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Abstract. This article will be one in a series which take an exploratory

look at some VOAs of CFT type, such as the ones of lattice type, their

automorphism groups and the automorphism groups of their degree 2

part. In part I, we are concerned mostly with definitions, examples

and methods. We will reflect on some general relations between groups,

nonassociative algebras and VOAs.
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1 Introduction

At this time, we are especially interested in questions about VOAs and their
automorphism groups1 mostly along the following lines:

Q1. What groups occur as Aut(V ), for a VOA V ?
Q2. Are there reasonable methods for determining Aut(V ) in cases of interest?

In the seventies decade, the theories of finite simple groups and commutative
nonassociative algebras became more closely interconnected. In the mid-eighties,
VOA theory became established, and developed with ideas from physics, geometry
and Lie theory and the algebraic theories involving the monster simple group.

It seems a good idea to explore interconnections among groups, nonassociative
algebras and VOA theory, hence the acronym GNAVOA. Here, we are thinking
mainly of finite dimensional commutative nonassociative algebras which occur as
some (V2, 1

st). It has been known for a long time that the algebra (V1, 0
th) is a

Lie algebra if Vn = 0 for n < 0 and dim(V0) = 1. We shall say little about this
well-studied role of Lie algebras, and concentrate on degree 2. We have a little to
say about higher k.

A few examples will indicate some relevant ideas from group theory.

Example 1.1 The algebra A is the direct sum of n copies of C. Obviously,
Aut(A) ∼= Symn since there are exactly n primitive idempotents, serving as the
units for the n summands.

Definition 1.2 An algebra A =
⊕

i∈I Ai (I is just an index set, not a grading)
is described by a linear map A ⊗ A → A, which in a natural way is a linear
combination of maps pijk identified with maps Ai ⊗Aj → Ak. A deformation of A
with respect to the direct sum A =

⊕
i∈I Ai is an algebra structure on A which is

given by a different linear combination of the pijk. Two deformations with respect
to the same direct sum are equivalent if each is a deformation of the other. We call
such a deformation invertible, nondegenerate or nonsingular; otherwise, we call it
noninvertible, degenerate or singular A deformation is a rescaling if there is a scalar
c 6= 0 so that every map pijk is replaced by cpijk. A subalgebra B of A which
is homogeneous with respect to the direct sum has a natural induced deformation

since for all i, j, k, we have pijk(B ⊗ B) ≤ B. We may write (A, ·) and (A, ∗) to
indicate the original algebra and deformation, respectively.

Remark 1.3 If the group G acts as automorphisms of the algebra A and all the
Ai are G-submodules, then the maps pijk are G-maps and G acts as automorphisms
of any deformation. For instance in the case of 1.1, there are deformations which
are nonassociative and still carry Symn as a group of automorphisms. Possibly, a
deformation may have a larger group of automorphisms.

Definition 1.4 Given an algebra A =
⊕

i∈I Ai as in 1.2, we get an algebra
structure on any Ai, called contraction. It is given by the map piii.

1We recall a few basic results about a VOA (V, Y,1, ω). An automorphism is an invertible
linear transformation g on V which fixes 1 and ω and commutes with the action of Y in the sense
that Y (gv, z) = gY (v, z)g−1 for all v ∈ V . The subspace of fixed points V G is a subVOA. If V =
L

i∈Z
Vi is the natural grading on V and a ∈ Vi, b ∈ Vj then for every integer k, akb ∈ Vi+j−k−1,

where Y (a, z) :=
P

k∈Z
akz−k−1.

The nth binary composition on V is defined by: anb. By (Vn+1, nth), we denote the algebra
structure on the homogeneous component Vn+1 of the VOA (V, Y,1, ω) given by the nth binary
composition. This is called the (n + 1)th contraction of V , in accordance with Definition 1.4.
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Example 1.5 Here is an instance of 1.4. Let G be a finite permutation group
on the set Ω. Let V be a direct summand of the permutation module M := CΩ.
Let π be the orthogonal projection of M to V and ι the inclusion of V in M . We
define a product ∗ on V by u ∗ v := π(ι(u)ι(v)), where the latter product is the
natural one on M , as in 1.1. Obviously, G ≤ Aut(V, ∗).

Example 1.6 (a) Let G be a finite group and V a finite dimensional mod-
ule. Suppose that all of HomG(S2V, V ), HomG(S2V, C), HomG(S3V, C) are 1-
dimensional. Then on V , there is an essentially unique nontrivial commutative
algebra structure and a G-invariant symmetric bilinear form which is associative:
(xy, z) = (z, yz) for all x, y, z ∈ V .

(b) These hypotheses are satisfied if G is a triply transitive group on some
set Ω and V is the nontrivial submodule of the permutation module CΩ. Then
Aut(V ) ∼= SymΩ. For an easy proof, see the Appendix of [DG].

The above dimension statements may be verified with the character table and
power maps for G, if they are available.

Example 1.7 The monster M has an irreducible V of dimension 196883 (and
no irreducible module of smaller dimension except the trivial module). There is
an invariant commutative algebra structure on it which is an instance of both 1.5
and 1.6. This algebra is sometimes denoted B0 and a 196884-dimensional algebra
B, which contains B0 as a submodule and has a unit, occurs within the moonshine
VOA 2 and has B0 as a contraction.

From the finite group theory viewpoint, these examples have the same general
flavor. In the seventies, there was some effort to find a role for the sporadic groups
as automorphism groups of a good category of algebras. From the VOA viewpoint,
only the last of the above examples has played a role in any really obvious way.
In this article, we hope to show that these two philosophies have more common
ground.

There is some literature on determining the automorphism group of algebras
which arise as in 1.6. See [Smith], [Froh].

We shall take a closer look at how commutative nonassociative algebras come
up in the VOA world. Mainly, we are thinking of the cases where (V2, 1

st) is
commutative. These include classic examples, for instance some Jordan matrix
algebras, but also nonfamiliar ones. The algebra B of 1.7 has no nontrivial low
degree identities [GrMont], so one can not hope for a structure theory like those of
Lie and Jordan algebras. Probably classic work with identities is not effective in
general for the algebras (V2, 1

st). As with 1.7, some questions about the algebras
may be answered by dealing with the automorphism group. The advantage of
this viewpoint is that both the theories of Lie groups and finite simple groups are
well-developed.

2 Background

Now, let V be a VOA. We recall the terms lattice VOA or LVOA [FLM] and
lattice type VOA [DG] or LTVOA (a subVOA of a lattice VOA VL of the form V G

L ,
where G is a finite group of automorphisms).

2Since the moonshine module turns out to have a VOA structure on it, we prefer the term
moonshine VOA to moonshine module.
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We know Aut(V ) for only a limited family of V . The ones we are aware of are
the LVOAs [DN], LTVOAs of rank 1 and a few special cases, such as the monster
and O+(10, 2). See the survey in [GrRaleigh]. Since that survey, the following basic
result has been obtained.

Theorem 2.1 The automorphism group of a finitely generated VOA is an
algebraic group.

A proof may be found in the article [DG2], which describes the general structure
of automorphism groups and Lie algebra of derivations for the finitely generated
case.

A general algebraic group G has the following shape:
AG1. In the algebraic group G, the connected component of the identity G0

has finite index.
AG2. The unipotent radical R is complemented in G0 by a reductive group

L, so G0 = RL is a semidirect product. (The group L, is called a Levi factor; it is
unique up to conjugacy but is not unique in general.)

As automorphism groups of VOAs, so far we know explicit examples of finite
groups, connected positive dimensional reductive groups, and mixtures of these. In
[DGR], there is a nontrivial example of a VOA with trivial automorphism group.

For the question of which finite simple groups (or nearly simple ones) occur,
we have no global conjecture, but do have the important theme of 3-transposition
groups to consider.

Definition 2.2 A set D of 3-transpositions in a group G is a subset of elements
of order 2 so that x, y ∈ D implies that |xy| ∈ {1, 2, 3}. We call G (or, more
precisely, the pair (G, D)) a 3-transposition group if D is a set of 3-transpositions,
is a union of conjugacy classes, and generates G.

It is possible that a set of 3-transpositions is contained in a conjugacy class
which is not a set of 3-transpositions.

Since two distinct involutions generate a dihedral group, the condition |xy| = 2
is equivalent to xy = yx. If we define a graph structure on D by joining distinct
x, y ∈ D if and only if xy 6= yx, and Di are the connected components, then 〈D〉 is
a central product of the groups 〈Di〉.

We do not know all finite 3-transposition groups, but do know the ones which
are essentially simple, due to this basic theorem of Bernd Fischer [Fi].

Theorem 2.3 Let (G, D) be a finite 3-transposition group such that G′ is
simple. Then (G, D) is one of the following:

Symn, the set of transpositions; or n = 6 and D is the conjugacy class of fixed
point free involutions;

PSU(n, 2), the set of unitary transvections;
Sp(2m, 2), the set of symplectic transvections (except for the case Sp(4, 2) ∼=

Sym6);
Oε(2m, 2), the set of orthogonal transvections;
Oε,µ(n, 3), the set of orthogonal reflections x 7→ x + (x, y)y, where (y, y) = µ.
Fi22, F i23, F i24, one of three sporadic simple groups and in each case D is a

uniquely determined conjugacy class of involutions.
(The parameter ε for even dimension is + if the Witt index is maximal, and

otherwise is −; it is nonexistent for odd dimensional orthogonal groups in charac-
teristic not 2.)
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Note that D is not uniquely determined for Sym6 and that in the even di-
mensional projective orthogonal groups over the field of three elements we have
two different conjugacy classes of reflections (more accurately, of their images in
the projective group) which satisfy the 3-transposition condition and may generate
different subgroups of the projective orthogonal group.

The special relationship of 3-transpositions with VOA theory occurs via the
Virasoro elements, also called conformal elements.

Definition 2.4 A Virasoro frame in a VOA (V, Y,1, ω) is a collection of Vi-
rasoro elements ωi such that ω =

∑
i ωi and the central charge of each ωi is 1

2 .
We abbreviate this with VF. A VOA with a VF is called a framed vertex operator

algebra, FVOA.

The connection was noticed by Miyamoto, whose idea is that to each element of
a Virasoro frame is associated an automorphism t(ωi) of order 2 (or order 1, in ex-
ceptional situations), based on fusion rules involving L(1

2 , 0), L(1
2 , 1

2 ) and L(1
2 , 1

16 ),

the irreducibles for the Virasoro subVOA generated by the ωi. In case L(1
2 , 1

16 ) does
not occur in V , t(ωi) belongs to a conjugacy class of 3-transpositions in Aut(V ).
See [Miy], [DGH], [GrRaleigh].

We think of the 3-transposition concept as a link between the worlds of finite
simple groups and basic VOA theory, something worth studying.

Let us formally deal with the case of an algebraic group which contains a
conjugacy class of 3-transpositions.

Lemma 2.5 If G is an algebraic group containing a conjugacy class of 3-
transpositions, D, then D generates a finite normal subgroup of G.

Proof. Let H be the Zariski closure of the group generated by D and suppose that
H is positive dimensional. Then H0 has a positive dimensional Lie algebra. Take
x ∈ D. If x acts nontrivially on the Lie algebra, it has an eigenvector for eigenvalue
−1 and so in H0, x inverts a nontrivial 1-parameter subgroup under conjugation.
This violates the 3-transposition condition. Therefore D centralizes H0, whence
H0 is abelian and so is a torus. An old theorem of Schur says that if the center of
a group has finite index, its commutator subgroup is finite. Therefore, H ′ is finite.
Also, H/H ′ is an abelian group generated by involutions, so has exponent 2 (but
is possibly infinite). Clearly then H has finite exponent, whereas H0 is a positive
dimensional torus, a contradiction. �

Definition 2.6 A VOA V has CFT type if Vn is 0 for n < 0 and V0 = C1 is
1-dimensional.

Definition 2.7 The OZ property of a VOA V =
⊕

n∈Z
Vn means the following

set of conditions: dim(Vn) = 0 for n < 0; dim(V0) = 1; and dim(V1) = 0. (Note
that OZ stands for the sequence of dimensions: one, zero). A VOA with the OZ
property is called an OZVOA, or an ozzie, for short.

The OZ property implies the CFT property, but not conversely.
If V has the OZ property, V0 = C1 and (V2, 1

st) is a commutative nonassociative
algebra with an associative, symmetric bilinear form (x, y) = x3y, x, y ∈ V2 [FLM].

Definition 2.8 A commutative algebra (A, ∗) for which there is an OZVOA V
such that (A, ∗) ∼= (V2, 1

st) is called a Griess algebra. We say that such an OZVOA
affords the algebra (A, ∗).
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The term Griess algebra arose in the VOA literature, due to the role of the
196884-dimensional algebra B in the construction of the monster and in the theory
of V ♮ , the moonshine VOA, which has the OZ property. Given a Griess algebra,
there seems to be no obvious relation between two VOAs which afford it.

We can create many OZVOAs in the following way.

Definition 2.9 Take a VOA V of CFT type. Let F be a subgroup of Aut(V )
which is fixed point free on the degree 1 part. Then the fixed point subVOA V F is
an OZVOA. Call this procedure (of making ozzies from CFTs) ozzification.

A given VOA of CFT type may have many ozzifications, depending on choice
of F . One can see several rank 1 examples of LTVOA ozzifications in [DG, DGR].
When the lattice is a root lattice, we can use well-developed knowledge of the
finite subgroups of Lie groups [GRS][GRQE]. In E8(C), there are many fixed point
free finite subgroups, for example ones isomorphic to PSL(2, q), for at least q =
5, 9, 16, 31, 32, 41, 49, 61. A nontoral elementary abelian 2-group of rank 5 in E8(C)
gave the example in [GrCol]. In E7(C), there is PSU(3, 8) and in E6(C) there is
PSL(2, 19), for instance. In general, a Lie primitive finite subgroup of a simple Lie
group will be fixed point free on the adjoint module (though not conversely). See
[GRS], [GRQE] and references therein.

Definition 2.10 Let k be an integer. The degree-k automorphism group of
a VOA V is Aut(V, k), the restriction of Aut(V ) to Vk. It acts as automorphisms
of the algebra (Vk, (k − 1)th), so we have a containment Aut(V, k) ≤ Aut((Vk, (k −
1)th)).

3 Automorphism groups

It would be nice to know that V G is finitely generated when V is finitely
generated and G is a finite subgroup of Aut(V ).

In the cases we examine in this article, we think this is so and is probably not
difficult to check, but we have not verified this in all cases.

Now we begin a search for VOAs whose automorphism groups are not yet
covered by existing theory. We take a clue from [GrCol]; see 3.2.

PS. (Program of Study.) We take a VOA V , a finite subgroup F of Aut(V ),
then study V F and Aut(V F ). We have a map ϕ : NAut(V )(F ) → Aut(V F ).

PO. (Possible Outcomes.)
PO1. Im(ϕ) = Aut(V F ).
PO2. Im(ϕ) ⊳

6=Aut(V F ).

PO3. Im(ϕ)6 ⊳Aut(V F ).
In each case PO2, PO3, we can further subdivide into cases of where the index

is small or large, or in the case of a containment of algebraic groups, we can consider
the difference or ratio of dimensions.

Example 3.1 We look at analogues of (PO1,2,3) for containments of Lie al-
gebras. We get corresponding statements about containment of lattice type VOAs
whose automorphism group is the same as the underlying Lie algebra [DN].

Consider the containment of Lie algebras D8 ⊂ E8, realized by taking fixed
points of an involution t from class 2B. Let F := 〈t〉, a group of order 2. The
subalgebra has a graph automorphism but it is not realized by an element of N(F ) ∼=
HSpin(16, C), a connected group. So we are in (PO2).

The containment D4 ⊂ D5 gives an example of (PO3).
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The containment D4 ⊂ E6 gives an example of (PO1).

Strategy. We input good choices V, F like
(S1.) V = VL, a LVOA based on the lattice L;
(S2.) F not in the natural torus based on L;
(S3.) some nonabelian F , with N(F )/F not small.
The reason for lattice type in (S1) is that their automorphism groups are famil-

iar. If the restriction in (S2) does not hold, V F = VM for a finite index sublattice
M of L, where M is the common kernel of all the maps in Hom(L, C×) which cor-
respond to elements of F ; this is uninteresting for us since Aut(VM ) is nothing new.
The reason for nonsmallness in (S3) is to give some visible structure to Aut(V F ).
For an idea of difficulty in “small” cases, see [DG] and [DGR].

Example 3.2 [GrCol]. If we take L =
√

2LE8
and let F be the group of

order 2 generated by a lift of −1 [DGH], then N(F )/F ∼= 28:O+(8, 2). Since
Aut(V F ) ∼= O+(10, 2), we have a case of (PO3), of index 17.31 = 527. There
is an embedding of L as a sublattice of M ∼= LE8

. Since Aut(VM ) ∼= E8(C),
there is E ∼= 25 (unique up to conjugacy) in Aut(VM ) which is 2B-pure of rank
5. It is nontoral, and any subgroup E0 of index 2 in E is toral. It happens that
V E

M
∼= V F

L . In more detail, we may take the embedding of L in M and choice

of E and E0 to satisfy V E0

M = VL and V E
M = V F

L . So, we have an action of
NAut(VM )(E) ∼= 25+10GL(5, 2) with kernel containing E on the VOA V F

L . It turns

out that Aut(V F
L ) ∼= O+(10, 2) is generated by its two subgroups produced as

above, of respective shapes 28:O+(8, 2) and 210:GL(5, 2). The determination of the
automorphism group depends critically on the presence of a class of 3-transpositions
and the Fischer classification. Note that dimq(V

F
L ) = 1 + 156q2 + · · · .

Example 3.3 Take L to be the lattice
√

2LD4

∼= 2L∗
D4

. The VOA V +
L , with

q-dimension 1 + 22q2 + · · · , is probably isomorphic to the code VOA VMM studied
by Matsuo and Matsuo [MM], who determined that Aut(VMM ) ∼= 26:[GL(3, 2) ×
GL(2, 2)]. Let us assume that there is such an isomorphism. From the ozzification
viewpoint, we simply observe that we have a containment of lattices L ≤ M ∼= LD4

and we can recognize VL ≤ VM and V +
L = V E

M , where E is a nontoral subgroup of
D4(C):Sym3 of order 8 whose normalizer has shape 23+6[GL(3, 2) × GL(2, 2)].

Example 3.4 Now take the Borovik group, B, which contains B5 × B6 with
index 4, where B5

∼= Alt5 and B6
∼= Alt6 [Bor][CGB][FG]. An inner product

calculation shows that V B5

LE8

has dimension 64 and V B6

LE8

has dimension 10. The

respective commutative subalgebras have not been identified yet. By dimensions
only, Mat8(C)+ and SymMat4(C)+ are reasonable guesses.

Remark 3.5 More examples for L = LE8
, F a maximal nontoral elementary

abelian p-group, are being investigated. Here, Aut(V F ) in most cases seems to be
only N(F )/F .

4 27-dimensional algebras.

We shift emphasis from the prime 2 to the prime 3 and find an interesting
situation along the lines of the previous section. In particular, we create a 27-
dimensional nonassociative commutative algebra, denoted A (it is defined in 4.3).
We prove some basic properties of this algebra and settle its automorphism group.
For some arguments, we assume the classification of finite simple groups.
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At first, we thought that A could be the exceptional Jordan algebra (for exam-
ple, each has a group of automorphisms isomorphic to ASL(3, 3) (see Notation 4.2)
and a system of subalgebras isomorphic to Mat3(C)+). This algebra turns out not
to be Jordan, and is possibly a previously unknown algebra. After our results were
obtained, Gerald Höhn called our attention to [CH] which defines a 27-dimensional
algebra in an E6-related situation similar to ours. It seems possible that these
two algebras are isomorphic (but look ahead to the Suspect List after 4.6). For
completeness, we note the article [GuHy] on a related topic, that of realizing an
affinization of the exceptional Jordan algebra.

Let ω := e2πi/3, a primitive cube root of unity. 3 For an even integral lattice L,
we use the common notation Ln := {x ∈ L | (x, x) = 2n}, the set of lattice vectors
of type n. In VL, CLn denotes the span of all eλ, for λ ∈ Ln. See [GrCol] for work
with similar notations.

Notation 4.1 Let L = LE6
, V = VL. Then Aut(V ) ∼= E6(C):2 and it has

a nontoral subgroup E ∼= 33 so that J := N(E) ∼= 33+3:GL(3, 3). See [GrElAb]
(for the adjoint form, E6(C)). Also, J ∩ Aut(V )0 has shape 33+3:SL(3, 3). It is
obtained from the normalizer of a maximal torus T as follows. There is an element
θ ∈ N(T) of order 3 so that the corresponding element of the Weyl group has
minimal polynomial x2 + x + 1. Then E1 := CT(θ) ∼= 33 and we may arrange for
E = 〈E0, θ〉 where E0 := E ∩ T is a subgroup of order 32 in CT(θ). See [GrElAb]
and Section 8.2.

Notation 4.2 For an integer n and field K, AGL(n, K) denotes the affine

general linear group, the group of affine transformations on Kn. It is the semidirect
product of the group of translations by the complement GL(n, K). If SL(n, K) is
used instead, the semidirect product is called ASL(n, K), the affine special linear

group.

We take V E and note that we have an action of N(E)/E ∼= AGL(3, 3) on

this. The action is faithful on V2
E since N(E) ∩ T acts nontrivially (because it

contains CT(θ) ∼= 33) and N(E)/E has a unique minimal normal subgroup. Also,
faithfulness follows from the Galois theory for VOAs, Section 8.5.

It is easy to study the homogeneous pieces of V :
V0 = C1;
V1 = H1 + CL1;
V2 = S2H1 + H2 + H1CL1 + CL2.
On H := C ⊗ L, θ has spectrum ω with multiplicity 3 and ω̄ with multiplicity

3. Write Hk,α for the α-eigenspace of θ in H1.
Since E0 is in the natural torus associated to L, V E0 is the natural subVOA

VM , where M is the index 9 sublattice of L which is the common kernel of all the
elements of Hom(L, C×) which correspond to the elements of E0 ≤ T. The lattice
M satisfies M1 = ∅ and |M2| = 54. See Section 8.2.

Now, V E = V
〈θ〉
M . Since θ is fixed point free on the lattice and has the above

spectrum, we have [VM ]1
〈θ〉

= 0 and [VM ]2
〈θ〉

= H1,ωH1,ω̄ ⊕ ⊕
O Cs(O), where O

runs over the 18 orbits of 〈θ〉 on M2 and s(O) is an orbit sum, that is s(O) is a

sum of three elements in M̂ in an orbit of 〈θ〉, one from each 1-space Cex, where x

3Unfortunately, ω is a common abbreviation for both a cube root of unity and for the principal
Virasoro element of a VOA; the latter meaning will not be used in this section.
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runs over the three vectors of an orbit of 〈θ〉 on M2. See Section 8.2 (but note the
different meanings of M and J).

Notation 4.3 Write A := (V2
E , 1st). We write 1 for the unit (in fact, 1 is 1

2
times the principal Virasoro element). Write φ for the representation of J on A.

A basis for A is the union of these two sets (1) the set of all u⊗v, where u runs
over a basis of H1,ω and v runs over a basis of H1,ω̄; and (2) the set of all above
s(O).

Lemma 4.4 As a module for O3(J)/E, A is the regular representation and if
X, Y are two eigenspaces, then XY 6= 0, whence XY is an eigenspace.

Proof. Since J/E acts faithfully and on O3(J)/E the action is transitive on non-
identity elements, A contains a copy of the regular representation with the principal
representation removed. Since the identity element of the algebra is fixed, the prin-
cipal representation of O3(J)/E is present, and we have the first statement. For the
second, just observe that X and Y are centralized by an order 3 subgroup O3(J)/E,
whence they lie in a subalgebra conjugate under J to H1,ωH1,ω̄

∼= Mat3(C)+, where
XY 6= 0 follows from inspection. Obviously, XY is an eigenspace. �

Lemma 4.5 The fixed point space of E1 on V E
2 is just H1,ωH1,ω̄.

Proof. First proof. Since V E
2 is isomorphic to the regular representation of

O3(J)φ (see 4.4, it follows that the fixed points of any subgroup of order 3, such

as Eφ
1

∼= 3, has dimension 27/3 = 9. It follows that the 9-dimensional subspace
H1,ωH1,ω̄ is the full set of fixed points for E1 on V E

2 .
Second proof. Since the action of E1 fixes the polynomial factor of VL point-

wise, it suffices to show that each s(O) is an eigenvector for a nontrivial linear
character of E1. This is proved by inner product calculations in the E6-lattice (see
Appendix 8.2 for notations; we may take E0 to be the exponentials of the lattice
spanned by

∑
j αj , 3αi, 3βi, αi − βi, for i = 1, 2, 3, and E1 as the exponentials of

the span of E0 and 1
3

∑
i αi − βi; check that inner products of any norm 4 vector

and the second lattice contains ±1 6∈ 3Z). �

Lemma 4.6 The image of O3(J)/E in Aut(A) is selfcentralizing.

Proof. Suppose that g centralizes O3(J)/E. Then g acts as scalar cλ on the
eigenspace Uλ for the character λ. Since the product of Uλ and Uµ is Uλµ (see 4.4)
and since g is an automorphism, the function λ 7→ cλ is a group homomorphism,
so gives a character of the group of characters of O3(J)/E. This means that g acts
like an element of O3(J)/E. �

We start our analysis of its automorphism group by making some observations.
On V2 and V2

E , we have nondegenerate symmetric bilinear forms which are invari-
ant by their automorphism groups. Therefore, the annihilator of 1 is a submodule
for the automorphism group which complements C1.

Consider the following commutative 27 dimensional algebras, which, because
of the action of ASL(3, 3), seem at first to be reasonable candidates for A:

Suspect list of 27 dimensional algebras.
(a) The exceptional Jordan algebra, automorphism group F4(C);

(b) the associative algebra
⊕27

1 C, automorphism group Sym27; or deforma-
tions of these (see 1.2).
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(c) an algebra with automorphism group containing G := O+,η(6, 3), for η =
±; there is an irreducible X of degree 26 for the simple group G′ ∼= Ω+(6, 3) ∼=
PSL(4, 3) and its character χ satisfies (S2χ, χ) = 1 = (S3χ, 1) = (S2χ, 1); see 1.6.
Therefore there is an essentially unique nontrivial commutative algebra structure
on X and it has an associative symmetric bilinear form. There are several G′-
invariant commutative algebra with unit structures on the direct sum of X and a
trivial module which contracts to X .

(d) There are 27 dimensional algebras whose automorphism group is just ASL(3, 3)
or AGL(3, 3).

Next, we show that A is not Jordan, as can be verified by attempting to verify
the linearized form of the Jordan identity u2(uv) = u(u2v).

Lemma 4.7 Assume that 2 is not a zero divisor. The linearized Jordan identiy
is valid in a commutative nonassociative algebra if and only if

(yz.x)w − yz.xw + (wy.x)z − wy.xz + (wz.x)y − wz.xy = 0.

Proof. [Jac]. �

Lemma 4.8 A is not a Jordan algebra.

Proof. It suffices to produce a substitution for which the linearized Jordan identity
is not valid.

Now let O, O′, O′′ be three orbits of 〈θ〉 on type 2 elements of M̂ so that there

exist λ ∈ O, λ′ ∈ O′, λ′′ ∈ O′′ so that λ, λ′,−λ′′ form a triangle of type 222 in M̂ .
See Section 8.2. For an orbit O, let s(O) be the orbit sum

∑
λ∈O eλ. Let pq, rs

stand for p⊗ q + q⊗ p, r⊗ s + s⊗ r. Set a := pq, b := rs, c := s(O), d := s(O′). See
8.1 for how to multiply these elements in A.

All six terms of 4.7 are multiples of s(O′′). When α, β, αβ ∈ M̂ have type 2,
(eα)1(e

β) = eα+β. When we take λ, λ′, λ′′ as above, we get s(O)1s(O′) = s(O′′). 4

Therefore the coefficients at s(O′′) for each of the six terms of 4.7 are, respectively,
η times

+(p, λ′′)(q, λ′′)(r, λ′′)(s, λ′′)
−[(p, s)(r, λ′′)(q, λ′′) + (q, r)(p, λ′′)(s, λ′′)]
+(p, λ)(q, λ)(r, λ)(s, λ)
−(p, λ)(q, λ)(r, λ′)(s, λ′)
+(p, λ′)(q, λ′)(r, λ′)(s, λ′)
−(p, λ′)(q, λ′)(r, λ)(s, λ).
If the Jordan identity holds, the sum of these six terms is 0.
Let κ : M̂ → M be the covering map. It is straighforward to check that the

projections of span(κ({λ, λ′, λ′′})) to each summand in H1 = H1,ω ⊕ H1,ω̄ are two
dimensional (Hint: show nonsingularity of the Gram matrix with respect to the set
of four vectors obtained by projecting each of κ(λ), κ(λ′) to these two subspaces).
For {x, y} = {ω, ω̄}, let Ax be the image of span(κ({λ, λ′, λ′′})) in H1,x and let By

be the annihilator in H1,x of Ay. Then Bx, By are in duality as are Ax, Ay and
H1,x = Ax ⊕ Bx.

Now take p, r ∈ H1,ω and q, s ∈ H1,ω̄ so that (p, s) = 1 and (s, Aω) = 0; for
instance, we may take nonzero p ∈ Bω and s ∈ Bω̄. Then all terms are zero except
possibly −(p, s)(r, λ′′)(q, λ′′), and it can be arranged nonzero by choosing r, q to
satisfy (r, λ′′) = (q, λ′′) = 1. �

4Alternatively, we may use triangles in M and the epsilon-function.
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Since A is not Jordan, it follows that (a) is out, as is the first candidate in (b).
We shall get more information about A relative to the other candidates on the

list after we determine Aut(A) which is an algebraic group (since the automorphism
group of a finite dimensional algebra is an algebraic group).

Lemma 4.9 Let F be a field of characteristic not 3 and R := F[x]/(x3 − 1),
R0 := (x− 1)/(x3 − 1). Consider deformations with respect to R = R1 ⊕R0, where
R1 = F1. Use basis yi := xi + (x3 − 1), i = 0, 1, 2.

(i) An invertible deformation (R, ∗) is given by nonzero scalars a, b, c, d so that
y0 ∗ y0 = ay0, y0 ∗ yi = byi for i = 1, 2, and yi ∗ yi = cyj and yi ∗ yj = dy0 for
{i, j} = {1, 2},

(ii) An invertible deformation is Jordan (hence associative) if only if a = b
and c2 = db. Furthermore, the basis y′

i := c−1yi for i 6= 0, y′
0 := a−1y0 and the

correspondence yk 7→ y′
k give an isomorphism of the original algebra R with the

deformation.

Proof. (i) is clear. For (ii), observe that, assuming Jordan, we have power asso-
ciativity and we get associativity since yi generates R. Using associativity, work
with y0 ∗ y0 ∗ yi gives a = b; work with yi ∗ yi ∗ yi ∗ yi gives c3 = cdb or c2 = db;
work with yi ∗ yj ∗ yj ∗ yi gives d2a = c2d, or da = c2. On the other hand, if these
conditions hold, define a new basis by y′

i := c−1yi for i 6= 0, y′
0 := a−1y0. These

elements satisfy y′
p ∗ y′

q = y′
p+q for all p, q (indices are integers mod 3). It is clear

that the deformation is isomorphic to R. �

Notation 4.10 Let F be a field of characteristic not 3. Let J be a 27-
dimensional (exceptional) Jordan algebra constructed by a triple basis B as in [GJ].
The definition of B was based on a Moufang loop, constructed from a factor set on
F3

3. We have R < S < J , subalgebras of respective dimensions 3, 9, 27 spanned by
basis elements corresponding to a flag of subspaces of F3

3 of respective dimensions
1, 2, 3.

Lemma 4.11 Use notation 4.10. Consider the deformations of R and S in-
duced by an invertible deformation with respect to J = J1 ⊕ J0, where J1 = F1
and the latter summand is spanned by all basis elements corresponding to nonzero
vectors of F3

3. Then, equivalent are
(i) the deformation of J is Jordan and is isomorphic to J by rescaling basis

elements;
(ii) the induced deformation of S is Jordan and is isomorphic to S by rescaling

basis elements;
(iii) the induced deformation on R is Jordan and is isomorphic to R by rescaling

basis elements;

Proof. It suffices to prove (iii) implies (i). Recall the basis of eλ and factor set
construction of [GJ] using the Moufang loop O81.

For any nontrivial character ν, we have a subalgebra Rν := span{e1, eν , eν−1}
where we may apply 4.9 and get a system of nonzero scalars a, b, c, d. These scalars
are actually independent of ν since our deformation of J depends on multiples of
the maps pijk, which restrict to nonzero maps on R (except for p001 = 0) giving
the induced deformation.

As in 4.9 , we may rescale basis elements within each Rν to satisfy the orig-
inal multiplication rules for the eλ by using the formulas in 4.9. The rescaling is
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independent of ν and has the property that each of R, S,J is isomorphic to its
respective deformation by the linear isomorphism represented by the rescaling.

Therefore, this deformation of J is a Jordan algebra, isomorphic to J . �

Proposition 4.12 Aut(A) is finite.

Proof. Let K := Aut(A)0. We shall prove that K = 1.
Suppose that Aut(A) is positive dimensional. Since J ′ acts irreducibly on the

26-dimensional space 1⊥ and since a proper subgroup of J ′ of index dividing 26 has
index 26 or 13, either K acts irreducibly, or acts with 13 irreducibles of degree 2
or 26 irreducibles of degree 1. In the latter case, K is abelian, hence is a torus. In
the middle case, K ′ is a direct product of 13 copies of SL(2, C). In either of these
cases, there is a torus of rank 13 in K.

By the Borel-Serre theorem [BoSe], O3(J) normalizes a maximal torus T of K.
It centralizes a nontrivial subgroup of T(3) := {x ∈ T|x3 = 1}. Since O3(J)φ is

self-centralizing 4.6, O3(J)φ ∩K ≥ O3(J)φ ∩ T 6= 1. Since O3(J)φ is an irreducible
module for J , it follows that O3(J)φ ≤ K. Similarly, we argue that Z(K)∩O3(J)φ

is O3(J)φ or 1. If the former, we have a contradiction to 4.6. Now, 4.6 implies
that each component is actually simple and there is just one component, i.e., K is
simple.

Since O3(J)φ ≤ K, the action of J implies that K acts irreducibly. Also, 4.6
and O3(J)φ is not contained in a maximal torus.

The classification of maximal nontoral elementary abelian p-groups [GrElAb]
implies that K = K ′ ∼= F4(C).

There is just one dimension of invariants giving commutative algebra struc-
tures on the 26-dimensional irreducible for F4(C). This follows from the tensor
decomposition S226 = 1 + 26 + 324,∧226 = 52 + 273. From 4.11 and noting that
H1,ωH1,ω̄

∼= Mat3(C)+, we see that A is a Jordan algebra, a contradiction to 4.8.
�

Notation 4.13 We now have finiteness of G := Aut(A). From 4.6, O3(J)φ 6 ⊳G
if Jφ < G. Let S be a minimal normal subgroup of G.

We want to prove that G = Jφ, so let us assume Jφ < G, equivalently that
O3(J

φ) 6 ⊳G.

Lemma 4.14 Assume that Jφ < G. Then S is a finite simple group containing
(Jφ)′.

Proof. Assume that O3(J)φ ∩ S = 1. Then S is a group of order prime to 3. If
S were an elementary abelian p-group, then p 6= 3 and S has rank 26k, for some
integer k ≥ 1. Since S acts faithfully on 1⊥, k = 1, and S acts on 1⊥ as a full
diagonal group with entries pth roots of unity. Let vi be a set of eigenvectors.
Then vi ∗ vj = 0 for all i, j, a contradiction to A2 6= 0. Therefore, assuming
the classification of finite simple groups, we deduce that S is a direct product of
isomorphic copies of Sz(q), for q ≥ 8 an odd power of 2. Since S acts faithfully and
J acts irreducibly in degree 26, q = 8. The character degrees and Clifford theory
give a contradiction.

We conclude that O3(J)φ ∩ S 6= 1, whence O3(J)φ ≤ S. From 4.6, CG(S) ≤
O3(J)φ ≤ S and Z(S) ≤ O3(J)φ. Since O3(J)φ 6 ⊳G, S is nonabelian, hence a direct
product of simple groups. By 4.6, S is simple. The classification of finite simple
groups implies that Out(S) is solvable, whence (Jφ)′ ≤ S. �
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The classification of finite simple groups will now be used. The requirements
that a simple group contain (Jφ)′, O3(J)φ = C(O3(J)φ) and have an irreducible of
degree 26 are met by exactly one group in the Atlas5: PSL(4, 3). This possibility
leads to a contradiction, as we show next. To complete the contradiction in the
case J < G, we shall later check the full list of finite simple groups.

Proposition 4.15 Then S is not isomorphic to PSL(4, 3).

Proof. We know that G′ ∼= PSL(4, 3), so G/G′ corresponds to a subgroup of
Out(PSL(4, 3)) ∼= 2 × 2. Since J ≤ G, this subgroup must contain at least the
group of order 2 corresponding to PGL(4, 3). However, there is no extension of
either degree 26 irreducible of PSL(4, 3) to this group, a contradiction. �

Proposition 4.16 Assume that Jφ < G. If S is a finite simple group, then
S ∼= PSL(4, 3).

Proof. We assume the classification of finite simple groups.
Suppose S has Lie type in characteristic 3. Then the Borel-Tits theorem [BT],

says that S has a parabolic subgroup P so that O3(J)φ ≤ O3(P ) and (J ′)φ ≤ P .
It follows that P = NS(O3(J)φ) = (J ′)φ or Jφ, whence S ∼= A3(3) which has been
eliminated by 4.15.

Suppose that S has Lie type in characteristic p 6= 3. Since S contains (J ′)φ,
if S is a classical group, the dimension of its defining representation is at least 26,
whence S has rank at least 12. Since S contains a copy of PSL(12, q) or SL(12, q)
for some q = pf , f ≥ 1, we deduce that S contains an elementary abelian p-group
of rank 36. This is impossible since S embeds in GL(26, C).

Now suppose that S has Lie type in characteristic p 6= 3 but S does not have
classical type. Suppose that it contains a copy of G2(q)

′, for q = pf . The parabolic
of shape q1+6GL(2, q) has the property that a faithful representation has degree at
least q3(q−1). So, q3(q−1) ≤ 26 implies that q = 2. Therefore, S is defined over the
field of 2 elements only and is bigger than G2(2), so contains F4(2), a group listed in
the Atlas, hence already eliminated. Finally, if S contains no G2(q), it must be one
of Sz(q), 2F4(q)

′ or 2G2(q). The latter is out since its Sylow 2-groups are abelian
and those of (Jφ)′ are not. If S contains some Sz(q) (which is in 2F4(q)), a Borel
subgroup has a faithful representation of degree 27, whence 27 ≥ q(q − 1), whence
q < 6; since q is an odd power of 2, q = 2. The remaining case is S ∼= 2F4(2)′. This
group has Sylow 3-subgroup of order 27 so can not contain (Jφ)′, a contradiction.

Suppose that S is sporadic. Then S is listed in the Atlas, so has already been
eliminated.

Finally, suppose that S ∼= Altm. Since S ≥ (J ′)φ, m ≥ 27, so m = 27. Since
the action of J in a faithful degree 27 permutation representation contains an odd
permutation, K ∼= Sym27. Thus, A is either the standard permutation module for
K or that module tensored with the sign representation.

Since S is triply transitive, the S-invariant algebra structure contracts to an
essentially unique algebra on the degree 26 irreducible 1.6 whose full automorphism
group is Sym27. Also, A as a module is the permutation module.

Let t be a automorphism acting as a transposition. Then the fixed point sub-
algebra A〈t〉 has dimension 26. From this we shall derive a contradiction.

5Some errors have been noted in [Atlas], notably in lists of maximal subgroups; see [ABC].
However, our argument depends mainly on group orders, which one expects to be reliably reported.



14 Robert L. Griess Jr.

If F is any subgroup of order 3 in O3(J)φ, AF ∼= Mat3(C)+ (reason: all are
conjugate by the action of J , and we have one represented by a subgroup of the

natural torus acting on [VM ]2
〈θ〉

= H1,ωH1,ω̄ ⊕ ⊕
O Cs(O), which fixes exactly

H1,ωH1,ω̄
∼= Mat3(C)+ (see 8.4).

Also, A is generated by all such AF , for F ≤ O3(J)φ, |F | = 3. It follows that
there exists such an F so that t does not centralize AF . The previous paragraph
then implies that AF ∩ A〈t〉 has codimension 1 in AF . From [Rac], every proper
subalgebra has codimension at least 2, a contradiction. �

We have proved:

Proposition 4.17 The automorphism group of the commutative and non-
Jordan (therefore nonassociative) algebra A is isomorphic to AGL(3, 3).

Remark 4.18 If VL
E is generated by its degree 2 part, Aut(VL

E) ∼= AGL(3, 3).

5 Associative subalgebras of a commutative nonassociative algebra

One can write down a set of 48 mutually annihilating idempotents in B, using
the Leech lattice. Meyer and Neutsch [MN] made an interesting analysis of maximal
associative subalgebras of B and conjectured that any associative subalgebra of B
has dimension at most 48 and is is a direct sum of at most 48 copies of the field.

This conjecture was proven by Miyamoto who showed that such a system of
idempotents is connected with a Virasoro frame in the moonshine VOA [Miy].
This is a striking application of infinite dimensional Lie theory to a problem in
finite dimensional algebras.

6 A nonassociative commutative algebra in the degree 3 part of a VOA

So far, the VOA-derived finite dimensional algebras (Vk+1, k
th) of special in-

terest are for k = 1 and k = 2. For other values of k, it is not clear what to expect.
For one thing, the natural candidate for a unit (a scalar multiple of the principal
Virasoro element) is missing in degrees other than 2. However, we can report some-
thing for k = 3, whic occurred in [DG]. One of the problems in [DG] was to restrict
possible automorphisms of a VOA of the form V = V G

L . Let W be the space of
highest weight vectors for the principal Virasoro subalgebra. The 2nd product on
V3 restricts to a commutative algebra structure on the subspace W3 := W ∩ V3. In
this situation, dim(W3) = 2 and it comes with an action of Sym3 which preserves
the product. This can be recognized as an instance of 1.6(b), whence Sym3 is the
full group of algebra automorphisms. This proved what we needed, that the given
automorphisms are all the automorphisms. It was nice to see the elementary idea
1.5 explored in the mid-seventies reappear and be useful in the context of VOAs.

7 Towers of VOAs and fluctuating finiteness.

Example 7.1 We give an example of V > V ′ > V ′′ > V ′′′ > V ′′′′, all VOAs
with vacuum and Virasoro elements, so that Aut(V2), Aut(V ′

2), Aut(V ′′
2 ), Aut(V ′′′

2 )
are respectively infinite, infinite, finite, infinite, finite.

We take V = VL, V ′ = V E0

L and V ′′ = V E
L as in Section 4. Next, we take

E < P ≤ O3(N(E)), so that |P : E| = 3. The analysis in Section 1.3 shows
that V ′′′ := V P has (V ′′′

2 , 1st) ∼= Mat3(C)+, whose automorphism group contains
PGL(3, C):2. For V ′′′′, we take the subVOA generated by the principal Virasoro
element.
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Example 7.2 Let V be the moonshine VOA. In Aut(V ) ∼= M, there is an
involution z whose centralizer C(z) has shape O2(C) ∼= 21+24, C/O2(C) ∼= Co1.
Let P := O2(C). Then (V P )2 has dimension 300, and under the 1st product is the
Jordan algebra of degree 24 matrices, whose automorphism group is PO(24, C).
This has the subVOA generated by the Virasoro element. So, here is a length 3
chain of VOAs whose automorphism groups are finite, infinite, finite (in fact, the
identity).

Remark 7.3 Whenever we have VOAs W > W ′ such that Aut(W ) is smaller
than Aut(W ′), there exist automorphisms of W ′ which do not extend to W .

In general, we have a homomorphism of groups Aut(V ) → Aut((Vk, (k − 1)th),
which is neither a monomorphism nor an epimorphism in general; the image is
Aut(V, k) 2.10. These examples raise a general question about how much fluctuation
is possible for the groups Aut((Vk, (k−1)th) and Aut(V, k) as we pass to subVOAs.

8 Appendices.

8.1 The first product on V2.

Notation 8.1 pq = p ⊗ q + q ⊗ p for p, q ∈ H1 (this is twice the projection
of p ⊗ q to the symmetric tensors. We use the standard double cover of an even
integral lattice.

Let V = VL be a LVOA. Write × for the 1st product on V2. This product on
(V2, 1

st) satisfies the following rules (among others):

Prod1. x2 × y2 = 4(x, y)xy, pq × y2 = 2(p, y)qy + 2(q, y)py,

pq × rs = (p, r)qs + (p, s)qr + (q, r)ps + (q, s)pr;

pq × rs = (p, s)qr + (q, r)ps when p, r ∈ Hω and q, s ∈ Hω̄ ;

Prod2. x2 × eλ = (x, λ)2eλ, xy × eλ = (x, λ)(y, λ)eλ

Prod3. eα × eβ = eαβ , when α, β, αβ ∈ L̂2

8.2 The lattice LE6
and the automorphism θ.

Notation 8.2 For an even lattice, Q, write Qn := { x ∈ Q | (x, x) = 2n }, the

vectors of type n in Q. If Q̂ is the usual double cover of Q, we define the set of type

n elements of Q̂ as Q̂n, the preimage in Q̂ of Qn.

Lemma 8.3 Let L be the E6-lattice and Y a root lattice of type A2, with set
of fundamental roots α, β.

1. There is exactly one subgroup of index three in Y which does not contain
roots. It is 3Y + Z(α − β) and is the radical modulo 3 of Y , i.e., {x ∈
Y | (x, Y ) ≤ 3Z} = 3Y ∗ ∩ Y = 3Y ∗.

2. We consider N , an orthogonal direct sum of three type A2 lattices, called
Ni, with respective fundamental roots αi, βi, for i = 1, 2, 3. A sublattice
J of index 3 in N which does not contain roots is one of the following:
J = 3N∗ + Zu + Zv, where the ordered pair (u, v) is (α1 ± α2,−α1 ∓ α3),
(α1 ±α2,−α1 ±α3), (α1 ∓α2,−α1 ∓α3) or (α1 ∓α2,−α1 ±α3). Define the
vector w ∈ J by u + v + w = 0.
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3. The set J2 has cardinality 54 and is partitioned into the six 9-sets x+3N∗∩
J2, for x ∈ {±u,±v,±w}.

4. This set of four sublattices forms an orbit under the Weyl group of N ,
isomorphic to Sym3 × Sym3 × Sym3.

5. A rootless index 3 sublattice of N is isometric to
√

3L∗.
6. An element of order 3 in the Weyl group of L which has 0 fixed points

on L and stabilizes N stabilizes and acts nontrivially on each of the three
orthogonally indecomposable summands Ni of N . The 54 lattice vectors of
type 2 form 18 orbits of length 3.

Proof. The first statement is an exercise, and it is easy since Y/3Y has exactly
four subgroups of index 3.

For the second, let P be such a sublattice. We claim that P contains 3N∗
i , for

all i. Suppose this is false for index i. Then P ∩ Ni is proper in Ni, so has index
exactly 3. Examination of the two cosets of 3N∗

i in Ni shows that P contains a
root, contradiction. Also, rootlessness of P implies that Ni ∩ P = 3N∗

i , for all i.
Now it is clear that for distinct indices i, j, one of αi ± αj lies in P . Such elements
and 3N∗ generate P .

The third statement follows easily from properties of the A2-lattices Ni.
The fourth statement is easy since a reflection at αi takes αi to its negative

and acts trivially on the other Nj.
For the fifth statement take J := 3N∗+Z(α1−α2)+Z(α2−α3), determinant 35.

Its dual is N∗ + Z
1
3 (α1 + α2 + α3). Note that N∗ ∼= 1√

3
N (because L∗

A2

∼= 1√
3
LA2

)

and (N∗, 1
3 (α1+α2+α3)) ≤ 1

3Z and (1
3 (α1+α2+α3),

1
3 (α1+α2+α3)) = 2

3 . Clearly

then this is a root lattice rescaled by 1
3 and by indecomposability and determinant,

the classification of root systems implies that this lattice is the E6-lattice.
The sixth statement follows since an isometry of order 3 which cycles the three

summands has fixed point sublattice of rank 2. Therefore, such an element of order
3 in the Weyl group fixes each summand. �

8.3 An additional product. Here, O, O′ denote orbits of 〈θ〉 on Ĵ2. Here,
L, M, J are as in 8.3 and θ is a fixed point free element of order 3 from the Weyl
group of L, lifted to an automorphism of L̂. Let s(O) :=

∑
α∈O eα ∈ VL.

Prod4.

s(O) × s(O′) = 0, s((λλ′)〈θ〉),
1

2
[λ(−1)2 + µ(−1)2 + ν(−1)2]

as Ō = Ō′, λλ′ ∈ Ĵ2, λλ′ = 1, respectively.

8.4 A subalgebra of S2H. Let H be a finite dimensional vector space with
a nondegenerate symmetric bilinear form, ( , ). The degree 2 tensors H ⊗H has a
product based on w⊗ x · y ⊗ z = (x, y)w ⊗ z which makes an algebra isomorphic to
square matrices of degree dim(H).

The degree 2 symmetric tensors S2H correspond to the Jordan algebra of sym-
metric matrices under the product A, B 7→ A ◦B := 1

2 (AB + BA). The orthogonal
group on H acts as automorphisms of this Jordan algebra.

We need to identify a subalgebra of S2H .

Lemma 8.4 Let g be an orthogonal transformation on H . Let α 6= ±1 be an
eigenvalue. Take bases vi of the α-eigenspace and wj of the α−1 eigenspace so that
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(vi, wj) = δij for all i, j = 1, . . . , d where d is the common multiplicity of α and
α−1. Let The subalgebra of S2H spanned by the linearly independent set viwj , for
i, j = 1, . . . , d, is isomorphic to Matd(C)+.

Proof. Let Eij be the usual matrix units, with zeroes everywhere except for a 1
in the i, j position, for i, j = 1, . . . , d.

The hypothesis on α imply that the α-eigenspace and α−1-eigenspace are totally
singular, whence ui ⊗ wj · uk ⊗ wl = δjkui ⊗ wl.

It is straightforward to verify that the linear isomorphism viwj 7→ 2Eij gives
an isomorphism of Jordan algebras. �

8.5 Galois Theory for VOAs. Combined work of Akihide, Daisuke, Dong,
Mason and Miyamoto [DMQ], [DMGT], [ADM] shows that if V is a simple VOA
and G is a finite group of automorphisms, then the lattice of subgroups of G is
in bijection with the VOAs between V G and V . This is a clear analogy with the
Galois theory for field extensions.
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