ which satisfies (1) $\omega_{M} \in S^{2}(\operatorname{span}(M))$; (2) for all $x, y \in \operatorname{span}(M),\langle x, y\rangle=\left\langle\omega_{M}, x y\right\rangle$. We define $\mathbb{I}_{M}:=\frac{1}{2} \omega_{M}$. If $M$ and $N$ are orthogonal sets, we have $\omega_{M \cup N}=$ $\omega_{M}+\omega_{N}$. Define $\omega_{M}^{\prime}:=\omega-\omega_{M}$ and $\mathbb{I}_{M}^{\prime}:=\mathbb{I}-\mathbb{I}_{M}$. This element can be written as $\omega_{M}=\frac{1}{2} \sum_{i} x_{i}^{2}$, where the $x_{i}$ form an orthonormal basis of $\operatorname{span}(M)$. We have $\left\langle\omega_{M}, \omega_{M}\right\rangle=\frac{1}{2} \operatorname{dim} \operatorname{span}(M)$ and $\left\langle\mathbb{I}_{M}, \mathbb{I}_{M}\right\rangle=\frac{1}{8} \operatorname{dim} \operatorname{span}(M)$. Also, $\left\langle\omega_{M}, x y\right\rangle=\left\langle\omega_{M}, x^{\prime} y^{\prime}\right\rangle=\left\langle\omega, x^{\prime} y^{\prime}\right\rangle$, where priming denotes orthogonal projection to $\operatorname{span}(M)$.

Notation 4.2. $e_{\lambda}^{ \pm}:=f_{\lambda}^{\mp}:=\frac{1}{32}\left[\lambda^{2} \pm 4 v_{\lambda}\right], e_{\lambda}=e_{\lambda}^{+}, f_{\lambda}:=e_{\lambda}^{-}$. If $a \in \mathbb{Z}$ or $\mathbb{Z}_{2}$, define $e_{\lambda, a}$ to be $e_{\lambda}^{+}$or $e_{\lambda}^{-}$, as $a \equiv 0,1(\bmod 2)$, respectively; see (4.7). Also, let $e_{\lambda, a}^{\prime}=e_{\lambda, a+1}$. We define $e_{\lambda, \mu}$ to be $e_{\lambda, a}$, where $a$ is $\frac{1}{2}\langle\lambda, \mu\rangle$ in case $\mu$ is a vector in $L$, and $a$ is $[\hat{\lambda}, \mu]$, where [.,.] is the nonsingular bilinear form on $\operatorname{Hom}(L,\{ \pm 1\})$ gotten from $2\langle.,$.$\rangle by thinking of \operatorname{Hom}(L,\{ \pm 1\})$ as $\frac{1}{2} L / L$ and where $\hat{\lambda}$ is the character gotten by reducing the inner product with $\frac{1}{2} \lambda$ modulo 2 . Finally. let $q$ be the quadratic form on $\operatorname{Hom}(L,\{ \pm 1\})$ gotten by reducing $x \mapsto\langle x, x\rangle$ modulo 2, for $x \in \frac{1}{2} L$.
Lemma 4.3. (i) The $e_{\lambda}^{ \pm}$are idempotents.
(ii) $\left\langle e_{\lambda}^{ \pm}, e_{\mu}^{ \pm}\right\rangle= \begin{cases}\frac{1}{16} & \lambda=\mu ; \\ \frac{1}{128} & \langle\lambda, \mu\rangle=-2 ; \\ 0 & \langle\lambda, \mu\rangle=0 .\end{cases}$
(iii) $\left\langle e_{\lambda}^{ \pm}, e_{\mu}^{\mp}\right\rangle= \begin{cases}0 & \lambda=\mu ; \\ \frac{1}{128} & \langle\lambda, \mu\rangle=-2 ; \\ 0 & \langle\lambda, \mu\rangle=0 .\end{cases}$

Proof. (i) $\left(e_{\lambda}^{ \pm}\right)^{2}=\frac{1}{1024}\left[4 \cdot 4 \lambda^{2}+16 \lambda^{2} \pm 8 \cdot 4^{2} v_{\lambda}\right]=e_{\lambda}^{ \pm}$. (ii) and (iii) follow trivially from (2.2).

Notation 4.4. For finite $X \subseteq L$, define $s(X):=\sum_{x \in \pm X /\{ \pm 1\}} x^{2}$.
Lemma 4.5. If $X \subseteq L_{2}, \quad\langle\omega, s(X)\rangle=4|( \pm X) /\{ \pm 1\}|$ and so $s\left(L_{2}\right)=\frac{\left|L_{2}\right|}{2} \omega=$ $120 \omega$.

Proof. (2.2.5)
Corollary 4.6. (i) For $\alpha \in L_{2},\left\langle\omega_{\alpha}, s(\alpha)\right\rangle=\langle\omega, s(\alpha)\rangle=4$ and $\left\langle\omega_{\alpha}, \omega_{\alpha}\right\rangle=\frac{1}{2}$, whence $s(\alpha)=8 \omega_{\alpha}=16 \mathbb{I}_{\alpha}$ and $\mathbb{I}_{\alpha}=\frac{1}{16} \alpha^{2}$.
(ii) $\left\langle\omega_{E_{7}}, s\left(\Phi_{E_{7}}\right)\right\rangle=\left\langle\omega, s\left(\Phi_{E_{7}}\right)\right\rangle=63$, whence $s\left(\Phi_{E_{7}}\right)=18 \omega_{\Phi_{E_{7}}}$;
(iii) $\left\langle\omega, s\left(\Phi_{D_{8}}\right)\right\rangle=56$, whence $s\left(\Phi_{D_{8}}\right)=56 \omega_{\Phi_{E_{7}}}$.

Notation 4.7. For $\varphi \in \operatorname{Hom}(L,\{ \pm 1\})$, define $f(\varphi):=\sum_{\lambda \in L_{2} /\{ \pm 1\}} \varphi(\lambda) v_{\lambda}$, $u(\varphi):=\sum_{\lambda \in L_{2} /\{ \pm 1\}} \varphi(\lambda) \lambda^{2}$ and $e(\varphi):=\frac{1}{16} \mathbb{I}+\frac{1}{64} f(\varphi)$. These arguments may come from other domains, as in (4.2), and we allow mixing as in $e(\varphi \lambda)$, for a character $\varphi$ and lattice vector $\lambda$. We prove later that $e(\varphi)$ is an idempotent.

Lemma 4.8. Let $r, s \in L, a, b \in \mathbb{Z}$ and let

$$
n(r, s, a, b):=\frac{1}{2}|\{t \in \Phi \mid\langle r, t\rangle \equiv 2 a(\bmod 2),\langle s, t\rangle \equiv 2 b(\bmod 2)\}|
$$

(i) Suppose that the images of $r$ and $s$ in $L / 2 L$ are nonzero and distinct. The values of $n(r, s, a, b)$ depend only on the isometry type of the images of the ordered pair $\langle r, s\rangle$ in $L / 2 L$ and are listed below:

| $\frac{1}{4}\langle r, r\rangle$ | $\frac{1}{4}\langle s, s\rangle$ | $\frac{1}{2}\langle r, s\rangle$ | $2 n(r s 00)$ | $2 n(r s 01)$ | $2 n(r s 10)$ | $2 n(r s 11)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 48 | 64 | 64 | 64 |
| 0 | 0 | 1 | 56 | 56 | 56 | 72 |
| 0 | 1 | 0 | 64 | 48 | 64 | 64 |
| 0 | 1 | 1 | 56 | 56 | 72 | 56 |
| 1 | 0 | 0 | 64 | 64 | 48 | 64 |
| 1 | 0 | 1 | 56 | 72 | 56 | 56 |
| 1 | 1 | 0 | 64 | 64 | 64 | 48 |
| 1 | 1 | 1 | 72 | 56 | 56 | 56. |

(ii) If $s=0$ and $\langle r, r\rangle=4$, then $2 n(r, s, 0,0)=128$ and $2 n(r, s, 1,0)=112$. If $s=0$ and $\langle r, r\rangle=8$, then $2 n(r, s, 0,0)=112$ and $2 n(r, s, 1,0)=128$.

Lemma 4.9. The $f(\varphi)$, as $\varphi$ ranges over all nonsingular characters of $L$ of order 2, form a basis for $\mathbb{C} L_{2}^{\theta}$.

Proof. Use the action of the subgroup of the Weyl group stabilizing the maximal totally singular subspace $L / 2 Q$ of $Q / 2 Q$ (its shape is $2^{-5} 2^{8} .2_{+}^{1+6} . G L(4,2)$ ); it also stabilizes the maximal totally singular subspace $2 Q / 2 L$ of $L / 2 L$ (halve the quadratic form on $L$, then reduce modulo 2). Since $W_{E_{8}}$ induces the group $O^{+}(8,2)$ on $Q / 2 Q$, Witt's theorem implies that the stabilizer of a maximal isotropic subspace is transitive on the nonsingular vectors outside it. The action of this group on $L / 2 L$ has the analogous property.

Notation 4.10. $u(\varphi):=\sum_{\lambda \in L_{2} /\{ \pm 1\}} \varphi(\lambda) \lambda^{2}$. This also makes sense for $\varphi \in L$ by the identification in (4.2).

Proposition 4.11. Let $\alpha \in \operatorname{Hom}(L,\{ \pm 1\})$.
(i)

$$
\langle u(\alpha), \omega\rangle=\sum \alpha(\lambda) \lambda^{2}= \begin{cases}480 & \alpha=1 \\ -32 & \text { 人singular } \\ 32 & \text { ononsingular }\end{cases}
$$

(ii)
$u(\alpha)= \begin{cases}240 \mathbb{I} & \text { if } \alpha=1 ; \\ -16 \mathbb{I} & \text { if } \alpha \text { is singular; } \\ -208 \mathbb{I}_{\alpha}+48 \mathbb{I}_{\alpha}^{\prime}=-256 \mathbb{I}_{\alpha}+48 \mathbb{I}=-16 \alpha^{2}+48 \mathbb{I} & \text { if } \alpha \text { is nonsingular; }\end{cases}$
(in the third case, $\alpha$ is taken to be a norm 4 lattice vector in $L^{\theta}$; it is well defined up to its negative, and this suffices). Their respective norms are 57600, 256 and $\frac{1}{8} 208^{2}+\frac{7}{8} 48^{2}=7424=2^{8} 29$.

Proof. We deal with cases, making use of inner product results (2.2) and (2.3); at once, we get (i). If $u(\alpha)$ were known to be a multiple of $\mathbb{I}$, this inner product information would be enough to determine $u(\alpha)$. This is so for $u(1)$ since the linear group (isomorphic to the Weyl group of $E_{8}$ ) stabilizing $L_{2}$ is irreducible and so fixes a subspace of dimension just 1 in the symmetric square of $H$. It follows that $u(1)=240 \mathbb{I}$.

Notice that in all cases $u(\alpha)=2 u^{\prime}(\alpha)-u(1)$, where $u^{\prime}(\alpha):=\sum_{\lambda \in \Phi^{\prime} /\{ \pm 1\}} \lambda^{2}$ and $\Phi^{\prime}:=\{\lambda \in \Phi \mid \alpha(\lambda)=1\}$.

Now to evaluate $u^{\prime}:=u^{\prime}(\alpha)$ for $\alpha \neq 1$. If $\Phi^{\prime}$ has type $D_{8}$, we have an irreducible group as above and conclude that $u^{\prime}(\alpha)=b \mathbb{I}$, where $b=\left\langle u^{\prime}, \mathbb{I}\right\rangle=$ $\frac{1}{2}\left\langle u^{\prime}, \omega\right\rangle=\frac{1}{2} 56 \cdot 4=112$. If $\Phi^{\prime}$ has type $A_{1} E_{7}$, we have a reducible group with two constituents and conclude that $u^{\prime}=c \mathbb{I}_{\alpha}+d \mathbb{I}_{\alpha^{\perp}}$, where we interpret $\alpha$ as an element of $L_{2}$ and moreover as a root in the $A_{1}$-component of $\Phi^{\prime}$. Since $\left\langle\mathbb{I}_{\alpha}, \mathbb{I}_{\alpha}\right\rangle=\frac{1}{8}$ and $\left\langle\alpha^{2}, \alpha^{2}\right\rangle=32, c=16$. Since $\mathbb{I}=\mathbb{I}_{\alpha}+\mathbb{I}_{\alpha^{\perp}}, \frac{1}{8} c+\frac{7}{8} d=\left\langle u^{\prime}, \mathbb{I}\right\rangle=128$, whence $d=$ 144. Thus, $2 u^{\prime}-240 \mathbb{I}=32 \mathbb{I}_{\alpha}+288 \mathbb{I}_{\alpha}^{\prime}-240 \mathbb{I}=-208 \mathbb{I}_{\alpha}+48 \mathbb{I}_{\alpha}^{\prime}=-256 \mathbb{I}_{\alpha}+48 \mathbb{I}$.

Lemma 4.12. $f(\varphi) \times f(\psi)=$

$$
\left\{\begin{array}{c}
(-1)^{1+q(\varphi \psi)} 4(f(\varphi)+f(\psi))+(-1)^{1+\langle\varphi, \psi\rangle} 64 v_{\varphi \psi}+u(\varphi \psi) \\
\text { if } \varphi \neq \psi ; \text { furthermore, this equals } \\
-4(f(\varphi)+f(\psi))-16 \mathbb{I} \\
\quad \text { if } \varphi \psi \text { singular; and equals } \\
4(f(\varphi)+f(\psi))+48 \mathbb{I}-512 e_{\alpha,\langle\varphi, \psi\rangle} \\
\text { if } \varphi \psi \text { nonsingular; } \\
56 f(\varphi)+u(1) r \\
\text { if } \varphi=\psi .
\end{array}\right.
$$

Proof. The left side is

$$
\begin{gathered}
\sum_{\lambda} \sum_{\mu:\langle\mu, \lambda\rangle=-2} \varphi(\lambda) \psi(\mu) v_{\lambda+\mu}+u(\varphi \psi)=(\text { for } \nu=\lambda+\mu) \sum_{\nu} \psi(\nu) \sum_{\lambda:\langle\nu, \lambda\rangle=2}(\varphi \psi)(\lambda) v_{\nu} \\
=\sum_{\nu} \psi(\nu)(n(\nu, \varphi \psi, 1,0)-n(\nu, \varphi \psi, 1,1)) v_{\nu}+u(\varphi \psi)
\end{gathered}
$$

We use (4.8) and (4.9). The coefficent of $v_{\nu}$ is 0 if $\varphi \psi(\nu) \equiv 1(\bmod 2)$. If $\varphi \psi(\nu) \equiv 0(\bmod 2)$, then $\varphi(\nu)=\psi(\nu)$; the coefficient is $56 \psi(\nu)$ if $\varphi \psi=1$, $(-1)^{1+q(\varphi \psi)} 8$ if $\varphi \psi \neq 1$ or $\nu$ and, if $\varphi \psi=\nu$, it is $-56(-1)^{\langle\varphi, \psi\rangle}$.

Corollary 4.13. $e(\varphi)^{2}=e(\varphi)$.
The $256 f(\varphi)$ live in $\mathbb{C} L^{\theta}$, a space of dimension 120, so they are linearly dependent. There is a natural subset which forms a basis.

Proposition 4.14. If $\varphi \psi$ is singular, $f(\varphi) \times f(\psi)=-4(f(\varphi)+f(\psi))-16 \mathbb{I}$ and $e(\varphi) \times e(\psi)=0$.

Proof. It suffices to show that $(4 \mathbb{I}+f(\varphi)) \times(4 \mathbb{I}+f(\psi))=0$, or $16 \mathbb{I}+4(f(\varphi)+$ $f(\psi))+4(-1)^{1+q(\varphi \psi)}(f(\varphi)+f(\psi))+u(\varphi \psi)=0$. This follows from $q(\varphi \psi)=0$ and $u(\varphi \psi)=-16 \mathrm{I}$; see (4.12.i).
Lemma 4.15. (i) $\langle f(\varphi), f(\psi)\rangle= \begin{cases}240 & \text { if } \varphi=\psi ; \\ -16 & \text { if } \varphi \psi \text { singular; } \\ 16 & \text { if } \varphi \psi \text { nonsingular. }\end{cases}$
(ii) $\langle e(\varphi), e(\psi)\rangle= \begin{cases}\frac{1}{16} & \text { if } \varphi=\psi ; \\ 0 & \text { if } \varphi \psi \text { singular; } \\ \frac{1}{128} & \text { if } \varphi \psi \text { nonsingular. }\end{cases}$

Proof. (i) This inner product is $2 \sum_{\lambda} \varphi \psi(\lambda)$, so consider the cases that $\varphi \psi$ is 1 , singular or nonsingular. One can also use (4.12) and associativity of the form. We leave (ii) as an exercise, with (i) and (2.2).

Theorem 4.16. The $2 e(\varphi)$ are conformal vectors of conformal weight (=central charge) $\frac{1}{2}$.
Proof. By (4.10) and [Miy], Theorem 4.1, these are conformal vectors. Fix $\varphi$. Choose a maximal, totally singular subspace, $J$, of $L$ modulo $2 L$. Let $\mathfrak{J}$ be the set of distinct linear characters of $L$ which contain $J$ in their kernel. The $e(\psi)$, for $\psi \in \varphi \mathfrak{J}$, are pairwise orthogonal idempotents (4.12) which sum to $\mathbb{I}$ (to prove this, use the orthogonality relations for this set of 16 distinct characters). We use the fact that conformal weight of $2 e(\varphi)$ is at least $\frac{1}{2}$ (see Proposition 6.1 of [Miy]). Since their conformal weights add to 8 , the conformal weight of $\omega$, we are done.

Notation 4.17. In an integral lattice, an element of norm 2 is called a root and an element of norm 4 is called a quoot (suggested by the term "quartic" for degree 4).

Notation 4.18. The idempotents $e_{\lambda}^{ \pm}$are called idempotents of quoot type or quooty idempotents and the $e(\varphi)$ are called idempotents of tout type or tooty idempotents (suggested by "tout" or "tutti"). The set of all such is denoted $\mathfrak{Q J}, \mathcal{T J}$, respectively. Set $Q \mathcal{J J}:=Q \mathcal{J} \cup \mathcal{T J}$.

## 5. Eigenspaces.

Notation 5.1. For an element $x$ of a ring, $a d_{x}, a d(x)$ denotes the endomorphism: right multiplication by $x$. If the ring is a finite dimensional algebra over a field, the spectrum of $x$ means the spectrum of the endomorphism $\operatorname{ad}(x)$.

The main result of this section is the following.

Theorem 5.2. If e is one of the idempotents $e_{\lambda}, f_{\lambda}$ or $e(\varphi)$ of Section 4, its spectrum is $\left(1^{1}, \frac{1_{4}^{35}}{}, 0^{120}\right)$.

We prove (5.2) in steps, treating the quooty and tooty cases separately.

Table 5.3. The action of $a d\left(e_{\lambda}\right)$ on a spanning set. Recall that $e_{\lambda}=\frac{1}{32}\left[\lambda^{2}+4 v_{\lambda}\right]$. vector image underad $\left(e_{\lambda}\right) \quad \operatorname{dim}$. $\mu^{2} \quad \begin{gathered}\frac{1}{32}\left[4\langle\lambda, \mu\rangle \lambda \mu+4\langle\lambda, \mu\rangle^{2} v_{\lambda}\right]= \\ \frac{1}{8}\left[\langle\lambda, \mu\rangle \lambda \mu+\langle\lambda, \mu\rangle^{2} v_{\lambda}\right]\end{gathered}$

$$
\begin{aligned}
& \frac{1}{32}\left[2\langle\lambda, \mu\rangle \lambda \nu+2\langle\lambda, \nu\rangle \lambda \mu+4\langle\lambda, \mu\rangle\langle\lambda, \nu\rangle v_{\lambda}\right]= \\
& \quad \frac{1}{16}\left[\langle\lambda, \mu\rangle \lambda \nu+\langle\lambda, \nu\rangle \lambda \mu+2\langle\lambda, \mu\rangle\langle\lambda, \nu\rangle v_{\lambda}\right]
\end{aligned}
$$

$\lambda^{2}$

$$
\frac{1}{32}\left[16 \lambda^{2}+64 v_{\lambda}\right]=16 e_{\lambda}
$$

1
$\lambda h,\langle\lambda, h\rangle=0$
$\frac{1}{32} 8 \lambda h=\frac{1}{4} \lambda h$
7
$g h,\langle g, \lambda\rangle=\langle h, \lambda\rangle=0$
0
28
$v_{\lambda}$

$$
4 \frac{1}{32}\left[4 \lambda^{2}+16 v_{\lambda}\right]=4 e_{\lambda}
$$

$$
1
$$

$v_{\mu},\langle\lambda, \mu\rangle=0$
0
63

$$
v_{\mu},\langle\lambda, \mu\rangle=-2 \quad \frac{1}{32}\left[4 v_{\lambda+\mu}+4 v_{\mu}\right]=\frac{1}{8}\left[v_{\lambda+\mu}+v_{\mu}\right]
$$

Table 5.4. The eigenspaces of $a d\left(e_{\lambda}\right)$.
eigenvalue basis element(s) dimension

| 1 | $e_{\lambda}$ | 1 |
| :---: | :---: | :---: |
| $\frac{1}{4}$ | $\lambda h,\langle\lambda, h\rangle=0$ | 7 |
| $\frac{1}{4}$ | $v_{\lambda+\mu}+v_{\mu},\langle\lambda, \mu\rangle=-2$ | 28 |
| 0 | $v_{\lambda+\mu}-v_{\mu},\langle\lambda, \mu\rangle=-2$ | 28 |
| 0 | $g h,\langle g, \lambda\rangle=\langle h, \lambda\rangle=0$ | 28 |
| 0 | $v_{\mu},\langle\lambda, \mu\rangle=0$ | 63 |
| 0 | $f_{\lambda}$ | 1 |

Table 5.5. The action of $a d\left(f_{\lambda}\right)$ on a spanning set. Recall that $f_{\lambda}=\frac{1}{32}\left[\lambda^{2}-4 v_{\lambda}\right]=$ $-e_{\lambda}+\frac{1}{16} \lambda^{2}$, so the table below may be deduced from Table (5.3) and (3.1.1).
vector image underad $\left(f_{\lambda}\right)$ dimension

| $\mu^{2}$ | $\begin{gathered} \frac{1}{4}\langle\lambda, \mu\rangle \lambda \mu-\frac{1}{8}\left[\langle\lambda, \mu\rangle \lambda \mu+\langle\lambda, \mu\rangle^{2} v_{\lambda}\right]= \\ \frac{1}{8}\left[\langle\lambda, \mu\rangle \lambda \mu-\langle\lambda, \mu\rangle^{2} v_{\lambda}\right] \end{gathered}$ | 36 |
| :---: | :---: | :---: |
| $\mu \nu$ | $\begin{gathered} \frac{1}{8}[\langle\lambda, \mu\rangle \lambda \nu+\langle\lambda, \nu\rangle \lambda \mu] \\ -\frac{1}{16}\left[\langle\lambda, \mu\rangle \lambda \nu+\langle\lambda, \nu\rangle \lambda \mu+2\langle\lambda, \mu\rangle\langle\lambda, \nu\rangle v_{\lambda}\right]= \\ \frac{1}{16}\left[\langle\lambda, \mu\rangle \lambda \nu+\langle\lambda, \nu\rangle \lambda \mu-2\langle\lambda, \mu\rangle\langle\lambda, \nu\rangle v_{\lambda}\right] \end{gathered}$ | 36 |
| $\lambda^{2}$ | $\lambda^{2}-16 e_{\lambda}=16 f_{\lambda}$ | 1 |
| $\lambda h,\langle\lambda, h\rangle=0$ | $\frac{1}{32} 8 \lambda h=\frac{1}{4} \lambda h$ | 7 |
| $\begin{gathered} g h,\langle g, \lambda\rangle=\langle h, \lambda\rangle \\ =0 \end{gathered}$ | 0 | 28 |
| $v_{\lambda}$ | $v_{\lambda}-4 e_{\lambda}=-4 f_{\lambda}$ | 1 |
| $v_{\mu},\langle\lambda, \mu\rangle=0, \pm 1$ | 0 | 63 |
| $v_{\mu},\langle\lambda, \mu\rangle=-2$ | $\frac{1}{4} v_{\mu}-\frac{1}{8}\left[v_{\lambda+\mu}+v_{\mu}\right]=\frac{1}{8}\left[-v_{\lambda+\mu}+v_{\mu}\right]$ | 56 |

Table 5.6. The eigenspaces of $a d\left(f_{\lambda}\right)$.

| eigenvalue | basis element(s) | dimension |
| :---: | :---: | :---: |
|  | $f_{\lambda}$ | 1 |
| 1 | $\lambda h,\langle\lambda, h\rangle=0$ | 7 |
| $\frac{1}{4}$ | $v_{\lambda+\mu}+v_{\mu},\langle\lambda, \mu\rangle=-2$ | 28 |
| 0 | $v_{\lambda+\mu}-v_{\mu},\langle\lambda, \mu\rangle=-2$ | 28 |
| $\frac{1}{4}$ | $g h,\langle g, \lambda\rangle=\langle h, \lambda\rangle=0$ | 28 |
| 0 | $v_{\mu},\langle\lambda, \mu\rangle=0$ | 63 |
| 0 | $e_{\lambda}$ | 1 |
| 0 |  |  |

Table 5.7. The action of $a d(f(\varphi))$ on a spanning set.

| vector | image under $a d(f(\varphi))$ | dim. |
| :---: | :---: | :---: |
| $f(\varphi)$ | $56 f(\varphi)+u(1)$ | 1 |
| $f(\psi), \psi \varphi$ singular | $-4(f(\varphi)+f(\psi))-16 \mathbb{I}$ | 120 |
| $f(\psi), \psi \varphi$ nonsingular | $4(f(\varphi)+f(\psi))+48 \mathbb{I}-512 e_{\alpha,\langle\varphi, \psi\rangle}$ | 120 |
| $u(\alpha), \alpha$ nonsingular | $\sum_{\mu} \varphi(\mu) \sum_{\lambda} \alpha(\lambda)\langle\lambda, \mu\rangle^{2} v_{\mu}=$ |  |
| $\mathbb{I}$ | $\sum_{\mu} \varphi(\mu)\left[48-16\langle\mu, \alpha\rangle^{2}\right] v_{\mu}$ | 36 |
|  | $f(\varphi)$ | 1 |

Proofs (5.7.1). Proofs of the above are straightforward. We give a proof only of the formula for $\xi:=f(\varphi) \times u(\alpha)$. Clearly, $\xi$ is a linear combination of the $v_{\lambda}$, so we just get its coefficent at $v_{\lambda}$ as $\frac{1}{2}\left\langle\xi, v_{\lambda}\right\rangle$. By associativity of the form, this is $\frac{1}{2}\left\langle u(\alpha), f(\varphi) \times v_{\lambda}\right\rangle=\frac{1}{2}\left\langle u(\alpha), \varphi(\lambda) \lambda^{2}\right\rangle$. By (4.12.ii), we have an expression for $u(\alpha)$. Since $\left\langle\mathbb{I}, \lambda^{2}\right\rangle=2$ and $\left\langle\mathbb{I}_{\alpha}, \lambda^{2}\right\rangle=\frac{1}{2}\langle\lambda, \alpha\rangle^{2}\langle\alpha, \alpha\rangle^{-1}=\frac{1}{8}\langle\lambda, \alpha\rangle^{2}$, the respective cases of (4.12.ii) lead to $\frac{1}{2}\left\langle u(\alpha), \varphi(\lambda) \lambda^{2}\right\rangle=\varphi(\lambda) 240,-\varphi(\lambda) 16$ and $\varphi(\lambda)\left[48-16\langle\lambda, \alpha\rangle^{2}\right]$. Only the latter case is recorded in the table since $u(\alpha)$ is otherwise a multiple of $\mathbb{I}$.

Table 5.8. The action of $a d(e(\varphi))$ on a spanning set. Recall that $e(\varphi)=\frac{1}{16} \mathbb{I}+$ $\frac{1}{64} f(\varphi)$. We use the notation $\alpha:=\varphi \psi$, when $\varphi \psi$ is nonsingular. Note that the set of such $\alpha^{2}$ span $S^{2}(H)$.

$$
\begin{array}{ccc}
\text { vector } & \text { image underad }(e(\varphi)) & \text { dim. } \\
f(\varphi) & \frac{15}{16} f(\varphi)+\frac{15}{4} \mathbb{I} & 1 \\
f(\psi), \varphi \psi \text { singular } & -\frac{1}{16} f(\psi)-\frac{1}{4} \mathbb{I} & 120 \\
f(\psi), \varphi \psi \text { nonsingular } & 4 e(\varphi)+8 e(\psi)-8 e_{\alpha,\langle\varphi, \psi\rangle} & 120 \\
\alpha^{2} \text { if } \alpha:=\varphi \psi \text { nonsingular } & 2[e(\varphi)-e(\psi)]+2 e_{\alpha, \varphi(\alpha)} & 36 \\
u(\alpha), \alpha \text { nonsingular } & \frac{1}{16} u(\alpha)+\sum_{\mu} \varphi(\mu)\left[\frac{3}{4}-\frac{1}{4}\langle\mu, \alpha\rangle^{2}\right] v_{\mu} & 36 \\
\mathbb{I} & e(\varphi) & 1 \\
e(\varphi) & e(\varphi) & 1 \\
e(\psi) \text { if } \varphi \psi \text { singular } & 0 & 120 \\
e(\psi) \text { if } \alpha:=\varphi \psi \text { nonsingular } & 2^{-3}\left[e(\varphi)+e(\psi)-e_{\alpha,\langle\varphi, \psi\rangle}\right] & 120 \\
v_{\alpha}=4\left(e_{\alpha}^{+}-e_{\alpha}^{-}\right) & \varphi(\alpha) \frac{1}{2}\left[e_{\alpha,\langle\varphi, \psi\rangle}+e(\varphi)-e(\psi)\right] & 120 \\
e_{\alpha, \varphi} & \frac{1}{8}\left[e_{\alpha,\langle\varphi, \psi\rangle}+e(\varphi)-e(\psi)\right] & 35 \\
e_{\alpha, \varphi}^{\prime} & 0 & 120
\end{array}
$$

Table 5.9. Eigenspaces of $a d(e(\varphi))$. In the table, we use the convention that $\alpha:=$ $\varphi \psi$ is nonsingular. Recall that $e_{\lambda}^{ \pm}=\frac{1}{32}\left(\lambda^{2} \pm 4 e_{\lambda}\right)$. Recall that $v_{\alpha}=4\left(e_{\alpha}^{+}+e_{\alpha}^{-}\right)$. eigenvalue basis elements dimension

| 1 | $e(\varphi)$ | 1 |
| :---: | :---: | :---: |
| 0 | $e_{\alpha, \varphi}^{\prime}$ | 120 |
| $\frac{1}{4}$ | $-e_{\alpha, \varphi}+e(\psi)$ | 35 |

Table 5.10. Action of Idempotents on Idempotents. Recall the definitions $e_{\lambda}^{ \pm}=$ $\frac{1}{32}\left[\lambda^{2} \pm 4 v_{\lambda}\right], e_{\lambda, \varphi}=e_{\lambda,\langle\varphi, \lambda\rangle}, e(\varphi)=\frac{1}{16} \mathbb{I}+\frac{1}{64} f(\varphi)$. In expressions below, $a$ and $b$ are integers modulo 2 .

$$
\begin{aligned}
& e_{\lambda, a} \times e_{\mu, b}= \begin{cases}0 & \text { if }\langle\lambda, \mu\rangle=0 \\
2^{-10}\left[-8 \lambda \mu+16\left((-1)^{a} v_{\lambda}+\right.\right. \\
\left.(-1)^{b} v_{\mu}+16(-1)^{a+b} v_{\lambda+\mu}\right]= & \\
2^{-10}\left[-4(\lambda+\mu)^{2}-(-1)^{a+b} 4 v_{\lambda+\mu}\right. \\
+4\left(\left(\lambda^{2}+4(-1)^{a} v_{\lambda}\right)+\right. & \text { if }\langle\lambda, \mu\rangle=-2 \\
\left.4\left(\mu^{2}+4(-1)^{b} v_{\mu}\right)\right]= & \text { if }\left(\langle\lambda, \mu\rangle,(-1)^{a+b}\right) \\
2^{-3}\left[e_{\lambda+\mu, a+b+1}+e_{\lambda, a}+e_{\mu, b}\right] & \text { if }(\langle\lambda,(-4,1) \\
e_{\lambda, a} & (4,1),(-4,0) \\
0 & \text { if } \varphi=\psi\end{cases} \\
& e(\varphi) \times e(\psi)= \begin{cases}e(\varphi) & \text { if } \varphi \psi \text { singular } \\
0 & \text { if } \varphi \psi \text { nonsingular } \\
2^{-3}\left[e(\varphi)+e(\psi)-e_{\varphi \psi, \varphi}\right]\end{cases} \\
& e_{\lambda, a} \times e(\psi)= \begin{cases}0 & {[\lambda, \psi]=a+1} \\
2^{-3}\left[e(\psi \lambda)-e(\psi)-e_{\lambda, \psi}\right] & {[\lambda, \psi]=a .}\end{cases}
\end{aligned}
$$

Table 5.11. Inner Products of Idempotents

See the basic inner products in Section 2. We also need $(f(\varphi), f(\psi))$ from (4.15).

$$
\begin{aligned}
& \left(e_{\lambda, a}, e_{\mu, b}\right)=2^{-9}\langle\lambda, \mu\rangle^{2}+2^{-5}(-1)^{a+b} \delta_{\lambda, \mu}= \begin{cases}2^{-4} & \lambda=\mu \\
0 & \lambda \mu \text { singular } \\
2^{-7} & \lambda \mu \text { nonsingular }\end{cases} \\
& \left(e_{\lambda, a}, e(\varphi)\right)= \\
& 2^{-8}+2^{-8}(-1)^{a} \varphi(\alpha)=\left\{\begin{array}{ll}
2^{-7} & \text { if }(-1)^{a} \varphi(\alpha)=1, \text { i.e., } a+[\varphi, \alpha]=0 \\
0 & \text { if }(-1)^{a} \varphi(\alpha)=-1 \text { i.e., } a+[\varphi, \alpha]=1
\end{array} .\right. \\
& (e(\varphi), e(\psi))=2^{-8}+2^{-12}\left\{\begin{array}{ll}
240 & \varphi=\psi \\
-16 & \varphi \psi \text { singular } \\
16 & \varphi \psi \text { nonsingular }
\end{array}=\left\{\begin{array}{l}
2^{-4} \\
0 \\
2^{-7}
\end{array}\right.\right.
\end{aligned}
$$

## 6. Idempotents and Involutions.

Notation 6.1. The polynomial $p(t):=\frac{32}{3} t^{2}-\frac{32}{3}+1$ takes values $p(0)=p(1)=1$ and $p\left(\frac{1}{4}\right)=-1$. For an idempotent $e$ such that $a d(e)$ is semisimple with eigenvalues $0, \frac{1}{4}$ and 1 , we define $t(e):=p(a d(e))$, an involution which is 1 on the $0-$ and 1 -eigenspaces and is -1 on the $\frac{1}{4}$-eigenspace. Let $E_{ \pm}=E_{ \pm}(e)=E_{ \pm}(t(e))$ denote the $\pm 1$ eigenspace of this involution.

The main results of this section are the following.
Theorem 6.2. For a quooty or tooty idempotent, $e, t(e)$ is an automorphism of $V^{F}$.
This follows from the theory in [Miy] and (5.2). In this section, we shall verify this directly on the algebra $V_{2}^{F}$ only, for the $e_{\lambda}^{ \pm}$and $e(\varphi)$ and prove that these elements are all the idempotents whose doubles are conformal vectors of conformal weight $\frac{1}{2}$. See (6.5) and (6.6).

Theorem 6.3. The subgroup of $A u t\left(V^{F}\right)$ generated by all $t(e)$ as in (6.2) is isomorphic to $O^{+}(10,2)$.

The Miyamoto theory proves that the $t(e)$ are in $A u t\left(V^{F}\right)$. It turns out that the group they generate restricts faithfully to $V_{2}^{F}$ is faithful, and there we can identify it.

Theorem 6.4. The group generated by the $t\left(e_{\lambda}^{ \pm}\right)$is isomorphic to the maximal 2-local subgroup of $O^{+}(10,2)$ of shape $2^{8}: O^{+}(8,2)$. The normal subgroup of order $2^{8}$ is generated by all $t\left(e_{\lambda}^{+}\right) t\left(e_{\lambda}^{-}\right)$and acts regularly on the set of weighty idempotents. $A$ complement to this normal subgroup is the stabilizer of any e $(\varphi)$, for example, the stabilizer of $e(1)$ ( 1 means the trivial character) is generated by all $t\left(e_{\lambda, 1}\right)$. Such a complement is isomorphic to the Weyl group of type $E_{8}$, modulo its center.

To verify that the involution $t(e)$ is an automorphism of $V_{2}^{F}$, it suffices to check that $E_{+} E_{+}+E_{-} E_{-} \leq E_{+}$and $E_{+} E_{-} \leq E_{-}$.

Proposition 6.5. If e is quooty, $t(e)$ is an automorphism of $V_{2}^{F}$.
Proof. This is straightforward with (6.4) and (5.4).
Proposition 6.6. If $e$ is tooty, $t(e)$ is an automorphism of $V_{2}^{F}$.
Proof. This is harder. We use (5.1), (6.4), (5.8) and (5.11). It is easy to verify that $E^{+} \times E^{+} \leq E^{+}$. To prove $E^{-} \times E^{-} \leq E^{+}$, we verify that $\left(E^{-} \times E^{-}, E^{-}\right)=0$ (this suffices since the eigenspaces are nonsingular and pairwise orthogonal); the verification is a straightforward checking of cases. To prove that $E^{-} \times E^{+} \leq E^{-}$, we use the previous result, commutativity of the product and associativity of the form.

Table 6.7. (i) The action of $t\left(e_{\lambda, a}\right)$ on $Q \mathcal{T J}$ :
fixed are

$$
e_{\mu, b} \text { if }\langle\mu, \lambda\rangle=0 \text { or } \pm 4 ; e(\varphi) \text { if }[\lambda, \varphi]=0
$$

interchanged are

$$
e_{\mu, b} \text { and } e_{\lambda+\mu, a+b+1} \text { if }\langle\lambda, \mu\rangle=-2 ; e(\varphi) \text { and } e(\varphi \lambda) \text { if }[\lambda, \varphi]=1
$$

(ii) The action of $t(e(\varphi))$ on $Q \mathcal{T J}$ :
fixed are

$$
\text { all } e_{\lambda, \varphi}^{\prime} \text { and all } e(\psi) \text { with } \varphi=\psi \text { or } \varphi \psi \text { singular; }
$$

interchanged are

$$
\text { all } e(\varphi \lambda) \text { and } e_{\lambda, \varphi} \text { with } \lambda \text { a quoot. }
$$

Proof. For an involution $t$ to interchange vectors $x$ and $y$ in characteristic not 2 , it is necessary and sufficient that $t$ fix $x+y$ and negate $x-y$. The following is a useful observation: since the +1 eigenspace for $t=t(e)$ is the sum of the 0 -eigenspace and the $\frac{1}{4}$-eigenspace for $a d(e)$, a vector $u$ is fixed by $t(e)$ iff $e \times u$ is in the $\frac{1}{4}$-eigenspace. Another useful observation is that if $x-y$ is negated, then $(x-y)^{2}$ is fixed. The proof of (i) and (ii) is an exercise in checking cases.

The identification of $G$, the group generated by all such $t(e), e \in Q \mathcal{J J}$, is based on a suitable identification of this set of involutions with nonsingular points in $\mathbb{F}_{2}^{10}$ with a maximal index nonsingular quadratic form.

Notation 6.8. Let $T:=\mathbb{F}_{2}^{10}$ have a quadratic form $q$ of maximal Witt index. Decompose $T=U \perp W$, with $\operatorname{dim}(U)=2$, $\operatorname{dim}(W)=8$, both of plus type. Let $U=$ $\{0, r, s, f\}$, where $q(f)=1, q(r)=q(s)=0$. Identify $W$ with $\operatorname{Hom}(L,\{ \pm 1\})$. For $x \in V$ nonsingular, write $x=p+y$, for $p \in U, y \in W$. If $p=0$, correspond $x$ to $e_{y, 1}$. If $p=r$, correspond $x$ to $e_{y, 0}$. If $p \in\{s, f\}$, correspond $e(y)$ to $x$. This correspondence is $G$-equivariant; use (6.7).

So, we have a map of $G$ onto $O^{+}(10,2)$ by restriction to $V_{2}^{F}$. Its kernel fixes all of our idempotents, which span $V_{2}^{F}$. By Corollary 6.2 of [DGH], this kernel is trivial. So, $G \cong O^{+}(10,2)$ and (6.3) is proven.

Proposition 6.9. $G$ acts irreducibly on $\mathbb{I}^{\perp}$ (dimension 155).
Proof. This follows from the character table of $\Omega^{+}(10,2)$, but we can give an elementary proof.
(1) The subgroup $H$ of (6.2) has an irreducible constituent $P$ of dimension 120 with monomial basis $v_{\alpha}, \alpha \in L_{2}$;
(2) the squares of the $v_{\alpha}$ generate the 36 -dimensional orthogonal complement, $P^{\perp}$. The action fixes $\mathbb{I}$ and the action on the 35 -dimensional space $P^{\perp} \cap \mathbb{I}^{\perp}$ is nontrivial, hence irreducible (the subgroup $O_{2}(H) \cong 2^{8}$ acts trivially and the quotient $H / O_{2}(H) \cong O^{+}(8,2)$ acts transitively on the spanning set of 120 elements $v_{\alpha}^{2}=\alpha^{2}$, so acts faithfully. Now, the subgroup $2^{6}: O^{+}(6,2) \cong 2^{6}: S y m_{8}$ has smallest faithful irreducible degrees 28 and 35 ; if $H$ is reducible on $P^{\perp} \cap \mathbb{I}^{\perp}$, then 28 occurs and $H$ has an irreducible $R$ of dimension $d, 28 \leq d \leq 34$ and so $P^{\perp} \cap R^{\perp}$ is a trivial module of dimension $36-d \geq 2$. This is impossible since $P^{\perp}$ is an $H$-constituent of a transitive permutation module of degree 120, contradiction).
(3) We now have $V_{2}^{F}=1+35+120$ as a decomposition into $H$-irreducibles. But each $t(e(\varphi))$ fixes $\mathbb{I}$ and does not fix the 120-dimensional constitutent, whence irreduciblity of $G$ on $\mathbb{I}^{\perp}$.

Theorem 6.10. $\operatorname{Aut}\left(V^{F}\right)=G \cong O^{+}(10,2)$.
Proof. Set $A:=\operatorname{Aut}\left(V^{F}\right)$. We quote Theorem (6.13) of [Miy], which says that if $\mathfrak{X}$ is the set of conformal vectors of central charge $\frac{1}{2}$, then $|t(x) t(y)| \in\{1,2,3\}$. So, if $\mathfrak{X}$ is a conjugacy class, it is a set of 3 -transpositions. If it is not a conjugacy class, we have a nontrivial central product decomposition of $\langle\mathfrak{X}\rangle$, which is clearly impossible since $A$ acts faithfully and $G$ acts irreducibly on $V_{2}^{F}$. Now, the classification of groups generated by a a class of 3-transpostions [Fi69][Fi71] may be invoked to identify $A$. It is a fairly straightforward exercise to eliminate any 3-transposition group which properly contains $O^{+}(10,2)$.

## 7. A related subVOA of $V^{\natural}$.

The VOA defined in [FLM], denoted $V^{\natural}$, has the monster as its automorphism group. One of the parabolics, $P \cong 2^{10+16} \Omega^{+}(10,2)$, acts on the subVOA $V^{\prime}$ of fixed points of $O_{2}(P)$; the degree 2 part $V_{2}^{\prime}$ contains $V_{2}^{F}$. In fact, $V_{2}^{\prime}$ is isomorphic to the direct sum of algebras $V_{2}^{F}\left(\right.$ with $\times$ ) and $\mathbb{C}$. The proper subVOA $V^{\prime \prime}$ of $V^{\prime}$ generated by the $V_{2}^{F}$-part is isomorphic to $V^{F}$ (this is so because we can see our $L=Q^{[E]}$ embedded in the Leech lattice, as the fixed point sublattice of an involution). This subVOA $V^{\prime \prime}$ contains idempotents given by formulas like ours for quooty and tooty ones, but these idempotents have $\frac{1}{16}$ in their spectrum on $V^{\natural}$, so the involutions associated to them by the Miyamoto theory act trivially on $V^{\prime}$. The involutory automorphisms of $V^{\prime}$ given by our forumlas in Section 6 do not extend to automorphisms of $V^{\natural}$ since otherwise the stabilizer of this subVOA in $M$, the monster, would induce $O^{+}(10,2)$ on it, contrary to the above structure of the maximal 2-local $P$; we mention that the maximal 2-locals have been classifed [Mei].

## Acknowledgements.

We thank Chongying Dong, Gerald Höhn, Geoffrey Mason, Masahiko Miyamoto and Steve Smith for discussions on this topic. This article was written with financial support from NSF grant DMS-9623038 and University of Michigan Faculty Recognition Grant (1993-96).

## References

[Carter] Roger Carter, Simple Groups of Lie Type, John Wiley, London, 1989.
[CoGr] Arjeh Cohen and Robert L. Griess, Jr., On finite simple subgroups of the complex Lie group of type $E_{8}$, Proc. Comm. Pure Math. 47(1987), 367-405.
[DGH] Chongying Dong, Gerald Höhn, Robert L. Griess, Jr., Framed Vertex Operator Algebras and the Moonshine Module, submitted.
[FLM] Igor Frenkel, James Lepowsky, Arne Meurman, Vertex Operator Algebras and the Monster, Academic Press, San Diego, 1988.
[Fi69] Fischer, Bernd, Finite Groups Generated by 3-Transpositions. Univ. of Warwick. Preprint 1969.
[Fi71] Fischer, Bernd, Finite Groups generated by 3-Transpositions. Inventions Math. 13 (1971) 232-246.
[Gr76] Robert L. Griess, Jr., A subgroup of order $2^{15}|G L(5,2)|$ in $E_{8}(\mathbb{C})$, the Dempwolff group and $\operatorname{Aut}\left(D_{8} \circ D_{8} \circ D_{8}\right)$, J. of Algebra 40, 271-279 (1976).
[Gr91] Robert L. Griess, Jr., Elementary abelian p-subgroups of algebraic groups, Geometriae Dedicata 39; 253-305, 1991.
[Mei] Ulrich Meierfrankenfeld, The maximal 2-locals of the monster, preprint.
[Miy] Masahiko Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, to appear in Journal of Algebra.

Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109-1109 USA
email: rlg@math.lsa.umich.edu

