A vertex operator algebra related to Eg
with automorphism group O™ (10, 2)

Robert L. Griess, Jr.

Abstract. We study a particular VOA which is a subVOA of thBg-lattice VOA and
determine its automorphism group. Some of this group mayelea svithin the group
Eg(C), but not all of it. The automorphism group turns out to be tieaBsposition group
07%(10,2) of order 2213°527.17.31 and it contains the simple grou@™ (10, 2) with
index 2. We use a recent theory of Miyamoto to get involutariomorphisms associated
to conformal vectors. This VOA also embeds in the moonshindute and has stabilizer
inIM, the monster, of the form!°+16 0t (10, 2).

Hypotheses

We review some definitions, based on the usual definitions for theeglispproducts
and inner products for lattice VOAs; see [FLM].

Notation 1.2. & is a root system whose components have types APHS a Lie
algebra with root systen®, @ := Qs, the root lattice and/ := V := S(H_) ®
C[Q] is the lattice VOA in the usual notation.

Remark 1.3. We display a few graded pieces &f (® is omitted, and her&) can
be any even lattice). We writéf,,, for H ® ¢t~ in the usual notation for lattice
VOAs (2.1) and@,, := {z € Q | (z,z) = 2m}, the set of lattice vectors of type.

Vo =C, Vi = H,
Vo = [S*Hi + Ha] + HiCQ1 + CQo,
Vs = [S*Hy + HiHy + Hs] + [S*H; + H2]CQ; + Hi1CQs + CQs,
Vi = [S*Hy + S?H Hy + H H3 + S*Hy + Hy]+
[S®Hy + HiH; + H3)CQ + [S*Hy + H2]CQz + HiCQ3 + CQy.

Remark 1.4. Let F' be a subgroup ofdut(g), where g is the Lie algebral’; =
H; + CQ; with 0" binary composition. The fixed pointg” of F on V forma
subVOA. We have an action oV (F')/F as automorphisms of this sub VOA.
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Notation 1.5. For the rest of this article, we také) to be the Es-lattice. Take

F' to be a2B-pure elementary abelian 2-group of rank 54mt(g) = Eg(C); itis
fixed point free. LetE := F NT whereT is the standard torus and where is
chosen to makeank(E) = 4. Let § € F \ E; we arrange fol to interchange the
standard Chevalley generatarg and z_,. See [Gr91]. The Chevalley generator
z, corresponds to the standard generatbrof the lattice VOA V.

Notation1.7. L := Q¥ = ,/2Q denotesthe common kernel of the lattice characters
associated to the elementsBf in the [Carter] notation, these characters are (E);

in the root lattice modulo 2, they correspond to the sixteen vectargiaximal totally
singular subspace. Then

(1.7.1) vE=0
and
(1.7.2) VE =S5%H, +0+CLS,

where the latter summand stands for the span of’all- e=*, where\ runs over all
the 1516 = 240 norm 4 lattice vectorsirL. Thus, V" has dimensior(}) + 2% =
36 + 120 = 156 and has a commutative algebra structure invariant ufder) =
25410 GL(5,2). We note thatN (F)/F = 2'0: GL(5,2) [Gr76][CoGr][Gr91].

We will show (6.10) thatAut (V) = O*(10,2).

2. Inner Product.

Definition 2.1. The inner product orS™H,,, is (z™,2") = nlm™(x,x)™. This is
based on the adjointness requirementfart* andh®t=* (see (1.8.15), FLM,p.29).
Whenk > 0, h®t~* acts like multiplication by ® t—% and, whenh is a root,
h ® t*F acts like k times differentiation with respect th.

Whenn = 2, this means(z?, 22) = 2m?(z,z). In Vif', m = 1.

Definition 2.2. The Symmetric Bilinear Form. Source: [FLM], p.217. This form
is associative with respect to the product (Section 3). We wiitéor H;. The set
ofall g? andz spansVa.

(2.2.1) (g%, 1) = 2(g, h)?,

whence
(2.2.2) (pq,rs) = (p,7)(q,s) + (p,s)(q,7), forp,q,r,s € H.
(2.2.3) (@l a}) = {(2) Cégeiﬁ

(2.2.4) (g% xf) =0.
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Notation 2.3. In addition, we have the distinguished Virasoro elemerand identity
I:= %w on V;, (see Section 3). If, is a basis forH and L} the dual basis, then

w= 15" nnr.

Remark 2.4,
(2.4.1) (g% w) = (9,9)
(2.4.2) (9%.1) = %<9,9>
(2.4.3) (L) = dim(H)/8
(2.4.4) (w,w) = dim(H)/2

If {;]i=1,...¢} isan ON basis,

1 2
(2.4.5) I= Z a2
=0
¢
1 2
(2.4.6) W=y Zoxl

3. The Product on V"

Definition 3.1. The product on V" comes from the vertex operations. We give it
on standard basis vectors, namely ¢ S2H,, for z,y € H, andv) := e* + e,

for A € Ly. Note that (3.1.1) give the Jordan algebra structureséf; , identified
with the space of symmetrigx 8 matrices, and with(z, y) = ztr(xy). The function

¢ below is a standard part of notation for lattice VOASs.

(3.1.1) 2? x y* = Az, y)zy, pg x y* = 2(p,y)ay + 2(q,y)py,

pg x s = (p,1)qs + (p, 8)qr + (q,7)ps + (g, s)pr;

(3.1.2) z? x vy = (z, \)?vy, xy X vy = (2, \){y, \)vx
0 (A, 1) € {0,£1,+3};
(313) onx 0, = e (o) — =2
A2 A= L.
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Convention 3.2. Recall thatZ = Q!*). Since(L, L) < 2Z, we may and do assume
that ¢ is trivial on L x L.

4. Some Calculations with Linear Combinations of thev,.

Notation 4.1. For a subset\/ of H, there is a unique elementy; of S2H which
satisfies (L € S?(span(M)); (2) forall z,y € span(M), (z,y) = (Wi, xy).
We definel,; = %wM. If M and N are orthogonal sets, we havey,uy =
wy +wn. Definew), := w —wy and I}, := I —I),. This element can be
written asw); = %Zi x?, where thex; form an orthonormal basis ofpan(M).
We have (war, wi) = $dim span(M) and (Ins,In) = dim span(M). Also,
(wa s xy) = (war, 2'y') = (w, 2’y’), where priming denotes orthogonal projection to
span(M).

Notation 4.2. ef = f = %[)\2 +4vy], ex = ei‘, h=ey. f a€ZorZy,
definee, , to beel or ey, asa = 0,1(mod 2), respectively; see (4.7). Also, let
e’m = ey q+1. Wedefineey , tobee) o, wherea is %()\, w) incaseu isavectorin
L, anda is [\, z], where[., ] is the nonsingular bilinear form o#l om(L, {+1})
gotten from2(.,.) by thinking of Hom(L,{+1}) as 1L/L and where) is the
character gotten by reducing the inner product v@m modulo 2. Finally. letq be

the quadratic form or{om/(L, {+1}) gotten by reducing: — (x, z) modulo 2, for
T € %L.

Lemma 4.3.(i) The ef\t are idempotents.

A kA

(") <8)\,8M> = 128 <A7/’L> = _27
0 (hp=0.
0 A=

(i) (ex,ef) =13 m (A =-2%
0 (Au=0.

Proof. (i) (e1)? = 1o5g[4-4X\2 +16)2 £8-4%v,] = €. (ii) and (iii) follow trivially
from (2.2).

Notation 4.4. For finite X C L, defines(X) := >3 . x/r41y 2°-

Lemma 4.5.1f X C Ly, (w,s(X)) = 4|(xX)/{%1}| and sos(Ls) = L2lw =
120w.

Proof. (2.2.5)

Corollary 4.6. (i) For a € L, (wa,s(a)) = (w,s(a)) = 4 and (wa,wa) = 1,
whences (o) = 8w, = 16l, and I, = Lo’
(i) {wg,,s(Pg,)) = (w,s(Pg,)) = 63, whences(Pg,) = 18way, ;

(i) (w,s(®py)) = 56, whences(®p,) = 56ws . -
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Notation 4.7. For ¢ € Hom(L,{£1}), definef(p) :== > o, /1113 P(A)va,

w(®) = Yrer,/x1y PNA? and e(p) == 151+ 51 f(»). These arguments may
come from other domains, as in (4.2), and we allow mixing ag(ip\), for a
charactery and lattice vectorh. We prove later that(y) is an idempotent.

Lemma4.8.Letr,s € L, a,b € Z and let
n(r,s,a,b) ;== & |{t € ®|(r,t) = 2a(mod 2), (s, t) = 2b(mod 2)}|.

(i) Suppose that the images efand s in L/2L are nonzero and distinct. The
values ofn(r, s, a,b) depend only on the isometry type of the images of the ordered
pair (r,s) in L/2L and are listed below:

(r,r) Xs,s) 3(r,s) 2n(rs00) 2n(rs01) 2n(rs10) 2n(rsll)

0 0 0 48 64 64 64
0 0 1 o6 56 o6 72
0 1 0 64 48 64 64
0 1 1 56 56 72 56
1 0 0 64 64 48 64
1 0 1 o6 72 o6 56
1 1 0 64 64 64 48
1 1 1 72 56 o6 56.

(i) If s =0 and (r,r) = 4, then2n(r,s,0,0) = 128 and 2n(r,s,1,0) = 112.
If s=0 and (r,r) = 8, then2n(r,s,0,0) = 112 and 2n(r, s, 1,0) = 128.

Lemma 4.9. The f(y), as ¢ ranges over all nonsingular characters @f of order
2, form a basis forCL$.

Proof. Use the action of the subgroup of the Weyl group stabilizing theimaix
totally singular subspacé /2Q of Q/2Q (its shape is27528.2170.GL(4,2)); it
also stabilizes the maximal totally singular subspacg/2L of L/2L (halve the
quadratic form onZ, then reduce modulo 2). Sind&, induces the grou@* (8, 2)
on Q/2Q, Witt’s theorem implies that the stabilizer of a maximal isotropicspaze
is transitive on the nonsingular vectors outside it. The actiohisfgroup onL /2L
has the analogous property.

Notation 4.10. u(y) = > _\cr, /(41 ©(A)A2. This also makes sense fore L by
the identification in (4.2).

Proposition 4.11.Let o« € Hom(L, {£1}).
(i)

480 o =1;
(u(a),w) = Za()\))\Q = { —32  asingular;

32 anonsingular.
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(i)

—161 if «is singular;
—2081, + 481/, = —2561, + 481 = —16a> + 481 if « is nonsingular;

u(a) =

{ 2401 if a=1;

(in the third case,« is taken to be a norm 4 lattice vector ih?; it is well defined
up to its negative, and this suffices). Their respective norms are(57886 and
£208% + 1482 = 7424 = 2829.

Proof. We deal with cases, making use of inner product results (2.2) and (2.3); at
once, we get (i). Ifu(a) were known to be a multiple of, this inner product
information would be enough to determing¢«). This is so foru(1) since the linear
group (isomorphic to the Weyl group afs) stabilizing L, is irreducible and so
fixes a subspace of dimension just 1 in the symmetric squaté.ofit follows that

u(1) = 2401

Notice that in all casesi(a) = 2u’(a) — u(1), wherew'(a) :== 3\ o/ /a1y A2
and® :={\e€ ®| o)) =1}.

Now to evaluateu’ := u'(«) for o # 1. If ®' has type Dg, we have an
irreducible group as above and conclude thate) = b, whereb = (u/,I) =
2(u',w) = 156-4 = 112. If ¢’ hastyped, E;, we have a reducible group with two
constituents and conclude that = cI,, + dl,., where we interpretv as an element
of L, and moreover as a root in th&; -component of®’. Since (I,,,[,) = % and
(a?,a%) =32, c=16. Sincel = I, +1,:, sc+Zd = (u',I) = 128, whenced =
144. Thus,2u’ — 2401 = 321, + 2881/, — 2401 = —208I,, + 481/, = —2561,, + 48I.

Lemma 4.12. f(¢) x f(¢) =

(=)L (@) + f(¥)) + (—1) 640,y +u(pph)
if ¢ # 1; furthermore, this equals

—4(f(p) + f(¥)) — 161

if 1 singular; and equals
4(.][‘((/7) + f(w)) + 481 — 5126&,(4/),1[})
if v nonsingular;
56.f(¢) +u(1)

if o =1.
Proof. The left side is

ST Wb (woasutulep) = (for v=XA+p1)Y b)) Y (e) M,

A p{pA\)=—2
=Y @), 01, 1,0) — n(v, o, 1,1))v, + u(py).
We use (4.8) and (4.9). The coefficent af is 0 if py(v) = 1(mod 2). If

o(v) = 0(mod 2), then o(v) = (v); the coefficient is56¢(v) if py = 1,
(=)t if i £ 1 or v and, if pp = v, itis —56(—1)#¥),
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Corollary 4.13. e(¢)? = e(yp).
The 256 f(y) live in CL?, a space of dimension 120, so they are linearly
dependent. There is a natural subset which forms a basis.

Proposition 4.14.1f ¢ is singular, f(p) x f(1) = —4(f(¢) + f(x)) — 16I and
e(p) x e(y) = 0.

Proof. It suffices to show that4l + f(y)) x (4L + f(¢b)) = 0, or 161+ 4(f(¢) +

F@)) +4(=D)1D (F () + F (1)) + u(pyp) = 0. This follows from g(y)) = 0
and u(py) = —16I; see (4.12.i).

Lemma 4.15.() (f(y), f(¥)) =< =16 if @y singular;

16 if ¢4 nonsingular.

% i p=1;
(i) {e(p),e(®))y =<0 if ¢ singular;

{240 if ©=1;

T .
s I ¢y nonsingular.

Proof. (i) This inner product is2 )", (), so consider the cases that) is 1,
singular or nonsingular. One can also use (4.12) and associativihedbtm. We
leave (ii) as an exercise, with (i) and (2.2).

Theorem 4.16.The 2¢(p) are conformal vectors of conformal weight (=central
charge) 1.

Proof. By (4.10) and [Miy], Theorem 4.1, these are conformal vectors. Eix
Choose a maximal, totally singular subspade,of L modulo 2L. Let J be the
set of distinct linear characters @f which contain.J in their kernel. Thee(v), for
Y € g, are pairwise orthogonal idempotents (4.12) which surfi {¢o prove this,
use the orthogonality relations for this set of 16 distinct charact&vg)use the fact
that conformal weight oRe(y) is at Ieast% (see Proposition 6.1 of [Miy]). Since
their conformal weights add to 8, the conformal weight.gfwe are done.

Notation 4.17. In an integral lattice, an element of norm 2 is calledoat and an
element of norm 4 is called @uoot (suggested by the term “quartic” for degree 4).

Notation4.18. The idempotentsf are calleddempotents of quoot type Or quooty

idempotents and thee(p) are called idempotents ebut type or tooty idempotents

(suggested by “tout" or “tutti"). The set of all such is denotef] TJ, respectively.
SetQJJ := QJ U T7.

5. Eigenspaces.

Notation 5.1. For an element: of aring, ad,, ad(x) denotes the endomorphism:
right multiplication by z. If the ring is a finite dimensional algebra over a field, the
spectrum of x means the spectrum of the endomorphisizx).

The main result of this section is the following.
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Theorem5.2.1f e is one of the idempotents,, f\ or e(p) of Section 4, its spectrum

is (11, 1% 0120)
v 4 .

We prove (5.2) in steps, treating the quooty and tooty cases separately.

Table 5.3. The action ofad(e,) on a spanning set. Recall that = 5> [A\? + 4v,].

vector
12
7%
)\2
A, (A h) =0
gh, {g,\y ={(h,\) =0
U
Vs <)\7 ,LL> =0
’U;u <)\a:u> = -2

image undel(e, )

3%[‘11</\, A+ 4N, 1)?on] =
3

[ ) A+ (X, )2 0]

(200, AV + 200, ) A+ 40\, w) (N, vhva] =
16 L A+ (A ) A+ 20\, 1) (A, v)va]

35 [16A% + 64v)] = 16¢

4L [4X% 4 160y] = 4e
0

3%[41})\4_“ + 411“] = %[U)\‘Hl + UN]

dim.

36

36

28

63

56

Table 5.4. The eigenspaces aid(e) ).

eigenvalue basis element(s) dimension
1 €ex 1
% Ah, (A h) =0 7
1 Ontp Uy (A ) = 28
0 Unp — Uy (A, ) = 28
0 gh, (g, \) = ,/\> O 28
0 v, (A ) =0 63
0 fk 1
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Table 5.5. The action ofad(f») on a spanning set. Recall thAt = 25[\? — 4v,] =
—ex+ 1—16)\2, so the table below may be deduced from Table (5.3) and (3.1.1).

vector image underl(f») dimension
p? 1 WAL = [ )M+ O )*on] =
§[</\7M>)\M - </\7M>2U>\] 36
% sl A + (X v)au]
—%KA, AV £+ (A v) A+ 20, ) (A, v)o] =
76 LA AV + (A ) A = 2(, ) (A, v)a ] 36
/\2 /\2 — 166)\ = 16f>\ 1
Ay, (A Ry =0 358 \h = 1A 7
gh, (9,2) = (h, A) 0 28
=0
U ’U)\—48)\:—4f)\ 1
vy, (A, p) =0,%1 0 63
Vs (A ) = =2 100 = s[oatn +vu] = gl=vrsu + v 56

Table 5.6. The eigenspaces afd(f) ).

eigenvalue basis element(s) dimension
1 I 1
3 Ah, (A hYy =0 7
0 Unp + Oy (A, ) = —2 28
L o (g =-2 28
0 gh, {(g,\) = (h,\) =0 28
0 U, (A ) =0 63
0 (Y 1
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Table 5.7. The action ofad(f(y)) on a spanning set.

vector image underi(f(y)) dim.
fe) 56.f(¢) +u(1) 1
f(@), e singular —4(f () + f(¢)) — 161 120

f(@), v nonsingular 4(f(e) 4 f(¥)) + 481 — 512¢4 (44 120

u(a), « nonsingular 32 e() Yoy a(N (A, )20, =
22 P(1)[48 — 16, a)?]v,, 36

I f(») 1

Proofs (5.7.1). Proofs of the above are straightforward. We give a proof only of
the formula for¢ := f(¢) x u(a). Clearly, £ is a linear combination of the,,

so we just get its coefficent at, as %(5, vy). By associativity of the form, this

is 2(u(a), fp) x wvr) = 2(u(a), p(A\)A?). By (4.12.ii), we have an expression
for u(a). Since (I, A%) = 2 and (I, A?) = $(A, )% (a,a)"! = (X, )?, the
respective cases of (4.12.ii) lead t(u(a), p(A)A?) = ©(A)240, —p(A)16 and
©(N\)[48 — 16(\,a)?]. Only the latter case is recorded in the table singe) is
otherwise a multiple ofl.
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Table 5.8. The action ofad(e(y)) on a spanning set. Recall thaty) = &1 +
6—14f(<p). We use the notation := 1), when ¢t is nonsingular. Note that the set
of sucha? spanS?(H).

vector image underi(e()) dim.
fe) Lfle)+ 21 1

f(@), ey singular —Lfw)—131 120

f (%), ¢y nonsingular de(p) + 8e(1p) — 8eq, (1) 120
a? if a := 1 nonsingular 2[e(p) — e()] + 2€a,p(a) 36

u(a), a nonsingular Lu(a) + M e()[3 = 2, a)?v, 36

I e(y) 1

e(y) e(y) 1
e(y)) if @y singular 0 120
e(y) if a := ¢y nonsingular 27%e(p) + e(¥) — ea, (o) 120
va = 4(ef —€3) p(a)3[ea (o) T e(p) —e(¥)] 120

Cap §lea. (o) +e(p) —e(¥)] 35
ey 0 120

Table 5.9. Eigenspaces ofid(e(¢)). In the table, we use the convention that=
@1 is nonsingular. Recall thaty = 5 (A% £ 4e,). Recall thatv, = 4(ef +ey).

eigenvalue basis elements dimension

1 e(y) 1
0 e 120
% —ea,p + e(?) 35
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Table 5.10. Action of ldempotents on Idempotents. Recall the definitieﬁs:
35 [A? £40,], exp = e (o) €(p) = I+ & f(¢). Inexpressions below; and
b are integers modulo 2.

0 it (A, ) =0
271018\ + 16((—1)%va+
(=1)*v +16(=1)"*Purs,] =
2710[—4(\ + p)? — (=1)2T4vy 4,
+4((A2 +4(=1)%y)+
exaXeup = 4(u? +4(—1)bvu)] —
273 [extpatbr1 + €xa + € if (A p)=-2
e if (A ), (=1)*)
=(4,0), (-4,2)
0 if (A, ), (1))
(4,2), (-4,0)
e(y) if =1
e(p) xe(@) =40 if 1 singular
273e(p) + e(¥) — epp.o] i p3p nonsingular

0 ANyl =a+1
exa X e(y) = { 273e(YN) —e(¥) —exy] MY =a.

Table 5.11. Inner Products of Idempotents

See the basic inner products in Section 2. We also ri¢eéd), f(¢)) from (4.15).

2
(exaseup) =272\, )2 +275(=1)*T6, , =< 0 Apsingular
2=7  Aunonsingular

e T (1) () (p.ol
_ _ o 277 if (=1)%(a) =1, ie., a+[p,a] =0
278+ 275 () (o) = {O if (—l)az(a) =—li.e., a—i—fp,a] =1

240 © = ’(/J 2—4
(e(p), e(tp)) =278 42712 { —16 ¢ singular = { 0 .
16 1 nonsingular 97
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6. Idempotents and Involutions.

Notation 6.1. The polynomialp(t) := 32¢* — 22 + 1 takes valueg(0) = p(1) = 1
andp(1) = —1. Foranidempotent such thatad(e) is semisimple with eigenvalues
0,1 and 1, we define(e) := p(ad(e)), an involution which is1 on the 0— and
1-eigenspaces andis1 onthe 1-eigenspace. LeE,. = F. (e) = E4(t(e)) denote
the +1 eigenspace of this involution.

The main results of this section are the following.
Theorem 6.2. For a quooty or tooty idempotent, t(e) is an automorphism of/ ",

This follows from the theory in [Miy] and (5.2). In this sectiongwhall verify this
directly on the algebrd’”" only, for the ef ande(yp) and prove that these elements
are all the idempotents whose doubles are conformal vectors of Confomgzhtv%.
See (6.5) and (6.6).

Theorem 6.3. The subgroup ofdut(V) generated by allt(e) as in (6.2) is iso-
morphic to O (10, 2).

The Miyamoto theory proves that thiée) are in Aut(VE). It turns out that the
group they generate restricts faithfully i/ is faithful, and there we can identify it.

Theorem 6.4. The group generated by theef) is isomorphic to the maximal 2-local
subgroup ofO*(10,2) of shape28: O*(8,2). The normal subgroup of orde?® is
generated by alk(e})t(ey ) and acts regularly on the set of weighty idempotents. A
complement to this normal subgroup is the stabilizer of afy), for example, the
stabilizer of ¢(1) (1 means the trivial character) is generated by &€, 1). Such a
complement is isomorphic to the Weyl group of type modulo its center.

To verify that the involutiont(e) is an automorphism o¥", it suffices to check
that B, £, + E_E_<FE, andE;E_<E_.

Proposition 6.5. If e is quooty,t(e) is an automorphism of/f".
Proof. This is straightforward with (6.4) and (5.4).
Proposition 6.6. If ¢ is tooty, t(e) is an automorphism of/}f".

Proof. This is harder. We use (5.1), (6.4), (5.8) and (5.11). It is easyetiwthat
Et x ET < Et. ToproveE~ x E~ < ET, we verifythat(E~ x E~,E~) =0
(this suffices since the eigenspaces are nonsingular and pairwise ordipgbe
verification is a straightforward checking of cases. To prove fiatx E+ < E—,
we use the previous result, commutativity of the product and asaaigiatf the form.

Table 6.7. (i) The action oft(ey ) on QJJ:
fixed are

e If (, A) =0 or £4; e(p) if [N, ¢] =0;
interchanged are
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ey andexyarorr if (A p) = —2; e(p) ande(pA) if [A, ¢] = 1.

(i) The action oft(e(¢)) on QJ7J:
fixed are
all €} , andalle() with ¢ = or ¢ singular;
interchanged are
all e(pX) andey , with A aquoot.

Proof. For an involutiont to interchange vectors and y in characteristic not 2, it
is necessary and sufficient thiafix «+y and negater —y. The following is a useful
observation: since the-1 eigenspace fot = t(e) is the sum of the 0-eigenspace
and the 1-eigenspace foud(e), a vectoru is fixed by t(e) iff e x u is in the
i—eigenspace. Another useful observation is that if y is negated, therx — y)?

is fixed. The proof of (i) and (ii) is an exercise in checking cases.

The identification ofG, the group generated by all su¢te), e € QT7J, is based
on a suitable identification of this set of involutions with nomsitar points inF1°
with a maximal index nonsingular quadratic form.

Notation 6.8. Let 7" := F1° have a quadratic form of maximal Wittindex. Decom-
poseT = U L W, with dim(U) = 2, dim(W) = 8, both of plus type. Lel/ =
{0,7,s, f}, whereq(f) = 1,q(r) = q(s) = 0. Identify W with Hom(L,{£1}).
For z € V nonsingular, writex = p+y, for p € U,y € W. If p =0, correspond
x t0 ey1. If p=r, correspondr to e, . If p € {s, f}, corresponce(y) to z.
This correspondence i§-equivariant; use (6.7).

So, we have a map off onto O*(10,2) by restriction toV;f". Its kernel fixes
all of our idempotents, which spa¥if". By Corollary 6.2 of [DGH], this kernel is
trivial. So, G = O*(10,2) and (6.3) is proven.

Proposition 6.9. G’ acts irreducibly onl* (dimension 155).

Proof. This follows from the character table db*(10,2), but we can give an
elementary proof.

(1) The subgroupH of (6.2) has an irreducible constitueit of dimension 120
with monomial basisv,, o € Lo;

(2) the squares of the, generate the 36-dimensional orthogonal complement,
P, The action fixesI and the action on the 35-dimensional spdeé N I+ is
nontrivial, hence irreducible (the subgroGp (H) = 2% acts trivially and the quotient
H/O2(H) = O (8,2) acts transitively on the spanning set of 120 elemefts- o2,
so acts faithfully. Now, the subgrowg$: O* (6, 2) = 2°: Symg has smallest faithful
irreducible degrees 28 and 35;if is reducible onP+ N1+, then 28 occurs and!
has an irreducible of dimensiond, 28 < d < 34 and soP* N R* is a trivial
module of dimensior86 — d > 2. This is impossible sincé® is an H -constituent
of a transitive permutation module of degree 120, contradiction).

(3) We now haveVy" = 1 + 35 + 120 as a decomposition inté7 -irreducibles.
But eacht(e(y)) fixes I and does not fix the 120-dimensional constitutent, whence
irreduciblity of G on I+.
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Theorem 6.10. Aut(VF) = G = 07 (10, 2).

Proof. SetA := Aut(VF). We quote Theorem (6.13) of [Miy], which says thasif
is the set of conformal vectors of central chargethen |¢(x)t(y)| € {1,2,3}. So, if
X is aconjugacy class, itis a set of 3-transpositions. If it is not ugmy class, we
have a nontrivial central product decomposition(&f), which is clearly impossible
since A acts faithfully andG acts irreducibly onV,/". Now, the classification of
groups generated by a a class of 3-transpostions [Fi69][Fi71] mayJoked to
identify A. It is a fairly straightforward exercise to eliminate any 3-transjmsi
group which properly contain®+(10, 2).

7. A related subVOA of V1,

The VOA defined in [FLM], denoted’?, has the monster as its automorphism group.
One of the parabolicsP = 210+160+(10,2), acts on the subVOAV’ of fixed
points of Oy(P); the degree 2 party containsVy". In fact, VJ is isomorphic

to the direct sum of algebragy” (with x) and C. The proper subVOAV” of

V' generated by thé/[ -part is isomorphic toV’f" (this is so because we can see
our L = QP! embedded in the Leech lattice, as the fixed point sublattice of an
involution). This subVOAV” contains idempotents given by formulas like ours for
guooty and tooty ones, but these idempotents h%vén their spectrum orV!, so
the involutions associated to them by the Miyamoto theory act triviatlyy”’. The
involutory automorphisms o¥’’ given by our forumlas in Section 6 do not extend to
automorphisms of/% since otherwise the stabilizer of this subVOAN the monster,
would induceO™ (10, 2) on it, contrary to the above structure of the maximal 2-local
P; we mention that the maximal 2-locals have been classifed [Mei].
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