$E E_{8}$-lattices and dihedral groups

Robert L. Griess Jr.
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109
USA
Ching Hung Lam
Department of Mathematics and
National Center for Theoretical Sciences
National Cheng Kung University
Tainan, Taiwan 701

Abstract

We classify integral rootless lattices which are sums of pairs of $E E_{8}$-lattices (lattices isometric to $\sqrt{2}$ times the E_{8}-lattice) and which define dihedral groups of orders less than or equal to 12 . Most of these may be seen in the Leech lattice. Our classification may help understand Miyamoto involutions on lattice type vertex operator algebras and give a context for the dihedral groups which occur in the Glauberman-Norton moonshine theory.

Contents

1 Introduction 2
2 Background and notations 5
$\begin{array}{lll}3 \text { Tensor products } & 7\end{array}$
4 Uniqueness 9
5 DIH and DIH_{8} theories 10
5.1 $D I H_{4}$: When is $M+N$ rootless? . 10
$5.2 \mathrm{DIH}_{8}$. 12
5.2.1 $D I H_{8}$: What is F ? . 12
5.2.2 $D I H_{8}$: Given that $F=0$. what is J ? 14
5.2.3 $D I H_{8}$: Given that $F \cong A A_{1} \perp A A_{1}$. what is J ? $. ~ . ~ . ~ . ~ . ~ . ~ . ~ 15 ~$
5.2.4 $D I H_{8}$: Given that $F_{M} \cong F_{N} \cong D D_{4}$. what is J ? 18
$6 \quad D I H_{6}$ and $D I H_{12}$ theories 25
$6.1 \quad \mathrm{DIH}_{6}$ 26
6.1.1 $D I H_{6}$: Explicit glueing 30
$6.2 \mathrm{DIH}_{12}$ 31
6.2.1 $D I H_{12}$: Studv of J_{M} and J_{N} 32
6.2.2 DIH ${ }_{12}$: the structure of F 32
6.2.3 DIH_{12} : A comparison of eigenlattices 33
$6.3 \quad s=0$ 34
$6.4 s \in\{2.4\}$ 34
6.5 Uniqueness of the case $D I H_{12}(16)$ 35
$7 \quad \mathrm{DIH}_{10}$ theory 35
7.1 $D I H_{10}$: Which ones are rootless? 36
$7.2 \quad D I H_{10}$: An orthogonal direct sum 37
$7.3 \quad D I H_{10}$: From $A A_{1}^{4}$ to L 39
7.4 $D I H_{10}$: Explicit glueing and tensor products 39
A General results about lattices 44
B Characterizations of lattices of small rank 49
C Nonexistence of particular lattices 53
D Properties of particular lattices 54
E Values of the Hermite function 66
F Embeddings of NREE8 pairs in the Leech lattice 66
F. 1 Leech lattice and its isometry group 67
F. 2 Standard $E E_{8} \mathrm{~S}$ in the Leech lattice 68
F.2.1 $E E_{8}$ corresponding to octads in different frames 68
F.2.2 $E E_{8}$ associated to an even permutation in octad stabilizen 69
F. $3 \quad E E_{8}$ pairs in the Leech lattice 70
F.3.1 $|q|=2$. 71
F.3.2 $|q|=3$. 73
F.3.3 $|q|=4$. 76
F.3.4 $|q|=5$. 81
F.3.5 $\quad|q|=6$. 83

1 Introduction

By lattice, we mean a finite rank free abelian group with rational valued, positive definite symmetric bilinear form. A root in an integral lattice is a norm 2 vector. An integral lattice is rootless if it has no roots. The notation $E E_{8}$ means $\sqrt{2}$ times the famous E_{8} lattice.

In this article, we classify pairs of $E E_{8}$-lattices which span an integral and rootless lattice and whose associated involutions (isometries of order 2) generate a dihedral group of order at most 12. Examples of such pairs are easy to find within familiar lattices, such as the Barnes-Wall lattices of ranks 16 and 32 and the Leech lattice, which has rank 24.

Our main theorem is as follows. These results were announced in GL.
Main Theorem 1.1. Let $M, N \cong E E_{8}$ be sublattices in a Euclidean space such that $L=M+N$ is integral and rootless. Suppose that the involutions associated to M and N (2.4) generate a dihedral group of order less than or equal to 12. Then the possibilities for L are listed in Table 1 and all these possibilities exist. The lattices in Table 1 are uniquely determined (up to isometry of pairs M, N) by the notation in column 1 (see Table (3). Except for $\mathrm{DIH}_{4}(15)$, all of them embed as sublattices of the Leech lattice.

Table 1: NREE8SUMs: integral rootless lattices which are sums of $E E_{8}$ s

Name	$\left\langle t_{M}, t_{N}\right\rangle$	Isometry type of L (contains)	$\mathcal{D}(L)$	In Leech?
$D I H_{4}(12)$	$D i h_{4}$	$\geq D D_{4}^{\perp 3}$	$1^{4} 2^{6} 4^{2}$	Yes
$D I H_{4}(14)$	$D i h_{4}$	$\geq A A_{1}^{\perp 2} \perp D D_{6}^{\perp 2}$	$1^{4} 2^{8} 4^{2}$	Yes
$D I H_{4}(15)$	$D i h_{4}$	$\geq A A_{1} \perp E E_{7}^{\perp 2}$	$1^{2} 2^{14}$	No
$D I H_{4}(16)$	$D i h_{4}$	$\cong E E_{8} \perp E E_{8}$	2^{16}	Yes
$D I H_{6}(14)$	$D i h_{6}$	$\geq A A_{2} \perp A_{2} \otimes E_{6}$	$1^{7} 3^{3} 6^{2}$	Yes
$D I H_{6}(16)$	$D i h_{6}$	$\cong A_{2} \otimes E_{8}$	$1^{8} 3^{8}$	Yes
$D I H_{8}(15)$	$D i h_{8}$	$\geq A A_{1}^{\perp 7} \perp E E_{8}$	$1^{10} 4^{5}$	Yes
$D I H_{8}\left(16, D D_{4}\right)$	$D i h_{8}$	$\geq D D_{4}^{\perp 2} \perp E E_{8}$	$1^{8} 2^{4} 4^{4}$	Yes
$D I H_{8}(16,0)$	$D i h_{8}$	$\cong B W_{16}$	$1^{8} 2^{8}$	Yes
$D I H_{10}(16)$	$D i h_{10}$	$\geq A_{4} \otimes A_{4}$	$1^{12} 5^{4}$	Yes
$D I H_{12}(16)$	$D i h_{12}$	$\geq A A_{2} \perp A A_{2}$ $\perp A_{2} \otimes E_{6}$	$1^{12} 6^{4}$	Yes

$X^{\perp n}$ denotes the orthogonal sum of n copies of the lattice X.

Table 2: Containments of NREE8SUM

Name	Sublattices
$D I H_{8}(15)$	$D I H_{4}(12)$
$D I H_{8}\left(16, D D_{4}\right)$	$D I H_{4}(12)$
$D I H_{8}(16,0)$	$D I H_{4}(16)$
$D I H_{12}(16)$	$D I H_{4}(12), D I H_{6}(14)$

Our methods are probably good enough to determine all the cases where $M+N$ is integral, but such a work would be quite long.

This work may be considered purely as a study of positive definite integral lattices. Our real motivation, however, is the evolving theory of vertex operator algebras (VOA) and their automorphism groups, as we shall now explain.

The primary connection between the Monster and vertex operator algebras was established in [FLM]. Miyamoto showed [Mil] that there is a bijection between the conjugacy class of $2 A$ involutions in the Monster simple group and conformal vectors of central charge $\frac{1}{2}$ in the moonshine vertex operator algebra V^{\natural}. The bijection between the $2 A$-involutions and conformal vectors offers an opportunity to study, in a VOA context, the McKay observations linking the extended E_{8}-diagram and pairs of $2 A$-involutions LYY. This McKay theory was originally described in purely finite group theory terms.

Conformal vectors of central charge $\frac{1}{2}$ define automorphisms of order 1 or 2 on the VOA, called Miyamoto involutions when they have order 2. They were originally defined in [Mi]; see also Mi1]. Such conformal vectors are not found in most VOAs but are common in many VOAs of great interest, mainly lattice type VOAs and twisted versions DMZ, DLMN. Unfortunately, there are few general, explicit formulas for such conformal vectors in lattice type VOAs. We know of two. The first such formula (see DMZ) is based on a norm 4 vector in a lattice. The second such formula (see DLMN, $\mathrm{GrO+}$) is based on a sublattice which is isometric to $E E_{8}$. This latter formula indicates special interest in $E E_{8}$ sublattices for the study of VOAs.

We call the dihedral group generated by a pair of Miyamoto involutions a Miyamoto dihedral group. Our assumed upper bound of 12 on the order of a Miyamoto dihedral group is motivated by the fact that in the Monster, a pair of $2 A$ involutions generates a dihedral group of order at most 12 [GMS. Recently, Sakuma Sa announced that 12 is an upper bound for the order of a Miyamoto dihedral group in an OZVOA ($=$ CFT type with zero degree 1 part) GNAVOA1 with a positive definite invariant form. This broad class of VOAs contains all lattice type VOAs V_{L}^{+}such that the even lattice L is rootless, and the Moonshine VOA V^{\natural}. If a VOA has nontrivial degree 1 part, the order of a Miyamoto dihedral group may not be bounded in general (for instance, a Miyamoto involution can invert a nontrivial torus under conjugation). See GNAVOA1.

If L is rootless, it is conjectured [LSY] that the above two kinds of conformal vectors will exhaust all the conformal vectors of central charge $1 / 2$ in V_{L}^{+}. This conjecture was proved when L is a $\sqrt{2}$ times a root lattice or the Leech lattice LSY, LS] but it is still open if L is a general rootless lattice. The results of this paper could help settle this conjecture, as well as provide techniques for more work on the Glauberman-Norton theory GINO.

The first author acknowledges financial support from the National Science Foundation, National Cheng Kung University where the first author was a visiting distinguished professor, and the University of Michigan. The second author acknowledges financial support from the National Science Council of Taiwan (Grant No. 95-2115-M-006-013-MY2).

2 Background and notations

Convention 2.1. Lattices in this article shall be rational and positive definite. Groups and linear transformations will generally act on the right and n-tuples will be row vectors.

Definition 2.2. Let X be an integral lattice. For any positive integer n, let $X_{n}=$ $\{x \in L \mid(x, x)=n\}$ be the set of all norm n elements in X.

Definition 2.3. If L is a lattice, the summand of L determined by the subset S of L is the intersection of L with the \mathbb{Q}-span of S.

Notation 2.4. Let X be a subset of Euclidean space. Define t_{X} to be the orthogonal transformation which is -1 on X and is 1 on X^{\perp}.

Definition 2.5. A sublattice M of an integral lattice L is $R S S D$ (relatively semiselfdual) if and only if $2 L \leq M+a n n_{L}(M)$. This implies that t_{M} maps L to L and is equivalent to this property when M is a direct summand.

The property that $2 M^{*} \leq M$ is called $S S D$ (semiselfdual). It implies the RSSD property, but the RSSD property is often more useful. For example, if M is RSSD in L and $M \leq J \leq L$, then M is RSSD in J, whence the involution t_{M} leaves J invariant.

Example 2.6. An example of a SSD sublattice is $\sqrt{2} U$, where U is a unimodular lattice. Another is the family of Barnes-Wall lattices.

Lemma 2.7. If the sublattice M is a direct summand of the integral lattice L and $(\operatorname{det}(L), \operatorname{det}(M))=1$, then $S S D$ and $R S S D$ are equivalent properties for M.

Proof. It suffices to assume that M is RSSD in M and prove that it is $S S D$.
Let V be the ambient real vector space for L and define $A:=a n n_{V}(M)$. Since $(\operatorname{det}(L), \operatorname{det}(M))=1$, the natural image of L in $\mathcal{D}(M)$ is $\mathcal{D}(M)$, i.e., $L+A=M^{*}+A$ (A.13). We have $2(L+A)=2\left(M^{*}+A\right)$, or $2 L+A=2 M^{*}+A=M \perp A$. The left side is contained in $M+A$, by the RSSD property. So, $2 M^{*} \leq M+A$. If we intersect both sides with $a n n_{V}(A)$, we get $2 M^{*} \leq M$. This is the SSD property.

Lemma 2.8. Suppose that L is an integral lattice and $N \leq M \leq L$ and both M and N are RSSD in L. Assume that M is a direct summand of L. Then ann $n_{M}(N)$ is an RSSD sublattice of L.

Proof. This is easy to see on the level of involutions. Let t, u be the involutions associated to M, N. They are in $O(L)$ and they commute since u is the identity on $a n n_{L}(M)$, where t acts as the scalar 1 , and since u leaves invariant $M=\operatorname{ann}_{L}\left(a n n_{L}(M)\right)$, where t acts as the scalar -1 . Therefore, $s:=t u$ is an involution. Its negated sublattice $L^{-}(s)$ is RSSD (2.4), and this is $a n n_{M}(N)$.

Definition 2.9. An IEE8 pair is a pair of sublattices $M, N \cong E E_{8}$ in a Euclidean space such that $M+N$ is an integral lattice. If $M+N$ has no roots, then the pair is called an NREE8 pair. An IEESUM is the sum of an IEE8 pair and an NREE8SUM is the sum of an NREE8 pair.

Table 3: Notation and Terminology

Notation	Explanation	Examples in text
$\Phi_{A_{1}, \cdots, \Phi_{E_{8}}}$	root system of the indicated type	Table [1. 2
A_{1}, \cdots, E_{8}	root lattice for root system $\Phi_{A_{1}}, \ldots, \Phi_{E_{8}}$	Table [1] 2
$A A_{1}, \cdots, E E_{8}$	lattice isometric to $\sqrt{2}$ times the lattice A_{1}, \cdots, E_{8}	Table 1
$a n n_{L}(S)$	$\{v \in L \mid(v, s)=0$ for all $s \in S\}$	(2.4), (6.21)
$B R W^{+}\left(2^{d}\right)$	the Bolt-Room-Wall group, a subgroup of $O\left(2^{d}, \mathbb{Q}\right)$ of shape $2_{+}^{1+2 d} \Omega^{+}(2 d, 2)$	
$B W_{2^{n}}$	the Barnes-Wall lattice of rank 2^{n}	Table (1) 6, (5.2.2)
$D I H_{n}(r)$	an NREE8SUM M, N such that the SSD involutions t_{M}, t_{N} generate a dihedral group of order n and $M+N$ is of rank r	Table [1 Sec. F. 3
DI $H_{8}(16, X)$	an NREE8SUM $\mathrm{DIH}_{8}(16)$ such that $X \cong a n n_{M}(N) \cong a n n_{N}(M)$	Table [1] Sec. F. 3
$D I H_{n}$-theory	the theories for $\mathrm{DIH}_{n}(r)$ for all r	Sec. 5.2, 6.2
$\mathcal{D}(L)$	discriminant group of integral lattice $L: L^{*} / L$	(A.3), (D.17)
$H S_{n}$ or D_{n}^{+}	the half spin lattice of rank n, i.e., the lattice generated by D_{n} and $\frac{1}{2}(11 \cdots 1)$	(6.22)
$H H S_{n}^{+}$or $D D_{n}^{+}$	$\sqrt{2}$ times the half spin lattice $H S_{n}^{+}$	(F.4)
IEE8 pair	a pair of $E E_{8}$ lattices whose sum is integral	(2.9), Sec. F. 3
IEE8SUM	the sum of an IEE8 pair	
NREE8 pair	an IEE8 pair whose sum has no roots	(2.9), Sec. F. 3
NREE8SUM	the sum of an NREE8 pair	Table 1
L^{*}	the dual of the rational lattice L, i.e., those elements u of $\mathbb{Q} \otimes L$ which satisfy $(u, L) \leq \mathbb{Z}$	(2.4), (A.3)
Λ	the Leech lattice	Sec. F. 3
$L^{+}(t), L^{-}(t)$	the eigenlattices for the action of t on the lattice $L: L^{\varepsilon}(t):=\{x \in L \mid x t=\varepsilon x\}$	(6.22)
$\operatorname{Tel}(L, t)$	total eigenlattice for action of t $\text { on } L ; L^{+}(t) \perp L^{-}(t)$	(6.30)
$\operatorname{Tel}(L, D)$	total eigenlattice for action of an elementary abelian 2-group D on $L ; \operatorname{Tel}(L, D):=\sum L^{\lambda}$, where $\lambda \in \operatorname{Hom}(D,\{ \pm 1\})$ and $L^{\lambda}=\{\alpha \in L \mid \alpha g=\lambda(g) \alpha \text { for all } \gamma \in D\}$	(A.2)
m^{n}	the homocyclic group $\mathbb{Z}_{m}^{n}=\mathbb{Z}_{m} \times \cdots \times \mathbb{Z}_{m}$, n times	(6.9), (D.12)
$\|g\|,\|G\|$	order of a group element, order of a group	(D.6), Sec. F. 3
$O(X)$ or Aut X	the isometry group of the lattice X	(5.3)

Table 4: Notation and Terminology (continued)

Notation	Explanation	Examples in text
$O_{p}(G)$	the maximal normal p-subgroup of G	(A.11), (A.13)
$O_{p^{\prime}}(G)$	the maximal normal p^{\prime}-subgroup of G,	(A.14)
p-rank	the rank of the maximal elementary abelian p-subgroup of an abelian group	(A.3)
root	a vector of norm 2	Sec. [1] (3.5)
rectangular lattice	a lattice with an orthogonal basis	(B.2)
square lattice	a lattice isometric to some $\sqrt{m} \mathbb{Z}^{n}$	(B.2)
$W e y l\left(E_{8}\right), W e y l\left(F_{4}\right)$	the Weyl group of type E_{8}, F_{4}, etc	(D.2)
X_{n}	the set of elements of norm n in the lattice X	(7.10), (7.11)
$X^{\perp n}$	the orthogonal sum of n copies of the lattice X	Table [1, 8, 8
ξ	an isometry of Leech lattice (see Notation F.5)	(F.5), Sec. F. 3
\mathbb{Z}^{n}	rank n lattice with an orthonormal basis	(B.3)

Lemma 2.10. We use Definition 2.4. Let M and N be RSSD in an integral lattice $L=M+N$. A vector in L fixed by both t_{M} and t_{N} is 0 .

Proof. We use $L=M+N$. If we tensor L with \mathbb{Q}, we have complete reducibility for the action of $\left\langle t_{M}, t_{N}\right\rangle$. Let U be the fixed point space for $\left\langle t_{M}, t_{N}\right\rangle$ on $\mathbb{Q} \otimes L$. The images of M and N in U are 0 , whence $U=0$.

3 Tensor products

Definition 3.1. Let A and B be integral lattices with the inner products $(,)_{A}$ and $(,)_{B}$, respectively. The tensor product of the lattices A and B is defined to be the integral lattice which is isomorphic to $A \otimes_{\mathbb{Z}} B$ as a \mathbb{Z}-module and has the inner product given by

$$
\left(\alpha \otimes \beta, \alpha^{\prime} \otimes \beta^{\prime}\right)=\left(\alpha, \alpha^{\prime}\right)_{A} \cdot\left(\beta, \beta^{\prime}\right)_{B}, \quad \text { for any } \alpha, \alpha^{\prime} \in A, \text { and } \beta, \beta^{\prime} \in B .
$$

We simply denote the tensor product of the lattices A and B by $A \otimes B$.
Lemma 3.2. Let $D:=\langle t, g\rangle$ be a dihedral group of order 6 , generated by an involution t and element g of order 3. Let R be a rational lattice on which D acts such that g acts fixed point freely. Suppose that A is a sublattice of R which satisfies at $=-a$ for all $a \in A$. Then
(i) $A \cap A g=0$; so $A+A g=A \oplus A g$ as an abelian group.
(ii) $A+A g$ is isometric to $A \otimes B$, where B has Gram matrix $\left(\begin{array}{cc}1 & -\frac{1}{2} \\ -\frac{1}{2} & 1\end{array}\right)$.
(iii) Furthermore $\operatorname{ann}_{A+A g}(A)=A\left(g-g^{2}\right) \cong \sqrt{3} A$.

Proof. (i) Take $a \in A$ and suppose $a=a^{\prime} g$. Since $a t=-a$, we have $-a=a t=$ $a^{\prime} g t=a^{\prime} t g^{2}=-a^{\prime} g^{2}$. That means $a=a^{\prime} g^{2}$ and $a=a g$. Thus $a=0$ since g acts fixed point freely on R.

For any $x, y \in R$, we have $0=(x, 0)=\left(x, y+y g+y g^{2}\right)=(x, y)+(x, y g)+\left(x, y g^{2}\right)$. Now, take $x, y \in A$. We have $(x, y g)=(x t, y g t)=\left(-x, y t g^{2}\right)=\left(-x,-y g^{2}\right)=$ $\left(x, y g^{2}\right)$. We conclude that $(x, y g)=\left(x, y g^{2}\right)=-\frac{1}{2}(x, y)$.

Let bars denote images under the quotient $\mathbb{Z}\langle g\rangle \rightarrow \mathbb{Z}\langle g\rangle /\left(1+g+g^{2}\right)$
We use the linear monomorphism $A \otimes \underline{\overline{g^{i}}} \rightarrow R$ where $\mathbb{Z}\langle g\rangle /\left(1+g+\underline{g^{2}}\right)$ has the bilinear form which take value 1 on a pair $\overline{g^{i}}, \overline{g^{i}}$ and value $-\frac{1}{2}$ on a pair $\overline{g^{i}}, \overline{g^{j}}$ where $j=i \pm 1$. This proves (ii)

For (iii), note that $\psi: x \mapsto x g-x g^{2}$ for $x \in A$ is a scaled isometry and $\operatorname{Im} \psi$ is a direct summand of $A g \oplus A g^{2}$. Note also that $A \oplus A g=A g \oplus A g^{2}=I m \psi \oplus A g$. Thus we have

$$
\operatorname{Im} \psi \leq a n n_{A+A g}(A) \leq \operatorname{Im} \psi \oplus A g
$$

By Dedekind law, $a n n_{A+A g}(A)=\operatorname{Im} \psi+\left(a n n_{A+A g}(A) \cap A g\right)$. Since $(x, y g)=$ $-\frac{1}{2}(x, y), a n n_{A+A g}(A) \cap A g=0$ and we have $\operatorname{Im} \psi=a n n_{A+A g}(A)$ as desired.
Lemma 3.3. Suppose that A, B are lattices, where $A \cong A_{2}$. The minimal vectors of $A \otimes B$ are just $u \otimes z$, where u is a minimal vector of A and z is a minimal vector of B.

Proof. Let u be a minimal vector of A. The minimal vectors of $\mathbb{Z} u \otimes B$ have the above shape. Let u^{\prime} span $a n n_{A}(u)$. Then $\left(u^{\prime}, u^{\prime}\right)=6$ and $\left|A: \mathbb{Z} u+\mathbb{Z} u^{\prime}\right|=2$. The minimal vectors of $\left(\mathbb{Z} u \perp \mathbb{Z} u^{\prime}\right) \otimes B$ have the above shape. Now take a vector w in $A \otimes B \backslash\left(\mathbb{Z} u \perp \mathbb{Z} u^{\prime}\right) \otimes B$. It has the form $p u \otimes x+q u^{\prime} \otimes y$, where $p, q \in \frac{1}{2}+\mathbb{Z}$ and $p+q \in \mathbb{Z}$. The norm of this vector is therefore $2 p^{2}(x, x)+6 q^{2}(y, y)$. A necessary condition that w be a minimal vector in $A \otimes B$ is that each of x, y be minimal in B and $p, q \in\left\{ \pm \frac{1}{2}\right\}$.

Define $v:=\frac{1}{2} u+\frac{1}{2} u^{\prime}$. Then u^{\prime}, v forms a basis for A. We have $w=v \otimes x+$ $\frac{1}{2} u^{\prime} \otimes(y-x)$. Since $w \in A \otimes B, y-x \in 2 B$. Suppose $y-x=2 b$. If $b=0$, done, so assume that $b \neq 0$. In case x, y are minimal, $(y-x, y-x)=4(b, b) \geq 4(x, x)$ and thus $-2(x, y) \geq 2(x, x)$. This implies $x=-y$ and then $w=\left(v-u^{\prime}\right) \otimes x$ as required.

Notation 3.4. For a lattice L, let $\operatorname{MinVec}(L)$ be the set of minimal vectors.
Lemma 3.5. We use the notations of (3.3). If B is a root lattice of an indecomposable root system and $\operatorname{rank}(B) \geq 3$, the only sublattices of $A \otimes B$ which are isometric to $\sqrt{2} B$ are the $u \otimes B$, for u a minimal vector of A.

Proof. Let S be a sublattice of $A \otimes B$ so that $S \cong \sqrt{2} B$. Then S is spanned by $\operatorname{MinVec}(S)$, which by (3.3) equals $M_{u} \cup M_{v} \cup M_{w}$, where u, v, w are pairwise nonproportional minimal vectors of A which sum to 0 and where $M_{t}:=(t \otimes B) \cap$ $\operatorname{MinVec}(S)$, for $t=u, v, w$. Note that $(u, v)=(v, w)=(w, u)=-1$.

We suppose that M_{u} and M_{v} are nonempty and seek a contradiction. Take $b, b^{\prime} \in B$ so that $u \otimes b \in M_{u}, v \otimes b^{\prime} \in M_{v}$. Then $\left(u \otimes b, v \otimes b^{\prime}\right)=(u, v)\left(b, b^{\prime}\right)=-\left(b, b^{\prime}\right)$. Since S is doubly even, all such (b, b^{\prime}) are even.

We claim that all such $\left(b, b^{\prime}\right)$ are 0 .
Assume that some such $\left(b, b^{\prime}\right) \neq 0$. Then, since b, b^{\prime} are roots, $\left(b, b^{\prime}\right)$ is ± 2 and $b= \pm b^{\prime}$. Then $u \otimes b, v \otimes b \in S$, whence $w \otimes b \in S$. In other words, $A \otimes b \leq S$.

Since $\operatorname{rank}(S)=\operatorname{rank}(B) \geq 3, S$ properly contains $A \otimes b$. Since S is generated by its minimal vectors and the root system for B is connected, S contains some $t \otimes d$ where $d \in \operatorname{MinVec}(B)$ and $(d, b) \neq 0$. It follows that $(d, b)= \pm 1$. Take $t^{\prime} \in \operatorname{MinVec}(A)$ so that $\left(t, t^{\prime}\right)= \pm 1$. Then $\left(t \otimes d, t^{\prime} \otimes b\right)= \pm 1$, whereas S is doubly even, a contradiction. The claim follows.

The claim implies that M_{u} and M_{v} are orthogonal. Similarly, M_{u}, M_{v}, M_{w} are pairwise orthogonal, and at least two of these are nonempty. Since $\operatorname{MinVec}(S)$ is the disjoint union of M_{u}, M_{v}, M_{w}, we have a contradiction to indecomposability of the root system for B.

4 Uniqueness

Theorem 4.1. Suppose that L is a free abelian group and that L_{1} is a subgroup of finite index. Suppose that $f: L_{1} \times L_{1} \rightarrow K$ is a K-valued bilinear form, where K is an abelian group so that multiplication by $\left|L: L_{1}\right|$ is an invertible map on K. Then f extends uniquely to a K-valued bilinear form $L \times L \rightarrow K$.

Proof. Our statements about bilinear forms are equivalent to statements about linear maps on tensor products. We define $A:=L_{1} \otimes L_{1}, B:=L \otimes L$ and $C:=B / A$. Then C is finite and is annihilated by $\left|L: L_{1}\right|^{2}$. From $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, we get the long exact sequence $0 \rightarrow \operatorname{Hom}(C, K) \rightarrow \operatorname{Hom}(B, K) \rightarrow \operatorname{Hom}(A, K) \rightarrow$ $\operatorname{Ext}^{1}(C, K) \rightarrow \cdots$. Each of the terms $\operatorname{Hom}(C, K)$ and $\operatorname{Ext}^{1}(C, K)$ are 0 because they are annihilated by $|C|$ and multiplication by $|C|$ on K is an automorphism. It follows that the restriction map from B to A gives an isomorphism $\operatorname{Hom}(B, K) \cong$ $\operatorname{Hom}(A, K)$.

Remark 4.2. We shall apply (4.1) to $L=M+N$ when we determine sufficient information about a pairing $M_{1} \times N_{1} \rightarrow \mathbb{Q}$, where M_{1} is a finite index sublattice of M and N_{1} is a finite index sublattice of N. The pairings $M \times M \rightarrow \mathbb{Q}$ and $N \times N \rightarrow \mathbb{Q}$ are given by the hypotheses $M \cong N \cong E E_{8}$, so in the notation of (4.1) we take $L_{1}=M_{1}+N_{1}$.

Remark 4.3. We can determine all the lattices in the main theorem by explicit glueing. However, it is difficult to prove the rootless property in some of those cases. In Appendix F, we shall show that all the lattices in Table 1 can be embedded into the Leech lattice except $\mathrm{DIH}_{4}(15)$. The rootless property follows since the Leech lattice has no roots. The proof that $D I H_{4}(15)$ is rootless will be included at the end of Subsection 5.1.

$5 \mathrm{DIH}_{4}$ and $D I H_{8}$ theories

5.1 $D I H_{4}$: When is $M+N$ rootless?

Notation 5.1. Let M, N be $E E_{8}$ lattices such that the dihedral group $D:=$ $\left\langle t_{M}, t_{N}\right\rangle$ has order 4. Define $F:=M \cap N, P:=a n n_{M}(F)$ and $Q:=a n n_{N}(F)$.

Remark 5.2. Since t_{M} and t_{M} commute, D fixes each of F, M, N, ann $n_{M}(F)$, $a n n_{N}(F)$. Each of these may be interpreted as eigenlattices since t_{M} and t_{N} have common negated space F, zero common fixed space, and t_{M}, t_{N} are respectively $-1,1$ on $\operatorname{ann}_{M}(F)$ and t_{M}, t_{N} are respectively $1,-1$ on $\operatorname{ann}_{N}(F)$. Since $L=M+N$, D has only 0 as the fixed point sublattice (cf. (2.10)). Therefore, the elementary abelian group D has total eigenlattice $F \perp a n n_{M}(F) \perp a n n_{N}(F)$. Each of these summands is RSSD as a sublattice of L, by (2.8). It follows that $\frac{1}{\sqrt{2}}(M \cap N)$ is an RSSD sublattice in $\frac{1}{\sqrt{2}} M$ and in $\frac{1}{\sqrt{2}} N$. Since $\frac{1}{\sqrt{2}} M \cong \frac{1}{\sqrt{2}} N \cong E_{8}$, we have that $\frac{1}{\sqrt{2}}(M \cap N)$ is an SSD sublattice in $\frac{1}{\sqrt{2}} M$ and in $\frac{1}{\sqrt{2}} N$ (cf. (2.7)).
Proposition 5.3. If $M+N$ is rootless, F is one of $0, A A_{1}, A A_{1} \perp A A_{1}, D D_{4}$. Such sublattices in M are unique up to the action of $O(M)$.

Proof. This can be decided by looking at cosets of $P+Q+F$ in $M+N$. A glue vector will have nontrivial projection to two or three of $\operatorname{span}_{\mathbb{R}}(P), \operatorname{span}_{\mathbb{R}}(Q), \operatorname{span}_{\mathbb{R}}(F)$.

Since F is a direct summand of M by (A.10) and $\frac{1}{\sqrt{2}} F$ is an SSD by (5.2), we have $\frac{1}{\sqrt{2}} F \cong 0, A_{1}, A_{1} \perp A_{1}, A_{1} \perp A_{1} \perp A_{1}, A_{1} \perp A_{1} \perp A_{1} \perp A_{1}, D_{4}, D_{4} \perp A_{1}, D_{6}, E_{7}$ and E_{8} by (D.2). If $\frac{1}{\sqrt{2}} F=E_{8}$, then $t_{M}=t_{N}$ and $D:=\left\langle t_{M}, t_{N}\right\rangle$ is only a cyclic group of order 2. Hence, we can eliminate $\frac{1}{\sqrt{2}} F=E_{8}$.

Now we shall note that in each of these cases, $F \perp P$ contains a sublattice $A \cong A A_{1}^{8}$ such that $F \cap A \cong A A_{1}^{k}$ and $A \cap P \cong A A_{1}^{8-k}$, where $k=\operatorname{rank} F$. We use an orthogonal basis of A to identify M / A with a code. Since $M \cong E E_{8}$, this code is the Hamming $[8,4,4]$ binary code H_{8}. Let $\varphi: M / A \rightarrow H_{8}$ be such an identification. Then $\varphi((F \perp P) / A)$ is a linear subcode of H_{8}.

Next, we shall show that $\left(\frac{1}{\sqrt{2}} F\right)^{*}$ contains a vector v of norm $3 / 2$ if $\frac{1}{\sqrt{2}} F \cong$ $A_{1} \perp A_{1} \perp A_{1}, A_{1} \perp A_{1} \perp A_{1} \perp A_{1}, D_{4} \perp A_{1}, D_{6}$ or E_{7}.

Recall that if $A_{1}=\mathbb{Z} \alpha,(\alpha, \alpha)=2$, then $A_{1}^{*}=\frac{1}{2} \mathbb{Z} \alpha$ and $\frac{1}{2} \alpha \in A_{1}^{*}$ has norm $\frac{1}{2}$. Since $\left(A_{1}^{\perp k}\right)^{*}=\left(A_{1}^{*}\right)^{\perp k},\left(A_{1}^{\perp k}\right)^{*}$ contains a vector of norm $3 / 2$ if $k \geq 3$.

We use the standard model

$$
D_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid x_{1}+\cdots+x_{n} \equiv 0 \quad \bmod 2\right\} .
$$

Then $\frac{1}{2}(1, \ldots, 1) \in D_{n}^{*}$ and its norm is $\frac{1}{4} n$. Therefore, there exists vectors of norm $3 / 2$ in $\left(D_{4} \perp A_{1}\right)^{*}=D_{4}^{*} \perp A_{1}^{*}$ and D_{6}^{*}. Finally, we recall that $E_{7}^{*} / E_{7} \cong \mathbb{Z}_{2}$ and the non-trivial coset is represented by a vector of norm $3 / 2$.

Now suppose $\frac{1}{\sqrt{2}} F \cong A_{1} \perp A_{1} \perp A_{1}, A_{1} \perp A_{1} \perp A_{1} \perp A_{1}, D_{4} \perp A_{1}, D_{6}$ or E_{7} and let $\gamma \in 2 F^{*}$ be a vector of norm 3. Since $F \cap A \cong A A_{1}^{k}, F \cap A$ has a basis
$\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ such that $\left(\alpha_{i}, \alpha_{j}\right)=4 \delta_{i, j}$. Then

$$
2 F^{*}<2(F \cap A)^{*}=\operatorname{span}_{\mathbb{Z}}\left\{\left.\frac{1}{2} \sum_{i=1}^{k} a_{i} \alpha_{i} \right\rvert\, a_{i} \in \mathbb{Z}\right\}
$$

Thus, by replacing some basis vectors by their negatives, we have $\gamma=\frac{1}{2}\left(\alpha_{i_{1}}+\alpha_{i_{2}}+\right.$ $\alpha_{i_{3}}$) for some $1 \leq i_{1}, i_{2}, i_{3} \leq k$.

Since the image of the natural map $M \rightarrow \mathcal{D}(F)$ is $2 \mathcal{D}(F)$, there exists a vector $u \in M$ such that the projection of u to $\operatorname{span}_{\mathbb{R}}(F)$ is γ.

Now consider the image of $u+A$ in H_{8} and study the projection of the codeword $\varphi(u+A)$ to the first k coordinates. Since $\gamma=\frac{1}{2}\left(\alpha_{i_{1}}+\alpha_{i_{2}}+\alpha_{i_{3}}\right)$, the projection of $\varphi(u+A)$ to the first k coordinates has weight 3 .

If $k=\operatorname{rank} F \geq 4$, then the projection of $(1, \cdots, 1)$ to the first k coordinates has weight $k \geq 4$. Thus, $\varphi(u+A) \neq(1, \ldots, 1)$ and hence $\varphi(u+A)$ has weight 4 since $\varphi(u+A) \in H_{8}$.

If $k=3$, then $F \cong A A_{1}^{3}$ and $P \cong A A_{1} \perp D D_{4}$. Let $K \cong D D_{4}$ be an orthogonal direct summand of P and let $\mathbb{Z} \alpha=\operatorname{ann}_{P}(K) \cong A A_{1}$. Note that $F \perp \mathbb{Z} \alpha<$ $a n n_{M}(K) \cong D D_{4}$ and $F=\mathbb{Z} \alpha_{1} \perp \mathbb{Z} \alpha_{2} \perp \mathbb{Z} \alpha_{3}$. Thus, $\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha\right)=$ $\frac{1}{2}(\gamma+\alpha) \in a n n_{M}(K)<M$ and it has norm 4. Therefore, we may assume $\varphi(u+A)$ has weight 4 and u is a norm 4 vector.

Similarly, there exists a norm 4 vector $w \in N$ such that the projection of w in $\operatorname{span}_{\mathbb{R}}(F)$ is also γ. Then $u-w \in L=M+N$ but $(u, w)=(\gamma, \gamma)=3$ and hence $u-w \in L$ is a root, which contradicts the rootless property of L. Therefore, only the remaining cases occur, i.e., $F \cong 0, A A_{1}, A A_{1} \perp A A_{1}, D D_{4}$.

Table 5: DIH_{4} : Rootless cases

$M \cap N$	$P \cong Q$	$\operatorname{dim}(M+N)$	Isometry type of L
0	$E E_{8}$	16	$\cong E E_{8} \perp E E_{8}$
$D D_{4}$	$D D_{4}$	12	$\geq D D_{4} \perp D D_{4} \perp D D_{4}$
$A A_{1}$	$E E_{7}$	15	$\geq A A_{1} \perp E E_{7} \perp E E_{7}$
$A A_{1} \perp A A_{1}$	$D D_{6}$	14	$\geq A A_{1} \perp A A_{1} \perp D D_{6} \perp D D_{6}$

Remark 5.4. Except for the case $F=M \cap N \cong A A_{1}$, we shall show in Appendix F that all cases in Proposition 5.3 occur inside the Leech lattice Λ. The rootless property of $L=M+N$ then follows from the rootless property of Λ. The rootless property for the case $F=M \cap N \cong A A_{1}$ will be shown in the next proposition.

Proposition 5.5. [Rootless property for $\mathrm{DIH}_{4}(15)$] If $F=M \cap N \cong A A_{1}$, then $P \cong Q \cong E E_{7}$ and $L=M+N$ is rootless.

Proof. We shall use the standard model for the lattice E_{7}, i.e.,

$$
E_{7}=\left\{\begin{array}{l|l}
\left(x_{1}, \ldots, x_{8}\right) \in \mathbb{Z}^{8} & \begin{array}{c}
\text { all } x_{i} \in \mathbb{Z} \text { or all } x_{i} \in \frac{1}{2}+\mathbb{Z} \\
\text { and } x_{1}+\cdots+x_{8}=0
\end{array}
\end{array}\right\}
$$

The dual lattice is $E_{7}^{*}=E_{7} \cup\left(\gamma+E_{7}\right)$, where $\gamma=\frac{1}{4}(1,1,1,1,1,1,-3,-3)$. Recall that the minimal weight of E_{7}^{*} is $3 / 2$ [CS, p.125].

If $F=M \cap N=A A_{1}=\mathbb{Z} \alpha$, then it is clear that $P \cong Q \cong E E_{7}$. In this case, $M=\operatorname{span}_{\mathbb{Z}}\left\{F+P, \frac{1}{2} \alpha+\xi_{M}\right\}$ and $N=\operatorname{span}_{\mathbb{Z}}\left\{F+Q, \frac{1}{2} \alpha+\xi_{N}\right\}$ for some $\xi_{M} \in P^{*}$ and $\xi_{N} \in Q^{*}$ with $\left(\xi_{M}, \xi_{M}\right)=\left(\xi_{N}, \xi_{N}\right)=3$. Therefore,

$$
L=M+N=\operatorname{span}_{\mathbb{Z}}\left\{F+P+Q, \frac{1}{2} \alpha+\xi_{M}, \frac{1}{2} \alpha+\xi_{N}\right\} .
$$

Take $\beta \in L=M+N$. If $\beta \in F+P+Q$, then $(\beta, \beta) \geq 4$. Otherwise, β will have nontrivial projection to two or three of $\operatorname{span}_{\mathbb{R}}(P), \operatorname{span}_{\mathbb{R}}(Q), \operatorname{span}_{\mathbb{R}}(F)$. Now note that the projection of L onto $\operatorname{span}_{\mathbb{R}}(P)$ is $\operatorname{span}_{\mathbb{Z}}\left\{P, \xi_{M}\right\} \cong \sqrt{2} E_{7}^{*}$ and the projection of L onto $\operatorname{span}_{\mathbb{R}}(Q)$ is $\operatorname{span}_{\mathbb{Z}}\left\{Q, \xi_{N}\right\} \cong \sqrt{2} E_{7}^{*}$. Both of them have minimal norm 3 . On the other hand, the projection of L onto $\operatorname{span}_{\mathbb{R}}(F)$ is $\mathbb{Z} \frac{1}{2} \alpha$, which has minimal norm 1. Therefore, $(\beta, \beta) \geq 1+3=4$ and so L is rootless.

$5.2 \quad \mathrm{DIH}_{8}$

Notation 5.6. Let $t:=t_{N}, u:=t_{N}$, and $g:=t u$, which has order 4. Define $z:=g^{2}, t^{\prime}:=t z$ and $u^{\prime}:=u z$. We define $F:=\operatorname{Ker}_{L}(z-1)$ and $J:=\operatorname{Ker}_{L}(z+1)$.

By Lemma A.6, $L /(F \perp J)$ is an elementary abelian 2-group of rank at most $\min \{\operatorname{rank}(F), \operatorname{rank}(J)\}$. We have two systems $\left(M, t, M g, t^{\prime}\right)$ and $\left(N, u, N g, u^{\prime}\right)$ for which the DIH_{4} analysis applies.

Notation 5.7. If X is one of M, N, we denote by L_{X}, J_{X}, F_{X} the lattices $L:=$ $X+X g, J, F$ associated to the pair $X, X g$, denoted " M " and " N " in the $D I H_{4}$ section.

5.2.1 $D I H_{8}$: What is F ?

We now determine F.
Remark 5.8. It will turn out that the two systems ($M, t, M g, t^{\prime}$) and ($N, u, N g, u^{\prime}$) have the same $D I H_{4}$ types (cf. Table (5). Also, we shall prove that $\operatorname{rank}\left(F_{X}\right)$ determines F_{X}, hence also determines J_{X}, for $X=M, N$.

Lemma 5.9. Let $f=g$ or g^{-1}. Then (i) As endomorphisms of $J, f^{2}=-1$, $(f-1)^{2}=-2 f$. For $x, y \in J,(x(f-1), y(f-1))=2(x, y)$.
(ii) $(M \cap J,(M \cap J) f)=0$ and $(N \cap J,(N \cap J) f)=0$.
(iii) For $x, y \in M$ or $x, y \in N,(x, y(f-1))=-(x, y)$.

Proof. (i) As endomorphisms of $J,(f-1)^{2}=f^{2}-2 f+1=-2 f$.
(ii) We take $x, y \in M \cap J$ (the argument for $x, y \in N \cap J$ is similar).

We have $(x, y f)=(x t, y f t)=\left(-x, y t f^{-1}\right)=(-x,-y f z)=(-x, y f)=-(x, y f)$, whence $(x, y f)=0$.
(iii) We have $(x, y(f-1))=(x, y f)-(x, y)=-(x, y)$.

Lemma 5.10. (i) In $\mathbb{Q} \otimes \operatorname{End}(J),\left(g^{-1}-1\right)^{-1} t\left(g^{-1}-1\right)=u$.
(ii) $(M \cap J)\left(g^{-1}-1\right) \leq N \cap J$ and $(N \cap J) 2\left(g^{-1}-1\right)^{-1} \leq M \cap J$.
(iii) $\operatorname{rank}(M \cap J)=\operatorname{rank}(N \cap J)$.
(iv) $\operatorname{rank}\left(F_{M}\right)=\operatorname{rank}\left(F_{N}\right)$.

Proof. We use the property that g^{-1} acts as $-g$ on $\mathbb{Q} \otimes J$. We also abuse notation by identifying elements of $\mathbb{Q}[D]$ with their images in $\operatorname{End}(\mathbb{Q} \otimes J)$. For example, $\left(g^{-1}-1\right)$ is not an invertible element of $\mathbb{Q}[D]$, though its image in $\operatorname{End}(\mathbb{Q} \otimes J)$ is invertible.

For (i), observe that $\left(g^{-1}-1\right)^{2}=-2 g^{-1}$, so that $g^{-1}-1$ maps J to J and has zero kernel. Secondly, $2\left(g^{-1}-1\right)^{-1}$ maps J to J and has zero kernel.

The equation $\left(g^{-1}-1\right)^{-1} t\left(g^{-1}-1\right)=u$ in $\mathbb{Q} \otimes \operatorname{End}(J)$ is equivalent to $t\left(g^{-1}-1\right)=$ $\left(g^{-1}-1\right) u$ which is the same as $(g-1) t=\left(g^{-1}-1\right) u$ or $t u t-t=-g u-u=-t u u-u=$ $-t-u$, which is true since $t u t=-u$.

The statement (ii) follows since in a linear representation of a group, a group element which conjugates one element to a second one maps the eigenspaces of the two elements correspondingly. Here, this means $g^{-1}-1$ conjugates t to u, so that $g^{-1}-1$ maps $\mathbb{Q} \otimes(M \cap J)$ to $\mathbb{Q} \otimes(N \cap J)$. Since $g^{-1}-1$ maps J into J (though not onto J), $g^{-1}-1$ maps the direct summand $M \cap J$ into the direct summand $N \cap J$.

For (iii), observe that we have monomorphisms $M \cap J \rightarrow N \cap J \rightarrow M \cap J$ and $N \cap J \rightarrow M \cap J \rightarrow N \cap J$ by use of $g^{-1}-1$ and $2\left(g^{-1}-1\right)^{-1}$. Therefore, (iv) follows from (iii).

Lemma 5.11. Suppose that $\operatorname{det}(J \cap M) \operatorname{det}(J \cap N)$ is the square of an integer (equivalently, that $\operatorname{det}\left(F_{M}\right) \operatorname{det}\left(F_{N}\right)$ is the square of an integer). Then $\operatorname{rank}(J \cap$ $M)=\operatorname{rank}(J \cap N)$ is even.

Proof. Note that $\operatorname{rank}(M \cap J)=\operatorname{rank}(N \cap J)$ by (5.10). Let $d:=\operatorname{det}(J \cap M)$ and $e:=\operatorname{det}(J \cap N)$ and let r be the common rank of $M \cap J$ and $N \cap J$. First note that $(M \cap J)\left(g^{-1}-1\right)$ has determinant $2^{r} d$ and second note that $(M \cap J)\left(g^{-1}-1\right)$ has finite index, say k, in $N \cap J$. It follows that $2^{r} d=k^{2} e$. By hypothesis, $d e$ is a perfect square. Consequently, r is even.

Corollary 5.12. $\operatorname{rank}\left(F_{M}\right)=\operatorname{rank}\left(F_{N}\right)$ is even.
Proof. We have $\operatorname{rank}(F)+\operatorname{rank}(M \cap J)=\operatorname{rank}(M)=8$ and similarly for N. Since $\operatorname{rank} F_{M}=\operatorname{rank} F_{N}$, we have $F_{M} \cong F_{N}$ by (5.3) and hence $\operatorname{det} F_{M} \operatorname{det} F_{N}=$ $\left(\operatorname{det} F_{M}\right)^{2}$ is a square. Now use (5.11).

Proposition 5.13. If $L=M+N$ is rootless, then $F_{M} \cong F_{N} \cong 0, A A_{1} \perp A A_{1}$ or $D D_{4}$. Moreover, $M \cap J \cong N \cap J$.

Proof. Since by (5.12), $\operatorname{rank}\left(F_{M}\right)=\operatorname{rank}\left(F_{N}\right)$ is even, Proposition 5.3 implies that $F_{M} \cong F_{N} \cong 0, A A_{1} \perp A A_{1}$ or $D D_{4}$. It is well-known that there is one orbit of $O\left(E_{8}\right)$ on the family of sublattices which have a given one of the latter isometry types. It follows that $M \cap J=a n n_{M}\left(F_{M}\right) \cong a n n_{N}\left(F_{N}\right) \cong N \cap J$.

5.2.2 $D I H_{8}$: Given that $F=0$, what is J ?

By Proposition 5.13] when L is rootless, $F_{M} \cong F_{N} \cong 0, A A_{1} \perp A A_{1}$ or $D D_{4}$. We now consider each case for F_{M} and F_{N} and determine the possible pairs M, N. The conclusions are listed in Table 6

Table 6: $D I H_{8}$ which contains a rootless $D I H_{4}$ lattice

$F_{M} \cong F_{N}$	$F_{M} \cap F_{N}$	$\operatorname{rank}(M+N)$	$M+N$ integral? roots ?	Isometry type if rootless
0	0	16	rootless	$\cong B W_{16}$
$A A_{1}^{\perp 2}$	0	16	non-integral	
$A A_{1}^{\perp 2}$	$A A_{1}$	15	non-integral	
$A A_{1}^{\perp 2}$	$A A_{1}^{\perp 2}$	14	non-integral	
$A A_{1}^{\perp 2}$	$2 A_{1}$	15	has roots	
$D D_{4}$	0	16	rootless	$\geq D D_{4}^{\perp 2} \perp E E_{8}$
$D D_{4}$	$A A_{1}$	15	rootless	$\geq A A_{1}^{\perp 7} \perp E E_{8}$
$D D_{4}$	$2 A_{1}$	15	non-integral	
$D D_{4}$	$A A_{1}^{\perp 2}$	14	has roots	
$D D_{4}$	$A A_{1} \perp 2 A_{1}$	14	non-integral	
$D D_{4}$	$A A_{1}^{\perp 3}$	13	has roots	
$D D_{4}$	$A A_{3}$	13	non-integral	
$D D_{4}$	$D D_{4}$	12	has roots	

Proposition 5.14. If $F_{M}=F_{N}=0$, then $L=M+N$ is isometric to the BarnesWall lattice $B W_{16}$.

Proof. The sublattice $M^{\prime}:=M t_{N}$ is the 1-eigenspace for t_{M} and so $M+M^{\prime}=M \perp$ M^{\prime}. Consider how N embeds in $\left(M+M^{\prime}\right)^{*}=\frac{1}{2}\left(M+M^{\prime}\right)$. Let $x \in N \backslash\left(M+M^{\prime}\right)$ and let $y \in \frac{1}{2} M, y^{\prime} \in \frac{1}{2} M^{\prime}$ so that $x=y+y^{\prime}$. We may replace y, y^{\prime} by members of $y+M$ and $y^{\prime}+M^{\prime}$, respectively, which have least norm. Both y, y^{\prime} are nonzero. Their norms are therefore one of 1,2 , by a property of the E_{8}-lattice. Since $(x, x) \geq 4, y$ and y^{\prime} each has norm 2. It follows that the image of N in $\mathcal{D}(M)$ is totally singular in the sense that all norms of representing vectors in M^{*} are integers. A similar thing is true for the image of N in $\mathcal{D}\left(M^{\prime}\right)$. It follows that these images are elementary abelian groups which have ranks at most 4 . On the other hand, diagonal elements of the orthogonal direct sum $M \perp M^{\prime}$ have norms at least 8 , which means that $N \cap\left(M+M^{\prime}\right)$ contains no vectors in N of norm 4. Therefore, $N /\left(N \cap\left(M+M^{\prime}\right)\right)$ is elementary abelian of rank at least 4. These two inequalities imply that the rank is 4. The action of t_{N} on this quotient is trivial. We may therefore use the uniqueness theorem of [GrBWY] to prove that $M+N$ is isometric to the Barnes-Wall lattice $B W_{16}$.

5.2.3 $D I H_{8}$: Given that $F \cong A A_{1} \perp A A_{1}$, what is J ?

Proposition 5.15. If $F_{M} \cong F_{N} \cong A A_{1} \perp A A_{1}, M+N$ is non-integral or has a root.

Proof. If $F_{M} \cong F_{N} \cong A A_{1} \perp A A_{1}$, then $M \cap J \cong N \cap J \cong D D_{6}$. We shall first determine the structure of $M \cap J+N \cap J$.

Let $h=g^{-1}$. Then, by Lemma 5.10, we have $(M \cap J)(h-1) \leq N \cap J$. Since $(M \cap J,(M \cap J) h)=0,(M \cap J)(h-1) \cong 2 D_{6}$ and $\operatorname{det}((M \cap J)(h-1))=2^{8}$. Therefore, $|N \cap J:(M \cap J)(h-1)|=\left(2^{\text {rank } N \cap J}\right)^{1 / 2}=2^{3}$.

Let $K=(M \cap J)(h-1)$. Then, by (D.4), there exists a subset $\left\{\eta_{1}, \ldots, \eta_{6}\right\} \subset$ $N \cap J$ with $\left(\eta_{i}, \eta_{j}\right)=4 \delta_{i, j}$ such that

$$
K=\operatorname{span}_{\mathbb{Z}}\left\{\left(\eta_{i} \pm \eta_{j}\right) \mid i, j=1,2, \ldots, 6\right\}
$$

and

$$
N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{\eta_{1}, \eta_{2}, \eta_{4}, \eta_{6}, \frac{1}{2}\left(-\eta_{1}+\eta_{2}-\eta_{3}+\eta_{4}\right), \frac{1}{2}\left(-\eta_{3}+\eta_{4}-\eta_{5}+\eta_{6}\right)\right\}
$$

By computing the Gram matrix, it is easy to show that $\left\{\eta_{1}+\eta_{2},-\eta_{1}+\eta_{2},-\eta_{2}+\right.$ $\left.\eta_{3},-\eta_{3}+\eta_{4},-\eta_{4}+\eta_{5},-\eta_{5}+\eta_{6}\right\}$ forms a basis of $K=(M \cap J)(h-1) \cong 2 D_{6}$. Now let
$\alpha_{1}=\left(\eta_{1}+\eta_{2}\right)(h-1)^{-1}, \quad \alpha_{2}=\left(-\eta_{1}+\eta_{2}\right)(h-1)^{-1}, \quad \alpha_{3}=\left(-\eta_{2}+\eta_{3}\right)(h-1)^{-1}$,
$\alpha_{4}=\left(-\eta_{3}+\eta_{4}\right)(h-1)^{-1}, \quad \alpha_{5}=\left(-\eta_{4}+\eta_{5}\right)(h-1)^{-1}, \quad \alpha_{6}=\left(-\eta_{5}+\eta_{6}\right)(h-1)^{-1}$.
Then $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$ is a basis of $M \cap J$. Moreover, $\left(\alpha_{1}, \alpha_{2}\right)=0,\left(\alpha_{1}, \alpha_{3}\right)=$ $-2,\left(\alpha_{i}, \alpha_{i+1}\right)=-2$ for $i=2, \ldots, 5$.

By the definition, we have $\eta_{2}=-\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1),\left(-\eta_{1}+\eta_{2}-\eta_{3}+\eta_{4}\right)=$ $\left(\alpha_{2}+\alpha_{4}\right)(h-1)$ and $\left(-\eta_{3}+\eta_{4}-\eta_{5}+\eta_{6}\right)=\left(\alpha_{4}+\alpha_{6}\right)(h-1)$. Hence,

$$
N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{K, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \frac{1}{2}\left(\alpha_{2}+\alpha_{4}\right)(h-1), \frac{1}{2}\left(\alpha_{4}+\alpha_{6}\right)(h-1)\right\} .
$$

Since $M \cong E E_{8}, \operatorname{det}(M)=2^{8}$ and $\left|M /\left(F_{M}+M \cap J\right)\right|=2^{2}$. Note that M, F_{M} and $M \cap J$ are all doubly even. Recall that $D_{6}^{*} / D_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Since $M \cap J$ is a direct summand of M, the natural map $\frac{1}{\sqrt{2}} M \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}}(M \cap J)\right)$ is onto. Similarly, the natural map $\frac{1}{\sqrt{2}} M \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}}\left(F_{M}\right)\right)$ is also onto.

Define $H:=F_{M} \cap F_{N}$. Let $H_{X}:=a n n_{F_{X}}(H)$, for $X=M, N$. Since H is the negated sublattice of the involution t_{N} on F_{M}, H is isometric to either $0, A A_{1}, A A_{1} \perp A A_{1}$ or $2 A_{1}$ since F_{M} and F_{N} are rectangular.

Let $\left\{\alpha_{M}^{1}, \alpha_{M}^{2}\right\}$ and $\left\{\alpha_{N}^{1}, \alpha_{N}^{2}\right\}$ be bases of F_{M} and F_{N} such that $\left(\alpha_{M}^{i}, \alpha_{M}^{j}\right)=4 \delta_{i, j}$ and $\left(\alpha_{N}^{i}, \alpha_{N}^{j}\right)=4 \delta_{i, j}$. Since $\left|M: F_{M}+M \cap J\right|=2^{2}$ and the natural map $\frac{1}{\sqrt{2}} M \rightarrow$ $\mathcal{D}\left(\frac{1}{\sqrt{2}} F_{M}\right)$ is onto, there exist $\beta^{1} \in(M \cap J)^{*}, \beta^{2} \in(M \cap J)^{*}$ so that

$$
\xi_{M}=\frac{1}{2} \alpha_{M}^{1}+\beta^{1} \quad \text { and } \quad \zeta_{M}=\frac{1}{2} \alpha_{M}^{2}+\beta^{2}
$$

are glue vectors and the cosets $\frac{1}{\sqrt{2}}\left(\beta^{1}+(M \cap J)\right), \frac{1}{\sqrt{2}}\left(\beta^{2}+(M \cap J)\right)$ generate the abelian group $\left(\frac{1}{\sqrt{2}}(M \cap J)\right)^{*} / \frac{1}{\sqrt{2}}(M \cap J) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Since M is spanned by norm 4 vectors, we may also assume that ξ_{M} and ζ_{M} both have norm 4 and thus β_{1} and β_{2} have norm 3.

Recall that a standard basis for the root lattice D_{6} is given by $\{(1,1,0,0,0,0)$, $(-1,1,0,0,0,0),(0,-1,1,0,0,0),(0,0,-1,1,0,0),(0,0,0,-1,1,0),(0,0,0,0,-1,1)\}$ and the elements of norm $3 / 2$ in $\left(D_{6}\right)^{*}$ have the form $\frac{1}{2}(\pm 1, \ldots, \pm 1)$ with evenly many - signs or $\frac{1}{2}(\pm 1, \ldots, \pm 1)$ with oddly many - signs (cf. [CS, Chapter 5]). They are contained in two distinct cosets of $\left(D_{6}\right)^{*} / D_{6}$. Note that $\left(D_{6}\right)^{*} / D_{6}$ have 3 nontrivial cosets and their elements have norm $3 / 2,3 / 2$, and 1 modulo $2 \mathbb{Z}$, respectively.

Now define $\phi: D_{6} \rightarrow M \cap J$ by

$$
\begin{array}{rlrl}
(1,1,0,0,0,0) & \mapsto \alpha_{1}, & (-1,1,0,0,0,0) & \mapsto \alpha_{2}, \\
(0,0,-1,1,0,0) & \mapsto \alpha_{4}, & (0,-1,1,0,0,-1,1,0) & \mapsto \alpha_{5}, \\
(0,0,0,0,-1,1) & \mapsto \alpha_{6}
\end{array}
$$

A comparison of Gram matrices shows that ϕ is $\sqrt{2}$ times an isometry. Since $\frac{1}{2}(-1,1,-1,1,-1,1)$ and $\frac{1}{2}(1,1,-1,1,-1,1)$ are the representatives of the two cosets of $\left(D_{6}\right)^{*} / D_{6}$ represented by norm $3 / 2$ vectors, by (A.5),

$$
\phi\left(\frac{1}{2}(-1,1,-1,1,-1,1)\right)=\frac{1}{2}\left(\alpha_{2}+\alpha_{4}+\alpha_{6}\right)
$$

and

$$
\phi\left(\frac{1}{2}(1,1,-1,1,-1,1)\right)=\frac{1}{2}\left(\alpha_{1}+\alpha_{4}+\alpha_{6}\right)
$$

are the representatives of the two cosets of $2(M \cap J)^{*} /(M \cap J)$ represented by norm 3 vectors. Therefore, without loss, we may assume

$$
\left\{\beta^{1}, \beta^{2}\right\}=\left\{\frac{1}{2}\left(\alpha_{2}+\alpha_{4}+\alpha_{6}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{4}+\alpha_{6}\right)\right\}
$$

Similarly, there exist $\gamma^{1}, \gamma^{2} \in(N \cap J)^{*}$ with $\left(\gamma^{1}, \gamma^{1}\right)=\left(\gamma^{2}, \gamma^{2}\right)=3$ such that

$$
\xi_{N}=\frac{1}{2} \alpha_{N}^{1}+\gamma^{1}, \quad \text { and } \quad \zeta_{N}=\frac{1}{2} \alpha_{N}^{2}+\gamma^{2}
$$

are glue vectors and $N=\operatorname{span}_{\mathbb{Z}}\left\{F_{N}+N \cap J, \xi_{N}, \zeta_{N}\right\}$. Moreover, $\frac{1}{\sqrt{2}}\left(\gamma^{1}+N \cap J\right)$, $\frac{1}{\sqrt{2}}\left(\gamma^{2}+N \cap J\right)$ generate the group $\left(\frac{1}{\sqrt{2}}(N \cap J)\right)^{*} / \frac{1}{\sqrt{2}}(N \cap J)$.

We shall prove that $(\beta, \gamma) \equiv \frac{1}{2}(\bmod \mathbb{Z})$, resulting in a contradiction.
Define $\varphi: D_{6} \rightarrow N \cap J$ by

$$
\begin{aligned}
(1,1,0,0,0,0) & \mapsto \eta_{1}, & & (-1,1,0,0,0,0) \mapsto \eta_{2}, \\
(0,-1,1,0,0,0) & \mapsto \frac{1}{2}\left(\eta_{1}+\eta_{2}+\eta_{3}+\eta_{4}\right), & & (0,0,-1,1,0,0) \mapsto \eta_{4}, \\
(0,0,0,-1,1,0) & \mapsto \frac{1}{2}\left(-\eta_{3}+\eta_{4}-\eta_{5}+\eta_{6}\right), & & (0,0,0,0,-1,1) \mapsto \eta_{6} .
\end{aligned}
$$

By comparing the Gram matrices, it is easy to show that φ is a $\sqrt{2}$ times an isometry. Thus, we may choose γ^{1}, γ^{2} such that

$$
\begin{aligned}
\left\{\gamma^{1}, \gamma^{2}\right\} & =\left\{\varphi\left(\frac{1}{2}(-1,1,-1,1,-1,1)\right), \varphi\left(\frac{1}{2}(1,1,-1,1,-1,1)\right)\right\} \\
& =\left\{\frac{1}{2}\left(\eta_{2}+\eta_{4}+\eta_{6}\right), \frac{1}{2}\left(\eta_{1}+\eta_{4}+\eta_{6}\right)\right\}
\end{aligned}
$$

By the definition of $\alpha_{1}, \ldots, \alpha_{6}$, we have

$$
\begin{aligned}
& \eta_{1}=\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right)(h-1), \quad \eta_{2}=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \\
& \eta_{4}=\left[\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)+\left(\alpha_{3}+\alpha_{4}\right)\right](h-1), \\
& \eta_{6}=\left[\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)+\left(\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\right)\right](h-1) .
\end{aligned}
$$

Thus,
$\left(\alpha_{2}+\alpha_{4}+\alpha_{6}, \eta_{2}+\eta_{4}+\eta_{6}\right)=-6 \quad$ and $\quad\left(\alpha_{2}+\alpha_{4}+\alpha_{6}, \eta_{1}+\eta_{4}+\eta_{6}\right)=-2$.
Therefore, $\left(\beta^{1}, \gamma^{1}\right) \equiv 1 / 2 \bmod \mathbb{Z}$.
Subcase 1. $H \cong 0, A A_{1}$ or $A A_{1} \perp A A_{1}$. In this case, we may choose the bases $\left\{\alpha_{M}^{1}, \alpha_{M}^{2}\right\}$ and $\left\{\alpha_{N}^{1}, \alpha_{N}^{2}\right\}$ of F_{M} and F_{N} such that $\left(\alpha_{M}^{i}, \alpha_{N}^{j}\right) \in\{0,4\}$, for all i, j. Hence,

$$
\left(\xi_{M}, \xi_{N}\right)=\left(\frac{1}{2} \alpha_{M}, \frac{1}{2} \alpha_{N}\right)+\left(\beta^{1}, \gamma^{1}\right) \equiv 1 / 2 \quad \bmod \mathbb{Z}
$$

and $L=M+N$ is non-integral.
Subcase 2. $H \cong 2 A_{1}$. Then $H_{M} \cong H_{N} \cong 2 A_{1}$, also. By replacing α_{M}^{i} by $-\alpha_{M}^{i}$ and α_{N}^{i} by $-\alpha_{N}^{i}$ for $i=1,2$ if necessary, $\alpha_{M}^{1}+\alpha_{M}^{2}=\alpha_{N}^{1}+\alpha_{N}^{2} \in H$. Write $\rho:=\alpha_{M}^{1}+\alpha_{M}^{2}=\alpha_{N}^{1}+\alpha_{N}^{2}$. Then we calculate the difference of the glue vectors

$$
\begin{aligned}
\eta_{M}-\zeta_{M} & =\frac{1}{2}\left(\alpha_{M}^{1}-\alpha_{M}^{2}\right)+\frac{1}{2}\left(\alpha_{2}+\alpha_{4}+\alpha_{6}\right)-\frac{1}{2}\left(\alpha_{1}+\alpha_{4}+\alpha_{6}\right) \\
& \equiv \frac{1}{2} \rho+\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}\right) \quad \bmod \left(F_{M}+M \cap J\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\eta_{N}-\zeta_{N} & =\frac{1}{2}\left(\alpha_{N}^{1}-\alpha_{N}^{2}\right)+\frac{1}{2}\left(\eta_{2}+\eta_{4}+\alpha_{6}\right)-\frac{1}{2}\left(\eta_{1}+\eta_{4}+\eta_{6}\right) \\
& \equiv \frac{1}{2} \rho-\frac{1}{2}\left(-\eta_{1}+\eta_{2}\right) \quad \bmod \left(F_{N}+N \cap J\right) .
\end{aligned}
$$

Let $\nu_{M}=\frac{1}{2} \rho+\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}\right)$ and $\nu_{N}=\frac{1}{2} \rho-\frac{1}{2}\left(-\eta_{1}+\eta_{2}\right)$. Then ν_{M} and ν_{N} are both norm 4 vectors in L. Recall that $\left(-\eta_{1}+\eta_{2}\right)=\alpha_{2}(h-1)$. Since $\left(\alpha_{i}, \alpha_{M}^{j}\right)=$ $\left(\alpha_{i}, \alpha_{N}^{j}\right)=0$ for all i, j, we have $\left(\rho, \alpha_{i}\right)=0$ for all i.

$$
\begin{aligned}
\left(\nu_{M}, \nu_{N}\right) & =\left(\frac{1}{2} \rho+\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}\right), \frac{1}{2} \rho-\frac{1}{2}\left(-\eta_{1}+\eta_{2}\right)\right) \\
& =\frac{1}{4}\left[(\rho, \rho)-\left(-\alpha_{1}+\alpha_{2}, \alpha_{2}(h-1)\right)\right]
\end{aligned}
$$

Recall that $\left(\alpha_{M}^{i}, \alpha_{M}^{j}\right)=4 \delta_{i, j}$ and $\left(\alpha_{i}, \alpha_{j}\right)=4 \delta_{i, j}$ for $i, j=1,2$. Moreover, $(x, y h)=$ 0 for all $x, y \in M \cap J$ by (ii) of (5.9). Thus, $(\rho, \rho)=\left(\alpha_{M}^{1}+\alpha_{M}^{2}, \alpha_{M}^{1}+\alpha_{M}^{2}\right)=4+4=8$ and $\left(-\alpha_{1}+\alpha_{2}, \alpha_{2}(h-1)\right)=\left(-\alpha_{1}+\alpha_{2},-\alpha_{2}\right)=-4$.

Therefore, $\left(\nu_{M}, \nu_{N}\right)=\frac{1}{4}(8-(-4))=3$ and hence $\nu_{M}-\nu_{N}$ is a root in L.

5.2.4 $D I H_{8}$: Given that $F_{M} \cong F_{N} \cong D D_{4}$, what is J ?

Next we shall consider the case $F_{M} \cong F_{N} \cong D D_{4}$. In this case, $M \cap J \cong N \cap J \cong$ $D D_{4}$.

Notation 5.16. Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \subset M \cap J$ such that $\left(\alpha_{i}, \alpha_{j}\right)=4 \delta_{i, j}, i, j=$ $1,2,3,4$. Then $M \cap J=\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\right\}$. In this case, the norm 8 elements of $M \cap J$ are given by $\pm \alpha_{i} \pm \alpha_{j}$ for $i \neq j$.
Lemma 5.17. Let $h=g^{-1}$. By rearranging the subscripts if necessary, we have

$$
N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{(M \cap J)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1)\right\} .
$$

Proof. Let $K:=(M \cap J)(h-1)$. Then by (ii) of Lemma. 5.10 we have $K \leq N \cap J$. Since $(M \cap J,(M \cap J) h)=0$ by (5.9), $K=(M \cap J)(h-1) \cong 2 D_{4}$. Therefore, by (D.5), we have $K \leq N \cap J \leq \frac{1}{2} K$.

Note that, by determinants, $|N \cap J: K|=\sqrt{2^{4}}=2^{2}$. Therefore, there exists two glue vectors $\beta_{1}, \beta_{2} \in(N \cap J) \backslash K$ such that $N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{(M \cap J)(h-1), \beta_{1}, \beta_{2}\right\}$.

Since K has minimal norm 8 and $N \cap J$ is generated by norm 4 elements, we may choose β_{1}, β_{2} such that both are of norm 4. On the other hand, elements of norm 4 in $N \cap J$ are given by $\frac{1}{2} \gamma(h-1)$, where $\gamma \in M \cap J$ with norm 8, i.e., $\gamma= \pm \alpha_{i} \pm \alpha_{j}$ for some $i \neq j$. Since $\alpha_{1}(h-1), \alpha_{2}(h-1), \alpha_{3}(h-1), \alpha_{4}(h-1) \in(M \cap J)(h-1) \leq N \cap J$, we may assume

$$
\beta_{1}=\frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right)(h-1) \quad \text { and } \quad \beta_{2}=\frac{1}{2}\left(\alpha_{k}+\alpha_{\ell}\right)(h-1)
$$

for some $i, j, k, \ell \in\{1,2,3,4\}$. Note that $|\{i, j\} \cap\{k, \ell\}|=1$ because $\beta_{1}+\beta_{2} \notin K$. Therefore, by rearranging the indices if necessary, we may assume $\beta_{1}=\frac{1}{2}\left(\alpha_{1}+\right.$ $\left.\alpha_{2}\right)(h-1), \beta_{2}=\frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1)$ and

$$
N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{(M \cap J)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1)\right\} .
$$

as desired.
Proposition 5.18. If $F_{M} \cong F_{N} \cong D D_{4}$, then $M \cap J+N \cap J \cong E E_{8}$.
Proof. First we shall note that $(M \cap J)+(M \cap J)(h-1)=(M \cap J) \perp(M \cap J) h \cong$ $D D_{4} \perp D D_{4}$. Moreover, we have $|N \cap J+M \cap J:(M \cap J)+(M \cap J)(h-1)|=$ $|N \cap J:(M \cap J)(h-1)|=\sqrt{\left(2^{8} \cdot 4\right) /\left(2^{4} \cdot 4\right)}=4$, by determinants. Therefore, $\operatorname{det}(M \cap J+N \cap J)=\left(2^{4} \cdot 4\right)^{2} / 4^{2}=2^{8}$.

Now by (5.17), we have

$$
N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{(M \cap J)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1)\right\} .
$$

Next we shall show that $(M \cap J, N \cap J) \subset 2 \mathbb{Z}$. Since $(M \cap J,(M \cap J) h))=0$ and $M \cap J$ is doubly even, it is clear that $(M \cap J,(M \cap J)(h-1)) \subset 2 \mathbb{Z}$. Moreover, for any $i, j \in\{1,2,3,4\}, i \neq j$,

$$
\left(\alpha_{k}, \frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right)(h-1)\right)= \begin{cases}0 & \text { if } k \notin\{i, j\}, \\ -2 & \text { if } k \in\{i, j\},\end{cases}
$$

and

$$
\left(\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right)(h-1)\right)=-2 .
$$

Since $M \cap J$ is spanned by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and $\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)$ and $N \cap J=\operatorname{span}_{\mathbb{Z}}\{(M \cap$ $\left.J)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1)\right\}$, we have $(M \cap J, N \cap J) \subset 2 \mathbb{Z}$ as required. Therefore, $\frac{1}{\sqrt{2}}(M \cap J+N \cap J)$ is an integral lattice and has determinant 1 and thus $M \cap J+N \cap J \cong E E_{8}$, by the classification of unimodular even lattices of rank 8 .

Lemma 5.19. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in M \cap J$ be as in Notation 5.16. Then

$$
(M \cap J)^{*}=\frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}-\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{4}\right\} .
$$

and

$$
(N \cap J)^{*}=\frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}(h-1), \alpha_{2}(h-1), \alpha_{3}(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)\right\} .
$$

Proof. Since $\left(\mathbb{Z} \alpha_{i}\right)^{*}=\frac{1}{4} \mathbb{Z} \alpha_{i}$ and $M \cap J=\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)\right\}$,

$$
\begin{aligned}
& (M \cap J)^{*} \\
= & \left\{\left.\beta=\frac{1}{4}\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}+a_{4} \alpha_{4}\right) \right\rvert\, a_{i} \in \mathbb{Q},(\beta, \gamma) \in \mathbb{Z} \text { for all } \gamma \in M \cap J\right\} \\
= & \left\{\left.\frac{1}{4}\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}+a_{4} \alpha_{4}\right) \right\rvert\, a_{i} \in \mathbb{Z} \text { and } \sum_{i=1}^{4} a_{i} \in 2 \mathbb{Z}, i=1,2,3,4\right\} \\
= & \frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}-\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{3}+\alpha_{4}\right\} .
\end{aligned}
$$

Now by (5.17), we have

$$
N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{(M \cap J)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1)\right\} .
$$

Let $\beta_{1}=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)(h-1), \beta_{2}=\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right)(h-1), \beta_{3}=\frac{1}{2}\left(\alpha_{3}+\alpha_{4}\right)(h-1)$, and $\beta_{4}=\frac{1}{2}\left(\alpha_{3}-\alpha_{4}\right)(h-1)$. Then $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$ forms an orthogonal subset of $N \cap J$ with $\left(\beta_{i}, \beta_{j}\right)=4 \delta_{i, j}$. Note that $\frac{1}{2}\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}\right)=\frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)(h-1) \in N \cap J$. Thus, $N \cap J=\operatorname{span}_{\mathbb{Z}}\left\{\beta_{1}, \beta_{2}, \beta_{3}, \frac{1}{2}\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}\right)\right\}$ since both of them are isomorphic to $D D_{4}$. Hence we have

$$
\begin{aligned}
(N \cap J)^{*} & =\frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\beta_{1}-\beta_{2}, \beta_{1}+\beta_{2}, \beta_{1}+\beta_{3}, \beta_{3}+\beta_{4}\right\} \\
& =\frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}(h-1), \alpha_{2}(h-1), \alpha_{3}(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)\right\} .
\end{aligned}
$$

as desired.

Lemma 5.20. We shall use the same notation as in (5.16). Then the cosets of $2(M \cap J)^{*} /(M \cap J)$ are represented by

$$
0, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right), \frac{1}{2}\left(\alpha_{2}+\alpha_{3}\right),
$$

and the cosets of $2(N \cap J)^{*} /(N \cap J)$ are represented by

$$
0, \frac{1}{2} \alpha_{1}(h-1), \frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1), \frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}\right)(h-1) .
$$

Moreover, $\left(2(M \cap J)^{*}, 2(N \cap J)^{*}\right) \subset \mathbb{Z}$.
Proof. Since $X:=M \cap J \cong D D_{4}$, it is clear that $2 X^{*} / X$ is a four-group. The three nonzero vectors in the list

$$
0, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right), \frac{1}{2}\left(\alpha_{2}+\alpha_{3}\right),
$$

have norms two, so all are in $2 X^{*} \backslash X$. Since the difference of any two has norm 2 , no two are congruent modulo X. A similar argument proves the second statement.

For the third statement, we calculate the following inner products.
For any $i, j, k \in\{1,2,3,4\}$ with $i \neq j$,

$$
\left(\alpha_{i} \pm \alpha_{j}, \alpha_{k}(h-1)\right)= \begin{cases}0 & \text { if } k \notin\{i, j\} \\ \pm 4 & \text { if } k \in\{i, j\},\end{cases}
$$

and

$$
\left(\alpha_{i} \pm \alpha_{j}, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)\right)=0 \text { or }-4 .
$$

Since $(M \cap J)^{*}=\frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}-\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{4}\right\}$ and $(N \cap J)^{*}=$ $\frac{1}{4} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}(h-1), \alpha_{2}(h-1), \alpha_{3}(h-1), \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)\right\}$ by (5.19), we have $\left((M \cap J)^{*},(N \cap J)^{*}\right) \subset \frac{1}{4} \mathbb{Z}$ and hence $\left(2(M \cap J)^{*}, 2(N \cap J)^{*}\right) \subset \mathbb{Z}$ as desired.

Remark 5.21. Note that the lattice D_{4} is $B W_{2^{2}}$, so the involutions in its isometry group $B R W^{+}\left(2^{2}\right) \cong W e y l\left(F_{4}\right)$ may be deduced from the theory in GrIBW1, especially Lemma 9.14 (with $d=2$). The results are in Table (7).

Notation 5.22. Define $H:=F_{M} \cap F_{N}$ and let $H_{X}:=a n n_{F_{X}}(H)$ for $X=M, N$. Since H is the negated sublattice of the involution t_{N} on F_{M}, we have the possibilities listed in Table 7 We label the case for $\frac{1}{\sqrt{2}} H$ by the corresponding involution $2 A, \cdots, 2 G$. (i.e., the involution whose negated space is $\frac{1}{\sqrt{2}} H$)

We shall prove the main result of this section, Theorem 5.26 in several steps.
Lemma 5.23. Suppose $F_{M} \cong F_{N} \cong D D_{4}$. If $\frac{1}{\sqrt{2}} H \cong A A_{1}, A_{1} \perp A A_{1}$ or A_{3} (i.e., the cases for $2 B, 2 D$ and $2 F$), then the lattice L is non-integral.

Table 7: The seven conjugacy classes of involutions in $B R W^{+}\left(2^{2}\right) \cong W e y l\left(F_{4}\right)$

Involution	Multiplicity of -1	Isometry type of negated sublattice
2 A	1	A_{1}
2 B	1	$A A_{1}$
2 C	2	$A_{1} \perp A_{1}$
2 D	2	$A_{1} \perp A A_{1}$
2 E	3	$A_{1} \perp A_{1} \perp A_{1}$
2 F	3	A_{3}
2 G	4	D_{4}

Proof. We shall divide the proof into 3 cases. Recall notations (5.22).
Case $2 B$. In this case, $\frac{1}{\sqrt{2}} H \cong A A_{1}$ and $\frac{1}{\sqrt{2}} H_{M} \cong \frac{1}{\sqrt{2}} H_{N} \cong A_{3}$. Then $F_{M} \geq$ $H \perp H_{M}$ and $M \geq H \perp H_{M} \perp M \cap J$.

Let $\alpha \in H$ with $(\alpha, \alpha)=8$. Then $H=\mathbb{Z} \alpha$ and $H^{*}=\frac{1}{8} \mathbb{Z} \alpha$.
By (A.5), we have $\left(\frac{1}{\sqrt{2}} F_{M}\right)^{*} / \frac{1}{\sqrt{2}} F_{M} \cong 2\left(F_{M}\right)^{*} / F_{M}$. Thus, by (D.26), the natural map $2\left(F_{M}\right)^{*} \rightarrow 2\left(H^{*}\right)=\frac{1}{4} \mathbb{Z} \alpha$ is onto. Therefore, there exists $\delta_{M} \in H_{M}^{*}$ with $\left(\delta_{M}, \delta_{M}\right)=3 / 2$ such that $\frac{1}{4} \alpha+\delta_{M} \in 2\left(F_{M}\right)^{*}$. Note that the natural map $\frac{1}{\sqrt{2}} M \rightarrow$ $\mathcal{D}\left(\frac{1}{\sqrt{2}} F_{M}\right)$ is also onto since $\frac{1}{\sqrt{2}} M$ is unimodular and F_{M} is a direct summand of M. Therefore, there exists $\gamma_{M} \in 2(M \cap J)^{*}$ with $\left(\gamma_{M}, \gamma_{M}\right)=2$ such that

$$
\xi_{M}=\frac{1}{4} \alpha+\delta_{M}+\gamma_{M}
$$

is a glue vector for $H \perp H_{M} \perp M \cap J$ in M. Similarly, there exists $\delta_{N} \in H_{N}^{*}$ with $\left(\delta_{N}, \delta_{N}\right)=3 / 2$ and $\gamma_{N} \in 2(N \cap J)^{*}$ with $\left(\gamma_{N}, \gamma_{N}\right)=2$ such that

$$
\xi_{N}=\frac{1}{4} \alpha+\delta_{N}+\gamma_{N}
$$

is a glue vector for $H \perp N_{N} \perp N \cap J$ in N.
Since $\left(\gamma_{M}, \gamma_{N}\right) \in \mathbb{Z}$ by (5.20) and $H_{M} \perp H_{N}$,

$$
\left(\xi_{M}, \xi_{N}\right)=\frac{1}{16}(\alpha, \alpha)+\left(\delta_{M}, \delta_{N}\right)+\left(\gamma_{M}, \gamma_{N}\right) \equiv \frac{1}{2} \quad \bmod \mathbb{Z}
$$

which is not an integer.
Case 2D. In this case, $\frac{1}{\sqrt{2}} H \cong A_{1} \perp A A_{1}$ and $\frac{1}{\sqrt{2}} H_{M} \cong \frac{1}{\sqrt{2}} H_{N} \cong A_{1} \perp A A_{1}$, also. Take $\alpha, \beta \in H$ such that $(\alpha, \alpha)=8,(\beta, \beta)=4$ and $(\alpha, \beta)=0$. Similarly, there exist $\alpha_{M}, \beta_{M} \in H_{M}$ and $\alpha_{N}, \beta_{N} \in H_{N}$ such that $\left(\alpha_{M}, \alpha_{M}\right)=8,\left(\beta_{M}, \beta_{M}\right)=4$ and $\left(\alpha_{M}, \beta_{M}\right)=0$ and $\left(\alpha_{N}, \alpha_{N}\right)=8,\left(\beta_{N}, \beta_{N}\right)=4$ and $\left(\alpha_{N}, \beta_{N}\right)=0$.

Note that $\mathbb{Z} \beta \perp \mathbb{Z} \beta_{M} \perp \mathbb{Z} \alpha_{M} \leq \operatorname{ann}_{F_{M}}(\alpha) \cong A A_{3}$. Set $A:=a n n_{F_{M}}(\alpha) \cong$ $A A_{3}$. Then $\left|A: \mathbb{Z} \beta \perp \mathbb{Z} \beta_{M} \perp \mathbb{Z} \alpha_{M}\right|=\sqrt{(4 \times 4 \times 8) /\left(2^{3} \times 4\right)}=2$. Therefore,
there exists a $\mu \in\left(\mathbb{Z} \beta \perp \mathbb{Z} \beta_{M} \perp \mathbb{Z} \alpha_{M}\right)^{*}=\frac{1}{4} \mathbb{Z} \beta \perp \frac{1}{4} \mathbb{Z} \beta_{M} \perp \frac{1}{8} \mathbb{Z} \alpha_{M}$ such that $A=\operatorname{span}_{\mathbb{Z}}\left\{\beta, \beta_{M}, \alpha_{M}, \mu\right\}$ and $2 \mu \in \mathbb{Z} \beta \perp \mathbb{Z} \beta_{M} \perp \mathbb{Z} \alpha_{M}$.

Since A is generated by norm 4 vectors, we may choose μ so that μ has norm 4 . The only possibility is $\mu=\frac{1}{2}\left(\pm \beta \pm \beta_{M} \pm \alpha_{M}\right)$. Therefore, $A=\operatorname{span}_{\mathbb{Z}}\left\{\beta, \beta_{M}, \alpha_{M}, \frac{1}{2}(\beta+\right.$ $\left.\left.\beta_{M}+\alpha_{M}\right)\right\}$ and $2 A^{*} / A \cong \mathbb{Z}_{4}$ is generated by $\frac{1}{2} \beta+\frac{1}{4} \alpha_{M}+A$. Note also that $\frac{1}{2} \beta+\frac{1}{4} \alpha_{M}$ has norm $3 / 2$.

Now recall that $\mathbb{Z} \alpha \cong 2 A_{1}$ and $A \cong A A_{3}$. Thus, by (D.26), the natural map $2\left(F_{M}\right)^{*} \rightarrow 2\left(H^{*}\right)=\frac{1}{4} \mathbb{Z} \alpha$ is onto. Thus, there exists a $\delta \in 2 A^{*}$ with $(\delta, \delta)=3 / 2$ such that $\frac{1}{4} \alpha+\delta \in 2\left(F_{M}\right)^{*}$. By the previous paragraph, we may assume $\delta=\frac{1}{2} \beta+\frac{1}{4} \alpha_{M}$. Since the natural map $\frac{1}{\sqrt{2}} M \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}} F_{M}\right)$ is onto, there exists $\gamma_{M} \in 2(M \cap J)^{*}$ such that

$$
\xi_{M}=\frac{1}{4} \alpha+\frac{1}{2} \beta+\frac{1}{4} \alpha_{M}+\gamma_{M}
$$

is a glue vector for $H \perp H_{M} \perp M \cap J$ in M. Similarly, there exists $\gamma_{N} \in 2(N \cap J)^{*}$ such that

$$
\xi_{N}=\frac{1}{4} \alpha+\frac{1}{2} \beta+\frac{1}{4} \alpha_{N}+\gamma_{N}
$$

is a glue vector for $H \perp H_{N} \perp N \cap J$ in N. Then

$$
\left(\xi_{M}, \xi_{N}\right)=\frac{1}{16}(\alpha, \alpha)+\frac{1}{4}(\beta, \beta)+\frac{1}{16}\left(\alpha_{M}, \alpha_{N}\right)+\left(\gamma_{M}, \gamma_{N}\right) \equiv 1 / 2 \quad \bmod \mathbb{Z},
$$

since $\left(\alpha_{M}, \alpha_{N}\right)=0$ and $\left(\gamma_{M}, \gamma_{N}\right) \in \mathbb{Z}$ by (5.20). Therefore, L is not integral.
Case $2 F$. In this case, $\frac{1}{\sqrt{2}} H \cong A_{3}$ and $\frac{1}{\sqrt{2}} H_{M} \cong \frac{1}{\sqrt{2}} H_{N} \cong A A_{1}$. Then $F_{M} \geq$ $H \perp H_{M}$ and $F_{N} \geq H \perp H_{N}$. Let $\delta \in H^{*}, \alpha_{M} \in H_{M}$ and $\alpha_{N} \in H_{N}$ such that $(\delta, \delta)=3 / 2,\left(\alpha_{M}, \alpha_{M}\right)=8$ and $\left(\alpha_{N}, \alpha_{N}\right)=8$.

Recall in Case 2B that $\frac{1}{\sqrt{2}} H \cong A A_{1}$ and $\frac{1}{\sqrt{2}} H_{M} \cong \frac{1}{\sqrt{2}} H_{N} \cong A_{3}$. Now by exchanging the role of H with H_{M} (or H_{N}) and using the same argument as in Case 2B, we may show that there exist $\gamma_{M} \in 2(M \cap J)^{*}$ and $\gamma_{N} \in 2(N \cap J)^{*}$ such that $\xi_{M}=\delta+\frac{1}{4} \alpha_{M}+\gamma_{M}$ is a glue vector for $H \perp H_{M} \perp M \cap J$ in M and $\xi_{N}=\delta+\frac{1}{4} \alpha_{N}+\gamma_{N}$ is a glue vector for $H \perp H_{N} \perp(N \cap J)$ in N. However,

$$
\left(\xi_{M}, \xi_{N}\right)=(\delta, \delta)+\left(\gamma_{M}, \gamma_{N}\right) \equiv 1 / 2 \quad \bmod \mathbb{Z}
$$

since $\left(\gamma_{M}, \gamma_{N}\right) \in \mathbb{Z}$ by (5.20). Again, L is not integral.
Lemma 5.24. Let γ_{M} be any norm 2 vector in $2(M \cap J)^{*}$. Then for each non-zero coset $\gamma_{N}+(N \cap J)$ in $2(N \cap J)^{*} /(N \cap J)$, there exists a norm 2 vector $\gamma \in \gamma_{N}+(N \cap J)$ such that $\left(\gamma_{M}, \gamma\right)=-1$.

Proof. Recall from (5.19) that

$$
2(M \cap J)^{*}=\frac{1}{2} \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}-\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}, \alpha_{3}+\alpha_{4}\right\} .
$$

Thus, all norm 2 vectors in $2(M \cap J)^{*}$ have the form $\frac{1}{2}\left(\pm \alpha_{i} \pm \alpha_{j}\right)$ for some $i \neq j$. Without loss, we may assume $\gamma_{M}=\frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right)$ by replacing α_{i}, α_{j} by $-\alpha_{i},-\alpha_{j}$ if necessary.

Now by (5.20), the non-zero cosets of $2(N \cap J)^{*} /(N \cap J)$ are represented by $\frac{1}{2} \alpha_{1}(h-1), \frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)$ and $\frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}\right)(h-1)$. Moreover, by (5.17),

$$
N \cap J=\frac{1}{2} \operatorname{span}_{\mathbb{Z}}\left\{\left(\alpha_{i} \pm \alpha_{j}\right)(h-1) \mid 1 \leq i<j \leq 4\right\}
$$

If $\gamma_{N}+(N \cap J)=\frac{1}{2} \alpha_{1}(h-1)+(N \cap J)$, we take

$$
\gamma=\frac{1}{2} \alpha_{i}(h-1)=\frac{1}{2} \alpha_{1}(h-1)+\frac{1}{2}\left(-\alpha_{1}+\alpha_{i}\right)(h-1) \in \frac{1}{2} \alpha_{1}(h-1)+(N \cap J) .
$$

Recall from (5.16) that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \in M \cap J$ and $\left(\alpha_{i}, \alpha_{j}\right)=4 \delta_{i, j}$ for $i, j=$ $1, \ldots, 4$. Moreover, $(x, y h)=0$ for all $x, y \in M \cap J$ by (5.9).

Thus, $(\gamma, \gamma)=\left(\frac{1}{2} \alpha_{i}(h-1), \frac{1}{2} \alpha_{i}(h-1)\right)=\frac{1}{4}\left[\left(\alpha_{i} h, \alpha_{i} h\right)+\left(\alpha_{i}, \alpha_{i}\right)\right]=2$ and $\left(\gamma_{M}^{1}, \gamma\right)=\left(\frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right), \frac{1}{2} \alpha_{i}(h-1)\right)=-\frac{1}{4}\left(\alpha_{i}+\alpha_{j}, \alpha_{i}\right)=-1$.

If $\gamma_{N}+(N \cap J)=\frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)+(N \cap J)$, we simply take $\gamma=\frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)$. Then $(\gamma, \gamma)=2$ and

$$
\begin{aligned}
\left(\gamma_{M}, \gamma\right) & =\left(\frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right), \frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)(h-1)\right) \\
& =-\frac{1}{8}\left(\alpha_{i}+\alpha_{j}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \\
& =-\frac{1}{8}(4+4)=-1
\end{aligned}
$$

Finally we consider the case $\gamma_{N}+N \cap J=\frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}\right)(h-1)+(N \cap J)$. Let $\{k, \ell\}=\{1,2,3,4\}-\{i, j\}$ and take

$$
\begin{aligned}
\gamma & =\frac{1}{4}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}-\alpha_{\ell}\right)(h-1)=\frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}\right)(h-1)+\frac{1}{2}\left(\alpha_{4}-\alpha_{\ell}\right) \\
& \in \frac{1}{4}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}\right)(h-1)+N \cap J
\end{aligned}
$$

Then $(\gamma, \gamma)=2$ and

$$
\begin{aligned}
\left(\gamma_{M}, \gamma\right) & =\left(\frac{1}{2}\left(\alpha_{i}+\alpha_{j}\right), \frac{1}{4}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}-\alpha_{\ell}\right)(h-1)\right) \\
& =-\frac{1}{8}\left(\alpha_{i}+\alpha_{j}, \alpha_{i}+\alpha_{j}+\alpha_{k}-\alpha_{\ell}\right) \\
& =-\frac{1}{8}(4+4)=-1
\end{aligned}
$$

as desired.
Lemma 5.25. If $\frac{1}{\sqrt{2}} H \cong A_{1} \perp A_{1}, A_{1} \perp A_{1} \perp A_{1}$ or D_{4} (i.e., the cases for $2 C, 2 E$ and $2 G$), then the lattice L has roots.

Proof. We continue to use the notations (5.22). First, we shall note that the natural maps $\frac{1}{\sqrt{2}} M \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}} F_{M}\right), \frac{1}{\sqrt{2}} M \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}}(M \cap J)\right)$ and $\frac{1}{\sqrt{2}} N \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}} F_{N}\right)$, and $\frac{1}{\sqrt{2}} N \rightarrow \mathcal{D}\left(\frac{1}{\sqrt{2}}(N \cap J)\right)$ are all onto.

Case 2C. In this case, $\frac{1}{\sqrt{2}} H \cong A_{1} \perp A_{1}$ and $\frac{1}{\sqrt{2}} H_{M} \cong \frac{1}{\sqrt{2}} H_{N} \cong A_{1} \perp A_{1}$. Let μ^{1}, μ^{2} be a basis of H such that $\left(\mu^{i}, \mu^{j}\right)=4 \delta_{i, j}$. Let μ_{M}^{1}, μ_{M}^{2} and μ_{N}^{1}, μ_{N}^{2} be bases of H_{M} and H_{N} which consist of norm 4 vectors. Then, $F_{M}=\operatorname{span}_{\mathbb{Z}}\left\{\mu^{1}, \mu^{2}, \mu_{M}^{1}, \frac{1}{2}\left(\mu^{1}+\right.\right.$ $\left.\left.\mu^{2}+\mu_{M}^{1}+\mu_{M}^{2}\right)\right\}$ and $F_{N}=\operatorname{span}_{\mathbb{Z}}\left\{\mu^{1}, \mu^{2}, \mu_{N}^{1}, \frac{1}{2}\left(\mu^{1}+\mu^{2}+\mu_{N}^{1}+\mu_{N}^{2}\right)\right\}$. Therefore, by the same arguments as in Lemma 5.20 the cosets representatives of $\left(2 F_{M}^{*}\right) / F_{M}$ are given by

$$
0, \quad \frac{1}{2}\left(\mu^{1}+\mu^{2}\right), \quad \frac{1}{2}\left(\mu^{1}+\mu_{M}^{1}\right), \quad \frac{1}{2}\left(\mu^{2}+\mu_{M}^{1}\right),
$$

and the cosets representatives of $\left(2 F_{N}^{*}\right) / F_{N}$ are given by

$$
0, \quad \frac{1}{2}\left(\mu^{1}+\mu^{2}\right), \quad \frac{1}{2}\left(\mu^{1}+\mu_{N}^{1}\right), \quad \frac{1}{2}\left(\mu^{2}+\mu_{N}^{1}\right)
$$

Therefore, there exist $\gamma_{M}^{1}, \gamma_{M}^{2} \in(M \cap J)^{*}$ so that

$$
\xi_{M}=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{M}^{1} \quad \text { and } \quad \zeta_{M}=\frac{1}{2}\left(\mu_{1}+\mu_{M}^{1}\right)+\gamma_{M}^{2},
$$

are glue vectors for $F_{M}+(J \cap M)$ in M and such that $\gamma_{M}^{1}+(M \cap J), \gamma_{M}^{2}+(M \cap J)$ generate $2(M \cap J)^{*} /(M \cap J)$.

Similarly, there exist $\gamma_{N}^{1}, \gamma_{N}^{2} \in(N \cap J)^{*}$ so that

$$
\xi_{N}=-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{N}^{1} \quad \text { and } \quad \zeta_{N}=-\frac{1}{2}\left(\mu_{1}+\mu_{N}^{1}\right)+\gamma_{N}^{2}
$$

are glue vectors for $F_{N}+N \cap J$ in N, and such that $\gamma_{N}^{1}+(N \cap J), \gamma_{N}^{2}+(N \cap J)$ generate $2(N \cap J)^{*} /(N \cap J)$.

By Lemma (5.24), we may assume $\left(\gamma_{N}^{1}, \gamma_{M}^{1}\right)=-1$. Then

$$
\begin{aligned}
\left(\xi_{M}, \xi_{N}\right) & =\left(\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{M}^{1},-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{N}^{1}\right) \\
& =-\frac{1}{4}\left(\left(\mu_{1}, \mu_{1}\right)+\left(\mu_{2}, \mu_{2}\right)\right)+\left(\gamma_{M}^{1}, \gamma_{N}^{1}\right) \\
& =-\frac{1}{4}(4+4)-1=-3
\end{aligned}
$$

and hence $\xi_{M}+\xi_{N}$ is a root.
Case 2E. In this case, $\frac{1}{\sqrt{2}} H \cong A_{1} \perp A_{1} \perp A_{1}$ and $\frac{1}{\sqrt{2}} H_{M} \cong \frac{1}{\sqrt{2}} H_{N} \cong A_{1}$.
Let $\mu_{1}, \mu_{2}, \mu_{3} \in H$ be such that $\left(\mu_{i}, \mu_{j}\right)=4 \delta_{i, j}$. Let $\mu_{M} \in H_{M}$ and $\mu_{N} \in H_{N}$ be norm 4 vectors. Then $H_{M}=\mathbb{Z} \mu_{M}$ and $H_{N}=\mathbb{Z} \mu_{N}$. Moreover,

$$
F_{M}=\operatorname{span}_{\mathbb{Z}}\left\{\mu_{1}, \mu_{2}, \mu_{3}, \frac{1}{2}\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{M}\right)\right\} \cong D D_{4}
$$

and

$$
F_{N}=\operatorname{span}_{\mathbb{Z}}\left\{\mu_{1}, \mu_{2}, \mu_{3}, \frac{1}{2}\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{N}\right)\right\} \cong D D_{4}
$$

Then, by (5.20), $\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)$ is in both $2\left(F_{M}\right)^{*}$ and $2\left(F_{N}\right)^{*}$. Therefore, there exist $\gamma_{M} \in 2(M \cap J)^{*}$ and $\gamma_{N} \in 2(N \cap J)^{*}$ such that

$$
\xi_{M}=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{M} \in M \quad \text { and } \quad \xi_{N}=-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{N} \in N
$$

are norm 4 glue vectors for $F_{M} \perp M \cap J$ in M and $F_{N} \perp N \cap J$ in N, respectively. By Lemma (5.24), we may assume $\left(\gamma_{M}, \gamma_{N}\right)=-1$. Then,

$$
\begin{aligned}
\left(\xi_{M}, \xi_{N}\right) & =\left(\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{M},-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)+\gamma_{N}\right) \\
& =-\frac{1}{4}\left(\mu_{1}+\mu_{2}, \mu_{1}+\mu_{2}\right)+\left(\gamma_{M}, \gamma_{N}\right)=-2-1=-3
\end{aligned}
$$

and $\xi_{M}+\xi_{N}$ is a root.
Case 2G. In this case, $\frac{1}{\sqrt{2}} H \cong D_{4}$ and $\frac{1}{\sqrt{2}} H_{M}=\frac{1}{\sqrt{2}} H_{N}=0$. Recall that $2\left(D D_{4}\right)^{*} / D D_{4} \cong\left(D_{4}\right)^{*} / D_{4}$ by A.5) and all non-trivial cosets of $\left(D_{4}\right)^{*} / D_{4}$ can be represented by norm 1 vectors [CS, p. 117]. Therefore, the non-trivial cosets of $2\left(D D_{4}\right)^{*} / D D_{4}$ can be represented by norm 2 vectors. Thus we can find vectors $\gamma \in 2 H^{*}$ with $(\gamma, \gamma)=2$ and $\gamma_{M} \in 2(M \cap J)^{*}, \gamma_{N} \in 2(N \cap J)^{*}$ such that

$$
\xi_{M}=\gamma+\gamma_{M} \in M \quad \text { and } \quad \xi_{N}=-\gamma+\gamma_{N} \in N
$$

are norm 4 glue vectors for $F_{M} \perp M \cap J$ in M and $F_{N} \perp N \cap J$ in N, respectively. Again, we may assume $\left(\gamma_{M}, \gamma_{N}\right)=-1$ by (5.24) and thus $\left(\xi_{M}, \xi_{N}\right)=-3$ and there are roots.

Theorem 5.26. Suppose $F_{M} \cong F_{N} \cong D D_{4}$. If $L=M+N$ is integral and rootless, then $H=F_{M} \cap F_{N}=0$ or $\cong A A_{1}$.

The proof of Theorem 5.26 now follows from Lemmas 5.23 and 5.25

$6 \quad D I H_{6}$ and $D I H_{12}$ theories

We shall study the cases when $D=\left\langle t_{M}, t_{N}\right\rangle \cong \operatorname{Dih}_{6}$ or Dih_{12}. The following is our main theorem in this section. We refer to the notation table (Table 3) for the definition of $D I H_{6}(14), D I H_{6}(16)$ and $D I H_{12}(16)$.

Theorem 6.1. Let L be a rootless integral lattice which is a sum of sublattices M and N isometric to $E E_{8}$. If the associated dihedral group has order 6 or 12, the possibilities for $L+M+N, M, N$ are listed in Table (8).

Table 8: $D I H_{6}$ and $D I H_{12}$: Rootless cases

Name	$F \cong$	L contains \ldots	with index \ldots	$\mathcal{D}(L)$
$D I H_{6}(14)$	$A A_{2}$	$\geq A_{2} \otimes E_{6} \perp A A_{2}$	3^{2}	$1^{9} 3^{3} 6^{2}$
$D I H_{6}(16)$	0	$A_{2} \otimes E_{8}$	1	3^{8}
$D I H_{12}(16)$	$A A_{2} \perp A A_{2}$	$\geq A_{2} \otimes E_{6} \perp A A_{2}^{\perp 2}$	3^{2}	$1^{12} 6^{4}$

$6.1 \quad \mathrm{DIH}_{6}$

Notation 6.2. Define $t:=t_{M}, h:=t_{M} t_{N}$. We suppose h has order 3. Then, $N=M g$, where $g=h^{2}$. The third lattice in the orbit of $D:=\langle g, t\rangle$ is $M g^{2}$, but we shall not refer to it explicitly henceforth. Define $F:=M \cap N, J:=a n n_{L}(F)$. Note that F is the common negated lattice for t_{M} and t_{N} in L, so is the fixed point sublattice for g and is a direct summand of L (cf. A.10)).

Lemma 6.3. Let $X=M$ or N. Two of the sublattices $\left\{(J \cap X) g^{i} \mid i \in \mathbb{Z}\right\}$ are equal or meet trivially.

Proof. We may assume $X=M$. Suppose that $0 \neq U=(J \cap M) g^{i} \cap(J \cap M) g^{j}$ for i, j not congruent modulo 3 . Then U is negated by two distinct involutions $t^{g^{i}}$ and $t^{g^{j}}$, hence is centralized by g, a contradiction.

Lemma 6.4. If $F=0, J \cong A_{2} \otimes E_{8}$.
Proof. Use (3.2).
Hypothesis 6.5. We assume $F \neq 0$ and define the integer s by $3^{s}:=|L /(J+F)|$.
Lemma 6.6. $L /(J \perp F)$ is an elementary abelian group, of order 3^{s} where $s \leq$ $\frac{1}{2} \operatorname{rank}(J)$.

Proof. Note that g acts trivially on both F and L / J since L / J embeds in F^{*}. Observe that $g-1$ induces an embedding $L / F \rightarrow J$. Furthermore, $g-1$ induces an embedding $L /(J+F) \rightarrow J / J(g-1)$, which is an elementary abelian 3-group whose rank is at most $\frac{1}{2} \operatorname{rank}(J)$ since $(g-1)^{2}$ induces the map $-3 g$ on J.

Lemma 6.7. $s \leq \operatorname{rank}(F)$ and $s \in\{1,2,3\}$.
Proof. If s were $0, L=J+F$ and M would be orthogonally decomposable, a contradiction. Therefore, $s \geq 1$. The two natural maps $L \rightarrow \mathcal{D}(F)$ and $L \rightarrow \mathcal{D}(J)$ have common kernel $J \perp F$. Their images are therefore elementary abelian group of rank s at most $\operatorname{rank}(F)$ and at most $\operatorname{rank}(J)$. In (6.6), we observed the stronger statement that $s \leq \frac{1}{2} \operatorname{rank}(J)$. Since $\operatorname{rank}(J) \geq 1,8=\operatorname{rank}(J)+\operatorname{rank}(F)>$ $\operatorname{rank}(J) \geq 2 s$ implies that $s \leq 3$.

Lemma 6.8. $M /((M \cap J)+F) \cong L /(J \perp F)$ is an elementary abelian 3-group of order 3^{s}.

Proof. The quotient $L /(J+F)$ is elementary abelian by (6.6). Since $L=M+N$ and $N=M g, M$ covers $L / L(g-1)$. Since $L(g-1) \leq J, M+J=L$ Therefore, $L /(J \perp F) \cong(M+J) /(J+F)=(M+(J+F)) /(J+F) \cong M /(M \cap(J+F))$. The last denominator is $(M \cap J)+F$ since $F \leq M$.

Lemma 6.9. $\mathcal{D}(F) \cong 3^{s} \times 2^{\operatorname{rank}(F)}$.
Proof. Since $\frac{1}{\sqrt{2}} M \cong E_{8}$ and the natural map of $\frac{1}{\sqrt{2}} M$ to $\mathcal{D}\left(\frac{1}{\sqrt{2}} F\right)$ is onto and has kernel $\frac{1}{\sqrt{2}}(M \cap J \perp F), \mathcal{D}\left(\frac{1}{\sqrt{2}} F\right) \cong 3^{s}$ is elementary abelian.

Notation 6.10. Let $X=M \cap J, Y=N \cap J$ and $K=X+Y$. Note that $Y=X g$ and thus by Lemma 3.2, we have $K \cong A_{2} \otimes\left(\frac{1}{\sqrt{2}} X\right)$.

Let $\left\{\alpha, \alpha^{\prime}\right\}$ be a set of fundamental roots for A_{2} and denote $\alpha^{\prime \prime}=-\left(\alpha+\alpha^{\prime}\right)$. Let g^{\prime} be the isometry of A_{2} which is induced by the map $\alpha \rightarrow \alpha^{\prime} \rightarrow \alpha^{\prime \prime} \rightarrow \alpha$.

By identifying K with $A_{2} \otimes\left(\frac{1}{\sqrt{2}} X\right)$, we may assume $X=M \cap J=\mathbb{Z} \alpha \otimes\left(\frac{1}{\sqrt{2}} X\right)$. Recall that $\left(x, x^{\prime} g\right)=-\frac{1}{2}\left(x, x^{\prime}\right)$ for any $x, x^{\prime} \in K$ (cf. (3.2)). Therefore, for any $\beta \in \frac{1}{\sqrt{2}} X$, we may identify $(\alpha \otimes \beta) g$ with $\alpha^{\prime} \otimes \beta=\alpha g^{\prime} \otimes \beta$ and identify $Y=X g$ with $\alpha g^{\prime} \otimes\left(\frac{1}{\sqrt{2}} X\right)$.

Lemma 6.11. We have $J=L(g-1)+K$, where $K=J \cap M+J \cap N$ as in (6.10). The map $g-1$ takes L onto J and induces an isomorphism of $L /(J+F)$ and J / K, as abelian groups. In particular, both quotients have order 3^{s}.

Proof. Part 1: The map $g-1$ induces a monomorphism. Clearly, $L(g-1) \leq J$ and g acts trivially on $L / L(g-1)$. Obviously, $F(g-1)=0$. We also have $L \geq$ $J+F \geq K+F$. Since $M \cap J \leq K, t$ acts trivially on J / K. Therefore, so does g, whence $J(g-1) \leq K$. Since g acts trivially on $L / J, L(g-1)^{2} \leq K$.

Furthermore, $(g-1)^{2}$ annihilates $L /(F+K)$, which is a quotient of L / F, where the action of g has minimal polynomial $x^{2}+x+1$. Therefore $L /(F+K)$ is annihilated by $3 g$, so is an elementary abelian 3 -group. We have $3 L \leq F+K$.

Let $P:=\{x \in L \mid x(g-1) \in K\}$. Then P is a sublattice and $F+J \leq P \leq L$. By coprimeness, there are sublattices P^{+}, P^{-}so that $P^{+} \cap P^{-}=F+K$ and $P^{+}+P^{-}=P$ and t acts on $P^{\varepsilon} /(F+K)$ as the scalar $\varepsilon= \pm 1$. We shall prove now that $P^{-}=F+K$ and $P^{+}=F+J$. We already know that $P^{-} \geq F+K$ and $P^{+} \geq F+J$.

Let $v \in P^{-}$and suppose that $v(g-1) \in K$. Then $v\left(g^{2}-g\right) \in K$ and this element is fixed by t. Therefore, $v\left(g^{2}-g\right) \in \operatorname{ann}_{K}(M \cap J)$. By (3.2), there is $u \in M \cap J$ so that $u\left(g^{2}-g\right)=v\left(g^{2}-g\right)$. Then $u-v \in L$ is fixed by g and so $u-v \in F$. Since $u \in K, v \in F+K$. We have proved that $P^{-}=F+K$.

Now let $v \in P^{+}$. Assume that $v \notin F+J$. Since D acts on L / J such that g acts trivially, coprimeness of $|L / J|$ and $|D /\langle g\rangle|$ implies that L has a quotient of order 3 on which t and u act trivially. Since $L=M+N$, this is not possible. We conclude that $F+J=P^{+}$.

We conclude that $P=P^{-}+P^{+}=F+J$ and so $g-1$ gives an embedding of $L /(J+F)$ into J / K.

Part 2: The map $g-1$ induces an epimorphism. We know that $L /(F+J) \cong 3^{s}$ and this quotient injects into J / K. We now prove that J / K has order bounded by 3^{s}.

Consider the possibility that t negates a nontrivial element $x+K$ of J / K. By (A.7), we may assume that $x t=-x$. But then $x \in M \cap J \leq K$, a contradiction. Therefore, t acts trivially on the quotient J / K. It follows that the quotient J / K is covered by $J^{+}(t)$. Therefore J / K embeds in the discriminant group of $K^{+}(t)$, which by (3.2) is isometric to $\sqrt{3}(M \cap J)$. Since J / K is an elementary abelian 3-group and $\mathcal{D}(M \cap J) \cong 3^{s} \times 2^{\operatorname{rank}(M \cap J)}$, the embedding takes J / K to the Sylow 3-group
of $\mathcal{D}(M \cap J)$, which is isomorphic to 3^{s} (see (6.9) and use (A.13), applied to $\frac{1}{\sqrt{2}} M$ and the sublattices $\frac{1}{\sqrt{2}} F$ and $\frac{1}{\sqrt{2}}(M \cap J)$.

Proposition 6.12. If L is rootless and $F \neq 0$, then $s=1$ and $F \cong A A_{2}$. Also, $L /(J \perp F) \cong 3$.

Proof. We have $s \leq 3$, so by Proposition D.8, $F \cong A A_{2}, E E_{6}$ or $A A_{2} \perp A A_{2}$ and $s=1,1$ or 2 , respectively. Note $X=M \cap J$ is the sublattice of M which is orthogonal to F. Since $M \cong E E_{8}, X \cong E E_{6}, A A_{2}$ and $A A_{2} \perp A A_{2}$ if $F \cong A A_{2}, E E_{6}$ and $A A_{2} \perp A A_{2}$, respectively.

We shall show that L has roots if $F \cong E E_{6}$ or $A A_{2} \perp A A_{2}$. The conclusion in the surviving case follows from (6.9).

Case 1: $F=E E_{6}$ and $s=1$. In this case, $X \cong Y \cong A A_{2}$. Hence $K \cong A_{2} \otimes A_{2}$. As in Notation 6.10, we shall identify X with $\mathbb{Z} \alpha \otimes A_{2}$ and Y with $\mathbb{Z} \alpha g^{\prime} \otimes A_{2}$. Then $F \perp X \cong E E_{6} \perp \mathbb{Z}\left(\alpha \otimes A_{2}\right)$.

In this case, $|M /(F+X)|=3$ and there exist $\gamma \in\left(E E_{6}\right)^{*}$ and $\gamma^{\prime} \in\left(A_{2}\right)^{*}$ with $(\gamma, \gamma)=8 / 3$ and $\left(\gamma^{\prime}, \gamma^{\prime}\right)=2 / 3$ such that $M=\operatorname{span}_{\mathbb{Z}}\left\{F+X, \gamma+\alpha \otimes \gamma^{\prime}\right\}$. Then $N=M g=\operatorname{span}_{\mathbb{Z}}\left\{F+Y, \gamma+\alpha g^{\prime} \otimes \gamma^{\prime}\right\}$ and we have

$$
L=M+N \cong \operatorname{span}_{\mathbb{Z}}\left\{E E_{6} \perp\left(A_{2} \otimes A_{2}\right), \gamma+\left(\alpha \otimes \gamma^{\prime}\right), \gamma+\left(\alpha g^{\prime} \otimes \gamma^{\prime}\right)\right\}
$$

Let $\beta:=\left(\gamma+\left(\alpha \otimes \gamma^{\prime}\right)\right)-\left(\gamma+\left(\alpha g^{\prime} \otimes \gamma^{\prime}\right)\right)=\left(\alpha-\alpha g^{\prime}\right) \otimes \gamma^{\prime}$. Then $(\beta, \beta)=$ $\left(\alpha-\alpha g^{\prime}, \alpha-\alpha g^{\prime}\right) \cdot\left(\gamma^{\prime}, \gamma^{\prime}\right)=6 \cdot 2 / 3=4$.

Let α_{1} be a root of A_{2} such that $\left(\alpha_{1}, \gamma^{\prime}\right)=-1$. Then $\alpha \otimes \alpha_{1} \in A_{2} \otimes A_{2}$, where α is in the first tensor factor and α_{1} is in the second tensor factor. Then $\left(\beta, \alpha \otimes \alpha_{1}\right)=\left(\alpha-\alpha g^{\prime}, \alpha\right) \cdot\left(\gamma^{\prime}, \alpha_{1}\right)=(2+1) \cdot(-1)=-3$ and the norm of $\beta+\left(\alpha \otimes \alpha_{1}\right)$ is given by
$\left(\beta+\left(\alpha \otimes \alpha_{1}\right), \beta+\left(\alpha \otimes \alpha_{1}\right)\right)=(\beta, \beta)+\left(\alpha \otimes \alpha_{1}, \alpha \otimes \alpha_{1}\right)+2\left(\beta, \alpha \otimes \alpha_{1}\right)=4+4-6=2$.
Thus, $a_{1}=\beta+\left(\alpha \otimes \alpha_{1}\right)$ is a root in J. So, L has roots. In fact, we can say more. If we take $a_{2}=\beta g+\alpha g^{\prime} \otimes \alpha_{1}$, then a_{2} is also a root and

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) & =\left(\beta+\alpha \otimes \alpha_{1}, \beta g+\alpha g^{\prime} \otimes \alpha_{1}\right) \\
& =(\beta, \beta g)+\left(\beta, \alpha g^{\prime} \otimes \alpha_{1}\right)+\left(\alpha \otimes \alpha_{1}, \beta g\right)+\left(\alpha \otimes \alpha_{1}, \alpha g^{\prime} \otimes \alpha_{1}\right) \\
& =-\frac{1}{2}(4-3-3+4)=-1
\end{aligned}
$$

Thus, a_{1}, a_{2} spans a sublattice A isometric to A_{2}.
Case 2: $F=A A_{2} \perp A A_{2}$ and $s=2$. In this case, $X \cong Y \cong A A_{2} \perp A A_{2}$. Hence, $K \cong A_{2} \otimes\left(A_{2} \perp A_{2}\right)$. Again, we shall identify X with $\mathbb{Z} \alpha \otimes\left(A_{2} \perp A_{2}\right)$ and $F+X \cong A A_{2} \perp A A_{2} \perp \mathbb{Z} \alpha \otimes\left(A_{2} \perp A_{2}\right) \cong A A_{2} \perp A A_{2} \perp A A_{2} \perp A A_{2}$. For convenience, we shall use a 4 -tuple ($\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$) to denote an element in $(F+$ $K)^{*} \cong\left(A A_{2}\right)^{*} \perp\left(A A_{2}\right)^{*} \perp\left(A_{2} \otimes A_{2}\right)^{*} \perp\left(A_{2} \otimes A_{2}\right)^{*}$, where $\xi_{1}, \xi_{2} \in\left(A A_{2}\right)^{*}$ and $\xi_{3}, \xi_{4} \in\left(A_{2} \otimes A_{2}\right)^{*}$.

Recall that $|M /(F+X)|=3^{2}$ and the cosets of $M /(F+X)$ can be parametrized by the tetracode (cf. [CS, p. 200]) whose generating matrix is given by

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) .
$$

Hence, there exists a element $\gamma \in\left(A A_{2}\right)^{*}$ with $(\gamma, \gamma)=4 / 3$ and $\gamma^{\prime} \in\left(A_{2}\right)^{*}$ with $\left(\gamma^{\prime}, \gamma^{\prime}\right)=2 / 3$ such that

$$
M=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{l}
A A_{2} \perp A A_{2} \perp \mathbb{Z} \alpha \otimes\left(A_{2} \perp A_{2}\right), \\
\left(\gamma, \gamma, \alpha \otimes \gamma^{\prime}, 0\right),\left(\gamma,-\gamma, 0, \alpha \otimes \gamma^{\prime}\right)
\end{array}\right\} .
$$

Therefore, we also have

$$
N=M g=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
A A_{2} \perp A A_{2} \perp \mathbb{Z} \alpha g^{\prime} \otimes\left(A_{2} \perp A_{2}\right), \\
\left(\gamma, \gamma, \alpha g^{\prime} \otimes \gamma^{\prime}, 0\right),\left(\gamma,-\gamma, 0, \alpha g^{\prime} \otimes \gamma^{\prime}\right)
\end{array}\right\}
$$

and

$$
\begin{aligned}
& L=M+N= \\
& \operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
A A_{2} \perp A A_{2} \perp A_{2} \otimes\left(A_{2} \perp A_{2}\right),\left(\gamma, \gamma, \alpha \otimes \gamma^{\prime}, 0\right), \\
\left(\gamma,-\gamma, 0, \alpha \otimes \gamma^{\prime}\right),\left(\gamma, \gamma, \alpha g^{\prime} \otimes \gamma^{\prime}, 0\right),\left(\gamma,-\gamma, 0, \alpha g^{\prime} \otimes \gamma^{\prime}\right)
\end{array}\right\} .
\end{aligned}
$$

Let $\beta_{1}=\left(\gamma, \gamma, \alpha \otimes \gamma^{\prime}, 0\right)-\left(\gamma, \gamma, \alpha g^{\prime} \otimes \gamma^{\prime}, 0\right)$ and $\beta_{2}=\left(\gamma,-\gamma, 0, \alpha \otimes \gamma^{\prime}\right)-$ $\left(\gamma,-\gamma, 0, \alpha g^{\prime} \otimes \gamma^{\prime}\right)$. Then $\beta_{1}, \beta_{2} \in L(g-1) \leq J$ and both have norm 4 .

Let α_{1} and α_{2} be roots in A_{2} such that $\left(\alpha_{1}, \gamma^{\prime}\right)=\left(\alpha_{2}, \gamma^{\prime}\right)=-1$ and $\left(\alpha_{1}, \alpha_{2}\right)=1$. Denote

$$
\begin{array}{ll}
a_{1}^{1}=\beta_{1}+\left(0,0, \alpha \otimes \alpha_{1}, 0\right), & a_{2}^{1}=\beta_{1} g^{\prime}+\left(0,0, \alpha g^{\prime} \otimes \alpha_{1}, 0\right), \\
a_{1}^{2}=\beta_{1}+\left(0,0, \alpha \otimes \alpha_{2}, 0\right), & a_{2}^{2}=\beta_{1} g^{\prime}+\left(0,0, \alpha g^{\prime} \otimes \alpha_{2}, 0\right), \\
a_{1}^{3}=\beta_{2}+\left(0,0,0, \alpha \otimes \alpha_{1}\right), & a_{2}^{3}=\beta_{2} g^{\prime}+\left(0,0,0, \alpha g^{\prime} \otimes \alpha_{1}\right), \\
a_{1}^{4}=\beta_{2}+\left(0,0,0, \alpha \otimes \alpha_{2}\right), & a_{2}^{4}=\beta_{2} g^{\prime}+\left(0,0,0, \alpha g^{\prime} \otimes \alpha_{2}\right) .
\end{array}
$$

Then similar to Case 1, we have the inner products

$$
\left(a_{1}^{i}, a_{1}^{i}\right)=\left(a_{2}^{i}, a_{2}^{i}\right)=2, \quad \text { and } \quad\left(a_{1}^{i}, a_{2}^{i}\right)=-1,
$$

for any $i=1,2,3,4$. Thus, each pair $\left\{a_{1}^{i}, a_{2}^{i}\right\}$, for $i=1,2,3,4$, spans a sublattice isometric to A_{2}. Moreover, $\left(a_{k}^{i}, a_{\ell}^{j}\right)=0$ for any $i \neq j$ and $k, \ell \in\{1,2\}$. Therefore, $J \geq A_{2} \perp A_{2} \perp A_{2} \perp A_{2}$. Moreover, $\left|\operatorname{span}_{\mathbb{Z}}\left\{a_{1}^{i}, a_{2}^{i} \mid i=1,2,3,4\right\} / K\right|=3^{2}$ and hence $J \cong A_{2} \perp A_{2} \perp A_{2} \perp A_{2}$. Again, L has roots.
Corollary 6.13. $|J: M \cap J+N \cap J|=3$ and $M \cap J=\operatorname{ann}_{M}(F) \cong E E_{6}$.
Proof. (6.11) and (6.12).
Corollary 6.14. (i) $M \cap J+N \cap J$ is isometric to $A_{2} \otimes E_{6}$.
(ii) $L=M+N$ is unique up to isometry.

Proof. For (i), use (3.2) and for (ii), use (4.1).
Lemma 6.15. If $v=v_{1}+v_{2}$ with $v_{1} \in J^{*}$ and $v_{2} \in F^{*}$, then v_{2} has norm $\frac{4}{3}$ and v_{1} has norm in $\frac{8}{3}+2 \mathbb{Z}$.
Proof. Since $3 v_{2} \in F$, we may assume that $3 v_{2}$ has norm 12 by (D.6) so that v_{2} has norm $\frac{4}{3}$. It follows that v_{1} has norm in $\frac{8}{3}+2 \mathbb{Z}$.

6.1.1 $D I H_{6}$: Explicit glueing

In this subsection, we shall describe the explicit glueing from $F+M \cap J+N \cap J$ to L. As in Notation 6.10 $X=M \cap J, Y=N \cap J$ and $K=X+Y$. Since $F \cong A A_{2}$, we have $X \cong Y \cong E E_{6}$ and $K \cong A_{2} \otimes E_{6}$. We also identify X with $\mathbb{Z} \alpha \otimes\left(\frac{1}{\sqrt{2}} X\right)$ and Y with $\mathbb{Z} \alpha g^{\prime} \otimes\left(\frac{1}{\sqrt{2}} X\right)$, where α is a root of A_{2} and g^{\prime} is a fixed point free isometry of A_{2} such that $\alpha g^{\prime} \otimes \beta=(\alpha \otimes \beta) g$ as described in (6.10). Then $F \perp X \cong A A_{2} \perp \mathbb{Z} \alpha \otimes E_{6} \cong A A_{2} \perp E E_{6}$.

Recall that $\left(A A_{2}\right)^{*} / A A_{2} \cong \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{3}$. Therefore, $2\left(A A_{2}\right)^{*} / A A_{2}$ is the unique subgroup of order 3 in $\left(A A_{2}\right)^{*} / A A_{2}$. Similarly, $2\left(\mathbb{Z} \alpha \otimes E_{6}\right)^{*} /\left(\mathbb{Z} \alpha \otimes E_{6}\right)$ is the unique subgroup of order 3 in $\left(\mathbb{Z} \alpha \otimes E_{6}\right)^{*} /\left(\mathbb{Z} \alpha \otimes E_{6}\right) \cong \mathbb{Z}_{2}^{6} \times \mathbb{Z}_{3}$.
Notation 6.16. Since $F \perp X \leq M$ and $|M: F \perp X|=3$, there exists an element $\mu \in F^{*} \perp X^{*}$ such that $3 \mu \in F+X$ and $M=\operatorname{span}_{\mathbb{Z}}\{F+X, \mu\}$. Let $\gamma \in\left(A A_{2}\right)^{*}$ be a representative of the generator of the order 3 subgroup in $2\left(A A_{2}\right)^{*} / A A_{2}$ and γ^{\prime} a representative of the generator of the order 3 subgroup in $\left(E_{6}\right)^{*} / E_{6}$. Without loss, we may choose γ and γ^{\prime} so that $(\gamma, \gamma)=4 / 3$ and $\left(\gamma^{\prime}, \gamma^{\prime}\right)=4 / 3$. Since the image of μ in $M /(F \perp X)$ is of order 3 , it is easy to see that

$$
\mu \equiv \pm\left(\gamma+\alpha \otimes \gamma^{\prime}\right) \quad \text { or } \quad \mu \equiv \pm\left(\gamma-\alpha \otimes \gamma^{\prime}\right) \quad \text { modulo } F \perp X
$$

By replacing μ by $-\mu$ and γ^{\prime} by $-\gamma^{\prime}$ if necessary, we may assume $\mu=\gamma+\alpha \otimes \gamma^{\prime}$. Then $\nu:=\mu g=\gamma+\alpha g^{\prime} \otimes \gamma^{\prime}$ and $N=\operatorname{span}_{\mathbb{Z}}\{F+Y, \nu\}$.
Proposition 6.17. With the notation as in (6.16), $L=M+N \cong \operatorname{span}_{\mathbb{Z}}\left\{A A_{2} \perp\right.$ $\left.A_{2} \otimes E_{6}, \gamma+\alpha \otimes \gamma^{\prime}, \gamma+\alpha g^{\prime} \otimes \gamma^{\prime}\right\}$.

Remark 6.18. Let $\beta=\left(\alpha-\alpha g^{\prime}\right) \otimes \gamma^{\prime}=\left(\gamma+\alpha \otimes \gamma^{\prime}\right)-\left(\gamma+\alpha g^{\prime} \otimes \gamma^{\prime}\right)$. Then $\beta \in L(g-1)=J=a n n_{L}(F)$ but $\beta=\left(\alpha-\alpha g^{\prime}\right) \otimes \gamma^{\prime} \notin K \cong A_{2} \otimes E_{6}$. Hence $J=\operatorname{span}_{\mathbb{Z}}\{\beta, K\}$ as $|J: K|=3$. Note also that $(\beta, \beta)=6 \cdot 4 / 3=8$.
Lemma 6.19. $J^{+}(t)=a n n_{J}(M \cap J) \cong \sqrt{6} E_{6}^{*}$.
Proof. By Remark (6.18), we have $J=\operatorname{span}_{\mathbb{Z}}\{\beta, K\}$, where $\beta=\left(\alpha-\alpha g^{\prime}\right) \otimes \gamma^{\prime}$ and $K=M \cap J+N \cap J \cong A_{2} \otimes E_{6}$. Recall that $M \cap J$ is identified with $\mathbb{Z} \alpha \otimes E_{6}$ and $N \cap J$ is identified with $\mathbb{Z} \alpha g^{\prime} \otimes E_{6}$. Thus, by (3.2), $a n n_{K}(M \cap J)=\mathbb{Z}\left(\alpha g^{\prime}-\alpha g^{\prime 2}\right) \otimes E_{6} \cong \sqrt{6} E_{6}$. Since $\left(\alpha, \alpha g^{\prime}-\alpha g^{\prime 2}\right)=0, \beta g=\left(\alpha g^{\prime}-\alpha g^{\prime 2}\right) \otimes \gamma^{\prime}$ also annihilates $M \cap J$. Therefore, $J^{+}(t)=a n n_{J}(M \cap J) \geq \operatorname{span}_{\mathbb{Z}}\left\{a n n_{K}(M \cap J), \beta g\right\}$. Since $\gamma^{\prime}+E_{6}$ is a generator of E_{6}^{*} / E_{6}, we have $\operatorname{span}_{\mathbb{Z}}\left\{E_{6}, \gamma^{\prime}\right\}=E_{6}^{*}$ and hence

$$
\operatorname{span}_{\mathbb{Z}}\left\{a n n_{K}(M \cap J), \beta g\right\}=\mathbb{Z}\left(\alpha g^{\prime}-\alpha g^{\prime 2}\right) \otimes \operatorname{span}_{\mathbb{Z}}\left\{E_{6}, \gamma^{\prime}\right\} \cong \sqrt{6} E_{6}^{*} .
$$

Note that $\left(\alpha g^{\prime}-\alpha g^{\prime 2}\right)$ has norm 6. Now by the index formula, we have $\operatorname{det}\left(J^{+}(t)\right)=$ $2^{6} \times 3^{5}=\operatorname{det}\left(\sqrt{6} E_{6}^{*}\right)$ and thus, we have $J^{+}(t)=\operatorname{ann}_{J}(M \cap J) \cong \sqrt{6} E_{6}^{*}$.

Corollary 6.20. J is isometric to the Coxeter-Todd lattice. Each of these is not properly contained in an integral, rootless lattice.

Proof. This is an extension of the result (D.35). Embed J in J^{\prime}, a lattice satisfying (D.34) and embed the Coxeter-Todd lattice P in a lattice Q satisfying (D.34). Then both J^{\prime} and Q satisfy the hypotheses of (D.34), so are isometric. Since $\operatorname{det}(J)=$ $\operatorname{det}(P)=3^{6}, J \cong P$.

$6.2 \quad D I H_{12}$

Notation 6.21. Let M, N be lattices isometric to $E E_{8}$ such that their respective associated involutions t_{M}, t_{N} generate $D \cong \operatorname{Dih}_{12}$. Let $h:=t_{M} t_{N}$ and $g:=h^{2}$. Let $z:=h^{3}$, the central involution of D. We shall make use of the $D I H_{6}$ results by working with the pair of distinct subgroups $D_{M}:=D_{t_{M}}:=\left\langle t_{M}, t_{M}^{g}\right\rangle$ and $D_{N}:=$ $D_{t_{N}}:=\left\langle t_{N}, t_{N}^{g}\right\rangle$. Note that each of these groups is normal in D since each has index 2. Define $\widetilde{M}:=M g, \widetilde{N}:=N g$. If X is one of M, N, we denote by L_{X}, J_{X}, F_{X} the lattices $L:=X+\widetilde{X}, J, F$ associated to the pair X, \widetilde{X}, denoted " M " and " N " in the $D I H_{6}$ section. We define $K_{X}:=(X \cap J)+(X \cap J) g$, a D_{X}-submodule of J_{X}. Finally, we define $F:=F_{D}$ to be $\{x \in L \mid x g=g\}$ and $J:=J_{D}:=a n n_{L}(F)$. We assume L is rootless.
Lemma 6.22. An element of order 3 in D has commutator space of dimension 12.
Proof. The analysis of $D I H_{6}$ shows just two possibilities in case of no roots (cf. Lemma (6.4) and Proposition (6.12)). We suppose that $g-1$ has rank 16, then derive a contradiction.

From (6.4), $M+M g \cong A_{2} \otimes E_{8}$. From (3.5), there are only three involutions in $O\left(A_{2} \otimes E_{8}\right)$ which have negated space isometric to $E E_{8}$. Therefore, $L>M+M g$. Since $\mathcal{D}(M+M g) \cong 3^{8}, L /(M+M g)$ is an elementary abelian 3-group of rank at most 4 , which is totally singular in the natural $\frac{1}{3} \mathbb{Z} / \mathbb{Z}$-valued bilinear form. Note also that L is invariant under the isometry of order 3 on $A_{2} \otimes E_{8}$ coming from the natural action of $O\left(A_{2}\right) \times\{1\}$ on the tensor product. We now obtain a contradiction from (A.18) since L is rootless.
Corollary 6.23. $J_{M} \cong J_{N}$ has rank 12 and $F_{M} \cong F_{N} \cong A A_{2}$.
Proof. Use (6.12) and (6.22).
Corollary 6.24. The lattice J has rank 12 and contains each of J_{M} and J_{N} with finite index. The lattice $F=F_{D}$ has rank 2, 3 or 4 and $F /\left(F_{M}+F_{N}\right)$ is an elementary abelian 2-group.
Proof. Use (6.23) and (A.2), which implies that $F /\left(F_{M}+F_{N}\right)$ is elementary abelian.

Notation 6.25. Set $t:=t_{M}$ and $u:=t_{N}$.
Lemma 6.26. The involutions t^{g} and u commute, and in fact $t^{g} u=z$.
Proof. This is a calculation in the dihedral group of order 12. See (6.21), (6.25). We have $h=t u$ and $h^{3}=z$, so $t^{g}=t^{h^{2}}=u t u t \cdot t \cdot t u t u=u t u t u t u=u h^{3}=u z$.

We now study how t_{N} acts on the lattice J.
Lemma 6.27. For $X=M$ or N, J_{X} and K_{X} are D-submodules.
Proof. Clearly, t^{g} fixes $L_{M}=M+M g, F_{M}, J_{M}$ and $K_{M}=\left(M \cap J_{M}\right)+\left(M \cap J_{M}\right) g$, the D_{M}-submodule of J generated by the negated spaces of all involutions of D_{M}. Since $t_{N}=u=t^{g} z$, it suffices to show that the central involution z fixes all these sublattices, but that is trivial.
Lemma 6.28. The action of t on J / J_{M} is trivial.
Proof. Use (A.7) and the fact that $M \cap J \leq J_{M}$.

6.2.1 $D I H_{12}$: Study of J_{M} and J_{N}

We work out some general points about $F_{M}, F_{N}, J_{M}, J_{N}, K_{M}$ and K_{N}. We continue to use the hypothesis that L has no roots.

Lemma 6.29. As in (6.25), $t=t_{M}, u=t_{N}$.
(i) $J(g-1) \leq J_{M} \cap J_{N}$ and $J /\left(J_{M} \cap J_{N}\right)$ is an elementary abelian 3-group of rank at most $\frac{1}{2} \operatorname{rank}(J)=6$. Also, $J /\left(J_{M} \cap J_{N}\right)$ is a trivial D-module.
(ii) $J=J_{M}^{2}+J_{N}=L(g-1)$.

Proof. (i) Observe that g acts on J / J_{M} and that t acts trivially on this quotient (6.28). Since g is inverted by t, g acts trivially on J / J_{M}. A similar argument with u proves g acts trivially on J / J_{N}. Therefore, $J(g-1) \leq J_{M} \cap J_{N}$. Since $(g-1)^{2}$ acts on J as $-3 g$, (i) follows.
(ii) We observe that $L_{X}(g-1) \leq J_{X}$, for $X=M, N$. Since $L=M+N$, $L(g-1) \leq J_{M}+J_{N}$. The right side is contained in $J=\operatorname{ann}_{L}(F)$. Suppose that $L(g-1) \lesseqgtr J$. Then $J / L(g-1)$ is a nonzero 3 -group which is a trivial module for D. It follows that $L /(F+L(g-1))$ is an elementary abelian 3-group which has a quotient of order 3 and is a trivial D-module. This is impossible since $L=M+N$. So, $J=J_{M}+J_{N}=L(g-1)$.

Lemma 6.30. $F=F_{M}+F_{N}$.
Proof. Since F is the sublattice of fixed points for g. Then F is a direct summand of L and is D-invariant. Also, D acts on F as a four-group and $\operatorname{Tel}(F, D)$ has finite index in F. If E is any D-invariant 1-space in F, t or u negates E (because $L=M+N)$. Therefore, $F_{M}+F_{N}$ has finite index in F and is in fact 2-coelementary abelian (A.2).

Consider the possibility that $F_{M}+F_{N} \lesseqgtr F$, i.e., that $F_{M}+F_{N}$ is not a direct summand. Since F_{M} and F_{N} are direct summands, there are $\alpha \in F_{M}, \beta \in F_{N}$ so that $\frac{1}{2}(\alpha+\beta) \in L$ but $\frac{1}{2} \alpha$ and $\frac{1}{2} \beta$ are not in L. Since by (6.23) $F_{M} \cong F_{N} \cong A A_{2}$, we may assume that α, β each have norm 4. Then by Cauchy-Schwartz, $\frac{1}{2}(\alpha+\beta)$ has norm at most 4 and, if equal to $4, \alpha$ and β are equal. But then, $\frac{1}{2}(\alpha+\beta)=\alpha \in L$, a contradiction.

6.2.2 $D I H_{12}$: the structure of F

Lemma 6.31. Suppose that $F_{M} \neq F_{N}$. Then $F_{M} \cap F_{N}$ is 0 or has rank 1 and is spanned by a vector of norm 4 or norm 12.

Proof. Since F_{M} and F_{N} are summands, $F_{M} \neq F_{N}$ implies $\operatorname{rank}\left(F_{M}+F_{N}\right) \geq 3$, so $F_{M}+F_{N}$ has rank 3 or 4 . Assume that $F_{M} \cap F_{N}$ has neither rank 0 or rank 2 . Since $O\left(F_{M}\right) \cong S y m_{3} \times 2$ and $F_{M} \cap F_{N}$ is an eigenlattice in F_{M} for the involution t_{N}, it must be spanned by a norm 4 vector or is the annihilator of a norm 4 vector.

Lemma 6.32. Suppose that the distinct vectors u, v have norm 4 and u, v are in $L \backslash(J+F)$. We suppose that $u \in L_{M} \backslash(J+F)$ and $v \in L_{N} \backslash(J+F)$. Write
$u=u_{1}+u_{2}$ and $v=v_{1}+v_{2}$, where $u_{1}, v_{1} \in \operatorname{span}_{\mathbb{R}}(J)$ and $u_{2}, v_{2} \in \operatorname{span}_{\mathbb{R}}(F)$. We suppose that each of $u_{1}, u_{2}, v_{1}, v_{2}$ are nonzero. Then
(i) u_{1} and v_{1} have norm $\frac{8}{3}$;
(ii) u_{2} and v_{2} have norm $\frac{4}{3}$.

Proof. Since $4=(u, u)=\left(u_{1}, u_{1}\right)+\left(u_{2}, u_{2}\right)$, (i) follows from (ii). To prove (ii), use the fact that $L /(J \perp F)$ is a 3-group, a rescaled version of (D.6) and $\left(u_{2}, u_{2}\right)<$ (u,u).

Lemma 6.33. (i) Suppose that $F_{M} \cap F_{N}=\mathbb{Z} u$, where $u \neq 0$. Let v span ann $n_{M}(u)$ and let $w \operatorname{span}_{\text {ann }}^{F_{N}}(u)$. Then $F=\operatorname{span}\left\{u, v, w, \frac{1}{2}(u+v), \frac{1}{2}(u+w), \frac{1}{2}(v+w)\right\}$ and $(u, u)=4,(v, v)=12=(w, w)$.
(ii) If the rank of $O_{3}(\mathcal{D}(F))$ is at least 2, then
(a) $F=F_{M} \perp F_{N}($ rank 4); or
(b) F has rank 3 and the number of nontrivial cosets of $O_{3}(\mathcal{D}(F)) \cong 3 \times 3$ which have representing elements whose norms lie in $\frac{4}{3}+2 \mathbb{Z}$, respectively $\frac{8}{3}+2 \mathbb{Z}$ are 4 and 4, respectively.

Proof. (i) By (6.31), u has norm 4 or 12 . The listed generators span $F=F_{M}+F_{N}$ since $F_{M}=\operatorname{span}\left\{u, v, \frac{1}{2}(u+v)\right\}$ and $F_{N}=\operatorname{span}\left\{u, w, \frac{1}{2}(u+w)\right\}$. If $(u, u)=12$, then v and w have norm 4 and $\frac{1}{2}(v+w)$ is a root in F, whereas L is rootless. So, $(u, u)=4$ and $(v, v)=12=(w, w)$.

Now we prove (ii). Since we have already discussed the case of $\operatorname{rank}(F)$ equal to 2 and 4, we assume $\operatorname{rank}(F)=3$, for which we may use the earlier results. In the above notation, we may assume that $F=\operatorname{span}\left\{u, v, w, \frac{1}{2}(u+v), \frac{1}{2}(u+w), \frac{1}{2}(v+w)\right\}$ and $(u, u)=4$ and $(v, v)=12=(w, w)$. Then $O_{3}(\mathcal{D}(F)) \cong 3^{2}$ and the pair of elements $\frac{1}{3} v, \frac{1}{3} w$ map modulo F to generators of $O_{3}(\mathcal{D}(F))$. Since their norms are $\frac{4}{3}, \frac{4}{3}$ and they are orthogonal, the rest of (ii) follows.

6.2.3 $D I H_{12}$: A comparison of eigenlattices

Notation 6.34. Let ν be the usual additive 3 -adic valuation on \mathbb{Q}, with $\nu\left(3^{k}\right)=k$. Set $P:=M g \cap J, K:=P+P g=\mathbb{Z}[\langle g\rangle] P, R:=\operatorname{ann}_{K}(P)$. Note that P is the (-1)-eigenlattice of t^{g} in both J and K while R is the $(+1)$-eigenlattice of t^{g} in K.

We study the actions of u on J, J_{M}, P, K and R.
Lemma 6.35. $J=J_{M}=J_{N}$ and $\mathcal{D}(J) \cong 3^{6}$.
Proof. Since J contains J_{M} with finite index, we may use (6.20).
Notation 6.36. Define integers $r:=\operatorname{rank}\left(P^{+}(u)\right), s:=\operatorname{rank}\left(P^{-}(u)\right)$. We have $r=\operatorname{rank}\left(R^{-}(u)\right), s=\operatorname{rank}\left(R^{+}(u)\right)$ and $r+s=6$.

Corollary 6.37. $(r, s) \in\{(2,4),(4,2),(6,0)\}$.
Proof. Since $P^{-}+R^{-}$has finite index 3^{p} in $J^{-}(u)=N \cap J \cong E E_{6}$ and $\operatorname{det}\left(P^{-}+\right.$ $\left.R^{-}\right)=2^{m} 3^{1+r}$, for some $m \geq 6$, the determinant index formula implies that r is even. Similarly, we get s is even. If $r=0$, then $s=6$ and $J \cap M g=J \cap N$, and so $z:=t^{g} u$ is the identity on J. Since $t^{g} \neq u$, we have a contradiction to the $D I H_{4}$ theory since the common negated space for t^{g} and u is at least 6-dimensional. So, $r \neq 0$.

$6.3 s=0$

Lemma 6.38. If $s=0$, then the pair $M g, N$ is in case $D I H_{4}(15)$ or $D I H_{4}(16)$.
Proof. In this case, $M g \cap N$ is RSSD in F_{N} so is isometric to $A A_{2}$ or $A A_{1}$ or $\sqrt{6} A_{1}$. Then DIH_{4} theory implies that $M g \cap N$ is isometric to $A A_{1}$ or 0 .

Lemma 6.39. $s \neq 0$.
Proof. Suppose that $s=0$. Then u acts as 1 on $M g \cap J$. The sublattice $(M g \cap J) \perp(N \cap J)$ has determinant $2^{12} 3^{2}$ is contained in $T e l(J, u)$, which has determinant $2^{12} \operatorname{det}(J)=2^{12} 3^{6}$. Since $M g \cap J=J^{-}\left(t^{g}\right)$, it follows from determinant considerations that $N \cap J$ is contained with index 3^{2} in $J^{+}\left(t^{g}\right)$. Since $s=0$, $J^{+}\left(t^{g}\right) \leq J^{-}(u)=N \cap J$ and we have a contradiction.

6.4 $s \in\{2,4\}$

Lemma 6.40. If $s>0$ and $\operatorname{det}\left(P^{-}(u)\right)$ is not a power of 2 , then $s=2$ and $P^{-}(u) \cong 2 A_{2}$ and the pair $M g, N$ is in case $\mathrm{DIH}_{4}(12)$.

Proof. Since $P^{-}(u)$ is RSSD in P and $\operatorname{det}\left(P^{-}(u)\right)$ is not a power of 2, (D.16) implies that $P^{-}(u) \cong A A_{5}$ or $2 A_{2}$ or $\left(2 A_{2}\right)\left(A A_{1}\right)^{m}$. Since $s=\operatorname{rank}\left(P^{-}(u)\right)$ is 2 or 4, we have $P^{-}(u) \cong 2 A_{2}$ or $\left(2 A_{2}\right)\left(A A_{1}\right)^{2}$. By $D I H_{4}$ theory, $M g \cap N \cong D D_{4}$. Since $P^{-}(u)$ is contained in $M g \cap N, P^{-}(u) \cong 2 A_{2}$.

Lemma 6.41. (i) If $s>0$ and $\operatorname{det}\left(P^{-}(u)\right)$ is a power of 2 , then $s=2$ and $P^{-}(u) \cong A A_{1} \perp A A_{1}$ or $s=4$ and $P^{-}(u) \cong D D_{4}$.
(ii) If $P^{-}(u) \cong D D_{4}$, the pair $M g, N$ is in case $D I H_{4}(12)$.
(iii) If $P^{-}(u) \cong A A_{1} \perp A A_{1}$, the pair $M g, N$ is in case $D I H_{4}(14)$. In particular, $F_{M} \cap F_{N}=0$ and so $F=F_{M} \perp F_{N}$.

Proof. (i) Use (D.16) and evenness of s.
(ii) This follows from $D I H_{4}$ theory since $M g \cap N$ contains a copy of $D D_{4}$ and $M g \neq N$.
(iii) Since $\operatorname{dim}\left(P^{-}(u)\right)=2$, it suffices by DIH_{4} theory to prove that $\operatorname{dim}(M g \cap$ $N) \neq 4$. Assume by way of contradiction that $\operatorname{dim}(M g \cap N)=4$. Then $M g \cap N \cong$ $D D_{4}$ and $\operatorname{rank}(M g \cap N \cap F)=2$. This means that $F=F_{M}=F_{N} \cong A A 2$. Therefore, $M g \cap N \cong D D_{4}$ contains the sublattice $P^{-}(u) \perp F \cong A A_{1} \perp A A_{1} \perp$ $A A_{2}$, which is impossible.

Lemma 6.42. Suppose that $P^{-}(u)$ is isometric to $2 A_{2}$. Then $\operatorname{rank}(L)=14$ and L has roots.

Proof. We have $\operatorname{det}\left(P^{-}(u) \perp R^{-}(u)\right)=2^{2} 3 \cdot 2^{6} 3^{4}=2^{8} 3^{5}$. Since $N \cap J$ covers J / K_{M}, the determinant formula implies that $\left|J: K_{M}\right|=3^{2}$ and so $\operatorname{det}(J)=3^{4}$. Now use (6.20).

Lemma 6.43. $P^{-}(u)$ is not isometric to $A A_{1} \perp A A_{1}$.

Proof. Suppose $P^{-}(u) \cong A A_{1} \perp A A_{1}$. Then, $P^{+}(u) \cong \sqrt{2} Q$, where Q is the rank 4 lattice which is described in (D.19). Also, $R^{+} \cong \sqrt{6} A_{1}^{2}$ and $R^{-} \cong \sqrt{6} Q$. Then $P^{-}(u) \perp R^{-}(u)$ embeds in $E E_{6}$. Since sublattices of E_{6} which are isometric to A_{1}^{2} are in a single orbit under $O\left(E_{6}\right)$, it follows that $\sqrt{3} Q$ embeds in Q. However, this is in contradiction with (D.24).

To summarizes our conclusion, we have the proposition.
Proposition 6.44. $P^{-}(u)=M g \cap N \cong D D 4$ and the pair is in case $D I H_{4}(12)$.

6.5 Uniqueness of the case $D I H_{12}(16)$

As in other sections, we aim to use (4.1) for the case (6.41) (ii).
The input M, N determines the dihedral group $\langle t, u\rangle$ and therefore $M g$ and $M g+N$. By DIH_{4} theory, the isometry type of $M g+N$ is determined up to isometry. Since $M g+N$ has finite index in $M+N, M+N$ is determined by (4.1). Thus, Theorem (6.1) is proved.

$7 \quad D I H_{10}$ theory

Notation 7.1. Define $t:=t_{M}, h:=t_{M} t_{N}$. We suppose h has order 5. Let $g:=h^{3}$. Then g also has order 5 and $D:=\left\langle t_{M}, t_{M}\right\rangle=\langle t, g\rangle$. In addition, we have $N=M g$. Define $F:=M \cap N, J:=\operatorname{ann}_{L}(F)$. Note that F is the common negated lattice for t_{M} and t_{N} in L, so is the fixed point sublattice for g and is a direct summand of L A.10).

Definition 7.2. Define the integer s by $5^{s}:=|L /(J+F)|$.
Lemma 7.3. Equivalent are (i) $L=J+F$; (ii) $s=0$; (iii) $F=0$; (iv) $J=L$.
Proof. Trivially, $L=J+F$ and $s=0$ are equivalent. These conditions follow if $F=0$ or if $J=0$ (but the latter does not happen since g has order 5). If $L=J+F$ holds, then $M=(J \cap M) \perp F$ which implies that $F=0$ and $J=L$ since $M \cong E E_{8}$ is orthogonally decomposable.

Lemma 7.4. (i) g acts trivially on both F and L / J.
(ii) $g-1$ induces an embedding $L / F \rightarrow J$.
(iii) $g-1$ induces an embedding $L /(J+F) \rightarrow J / J(g-1)$, whose rank is at most $\frac{1}{4} \operatorname{rank}(J)$ since $(g-1)^{4}$ induces the map $5 w$ on J, where $w=-g^{2}+g-1$ induces an invertible linear map on J.
(iv) $s \leq \frac{1}{4} \operatorname{rank}(J)$, so that $s=0$ and $F=0$ or $s \in\{1,2,3,4\}$ and $F \neq 0$.
(v) The inclusion $M \leq L$ induces an isomorphism $M /((M \cap J)+F) \cong L /(J+$ $F) \cong 5^{s}$, an elementary abelian group.

Proof. (i) and (ii) are trivial.
(iii) This is equivalent to some known behavior in the ring of integers $\mathbb{Z}\left[e^{2 \pi i / 5}\right]$, but we give a self-contained proof here. We calculate $(g-1)^{4}=g^{4}-4 g^{3}+6 g^{2}-$ $4 g+1=\left(g^{4}+g^{3}+g^{2}+g+1\right)+5 w$, which in $\operatorname{End}(J)$ is congruent to $5 w$. Note that
the images of $g+1$ and $g^{3}+1$ are non zero-divisors (e.g., because $(g+1)\left(g^{4}-g^{3}+\right.$ $\left.g^{2}-g+1\right)=g^{5}+1=2$, and 2 is a non zero-divisor) and are associates in $\operatorname{End}(J)$ so that their ratio w is a unit. For background, we mention GHig.
(iv) The Jordan canonical form for the action of $g-1$ on $J / 5 J$ is a direct sum of degree 4 indecomposable blocks, by (iii), since $(g-1)^{4}$ has determinant $5^{\operatorname{rank}(J)}$. Since the action of g on L / J is trivial, $s \leq \frac{1}{4} \operatorname{rank}(J)$. Since $\operatorname{rank}(J) \leq 16, s \leq 4$. For the case $s=0$, see (7.3).
(v) Since $N=M g, N$ and M are congruent modulo J. Therefore $L=M+N=$ $M+J$ and so $5^{s} \cong L /(J+F)=(M+J) /(J+F)=(M+(J+F)) /(J+F) \cong$ $M /(M \cap(J+F))$ (by a basic isomorphism theorem) and this equals $M /((M \cap J)+F)$ (by the Dedekind law).

Since $L(g-1) \leq J,(g-1)$ annihilates $L /(J+F)$. Since $(g-1)^{4}$ takes $(L /(J+F))$ to $5(L /(J+F))$, it follows that $5 L \leq J+F$. That is, $L /(J+F)$ is an elementary abelian 5 -group.

Lemma 7.5. $s=0,1,2$ or 3 and $F=M \cap N \cong 0, A A_{4}, \sqrt{2} \mathcal{M}(4,25)$ or $\sqrt{2} A_{4}(1)$.
Proof. We have that $\frac{1}{\sqrt{2}} M \cong E_{8}$. The natural map of $\frac{1}{\sqrt{2}} M$ to $\mathcal{D}\left(\frac{1}{\sqrt{2}} F\right)$ is onto and has kernel $\left.\frac{1}{\sqrt{2}}((M \cap J) \perp F)\right)$. Therefore, $\mathcal{D}\left(\frac{1}{\sqrt{2}} F\right) \cong 5^{s}$ is elementary abelian. Now apply (D.9) to get the possibilities for $\frac{1}{\sqrt{2}} F$ and hence for F. Note that $M=N$ is impossible here, since $t_{M} \neq t_{N}$.

7.1 $D I H_{10}$: Which ones are rootless?

From Lemma 7.5 $s=0,1,2$ or 3 . We shall eliminate the case $s=1, s=2$ and $s=3$, proving that $s=0$ and $F=0$.

Lemma 7.6. If $L=M+N$ is integral and rootless, then $F=M \cap N=0$.
Proof. By Lemma 7.5, we know that $M \cap N \cong 0, A A_{4} \sqrt{2} \mathcal{M}(4,25)$ or $\sqrt{2} A_{4}(1)$ since $M \neq N$. We shall eliminate the cases $M \cap N \cong A A_{4}, \sqrt{2} \mathcal{M}(4,25)$ and $\sqrt{2} A_{4}(1)$.

Case: $F=M \cap N \cong A A_{4}$. In this case, $M \cap J \cong N \cap J \cong A A_{4}$. Therefore, there exist $\alpha \in F^{*}$ and $\beta \in(M \cap J)^{*}$ such that $M=\operatorname{span}_{\mathbb{Z}}\{F+(M \cap J), \alpha+\beta\}$. Without loss, we may assume $(\alpha, \alpha)=12 / 5$ and $(\beta, \beta)=8 / 5$. Let $\gamma=\beta g$. Then, $(\alpha+\beta) g=\alpha+\gamma \in N$ and we have $N=\operatorname{span}_{\mathbb{Z}}\{F+(N \cap J), \alpha+\gamma\}$. Since L is integral and rootless and since $\alpha+\beta \in L$ has norm 4, by (D.11),

$$
0 \geq(\alpha+\beta,(\alpha+\beta) g)=(\alpha+\beta, \alpha+\gamma)=(\alpha, \alpha)+(\beta, \gamma)=\frac{12}{5}+(\beta, \gamma)
$$

Thus, we have $(\beta, \gamma) \leq-\frac{12}{5}$. However, by the Schwartz inequality,

$$
|(\beta, \gamma)| \leq \sqrt{(\beta, \beta)(\gamma, \gamma)}=\frac{8}{5},
$$

which is a contradiction.

Case: $F=M \cap N \cong \sqrt{2} \mathcal{M}(4,25)$. In this case, $M \cap J \cong N \cap J \cong \sqrt{2} \mathcal{M}(4,25)$, also. Let $\sqrt{2} u, \sqrt{2} v, \sqrt{2} w, \sqrt{2} x$ be a set of orthogonal elements in $F \cong \sqrt{2} \mathcal{M}(4,25)$ such that their norms are $4,8,20,40$, respectively (cf. (B.7)). Let $\sqrt{2} u^{\prime}, \sqrt{2} v^{\prime}, \sqrt{2} w^{\prime}$, $\sqrt{2} x^{\prime}$ be a sequence of pairwise orthogonal elements in $M \cap J$ such that their norms are $4,8,20,40$, respectively. By the construction in (B.8) and the uniqueness assertion, we may assume that the element $\gamma=\frac{\sqrt{2}}{5}\left(w+x+x^{\prime}\right)$ is in M. Since γ has norm 4, by (D.11),

$$
0 \geq(\gamma, \gamma g)=\frac{2}{25}\left(w+x+x^{\prime}, w+x+x^{\prime} g\right)=\frac{60}{25}+\frac{2}{25}\left(x^{\prime}, x^{\prime} g\right) .
$$

Thus, we have $\left(x^{\prime}, x^{\prime} g\right) \leq-30$. By the Schwartz inequality,

$$
\left|\left(x^{\prime}, x^{\prime} g\right)\right| \leq \sqrt{\left(x^{\prime}, x^{\prime}\right)\left(x^{\prime} g, x^{\prime} g\right)}=20
$$

which is again a contradiction.
Case: $F=M \cap N \cong \sqrt{2} A_{4}(1)$. Since F is a direct summand of M and N, we have $M \cap J \cong N \cap J \cong \sqrt{2} A_{4}(1)$ by (D.13). Recall that $\left(A_{4}(1)\right)^{*} \cong \frac{1}{\sqrt{5}} A_{4}$.

By the construction in (D.14), there exists $\alpha \in 2 F^{*}$ with $(\alpha, \alpha)=2 \times 8 / 5=16 / 5$ and $\alpha_{M} \in 2(M \cap J)^{*}$ with $\left(\alpha_{M}, \alpha_{M}\right)=2 \times 2 / 5=4 / 5$ such that $y=\alpha+\alpha_{M} \in M$.

Since $(y, y)=4$, by (D.11),

$$
0 \geq(y, y g)=\left(\alpha+\alpha_{M}, \alpha+\alpha_{M} g\right)=(\alpha, \alpha)+\left(\alpha_{M}, \alpha_{M} g\right)
$$

and we have $\left(\alpha_{M}, \alpha_{M} g\right) \leq-(\alpha, \alpha)=-16 / 5$. However, by the Schwartz inequality,

$$
\left|\left(\alpha_{M}, \alpha_{M} g\right)\right| \leq \sqrt{\left(\alpha_{M}, \alpha_{M}\right)\left(\alpha_{M} g, \alpha_{M} g\right)}=4 / 5
$$

which is a contradiction.

7.2 $D I H_{10}$: An orthogonal direct sum

For background, we refer to (B.3), (B.10), (D.10) - (D.12). Our goal here is to build up an orthogonal direct sum of four copies of $A A_{4}$ inside L. We do so one summand at a time. This direct sum shall determine L (see the following subsection).

Notation 7.7. Define $Z(i):=\{x \in M \mid(x, x)=4,(x, x g)=i\}$. Note that $(x, x g)=$ $-3,-2,-1,0$, or 1 by Lemma D. 11 .

Lemma 7.8. For $u, v \in M,(u, v g)=\left(u, v g^{-1}\right)=(u g, v)$.
Proof. Since t preserves the form, $(u, v g)=(u t, v g t)=\left(-u, v t g^{-1}\right)=\left(-u,-v g^{-1}\right)=$ $\left(u, v g^{-1}\right)$. This equals ($u g, v$) since g preserves the form.

Lemma 7.9. If u, v, w is any set of norm 4 vectors so that $u+v+w=0$, then one or three of u, v, w lies in $Z(-2) \cup Z(0)$. In particular, $Z(-2) \cup Z(0) \neq \emptyset$.

Proof. Suppose that we have norm 4 vectors u, v, w so that $u+v+w=0$. Then $0=(u+v+w, u g+v g+w g)=(u, u g)+(v, v g)+(w, w g)+(u, v g)+(u g, v)+$ $(u, w g)+(u g, w)+(v, w g)+(v g, w) \equiv(u, u g)+(v, v g)+(w, w g)(\bmod 2)$, by (7.8), whence evenly many of $(u, u g),(v, v g),(w, w g)$ are odd.

Now we look at D-submodules of L and decompositions.

Definition 7.10. Let $M_{4}=\{\alpha \in M \mid(\alpha, \alpha)=4\}$. Define a partition of M_{4} into sets $M_{4}^{1}:=\left\{\alpha \in M_{4} \mid \alpha \mathbb{Z}[D] \cong A_{4}(1)\right\}$ and $M_{4}^{2}:=\left\{\alpha \in M_{4} \mid \alpha \mathbb{Z}[D] \cong A A_{4}\right\}$ (cf. (D.11)). For $\alpha, \beta \in M_{4}^{2}$, say that α and β are equivalent if and only if $\alpha \mathbb{Z}[D]=\beta \mathbb{Z}[D]$. Define the partition $N_{4}=N_{4}^{1} \cup N_{4}^{2}$ and equivalence relation on N_{4}^{2} similarly.

Remark 7.11. The linear maps $g^{i}+g^{-i}$ take M into M since they commute with t. Also, $g^{2}+g^{3}$ and $g+g^{4}$ are linear isomorphisms of M onto M since their product is -1 . Note that they may not preserve inner products.

Lemma 7.12. $M_{4}=M_{4}^{2}$ and $M_{4}^{1}=\emptyset$.
Proof. Supposing the lemma to be false, we take $\alpha \in M_{4}^{1}$. Then the norm of $\alpha\left(g^{2}+g^{3}\right)$ is $4+2\left(\alpha g^{2}, \alpha g^{3}\right)+4=8-2=6$ (cf. (D.11)), which is impossible since $M \cong E E_{8}$ is doubly even.

Lemma 7.13. Let $\alpha \in M_{4}$. Then $M \cap \alpha \mathbb{Z}[D] \cong A A_{1}^{2}$.
Proof. Let $\alpha \in M_{4}$. Then by (7.12), $\alpha \mathbb{Z}[D] \cong A A_{4}$. In this case, we have either (1) $(\alpha, \alpha g)=-2$ and $\left(\alpha, \alpha g^{2}\right)=0$ or (2) $(\alpha, \alpha g)=0$ and $\left(\alpha, \alpha g^{2}\right)=-2$.

In case (1), we have $\alpha\left(g^{2}+g^{3}\right) \in M_{4}$ and α and $\alpha\left(g^{2}+g^{3}\right)$ generate a sublattice of type $A A_{1}^{2}$ in $M \cap \alpha \mathbb{Z}[D]$. Similarly, $\alpha g, \alpha\left(g^{2}+g^{3}\right) g$ generate a sublattice of type $A A_{1}^{2}$ in $N \cap \alpha \mathbb{Z}[D]$. Since $M \cap N=0$, we have $\operatorname{rank}(M \cap \alpha \mathbb{Z}[D])=\operatorname{rank}(N \cap \alpha \mathbb{Z}[D])=2$. Moreover, $\left\{\alpha, \alpha\left(g^{2}+g^{3}\right), \alpha g, \alpha\left(g^{3}+g^{4}\right)\right\}$ forms a \mathbb{Z}-basis of an $A A_{4}$-sublattice of $\alpha \mathbb{Z}[D] \cong A A_{4}$. Thus, $\left\{\alpha, \alpha\left(g^{2}+g^{3}\right), \alpha g, \alpha\left(g^{3}+g^{4}\right)\right\}$ is also a basis of $\alpha \mathbb{Z}[D]$ and $\operatorname{span}_{\mathbb{Z}}\left\{\alpha, \alpha\left(g^{2}+g^{3}\right)\right\}$ is summand of $\alpha \mathbb{Z}[D]$. Hence, $M \cap \alpha \mathbb{Z}[D]=\operatorname{span}_{\mathbb{Z}}\left\{\alpha, \alpha\left(g^{2}+\right.\right.$ $\left.\left.g^{3}\right)\right\} \cong A A_{1}^{2}$ as desired.

In case (2), we have $\alpha\left(g+g^{4}\right) \in M_{4}$ and thus $M \cap \alpha \mathbb{Z}[D]=\operatorname{span}_{\mathbb{Z}}\left\{\alpha, \alpha\left(g+g^{4}\right)\right\} \cong$ $A A_{1}^{2}$ by an argument as in case (1).

Lemma 7.14. Suppose that $\alpha \in M_{4}^{2}, \beta \in N_{4}^{2}$ and $\alpha \mathbb{Z}[D]=\beta \mathbb{Z}[D]$. Let the equivalence class of α be $\left\{ \pm \alpha, \pm \alpha^{\prime}\right\}$ and let the equivalence class of β be $\left\{ \pm \beta, \pm \beta^{\prime}\right\}$. After interchanging β and one of $\pm \beta^{\prime}$ if necessary, the Gram matrix of $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ is

$$
2\left(\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 2 & 1 & -1 \\
0 & 1 & 2 & 0 \\
1 & -1 & 0 & 2
\end{array}\right)=\left(\begin{array}{cccc}
4 & 0 & 0 & 2 \\
0 & 4 & 2 & -2 \\
0 & 2 & 4 & 0 \\
2 & -2 & 0 & 4
\end{array}\right) .
$$

Proof. We think of A_{4} as the 5 -tuples in \mathbb{Z}^{5} with zero coordinate sum. Index coordinates with integers mod 5: $0,1,2,3,4$. Consider g as addition by 1 mod 5 and t as negating indices modulo 5 . We may take $\alpha:=\sqrt{2}(0,1,0,0,-1), \alpha^{\prime}:=$ $\sqrt{2}(0,0,1,-1,0)$. We define $\beta:=\alpha g, \beta^{\prime}:=\alpha^{\prime} g$. The computation of the Gram matrix is straightforward.

Lemma 7.15. Let $m \geq 1$. Suppose that U is a rank $4 m \mathbb{Z}[D]$-invariant sublattice of L which is generated as a $\mathbb{Z}[D]$-module by S, a sublattice of $U \cap M$ which is isometric to $A A_{1}^{2 m}$. Then $\operatorname{ann}_{M}(U)$ contains a sublattice of type $A A_{1}^{8-2 m}$.

Proof. We may assume that $m \leq 3$. Since t inverts g and g is fixed point free on $L, U^{-}(t)=U \cap M$ has rank $2 m$. Let S be a sublattice of $U \cap M$ of type $A A_{1}^{2 m}$. Then S has finite index in $U \cap M$. Let $W:=a n n_{L}(U)$, a direct summand of L of rank $16-4 m$. The action of g on W is fixed point free and t inverts g under conjugation, so $W \cap M=a n n_{M}(U)$ is a direct summand of M of rank $8-2 m$. It is contained in hence is equal to the annihilator in M of S, by rank considerations, so is isometric to $D D_{6}, D D_{4}, A A_{1}^{4}$ or $A A_{1}^{2}$. Each of these lattices contains a sublattice of type $A A_{1}^{8-2 m}$.

Corollary 7.16. L contains an orthogonal direct sum of four D-invariant lattices, each isometric to $A A_{4}$.

Proof. We prove by induction that for $k=0,1,2,3,4, L$ contains an orthogonal direct sum of $k D$-invariant lattices, each isometric to $A A_{4}$. This is trivial for $k=0$. If $0 \leq k \leq 3$, let U be such an orthogonal direct sum of k copies of $A A_{4}$. Then $M \cap U \cong A A_{1}^{2 k}$ and thus $a n n_{M}(U)$ contains a norm 4 vector, say α. By (7.12), $\alpha \mathbb{Z}[D] \cong A A_{4}$. So, $U \perp \alpha \mathbb{Z}[D]$ is an orthogonal direct sum of $(k+1) D$-invariant lattices, each isometric to $A A_{4}$.

Corollary 7.17. $L=M+N$ is unique up to isometry.
Proof. Uniqueness follows from the isometry type of U (finite index in L) and (4.1). We take the finite index sublattices $M_{1}:=M \cap U$ and $N_{1}:=N \cap U$ and use (7.14). An alternate proof is given by the glueing in (7.18)

7.3 $D I H_{10}$: From $A A_{4}^{4}$ to L

We discuss the glueing from a sublattice $U=U_{1} \perp U_{2} \perp U_{3} \perp U_{4}$, as in (7.16) to L. We assume that each U_{i} is invariant under D.

By construction, $M /(M \cap U) \cong 2^{4}, M \cap U \cong A A_{1}^{8}$. A similar statement is true with N in place of M. Since $L=M+N$, it follows that L / U is a 2 -group. Since g acts fixed point freely on $L / U, L / U$ is elementary abelian of order 2^{4} or 2^{8}. Also, L / U is the direct sum of $C_{L / U}(t)$ and $C_{L / U}(u)$, and each of the latter groups is elementary abelian of order $|L: U|^{\frac{1}{2}}$. So $|L: U|^{\frac{1}{2}}=|M: M \cap U|^{2}=\left(2^{4}\right)^{2}=2^{8}$. Therefore, $\operatorname{det}(L)=5^{4}$ and the Smith invariant sequence of L is $1^{12} 5^{4}$.

Proposition 7.18. The glueing from U to L may be identified with the direct sums of these two glueings from $U \cap M$ to M and $U \cap N$ to N. Each glueing is based on the extended Hamming code with parameters [8,4,4] with respect to the orthogonal frame.

$7.4 \quad D I H_{10}$: Explicit glueing and tensor products

In this section, we shall give the glue vectors from $U=U_{1} \perp U_{2} \perp U_{3} \perp U_{4}$ to L explicitly in Proposition 7.23 (cf. Proposition [7.18). We also show that L contains a sublattice isomorphic to a tensor product $A_{4} \otimes A_{4}$.

Notation 7.19. Recall that $M \cap U_{i} \cong A A_{1} \perp A A_{1}$ for $i=1,2,3,4$. Let $\alpha_{i} \in$ $M_{4} \cap U_{i}, i=1,2,3,4$, such that $\left(\alpha_{i}, \alpha_{i} g\right)=-2$. Note that such α_{i} exists because if $\left(\alpha_{i}, \alpha_{i} g\right) \neq-2$, then $\left(\alpha_{i}, \alpha_{i} g\right)=0$ and $\left(\alpha_{i}, \alpha_{i} g^{2}\right)=-2$. In this case, $\tilde{\alpha}_{i}=$ $\alpha_{i}\left(g+g^{4}\right) \in M_{4} \cap U_{i}$ and $\left(\tilde{\alpha}_{i}, \tilde{\alpha}_{i} g\right)=-2$ (7.11).

Set $\alpha_{i}^{\prime}:=\alpha_{i}\left(g^{2}+g^{3}\right)$ for $i=1,2,3,4$. Then $\alpha_{i}^{\prime} \in M_{4} \cap U_{i}$ and $M \cap U_{i}=$ $\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{i}, \alpha_{i}^{\prime}\right\}$ (7.11).

Lemma 7.20. Use the same notation as in 7.19. Then for all $i=1,2,3,4$, we have $\left(\alpha_{i}, \alpha_{i} g\right)=-2,\left(\alpha_{i}, \alpha_{i} g^{2}\right)=0,\left(\alpha_{i}, \alpha_{i}^{\prime}\right)=0,\left(\alpha_{i}^{\prime}, \alpha_{i}^{\prime} g\right)=0$ and $\left(\alpha_{i}, \alpha_{i}^{\prime} g\right)=-2$.

Proof. By definition, $\left(\alpha_{i}, \alpha_{i} g\right)=-2$ and $\left(\alpha_{i}, \alpha_{i} g^{2}\right)=0$. Thus, we have $\left(\alpha_{i}^{\prime}, \alpha_{i}\right)=$ $\left(\alpha_{i}\left(g^{2}+g^{3}\right), \alpha_{i}\right)=0$. Also,

$$
\begin{aligned}
\left(\alpha_{i}^{\prime}, \alpha_{i}^{\prime} g\right) & =\left(\alpha_{i}\left(g^{2}+g^{3}\right), \alpha_{i}\left(g^{2}+g^{3}\right) g\right) \\
& =\left(\alpha_{i} g^{2}, \alpha_{i} g^{3}\right)+\left(\alpha_{i} g^{2}, \alpha_{i} g^{4}\right)+\left(\alpha_{i} g^{3}, \alpha_{i} g^{3}\right)+\left(\alpha_{i} g^{3}, \alpha_{i} g^{4}\right) \\
& =-2+0+4-2=0
\end{aligned}
$$

and

$$
\left(\alpha_{i}, \alpha_{i}^{\prime} g\right)=\left(\alpha_{i}, \alpha_{i}\left(g^{2}+g^{3}\right) g\right)=\left(\alpha_{i}, \alpha_{i} g^{3}\right)+\left(\alpha_{i}, \alpha_{i} g^{4}\right)=0-2=-2 .
$$

Remark 7.21. Since M and U are doubly even and since $\frac{1}{\sqrt{2}}(U \cap M) \cong\left(A_{1}\right)^{8}$ and $\left(A_{1}\right)^{*}=\frac{1}{2} A_{1}$, for any $\beta \in M \backslash(U \cap M)$,

$$
\beta=\sum_{i=1}^{4}\left(\frac{b_{i}}{2} \alpha_{i}+\frac{b_{i}^{\prime}}{2} \alpha_{i}^{\prime}\right) \quad \text { where } b_{i}, b_{i}^{\prime} \in \mathbb{Z} \text { with some } b_{i}, b_{i}^{\prime} \text { odd. }
$$

Lemma 7.22. Let $\beta \in M \backslash(U \cap M)$ with $(\beta, \beta)=4$. Then, one of the following three cases holds.
(i) $\left|b_{i}\right|=1$ and $b_{i}^{\prime}=0$ for all $i=1,2,3,4$;
(ii) $\left|b_{i}^{\prime}\right|=1$ and $b_{i}=0$ for all $i=1,2,3,4$;
(iii) There exists a 3-set $\{i, j, k\} \subset\{1,2,3,4\}$ such that $b_{i}^{2}=b_{j}^{2}=1$ and $b_{i}^{\prime 2}=b_{k}^{\prime 2}=$ 1.

Proof. Let $\beta=\sum_{i=1}^{4}\left(\frac{b_{i}}{2} \alpha_{i}+\frac{b_{i}^{\prime}}{2} \alpha_{i}^{\prime}\right) \in M \backslash(U \cap M)$ with $(\beta, \beta)=4$. Then we have $\sum_{i=1}^{4}\left(b_{i}^{2}+b_{i}^{\prime 2}\right)=4$. Since no $\left|b_{i}\right|$ or $\left|b_{i}^{\prime}\right|$ is greater than 1 (or else no b_{i} or b_{i}^{\prime} is odd), $b_{i}, b_{i}^{\prime} \in\{-1,0,1\}$. Moreover, $(\beta, \beta g)=0$ or -2 since $\beta \in M_{4}$. By (7.20),

$$
\begin{aligned}
(\beta, \beta g) & =\left(\sum_{i=1}^{4}\left(\frac{b_{i}}{2} \alpha_{i}+\frac{b_{i}^{\prime}}{2} \alpha_{i}^{\prime}\right), \sum_{i=1}^{4}\left(\frac{b_{i}}{2} \alpha_{i} g+\frac{b_{i}^{\prime}}{2} \alpha_{i}^{\prime} g\right)\right) \\
& =\frac{1}{4} \sum_{i=1}^{4}\left(b_{i}^{2}(-2)+2 b_{i} b_{i}^{\prime}(-2)\right)=-\frac{1}{2} \sum_{i=1}^{4}\left(b_{i}^{2}+2 b_{i} b_{i}^{\prime}\right) .
\end{aligned}
$$

If $(\beta, \beta g)=-2$, then

$$
\sum_{i=1}^{4}\left(b_{i}^{2}+2 b_{i} b_{i}^{\prime}\right)=4=\sum_{i=1}^{4}\left(b_{i}^{2}+b_{i}^{\prime 2}\right)
$$

and hence we have $\left(^{*}\right) \sum_{i=1}^{4} b_{i}^{\prime}\left(b_{i}^{\prime}-2 b_{i}\right)=0$.
Set $k_{i}:=b_{i}^{\prime}\left(b_{i}^{\prime}-2 b_{i}\right)$. The values of k_{i}, for all $b_{i}, b_{i}^{\prime} \in\{-1,0,1\}$, are listed in Table 9

Table 9: Values of k_{i}

b_{i}^{\prime}	0	-1	-1	-1	1	1	1
b_{i}	$-1,0,1$	-1	0	1	-1	0	1
$k_{i}=b_{i}^{\prime}\left(b_{i}^{\prime}-2 b_{i}\right)$	0	-1	1	3	3	1	-1

Note that $k_{i}=0, \pm 1$ or 3 for all $i=1,2,3,4$. Therefore, up to the order of the indices, the values for $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ are $(3,-1,-1,-1),(1,-1,1,-1),(1,-1,0,0)$ or $(0,0,0,0)$.

However, for $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(3,-1,-1,-1)$ or $(1,-1,1,-1), b_{i}^{\prime 2}=b_{i}^{2}=1$ for all $i=1,2,3,4$ and then $\sum_{i=1}^{4}\left(b_{i}^{2}+b_{i}^{\prime 2}\right)=8>4$. Therefore, $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=$ $(1,-1,0,0)$ or $(0,0,0,0)$.

If $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(1,-1,0,0)$, then we have, up to order, $\left(b_{1}^{\prime}\right)^{2}=1$ (whence $k_{1}=1$), $b_{1}=0, b_{2}^{\prime}=b_{2}= \pm 1$ (whence $k_{2}=-1$) and $b_{3}^{\prime}=b_{4}^{\prime}=0$. Since $\sum_{i=1}^{4}\left(b_{i}^{2}+b_{i}^{\prime 2}\right)=4, b_{3}^{2}+b_{4}^{2}=1$ and hence we have (iii).

If $k_{i}=b_{i}^{\prime}\left(b_{i}^{\prime}-2 b_{i}\right)=0$ for all $i=1,2,3,4$, then $b_{i}^{\prime}=0$ for all i and we have (i). Note that if $b_{i}^{\prime} \neq 0, b_{i}^{\prime}-2 b_{i} \neq 0$.

Now assume $(\beta, \beta g)=0$. Then $\sum_{i=1}^{4}\left(b_{i}^{2}+2 b_{i} b_{i}^{\prime}\right)=0$. Note that this equation is the same as the above equation $\left(^{*}\right)$ in the case for $(\beta, \beta g)=-2$ if we replace b_{i} by b_{i}^{\prime} and b_{i}^{\prime} by $-b_{i}$ for $i=1,2,3,4$. Thus, by the same argument as in the case for $(\beta, \beta g)=-2$, we have either $b_{i}^{2}+2 b_{i} b_{i}^{\prime}=0$ for all $i=1,2,3,4$ or $b_{1}^{2}+2 b_{1} b_{1}^{\prime}=$ $1, b_{2}^{2}+2 b_{2} b_{2}^{\prime}=-1$, and $b_{3}=b_{4}=0$. In the first case, we have $b_{i}=0$ and $b_{i}^{\prime 2}=1$ for all $i=1,2,3,4$, that means (ii) holds. For the later cases, we have $b_{1}=1, b_{1}^{\prime}=0$, $b_{2}=1, b_{2}^{\prime}=-1, b_{3}=b_{4}=0$, and $b_{3}^{\prime 2}+b_{4}^{\prime 2}=1$ and thus (iii) holds.

Proposition 7.23. By rearranging the indices if necessary, we have

$$
M=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
M \cap U, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}+\alpha_{4}^{\prime}\right), \\
\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{2}^{\prime}+\alpha_{4}^{\prime}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}\right)
\end{array}\right\}
$$

and

$$
N=M g=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
N \cap U, \frac{1}{2}\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}\right), \frac{1}{2}\left(\beta_{1}^{\prime}+\beta_{2}^{\prime}+\beta_{3}^{\prime}+\beta_{4}^{\prime}\right), \\
\frac{1}{2}\left(\beta_{1}+\beta_{2}+\beta_{2}^{\prime}+\beta_{4}^{\prime}\right), \frac{1}{2}\left(\beta_{1}+\beta_{3}+\beta_{2}^{\prime}+\beta_{3}^{\prime}\right)
\end{array}\right\},
$$

where $\beta_{i}=\alpha_{i} g$ and $\beta_{i}^{\prime}=\alpha_{i}^{\prime} g$ for all $i=1,2,3,4$.

Proof. By (7.22), the norm 4 vectors in $M \backslash(U \cap M)$ are of the form

$$
\frac{1}{2}\left(\pm \alpha_{1} \pm \alpha_{2} \pm \alpha_{3} \pm \alpha_{4}\right), \quad \frac{1}{2}\left(\pm \alpha_{1}^{\prime} \pm \alpha_{2}^{\prime} \pm \alpha_{3}^{\prime} \pm \alpha_{4}^{\prime}\right), \quad \text { or } \frac{1}{2}\left(\pm \alpha_{i} \pm \alpha_{j} \pm \alpha_{j}^{\prime} \pm \alpha_{k}^{\prime}\right),
$$

where i, j, k are distinct elements in $\{1,2,3,4\}$.
Since $M \cong E E_{8}$ and $U \cap M \cong\left(A A_{1}\right)^{8}$, the cosets of $M /(U \cap M)$ can be identified with the codewords of the Hamming [8,4,4] code H_{8}.

Let $\varphi: M /(U \cap M) \rightarrow H_{8}$ be an isomorphism of binary codes. For any $\beta \in M$, we denote the coset $\beta+U \in M /(U \cap M)$ by $\bar{\beta}$. We shall also arrange the index set such that the first 4 coordinates correspond to the coefficient of $\frac{1}{2} \alpha_{1}, \frac{1}{2} \alpha_{2}, \frac{1}{2} \alpha_{3}$ and $\frac{1}{2} \alpha_{4}$ and the last 4 coordinates correspond to the coefficient of $\frac{1}{2} \alpha_{1}^{\prime}, \frac{1}{2} \alpha_{2}^{\prime}, \frac{1}{2} \alpha_{3}^{\prime}$ and $\frac{1}{2} \alpha_{4}^{\prime}$.

Since $(1, \ldots, 1) \in H_{8}$, we have

$$
\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}+\alpha_{4}^{\prime}\right) \in M
$$

We shall also show that $\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \in M$ and hence $\frac{1}{2}\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}+\alpha_{4}^{\prime}\right) \in$ M.

Since $M /(M \cap U) \cong H_{8}$, there exist $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \in M \backslash(U \cap M)$ such that $\varphi\left(\bar{\beta}_{1}\right), \varphi\left(\bar{\beta}_{2}\right), \varphi\left(\bar{\beta}_{3}\right), \varphi\left(\bar{\beta}_{4}\right)$ generates the Hamming code H_{8}. By (7.22), their projections to the last 4 coordinates are all even and thus spans an even subcode of \mathbb{Z}_{2}^{4}, which has dimension ≤ 3. Therefore, there exists $a_{1}, a_{2}, a_{3}, a_{4} \in\{0,1\}$, not all zero such that $\varphi\left(a_{1} \bar{\beta}_{1}+a_{2} \bar{\beta}_{2}+a_{3} \bar{\beta}_{3}+a_{4} \bar{\beta}_{4}\right)$ projects to zero and so must equal (11110000). Therefore, $\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \in M$.

Since $|M /(U \cap M)|=2^{4}$, there exists $\beta^{\prime}=\frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{j}^{\prime}+\alpha_{k}^{\prime}\right)$ and $\beta^{\prime \prime}=$ $\frac{1}{2}\left(\alpha_{m}+\alpha_{n}+\alpha_{n}^{\prime}+\alpha_{\ell}^{\prime}\right)$ such that

$$
M=\operatorname{span}_{\mathbb{Z}}\left\{M \cap U, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}+\alpha_{4}^{\prime}\right), \beta^{\prime}, \beta^{\prime \prime}\right\}
$$

Note that

$$
\beta^{\prime}+\beta^{\prime \prime}=\frac{1}{2}\left(\left(\alpha_{i}+\alpha_{j}+\alpha_{m}+\alpha_{n}\right)+\left(\alpha_{j}^{\prime}+\alpha_{k}^{\prime}+\alpha_{n}^{\prime}+\alpha_{\ell}^{\prime}\right)\right) .
$$

Let $A:=(\{i, j\} \cup\{m, n\})-(\{i, j\} \cap\{m, n\})$ and $A^{\prime}:=(\{j, k\} \cup\{n, \ell\})-(\{j, k\} \cap$ $\{n, \ell\})$. We shall show that $|\{i, j\} \cap\{m, n\}|=|\{j, k\} \cap\{n, \ell\}|=1$ and $\left|A \cap A^{\prime}\right|=1$.

Since $\varphi\left(\bar{\beta}^{\prime}+\beta^{\prime \prime}\right) \in H_{8}$ but $\varphi\left(\bar{\beta}^{\prime}+\beta^{\prime \prime}\right) \notin \operatorname{span}_{\mathbb{Z}_{2}}\{(11110000),(00001111)\}$, by (7.22), we have

$$
\beta^{\prime}+\beta^{\prime \prime} \in \frac{1}{2}\left(\alpha_{p}+\alpha_{q}+\alpha_{p}^{\prime}+\alpha_{r}^{\prime}\right)+M \cap U,
$$

for some $p, q \in\{i, j, m, n\}, p, r \in\{j, k, n, \ell\}$ such that p, q, r are distinct.
That means $\frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{m}+\alpha_{n}\right) \in \frac{1}{2}\left(\alpha_{p}+\alpha_{q}\right)+M \cap U$ and $\frac{1}{2}\left(\alpha_{j}^{\prime}+\alpha_{k}^{\prime}+\alpha_{n}^{\prime}+\alpha_{\ell}^{\prime}\right) \in$ $\frac{1}{2}\left(\alpha_{p}^{\prime}+\alpha_{r}^{\prime}\right)+M \cap U$. It implies that $A=(\{i, j\} \cup\{m, n\})-(\{i, j\} \cap\{m, n\})=\{p, q\}$ and $A^{\prime}=(\{j, k\} \cup\{n, \ell\})-(\{j, k\} \cap\{n, \ell\})=\{p, r\}$. Hence, $|\{i, j\} \cap\{m, n\}|=$ $|\{j, k\} \cap\{n, \ell\}|=1$ and $\left|A \cap A^{\prime}\right|=1$.

By rearranging the indices if necessary, we may assume $\beta^{\prime}=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{2}^{\prime}+\alpha_{4}^{\prime}\right)$, $\beta^{\prime \prime}=\frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}\right)$ and hence

$$
M=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
M \cap U, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{1}^{\prime}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}+\alpha_{4}^{\prime}\right), \\
\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{2}^{\prime}+\alpha_{4}^{\prime}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\alpha_{2}^{\prime}+\alpha_{3}^{\prime}\right)
\end{array}\right\}
$$

Now let $\beta_{i}=\alpha_{i} g$ and $\beta_{i}^{\prime}=\alpha_{i}^{\prime} g$ for all $i=1,2,3,4$. Then

$$
N=M g=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
N \cap U, \frac{1}{2}\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}\right), \frac{1}{2}\left(\beta_{1}^{\prime}+\beta_{2}^{\prime}+\beta_{3}^{\prime}+\beta_{4}^{\prime}\right), \\
\frac{1}{2}\left(\beta_{1}+\beta_{2}+\beta_{2}^{\prime}+\beta_{4}^{\prime}\right), \frac{1}{2}\left(\beta_{1}+\beta_{3}+\beta_{2}^{\prime}+\beta_{3}^{\prime}\right)
\end{array}\right\},
$$

as desired.
Next we shall show that L contains a sublattice isomorphic to a tensor product $A_{4} \otimes A_{4}$.
Notation 7.24. Take

$$
\begin{aligned}
\gamma_{0} & :=\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}+\alpha_{2}^{\prime}-\alpha_{4}^{\prime}\right), \\
\gamma_{1} & :=\alpha_{1} \\
\gamma_{2} & :=-\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \\
\gamma_{3} & :=\alpha_{3} \\
\gamma_{4} & :=-\frac{1}{2}\left(\alpha_{3}-\alpha_{4}+\alpha_{2}^{\prime}-\alpha_{4}^{\prime}\right)
\end{aligned}
$$

in M (cf. (7.23)) and set $R:=\operatorname{span}_{\mathbb{Z}}\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$. Then $R \cong A A_{4}$. Note that $\gamma_{0}=-\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right)$.
Lemma 7.25. For any $i=0,1,2,3,4$ and $j=1,2,3,4$, we have
(i) $\left(\gamma_{i}, \gamma_{i} g\right)=\left(\gamma_{i}, \gamma_{i} g^{4}\right)=-2$ and $\left(\gamma_{i}, \gamma_{i} g^{2}\right)=\left(\gamma_{i}, \gamma_{i} g^{3}\right)=0$;
(ii) $\left(\gamma_{j-1}, \gamma_{j} g\right)=\left(\gamma_{j-1}, \gamma_{j} g^{4}\right)=1$ and $\left(\gamma_{j-1}, \gamma_{j} g^{2}\right)=\left(\gamma_{j-1}, \gamma_{j} g^{3}\right)=0 ;$
(iii) $\left(\gamma_{i}, \gamma_{j} g^{k}\right)=0$ for any k if $|i-j|>1$
(iv) $\gamma_{i} \mathbb{Z}[D] \cong A A_{4}$.

Proof. Straightforward.
Proposition 7.26. Let $T=R \mathbb{Z}[D]$. Then $T \cong A_{4} \otimes A_{4}$.
Proof. By (iv) of (7.25), $\gamma_{i} \mathbb{Z}[D]=\operatorname{span}_{\mathbb{Z}}\left\{\gamma_{i} g^{j} \mid j=0,1,2,3,4\right\} \cong A A_{4}$.
Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a fundamental basis of A_{4} and denote $e_{0}=-\left(e_{1}+e_{2}+\right.$ $\left.e_{3}+e_{4}\right)$. Now define a linear map $\varphi: T \rightarrow A_{4} \otimes A_{4}$ by $\varphi\left(\gamma_{i} g^{j}\right)=e_{i} \otimes e_{j}$, for $i, j=1,2,3,4$. By the inner product formulas in (7.25),

$$
\left(\gamma_{i} g^{j}, \gamma_{k} g^{\ell}\right)=\left(\gamma_{i}, \gamma_{k} g^{\ell-j}\right)= \begin{cases}4 & \text { if } i=k, j=\ell \\ -2 & \text { if } i=k,|j-\ell|=1 \\ 1 & \text { if }|i-k|=1,|j-\ell|=1 \\ 0 & \text { if }|i-k|>1,|j-\ell|>1\end{cases}
$$

Hence, $\left(\gamma_{i} g^{j}, \gamma_{k} g^{\ell}\right)=\left(e_{i} \otimes e_{j}, e_{k} \otimes e_{\ell}\right)$ for all i, j, k, ℓ and φ is an isometry.

A General results about lattices

Lemma A.1. Let p be a prime number, $f(x):=1+x+x^{2}+\cdots+x^{p-1}$. Let L be $a \mathbb{Z}[x]$-module. For $v \in L$, $p v \in L(x-1)+L f(x)$.
Proof. We may write $f(x)=\sum_{i=0}^{p-1} x^{i}=\sum_{i=0}^{p-1}((x-1)+1)^{i}=(x-1) h(x)+p$, for some $h(x) \in \mathbb{Z}[x]$. Then if $v \in L, p v=v(f(x)-(x-1) h(x))$.

Lemma A.2. Suppose that the four group D acts on the abelian group A. If the fixed point subgroup of D on A is 0 , then $A / T e l(A, D)$ is an elementary abelian 2-group.

Proof. Let $a \in A$ and let $r \in D$. We claim that $a(r+1)$ is an eigenvector for D. It is clearly an eigenvector for r. Take $s \in D$ so that $D=\langle r, s\rangle$. Then $a(r+1) s=a(r+1)(s+1)-a(r+1)=-a(r+1)$ since $a(r+1)(s+1)$ is a fixed point. So, $a(r+1)$ is an eigenvector for D.

To prove the lemma, we just calculate that $a(1+r)+a(1+s)+a(1+r s)=$ $2 a+a(1+s r+s+r s)=2 a$ since $a(1+s r+s+r s)$ is a fixed point.

Lemma A.3. Suppose that X is a lattice of rank n and Y is a sublattice of rank m. Let p be a prime number. Suppose that the p-rank of $\mathcal{D}(X)$ is r. Then, $(Y \cap$ $\left.p X^{*}\right) /(Y \cap p X)$ has p-rank at least $r+m-n$. In particular, the p-rank of $\mathcal{D}(Y)$ is at least $r+m-n$; and if $r+m>n$, then p divides $\operatorname{det}(Y)$.

Proof. We may assume that Y is a direct summand of X. The quadratic space $X / p X$ has dimension n over \mathbb{F}_{p} and its radical $p X^{*} / p X$ has dimension r. The image of Y in $X / p X$ is $Y+p X / p X$, and it has dimension m since Y is a direct summand of X. Let q be the quotient map $X / p X$ to $(X / p X) /\left(p X^{*} / p X\right) \cong X / p X^{*} \cong p^{r}$. Then $\operatorname{dim}(q(Y+p X / p X)) \leq n-r$, so that $\operatorname{dim}(\operatorname{Ker}(q) \cap(Y+p X / p X)) \geq m-(n-r)=$ $r+m-n$.

We note that $\operatorname{Ker}(q)=p X^{*} / p X$, so the above proves $r+m-n \leq \operatorname{rank}((Y \cap$ $\left.\left.\left.p X^{*}\right)+p X / p X\right)=\operatorname{rank}\left(Y \cap p X^{*}\right) /\left(Y \cap p X^{*} \cap p X\right)\right)=\operatorname{rank}\left(\left(Y \cap p X^{*}\right) /(Y \cap p X)\right)=$ $\operatorname{rank}\left(\left(Y \cap p X^{*}\right) / p Y\right)$. Note that $\left(Y \cap p X^{*}\right) / p Y \cong\left(\frac{1}{p} Y \cap X^{*}\right) / Y \leq Y^{*} / Y$, which implies the inequality of the lemma.

Lemma A.4. Suppose that Y is an integral lattice such that there exists an integer $r>0$ so that $\mathcal{D}(Y)$ contains a direct product of $\operatorname{rank}(Y)$ cyclic groups of order r. Then $\frac{1}{\sqrt{r}} Y$ is an integral lattice.

Proof. Let $Y<X<Y^{*}$ be a sublattice such that $X / Y \cong\left(\mathbb{Z}_{r}\right)^{\text {rank } Y}$. Then $x \in X$ if and only if $r x \in Y$. Let $y, y^{\prime} \in Y$. Then $\left(\frac{1}{\sqrt{r}} y, \frac{1}{\sqrt{r}} y^{\prime}\right)=\left(\frac{1}{r} y, y^{\prime}\right) \in(X, Y) \leq$ $\left(Y^{*}, Y\right)=\mathbb{Z}$.

Lemma A.5. Suppose that X is an integral lattice and that there is an integer $s \geq 1$ so that $\frac{1}{\sqrt{s}} X$ is an integral lattice. Then the subgroup $s \mathcal{D}(X)$ is isomorphic to $\mathcal{D}\left(\frac{1}{\sqrt{s}} X\right)$ and $\mathcal{D}(X) / s \mathcal{D}(X)$ is isomorphic to $s^{\operatorname{rank}(X)}$.

Proof. Study the diagram below, in which the horizontal arrows are multiplication by $\frac{1}{\sqrt{s}}$. The hypothesis implies that the finite abelian group $\mathcal{D}(X)$ is a direct sum of cyclic groups, each of which has order divisible by s.

We take a vector $a \in \mathbb{R} \otimes X$ and note that $a \in\left(\frac{1}{\sqrt{s}} X\right)^{*}$ if and only if $\left(a, \frac{1}{\sqrt{s}} X\right) \leq \mathbb{Z}$ if and only if $\left(\frac{1}{\sqrt{s}} a, X\right) \leq \mathbb{Z}$ if and only if $\frac{1}{\sqrt{s}} a \in X^{*}$ if and only if $a \in \sqrt{s} X^{*}$. This proves the first statement. The second statement follows because $\mathcal{D}(X)$ is a direct sum of $\operatorname{rank}(X)$ cyclic groups, each of which has order divisible by s.
Lemma A.6. Let y be an order 2 isometry of a lattice X. Then $X / \operatorname{Tel}(X, y)$ is an elementary abelian 2-group. Suppose that $X / \operatorname{Tel}(X, y) \cong 2^{c}$. Then we have $\operatorname{det}\left(X^{+}(y)\right) \operatorname{det}\left(X^{-}(y)\right)=2^{2 c} \operatorname{det}(X)$ and for $\varepsilon= \pm$, the image of X in $\mathcal{D}\left(X^{\varepsilon}(y)\right)$ is 2^{c}. In particular, for $\varepsilon= \pm$, $\operatorname{det}\left(X^{\varepsilon}(y)\right)$ divides $2^{c} \operatorname{det}(X)$ and is divisible by 2^{c}. Finally, $c \leq \operatorname{rank}\left(X^{\varepsilon}(y)\right)$, for $\varepsilon= \pm$, so that $c \leq \frac{1}{2} \operatorname{rank}(X)$.
Proof. See GrE8.
Lemma A.7. Suppose that t is an involution acting on the abelian group X. Suppose that Y is a t-invariant subgroup of odd index so that t acts on X / Y as a scalar $c \in\{ \pm 1\}$. Then for every coset $x+Y$ of Y in X, there exists $u \in x+X$ so that $u t=c u$.

Proof. First, assume that $c=1$. Define $n:=\frac{1}{2}(|X / Y|+1)$, then take $u:=n x(t+1)$. This is fixed by t and $u \equiv 2 n x \equiv x(\bmod Y)$.

If $c=-1$, apply the previous argument to the involution $-t$.
Lemma A.8. If X and Y are abelian groups with $|X: Y|$ odd, an involution r acts on X, and Y is r-invariant, then $X / \operatorname{Tel}(X, r) \cong Y / T e l(Y, r)$.

Proof. Since X / Y has odd order, it is the direct sum of its two eigenspaces for the action of r. Use (A.7) to show that $Y+\operatorname{Tel}(X, r)=X$ and $Y \cap T e l(X, r)=\operatorname{Tel}(Y, r)$.

Lemma A.9. Suppose that X is an integral lattice which has rank $m \geq 1$ and there exists a lattice W, so that $X \leq W \leq X^{*}$ and $W / X \cong 2^{r}$, for some integer $r \geq 1$. Suppose further that every nontrivial coset of X in W contains a vector with noninteger norm. Then $r=1$.
Proof. Note that if $u+X$ is a nontrivial coset of X in W, then $(u, u) \in \frac{1}{2}+\mathbb{Z}$.
Let $\phi: X \rightarrow Y$ be an isometry of lattices, extended linearly to a map between duals. Let Z be the lattice between $X \perp Y$ and $W \perp \phi(W)$ which is diagonal with respect to ϕ, i.e., is generated by $X \perp Y$ and all vectors of the form ($x, x \phi$), for $x \in W$.

Then Z is an integral lattice. In any integral lattice, the even sublattice has index 1 or 2. Therefore, $r=1$ since the nontrivial cosets of $X \perp Y$ in Z are odd.

Lemma A.10. Suppose that the integral lattice L has no vectors of norm 2 and that $L=M+N$, where $M \cong N \cong E E_{8}$. The sublattices $M, N, F=M \cap N$ are direct summands of $L=M+N$.

Proof. Note that L is the sum of even lattices, so is even. Therefore, it has no vectors of norm 1 or 2 . Since M by definition defines the summand S of negated vectors by t_{M}, we get $S=M$ because $M \leq S \leq \frac{1}{2} M$ and the minimum norm of L is 4 . A similar statement holds for N. The sublattice F is therefore the sublattice of vectors fixed by both t_{M} and t_{N}, so it is clearly a direct summand of L.

Lemma A.11. $D \cong \operatorname{Dih}_{6},\langle g\rangle=O_{3}(D)$ and t is an involution in D. Suppose that D acts on the abelian group $A, 3 A=0$ and $A(g-1)^{2}=0$. Let $\varepsilon= \pm 1$. If $v \in A$ and $v t=\varepsilon v$, then $v(g-1) t=-\varepsilon v(g-1)$.

Proof. Calculate $v(g-1) t=v t\left(g^{-1}-1\right)=\varepsilon v\left(g^{-1}-1\right)$. Since $(g-1)^{2}=0$, g acts as 1 on the image of $g-1$, which is the image of $\left(g^{-1}-1\right)$. Therefore, $\varepsilon v\left(g^{-1}-1\right)=\varepsilon v\left(g^{-1}-1\right) g=\varepsilon v(1-g)=-\varepsilon v(g-1)$.

Lemma A.12. Suppose that X is an integral lattice and Y has finite index, m, in X. Then $\mathcal{D}(X)$ is a subquotient of $\mathcal{D}(Y)$ and $|\mathcal{D}(X)| m^{2}=|\mathcal{D}(Y)|$. The groups have isomorphic Sylow p-subgroups if p is a prime which does not divide m.

Proof. Straightforward.
Lemma A.13. Suppose that X is a lattice, that Y is a direct summand and $Z:=$ $\operatorname{ann}_{X}(Y)$. Let $n:=|X: Y \perp Z|$.
(i) The image of X in $\mathcal{D}(Y)$ has index dividing $(\operatorname{det}(Y), \operatorname{det}(X))$. In particular, if $(\operatorname{det}(Y), \operatorname{det}(X))=1, X$ maps onto $\mathcal{D}(Y)$
(ii) Let $A:=a n n_{X^{*}}(Y)$. Then $X^{*} /(Y \perp A) \cong \mathcal{D}(Y)$.
(iii) There are epimorphisms of groups $\varphi_{1}: \mathcal{D}(X) \rightarrow X^{*} /(X+A)$ and φ_{2} : $\mathcal{D}(Y) \rightarrow X^{*} /(X+A)$.
(iv) We have isomorphisms $\operatorname{Ker}\left(\varphi_{1}\right) \cong(X+A) / X$ and $\operatorname{Ker}\left(\varphi_{2}\right) \cong \psi(X) / Y \cong$ $X /(Y \perp Z)$. The latter is a group of order n.

In particular, $\operatorname{Im}\left(\varphi_{1}\right) \cong \operatorname{Im}\left(\varphi_{2}\right)$ has order $\frac{1}{n} \operatorname{det}(Y)$.
(v) If p is a prime which does not divide n, then $O_{p}(\mathcal{D}(Y))$ injects into $O_{p}(\mathcal{D}(X))$. This injection is an isomorphism onto if $(p, \operatorname{det}(Z))=1$.

Proof. (i) This is clear since the natural map $\psi: X^{*} \rightarrow Y^{*}$ is onto and X has index $\operatorname{det}(X)$ in X^{*}.
(ii) The natural map $X^{*} \rightarrow Y^{*}$ followed by the quotient map $\zeta: Y^{*} \rightarrow Y^{*} / Y$ has kernel $Y \perp A$.
(iii) Since $\mathcal{D}(X)=X^{*} / X$, we have the first epimorphism. Since $X+A \geq Y+A$, existence of the second epimorphism follows from (ii).
(iv) First, $\operatorname{Ker}(\zeta \psi)=Y \perp A$ follows from (ii) and the definitions of ψ and ζ. So, $\operatorname{Ker}\left(\varphi_{1}\right) \cong(X+A) /(Y+A)$. Note that $(X+A) /(Y+A)=(X+(Y+A)) /(Y+$ $A) \cong X /((Y+A) \cap X)=X /(Y+Z))$. The latter quotient has order n. For the order statement, we use the formula $|\operatorname{Im}(\psi)||\operatorname{Ker}(\psi)|=|\mathcal{D}(Y)|$. For the second isomorphism, use $Y^{*} \cong X^{*} / A$ and $\mathcal{D}(Y)=Y^{*} / Y \cong\left(X^{*} / A\right) /((Y+A) / A)$ and note that in here the image of X is $((X+A) / A) /((Y+A) / A) \cong(X+A) /(Y+A)$.
(v) Let P be a Sylow p-subgroup of $\mathcal{D}(Y)$. Then $P \cap \operatorname{Ker}(\psi)=0$ since $(p, n)=1$. Therefore P injects into $\operatorname{Im}(\psi)$. The epimorphism φ has kernel $A / Z=\mathcal{D}(Z)$. So, P is isomorphic to a Sylow p-subgroup of $\mathcal{D}(X)$ if $(p, \operatorname{det}(Z))=1$.

Lemma A.14. Suppose that X is an integral lattice and E is an elementary abelian 2-group acting in X. If H is an orthogonal direct summand of $\operatorname{Tel}(X, E)$ and H is a direct summand of X, then the odd order Sylow groups of $\mathcal{D}(H)$ embed in $\mathcal{D}(X)$. In other notation, $O_{2^{\prime}}(\mathcal{D}(H))$ embeds in $O_{2^{\prime}}(\mathcal{D}(X))$

Proof. Apply (A.13) to $Y=H, n$ a divisor of $|X: \operatorname{Tel}(X, E)|$, which is a power of 2.

Lemma A.15. Suppose that X is a lattice and Y is a direct summand and $Z:=$ $\operatorname{ann}_{X}(Y)$. Let $n:=|X: Y \perp Z|$.

Suppose that $v \in X^{*}$ and that v has order m modulo X. If $(m, \operatorname{det}(Z))=1$, there exists $w \in Z$ so that $v-w \in Y^{*} \cap X^{*}$. Therefore, the coset $v+X$ contains a representative in Y^{*}. Furthermore, any element of $Y^{*} \cap(v+X)$ has order m modulo Y.

Proof. The image of v in $\mathcal{D}(Z)$ is zero, so the restriction of the function v to Z is the same as taking a dot product with an element of Z. In other words, the projection of v to Z^{*} is already in Z. Thus, there exists $w \in Z$ so that $v-w \in a n n_{X^{*}}(Z)=Y^{*}$.

Define $u:=v-w$. Then $m u=m v-m w \in X$. Since $v-w \in Y^{*}, m u \in X \cap Y^{*}$, which is Y since Y is a direct summand of X.

Now consider an arbitrary $u \in(v+X) \cap Y^{*}$. We claim that its order modulo Y is m. There is $x \in X$ so that $u=x+v$. Suppose $k>0$. Then $k u=k x+k v$ is in X if and only if $k v \in X$, i.e. if and only if m divides k.

Lemma A.16. Let D be a dihedral group of order $2 n, n>2$ odd, and Y a finitely generated free abelian group which is a $\mathbb{Z}[D]$-module, so that an element $1 \neq g \in$ D of odd order acts with zero fixed point subgroup on Y. Let r be an involution of D outside $Z(D)$. Then $Y / T e l(Y, r)$ is elementary abelian of order $2^{\frac{1}{2} \operatorname{rank}(Y)}$. Consequently, $\operatorname{det}(\operatorname{Tel}(Y, r))=2^{\operatorname{rank}(Y)} \operatorname{det}(Y)$.

Proof. The first statement follows since the odd order g is inverted by r and acts without fixed points on Y. The second statement follows from the index formula for determinants.

Lemma A.17. Suppose that $X \cong E_{8}$ and that Y is a sublattice such that $X / Y \cong$ 3^{4} and $Y \cong \sqrt{3} E_{8}$. Then there exists an element g of order 3 in $O(X)$ so that $X(g-1)=Y$. In particular, Y defines a partition on the set of 240 roots in X where two roots are equivalent if and only if their difference lies in Y.

Proof. Note that Y has 80 nontrivial cosets in X and the set Φ of roots has cardinality 240. Let $x, y \in \Phi$ such that $x-y \in Y$ and x, y are linearly independent. Then $6 \leq(x-y, x-y)=4-2(x, y)$, whence $|(x, y)| \leq 2$. Therefore $(x, y)=-1$, since x, y are linearly independent roots. Let z be a third root which is congruent to x and y modulo Y. Then $(x, z)=-1=(y, z)$ by the preceding discussion.

Therefore the projection of z to the span of x, y must be $-x-y$, which is a root. Therefore, $x+y+z=0$.

It follows that a nontrivial coset of Y in X contains at most three roots. By counting, a nontrivial coset of Y in X contains exactly three roots.

Let $P:=\operatorname{span}\{x, y\} \cong A_{2}, Q:=\operatorname{ann}_{X}(P)$. We claim that $Y \leq P \perp Q$, which has index 3 in X. Suppose the claim is not true. Then the structure of P^{*} means that there exists $r \in Y$ so that $(r, x-y)$ is not divisible by 3 . Since $x-y \in Y$, we have a contradiction to $Y \cong \sqrt{3} E_{8}$. The claim implies that g_{P}, an automorphism of order 3 on P, extended to X by trivial action on Q, leaves Y invariant (since it leaves invariant any sublattice between $P \perp Q$ and $P^{*} \perp Q^{*}$). Moreover, $X\left(g_{P}-1\right)=\mathbb{Z}(x-y)$.

Now take a root x^{\prime} which is in Q. Let y^{\prime}, z^{\prime} be the other members of its equivalence class of x^{\prime}. We claim that these are also in Q. We know that $x^{\prime}-y^{\prime} \in Y \leq$ $P \perp Q$, so $P^{\prime}:=\operatorname{span}\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\} \leq P \perp Q$. Now, we claim that the projection of P^{\prime} to P is 0 . Suppose otherwise. Then the projection of some root $u \in P^{\prime}$ to P is nonzero. Therefore the projection is a root, i.e. $u \in P$. But then u is in the equivalence class of x or $-x$ and so $P^{\prime}=P$, a contradiction to $\left(x^{\prime}, P\right)=0$.

We now have that the class of x^{\prime} spans a copy of A_{2} in Q. We may continue this procedure to get a sublattice $U=U_{1} \perp U_{2} \perp U_{3} \perp U_{4}$ of X such that $U_{i} \cong A_{2}$ for of X with the property that if g_{i} is an automorphism of order 3 on U_{i} extended to X by trivial action on $\operatorname{ann}_{X}\left(U_{i}\right)$, then each $U\left(g_{i}-1\right) \leq Y$ and, by determinants, $g:=g_{1} g_{2} g_{3} g_{4}$ satisfies $U(g-1)=Y$.
Proposition A.18. Suppose that $T \cong A_{2} \otimes E_{8}$.
(i) Then $\mathcal{D}(T) \cong 3^{8}$ and the natural $\frac{1}{3} \mathbb{Z} / \mathbb{Z}$-valued quadratic form has maximal Witt index; in fact, there is a natural identification of quadratic spaces $\mathcal{D}(T)$ with $E_{8} / 3 E_{8}$, up to scaling.
(ii) Define $\mathcal{O}_{k}:=\left\{X \mid T \leq X \leq T^{*}, X\right.$ is an integral lattice, $\left.\operatorname{dim}(X / T)=k\right\}$ (dimension here means over \mathbb{F}_{3}).
(a) \mathcal{O}_{k} is nonempty if and only if $0 \leq k \leq 4$;
(b) \mathcal{O}_{k} consists of even lattices for each $k, 0 \leq k \leq 4$;
(c) On T^{*} / T, the action of g, the isometry of order 3 on T corresponding to an order 3 symmetry of the A_{2} tensor factor, is trivial. Therefore any lattice between T and T^{*} is g-invariant.
(iii) the lattices in \mathcal{O}_{k} embed in $E_{8} \perp E_{8}$. For a fixed k, the embeddings are unique up to the action of $O\left(E_{8} \perp E_{8}\right)$.
(iv) the lattices in \mathcal{O}_{k} are rootless if and only if $k=0$.

Proof. (i) This follows since the quotient T^{*} / T is covered by $\frac{1}{3} P$, where $P \cong \sqrt{6} E_{8}$ is $a n n_{T}(E)$, where E is one of the three $E E_{8}$-sublattices of T.
(ii) Observe that $X \in \mathcal{O}_{k}$ if and only if X / T is a totally singular subspace of $\mathcal{D}(T)$. This implies (a). An integral lattice is even if it contains an even sublattice of odd index. This implies (b). For (c), note that T^{*} / T is covered by $\frac{1}{3} P$ and $P(g-1) \leq T(g-1)^{2}=3 T$. Hence g acts trivially on $\mathcal{D}(T)=T^{*} / T$. This means any lattice Y such that $T \leq Y \leq T^{*}$ is g-invariant.
(iii) and (iv) First, we take $X \in \mathcal{O}_{4}$ and prove $X \cong E_{8} \perp E_{8}$. Such an X is even, unimodular and has rank 16 , so is isometric to $H S_{16}$ or $E_{8} \perp E_{8}$. Since X has a fixed
point free automorphism of order $3, X \cong E_{8} \perp E_{8}$. Such an automorphism fixes both direct summands. Call these summands X_{1} and X_{2}. Define $Y_{i}:=X_{i}(g-1)$, for $i=1,2$. Thus, $Y_{i} \cong \sqrt{3} E_{8}$.

The action of g on $X_{i} \cong E_{8}$ is unique up to conjugacy, namely as a diagonally embedded cyclic group of order 3 in a natural $O\left(A_{2}\right)^{4}$ subgroup of $O\left(X_{i}\right) \cong$ $W e y l\left(E_{8}\right)$ (this follows from the corresponding conjugacy result for $O^{+}(8,2) \cong$ $W e y l\left(E_{8}\right) / Z\left(W e y l\left(E_{8}\right)\right)$.

We consider how T embeds in X. Since $|X: T|=3^{4},\left|X_{i}: T \cap X_{i}\right|$ divides 3^{4}. Since $T \cap X_{i} \geq X_{i}(g-1)$ and T has no roots, A.17) implies that $T \cap X_{i}=Y_{i}$, for $i=1,2$.

If $U \in \mathcal{O}_{k}, T \leq U \leq X$, then rootlessness of U implies that $U \cap X_{i}=Y_{i}$ for $i=1,2$. Therefore, $U=T$, i.e. $k=0$.

Lemma A.19. Let q be an odd prime power and let (V, Q) be a finite dimensional quadratic space over \mathbb{F}_{q}. Let c be a generator of \mathbb{F}_{q}^{\times}.

If $\operatorname{dim}(V)$ is odd, there exists $g \in G L(V)$ so that $g Q=c^{2} Q$.
If $\operatorname{dim}(V)$ is even, there exists $g \in G L(V)$ so that $g Q=c Q$.
Proof. The scalar transformation c takes Q to $c^{2} Q$. This proves the result in case $\operatorname{dim}(Q)$ is odd. Now suppose that $\operatorname{dim}(V)$ is even.

Suppose that V has maximal Witt index. Let $V=U \oplus U^{\prime}$, where U, U^{\prime} are each totally singular. We take g to be c on U and 1 on U^{\prime}.

Suppose that V has nonmaximal Witt index. The previous paragraph allows us to reduce the proof to the case $\operatorname{dim}(V)=2$ with V anisotropic. (One could also observe that if we write V as the orthogonal direct sum of nonsingular 2-spaces, the result follows from the case $\operatorname{dim}(V)=2$.) Then V may be identified with $\mathbb{F}_{q^{2}}$ and Q with a scalar multiple of the norm map. We then take g to be multiplication by a scalar $b \in \mathbb{F}_{q^{2}}$ such that $b^{q+1}=c$.

B Characterizations of lattices of small rank

Some results in this section are in the literature. We collect them here for convenience.

Lemma B.1. Let J be a rank 2 integral lattice. If $\operatorname{det}(J) \in\{1,2,3,4,5,6\}$, then J contains a vector of norm 1 or 2. If $\operatorname{det}(J) \in\{1,2\}, J$ is rectangular. If J is even, $J \cong A_{1} \perp A_{1}$ or A_{2}.

Proof. The first two statements follows from values of the Hermite function. Suppose that J is even. Then J has a root, say u. Then $\operatorname{ann}_{J}(u)$ has determinant $\frac{1}{2} \operatorname{det}(J)$ or $2 \operatorname{det}(J)$. If $a n n_{J}(u)=\frac{1}{2} \operatorname{det}(J)$, then J is an orthogonal direct sum $\mathbb{Z} u \perp \mathbb{Z} v$, for some vector $v \in J$. For $\operatorname{det}(J)$ to be at most 6 and J to be even, $(v, v)=2$ and J is the lattice $A_{1} \perp A_{1}$. Now assume that $\operatorname{ann}_{J}(u)$ has determinant $2 \operatorname{det}(J)$, an integer at most 12. Let v be a basis for $\operatorname{ann}_{J}(u)$. Then $\frac{1}{2}(u+v) \in J$ and so $\frac{1}{4}(2+(v, v)) \in 2 \mathbb{Z}$ since J is assumed to be even. Therefore, $2+(v, v) \in 8 \mathbb{Z}$. Since $(v, v) \leq 12,(v, v)=6$. Therefore, $\frac{1}{2}(u+v)$ is a root and we get $J \cong A_{2}$.

Lemma B.2. Let J be a rank 3 integral lattice. If $\operatorname{det}(J) \in\{1,2,3\}$, then J is rectangular or J is isometric to $\mathbb{Z} \perp A_{2}$. If $\operatorname{det}(J)=4$, J is rectangular or is isometric to A_{3}.

Proof. If J contains a unit vector, J is orthogonally decomposable and we are done by (B.1). Now use the Hermite function: $H(3,2)=1.67989473 \ldots, H(3,3)=$ $1.92299942 \ldots$ and $H(3,4)=2.11653473 \ldots$. We therefore get an orthogonal decomposition unless possibly $\operatorname{det}(J)=4$ and J contains no unit vector. Assume that this is so.

If $\mathcal{D}(J)$ is cyclic, the lattice $K=J+2 J^{*}$ which is strictly between J and J^{*} is integral and unimodular, so is isomorphic to \mathbb{Z}^{3}. So, J has index 2 in \mathbb{Z}^{3}, and the result is easy to check. If $\mathcal{D}(J) \cong 2 \times 2$, we are done by a similar argument provided a nontrivial coset of J in J^{*} contains a vector of integral norm. If this fails to happen, we quote (A.9) to get a contradiction.

Lemma B.3. Suppose that X is an integral lattice which has rank 4 and determinant 4. Then X embeds with index 2 in \mathbb{Z}^{4}. If X is odd, X is isometric to one of $2 \mathbb{Z} \perp \mathbb{Z}^{3}, A_{1} \perp A_{1} \perp \mathbb{Z}^{2}, A_{3} \perp \mathbb{Z}$. If X is even, $X \cong D_{4}$.

Proof. Clearly, if X embeds with index 2 in \mathbb{Z}^{4}, X may be thought of as the annihilator $\bmod 2$ of a vector $w \in \mathbb{Z}$ of the form $(1, \ldots, 1,0, \ldots, 0)$. The isometry types for X correspond to the cases where the weight of w is $1,2,3$ and 4 . It therefore suffices to demonstrate such an embedding.

First, assume that $\mathcal{D}(X)$ is cyclic. Then $X+2 X^{*}$ is an integral lattice (since $(2 x, 2 y)=(4 x, y)$, for $\left.x, y \in X^{*}\right)$ and is unimodular, since it contains X with index 2 . Then the classification of unimodular integral lattices of small rank implies $X+2 X^{*} \cong \mathbb{Z}^{4}$, and the conclusion is clear.

Now, assume that $\mathcal{D}(X)$ is elementary abelian. By (A.9), there is a nontrivial coset $u+X$ of X in X^{*} for which (u, u) is an integer. Therefore, the lattice $X^{\prime}:=$ $X+\mathbb{Z} u$ is integral and unimodular. By the classification of unimodular integral lattices, $X^{\prime} \cong \mathbb{Z}^{4}$.

Theorem B.4. Let L be a unimodular integral lattice of rank at most 8. Then $L \cong \mathbb{Z}^{n}$ or $L \cong E_{8}$.

Proof. This is a well-known classification. The article GrE8 has an elementary proof and discusses the history.

The next result is well known. The proof may be new.
Proposition B.5. Let X be an integral lattice of determinant 3 and rank at most 6. Then X is rectangular; or $X \cong A_{2} \perp \mathbb{Z}^{m}$, for some $m \leq 4$; or $X \cong E_{6}$.

Proof. Let $u \in X^{*} \backslash X$. Since $3 u \in X,(u, u) \in \frac{1}{3} \mathbb{Z}$. Since $\operatorname{det}\left(X^{*}\right)=\frac{1}{3},(u, u) \in$ $\frac{1}{3}+\mathbb{Z}$ or $\frac{2}{3}+\mathbb{Z}$.

Suppose $(u, u) \in \frac{1}{3}+\mathbb{Z}$. Let $T \cong A_{2}$. Then we quote (D.6) to see that there is a unimodular lattice, U, which contains $X \perp T$ with index 3 .

Suppose U is even. By the classification ((B.4), $U \cong E_{8}$. A well-known property of E_{8} is that all A_{2}-sublattices are in one orbit under the Weyl group. Therefore, $X \cong E_{6}$.

If U is not even, $U \cong \mathbb{Z}^{n}$, for some $n \leq 8$. Any root in \mathbb{Z}^{n} has the form $(\pm 1, \pm 1,0,0, \ldots, 0,0)$. It follows that every A_{2} sublattice of \mathbb{Z}^{n} is in one orbit under the isometry group $2 \imath S y m_{n}$. Therefore $X=a n n_{U}(T)$ is rectangular.

Suppose $(u, u) \in \frac{2}{3}+\mathbb{Z}$. Then we consider a unimodular lattice W which contains $X \perp \mathbb{Z} v$ with index 3 , where $(v, v)=3$. By the classification, $W \cong \mathbb{Z}^{7}$. Any norm 3 vector in \mathbb{Z}^{n} has the form $(\pm 1, \pm 1, \pm 1,0,0, \ldots, 0)$ (up to coordinate permutation). Therefore, $a n n_{W}(v)$ must be isometric to $\mathbb{Z}^{4} \perp A_{2}$.

Lemma B.6. If M is an even integral lattice of determinant 5 and rank 4, then $M \cong A_{4}$.

Proof. Let $u \in M^{*}$ so that $u+M$ generates $\mathcal{D}(M)$. Then $(u, u)=\frac{k}{5}$, where k is an integer. Since $5 u \in M, k$ is an even integer. Since $H\left(4, \frac{1}{5}\right)=1.029593054 \ldots$, a minimum norm vector in M^{*} does not lie in M, since M is an even lattice. We may assume that u achieves this minimum norm. Thus, $k \in\{2,4\}$.

Suppose that $k=4$. Then we may form $M \perp \mathbb{Z} 5 v$, where $(v, v)=\frac{1}{5}$. Define $w:=u+v$. Thus, $P:=M+\mathbb{Z} w$ is a unimodular integral lattice. By the classification, $P \cong \mathbb{Z}^{5}$, so we identify P with \mathbb{Z}^{5}. Then $M=a n n_{P}(y)$ for some norm 5 vector y. The only possibilities for such $y \in P$ are $(2,1,0,0,0),(1,1,1,1,1)$, up to monomial transformations. Since M is even, the latter possibility must hold and we get $M \cong A_{4}$.

Suppose that $k=2$. We let Q be the rank 2 lattice with Gram matrix $\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$. So, $\operatorname{det}(Q)=5$ and there is a generator $v \in Q^{*}$ for Q^{*} modulo Q which has norm $\frac{3}{5}$. We then form $M \perp Q$ and define $w:=u+w$. Then $P:=M+Q+\mathbb{Z} w$ is an integral lattice of rank 6 and determinant 1. By the classification, $P \cong \mathbb{Z}^{6}$. In P, M is the annihilator of a pair of norm 3 vector, say y and z. Each corresponds in \mathbb{Z}^{6} to some vector of shape $(1,1,1,0,0,0)$, up to monomial transformation. Since M is even, the 6 -tuples representing y and z must have supports which are disjoint 3 -sets. However, since $(y, z)=2$, by the Gram matrix, we have a contradiction.

Notation B.7. We denote by $\mathcal{M}(4,25)$ an even integral lattice of rank 4 and determinant 25. By (B.8), it is unique.

Lemma B.8. (i) There exists a unique, up to isometry, rank 4 even integral lattice whose discriminant group has order 25.
(ii) It is isometric to a glueing of the orthogonal direct sum $A_{2} \perp \sqrt{5} A_{2}$ by a glue vector of the shape $u+v$, where u is in the dual of the first summand and $(u, u)=\frac{2}{3}$, and where v is in the dual of the second summand and has norm $\frac{10}{3}$.
(iii) The set of roots forms a system of type A_{2}; in particular, the lattice does not contain a pair of orthogonal roots.
(iv) The isometry group is isomorphic to Sym $_{3} \times S \mathrm{Sm}_{3} \times 2$, where the first factor acts as the Weyl group on the first summand in (iii) and trivially on the second, the second factor acts as the Weyl group on the second summand of (iii) and trivially on the first, and where the third direct factor acts as -1 on the lattice.
(v) The isometry group acts transitively on (a) the six roots; (b) the 18 norm 4 vectors; (c) ordered pairs of norm 2 and norm 4 vectors which are orthogonal; (d) length 4 sequences of orthogonal vectors whose norms are 2, 4, 10, 20.
(vi) An orthogonal direct sum of two such embeds as a sublattice of index 5^{2} in E_{8}.

Proof. The construction of (ii) shows that such a lattice exists and it is easy to deduce (iii), (iv), and (v).

We now prove (i). Suppose that L is such a lattice. We observe that if the discriminant group were cyclic of order 25, the unique lattice strictly between L and its dual would be even and unimodular. Since L has rank 4, this is impossible. Therefore, the discriminant group has shape 5^{2}.

Since $H(4,25)=3.44265186 \ldots, L$ contains a root, say u. Define $N:=a n n_{L}(u)$. Since $H(3,50)=4.91204199 \ldots, N$ contains a norm 2 or 4 element, say v.

Define $R:=\mathbb{Z} u \perp \mathbb{Z} v$ and $P:=a n n_{L}(R)$, a sublattice of rank 2 and determinant $2(v, v) \cdot 25$. Also, the Sylow 5 -group of $\mathcal{D}(P)$ has exponent 5 . Then $P \cong \sqrt{5} J$, where J is an even, integral lattice of rank 2 and $\operatorname{det}(J)=2(v, v)$. Since $\operatorname{det}(J)$ is even and the rank of the natural bilinear form on $J / 2 J$ is even, it follows that $J=\sqrt{2} K$, for an integral, positive definite lattice K. We have $\operatorname{det}(K)=\frac{1}{2}(v, v) \in\{1,2\}$ and so K is rectangular. Also, $P \cong \sqrt{10} K$. So, P has rectangular basis w, x whose norm sequence is $10,5(v, v)$

Suppose that $(v, v)=2$. Also, $L /(R \perp P) \cong 2 \times 2$. A nontrivial coset of $R \perp P$ contains an element of the form $\frac{1}{2} y+\frac{1}{2} z$, where $y \in \operatorname{span}\{u, v\}$ and $z \in \operatorname{span}\{w, x\}$. We may furthermore arrange for $y=a u+b v, z=c w+d x$, where $a, b, c, d \in\{0,1\}$. For the norm of $\frac{1}{2} y+\frac{1}{2} z$ to be an even integer, we need $a=b=c=d=0$ or $a=b=c=d=1$. This is incompatible with $L /(R \perp P) \cong 2 \times 2$. Therefore, $(v, v)=4$.

We have $L /(R \perp P) \cong 5^{2}$. Therefore, $\frac{1}{5} w$ and $\frac{1}{5} x$ are in L^{*} but are not in L
Form the orthogonal sum $L \perp \mathbb{Z} y$, where $(y, y)=5$. Define $w:=\frac{1}{5} x+\frac{1}{5} y$. Then $(w, w)=1$. Also, $Q:=L+\mathbb{Z} w$ has rank 5 , is integral and contains $L \perp \mathbb{Z} y$ with index 5 , so has determinant 5. Since w is a unit vector, $S:=a n n_{Q}(w)$ has rank 4 and determinant 5 , so $S \cong A_{4}$. Therefore, $Q=\mathbb{Z} w \perp S$ and $L=a n n_{Q}(y)$ for some $y \in Q$ of norm 5 , where $y=e+f, e \in \mathbb{Z} w, f \in S$. Since S has no vectors of odd norm, $e \neq 0$ has odd norm. Since $(y, y)=5$ and since (e, e) is a perfect square, $(e, e)=1$ and $(f, f)=4$. Since $O\left(A_{4}\right)$ acts transitively on norm 4 vectors of A_{4}, f is uniquely determined up to the action of $O(S)$. Therefore, the isometry type of L is uniquely determined.

It remains to prove (vii). For one proof, use (B.9). Here is a second proof. We may form an orthogonal direct sum of two such lattices and extend upwards by certain glue vectors.

Let M_{1} and M_{2} be two mutually orthogonal copies of L. Let u, v, w, x be the orthogonal elements of M_{1} of norm 2, 4, 10, 20 as defined in the proof of (i). Let $u^{\prime}, v^{\prime}, w^{\prime}, x^{\prime}$ be the corresponding elements in M_{2}. Set

$$
\gamma=\frac{1}{5}\left(w+x+x^{\prime}\right) \quad \text { and } \quad \gamma^{\prime}=\frac{1}{5}\left(x+w^{\prime}+x^{\prime}\right) .
$$

Their norm are both 2. By computing the Gram matrix, it is easy to show that $E=\operatorname{span}_{\mathbb{Z}}\left\{M_{1}, M_{2}, \gamma, \gamma^{\prime}\right\}$ is integral and has determinant 1 . Thus, E is even and so $E \cong E_{8}$.

Lemma B.9. Let p be a prime which is $1(\bmod 4)$. Suppose that M, M^{\prime} are lattices such that $\mathcal{D}(M)$ and $\mathcal{D}\left(M^{\prime}\right)$ are elementary abelian p-groups which are isometric as quadratic spaces over \mathbb{F}_{p}. Let ψ be such an isometry and let $c \in \mathbb{F}_{p}$ be a square root of -1 . Then the overlattice N of $M \perp M^{\prime}$ spanned by the "diagonal cosets" $\{\alpha+c \alpha \psi \mid \alpha \in \mathcal{D}(M)\}$ is unimodular. Also, N is even if M and M^{\prime} are even.

Proof. The hypotheses imply that N contains $M+M^{\prime}$ with index $|\operatorname{det}(M)|$, so is unimodular. It is integral since the space of diagonal cosets so indicated forms a maximal totally singular subspace of the quadratic space $\mathcal{D}(M) \perp \mathcal{D}\left(M^{\prime}\right)$. The last sentence follows since $\left|N: M \perp M^{\prime}\right|$ is odd.

Lemma B.10. An even rank 4 lattice with discriminant group which is elementary abelian of order 125 is isometric to $\sqrt{5} A_{4}^{*}$.

Proof. Suppose that L is such a lattice. Then $\operatorname{det}\left(\sqrt{5} L^{*}\right)=5$. We may apply the result (B.6) to get $\sqrt{5} L^{*} \cong A_{4}$.

Lemma B.11. An even integral lattice of rank 4 and determinant 9 is isometric to A_{2}^{2}.

Proof. Let M be such a lattice. Since $H(4,9)=2.66666666 \ldots$ and $H(3,18)=$ $3.494321858 \ldots, M$ contains an orthogonal pair of roots, u, v. Define $P:=\mathbb{Z} u \perp$ $\mathbb{Z} v$. The natural map $M \rightarrow \mathcal{D}(P)$ is onto since $(\operatorname{det} M, \operatorname{det} P)=1$. Therefore, $Q:=\operatorname{ann}_{M}(P)$ has determinant 36 and the image of M in $\mathcal{D}(Q)$ is 2×2. Therefore, Q has a rectangular basis w, x, each of norm 6 or with respective norms 2,18 .

We prove that 2,18 does not occur. Suppose that it does. Then there is a sublattice N isometric to A_{1}^{3}. Since there are no even integer norm vectors in $N^{*} \backslash N, N$ is a direct summand of M. By coprimeness, the natural map of M to $\mathcal{D}(N) \cong 2^{3}$ is onto. Then the natural map of M to $\mathcal{D}(\mathbb{Z} x)$ has image isomorphic to 2^{3}. Since $\mathcal{D}(\mathbb{Z} x)$ is cyclic, we have a contradiction.

Since $M /(P \perp Q) \cong 2 \times 2$ and M is even, it is easy to see that M is one of $M_{1}:=\operatorname{span}\left\{P, Q, \frac{1}{2}(u+w), \frac{1}{2}(v+x)\right\}$ or $M_{2}:=\operatorname{span}\left\{P, Q, \frac{1}{2}(u+x), \frac{1}{2}(v+w)\right\}$. These two overlattices are isometric by the isometry defined by $u \mapsto u, v \mapsto v, w \mapsto$ $x, x \mapsto w$. It is easy to see directly that they are isometric to A_{2}^{2}. For example, $M_{1}=\operatorname{span}\left\{u, x, \frac{1}{2}(u+x)\right\} \perp \operatorname{span}\left\{v, w, \frac{1}{2}(v+w)\right\}$.

C Nonexistence of particular lattices

Lemma C.1. Let $X \cong \mathbb{Z}^{2}$. There is no sublattice of X whose discriminant group is 3×3.

Proof. Let Y be such a sublattice. Its index is 3 . Let e, f be an orthonormal basis of X. Then Y contains $W:=\operatorname{span}\{3 e, 3 f\}$ with index 3 . Let $v \in Y \backslash W$, so that $Y=W+\mathbb{Z} v$. If v is e or f, clearly $\mathcal{D}(Y)$ is cyclic of order 9 . We may therefore assume that $v=e+f$ or $e-f$. Then Y is spanned by $3 e$ and $e \pm f$, and so its Smith invariant sequence 1, 9. This final contradiction completes the proof.

Lemma C.2. There does not exist an even rank 4 lattice of determinant 3.

Proof. Let L be such a lattice and let $u \in L^{*}$ so that u generates L^{*} modulo L. Then $(u, u)=\frac{k}{3}$ for some integer $k>0$. Since L is even, k is even. Since $H\left(4, \frac{1}{3}\right)=1.169843567 \cdots<4 / 3$, we may assume that $k=2$.

We now form $L \perp \mathbb{Z}(3 v)$, where $(v, v)=\frac{1}{3}$. Define $w:=u+v$. The lattice $P:=$ $L+\mathbb{Z} w$ is unimodular, so is isometric to \mathbb{Z}^{5}. Since $\operatorname{det}(M)=3, M=a n n_{P}(y)$ for some vector y of norm 3. This forces M to be isometric to $A_{2} \perp \mathbb{Z}^{2}$, a contradiction to evenness.

Corollary C.3. There does not exist an even rank 4 lattice whose discriminant group is elementary abelian of order 3^{3}.

Proof. If M is such a lattice, then $3 M^{*}$ has rank 4 and determinant 3 . Now use (C.2).

D Properties of particular lattices

Lemma D.1. Suppose that $M \neq 0$ is an $S S D$ sublattice of E_{8} and that $\operatorname{rank}(M) \leq$ 4. Then M contains a root, r, and $\operatorname{ann}_{M}(r)$ is an $S S D$ sublattice of E_{8} of rank $(\operatorname{rank}(M)-1)$. Also $M \cong A_{1}^{\operatorname{rank}(M)}$ or D_{4}.

Proof. Let $L:=E_{8}$. Let $d:=\operatorname{det}(M)$, a power of 2 and $k:=\operatorname{rank}(M)$. Note that $\mathcal{D}(M)$ is elementary abelian of rank at most k. If $d=2^{k}$, then $\frac{1}{\sqrt{2}} M$ is unimodular, hence is isometric to \mathbb{Z}^{k}, and the conclusion holds. So, we assume that $d<2^{k}$. For $n \leq 4$ and $d \mid 8$, it is straightforward to check that the Hermite function H satisfies $H(n, d)<4$. Therefore, M contains a root, say r.

Suppose that M is a direct summand of L. By (2.8), $N:=a n n_{M}(r)$ is RSSD in L, hence is SSD in L by (2.7) and we apply induction to conclude that N is an orthogonal sum of $A_{1} s$. So M contains M^{\prime} an orthogonal sum of A_{1} s with index 1 or 2. Furthermore, $\operatorname{det}\left(M^{\prime}\right)=2^{k}$. If the index were 1 , we would be done, so we assume the index is 2 . Since $d>1, d=2,4$ or 8 . By the index formula for determinants, 2^{2} is a divisor of d. Therefore, $d=4$ or 8 . However, if $d=8$, then $\operatorname{det}\left(M^{\prime}\right)=32$, which is impossible since $\operatorname{rank}\left(M^{\prime}\right) \leq 4$. Therefore, $d=4$ and $\operatorname{rank}\left(M^{\prime}\right)=4$. It is trivial to deduce that $M \cong D_{4}$.

We now suppose that M is not a direct summand of L. Let S be the direct summand of L determined by M. Then S is SSD and the above analysis says S is isometric to some A_{1}^{m} or D_{4}. The only SSD sublattices of A_{1}^{m} are the orthogonal direct summands. The only SSD sublattices of D_{4} which are proper have determinant 2^{4} and so equal twice their duals and therefore are isometric to A_{1}^{4}.

Lemma D.2. Suppose that M is an $S S D$ sublattice of E_{8}. Then M is one of the sublattices in Table 10 and Table 11 .

Proof. We may assume that $1 \leq \operatorname{rank}(M) \leq 7$. First we show that M contains a root.

If $\operatorname{rank}(M) \leq 4$, this follows from (D.1). If $\operatorname{rank}(M) \geq 4$, then $N:=\operatorname{ann}_{L}(M)$ has rank at most 4 , so is isometric to one of A_{1}^{k} or D_{4}.

Table 10: SSD sublattices of E_{8} which span direct summands

Rank	Type
0	0
1	A_{1}
2	$A_{1} \perp A_{1}$
3	$A_{1} \perp A_{1} \perp A_{1}$
4	$A_{1} \perp A_{1} \perp A_{1} \perp A_{1}, D_{4}$
5	$D_{4} \perp A_{1}$
6	D_{6}
7	E_{7}
8	E_{8}

Table 11: SSD sublattices of E_{8} which do not span direct summands

Rank	Type	contained in the summand
4	$A_{1} \perp A_{1} \perp A_{1} \perp A_{1}$	D_{4}
5	$A_{1}^{\perp 5}$	$D_{4} \perp A_{1}$
6	$A_{1}^{\perp 6}, D_{4} \perp A_{1} \perp A_{1}$	D_{6}
7	$A_{1}^{\perp 7}, D_{4} \perp A_{1} \perp A_{1} \perp A_{1}, D_{6} \perp A_{1}$	E_{7}
8	$A_{1}^{\perp 8}, D_{4} \perp A_{1}^{\perp 4}, D_{4} \perp D_{4}$,	E_{8}
	$D_{6} \perp A_{1} \perp A_{1}, E_{7} \perp A_{1}$	

Suppose that $\operatorname{rank}(N)=4$. If $N \cong A_{1}^{4}$ and so $\operatorname{ann}_{L}(N) \cong A_{1}^{4}$, which contains M and whose only SSD sublattices are orthogonal direct summands, so $M=a n n_{L}(N)$ and the result follows in this case. If $N \cong D_{4}$, then $M \cong D_{4}$ or A_{1}^{4} by an argument in the proof of (D.1).

We may therefore assume that $\operatorname{rank}(N) \leq 3$, whence $N \cong A_{1}^{\operatorname{rank}(N)}$ and $\operatorname{rank}(M) \geq$ 5. Furthermore, we may assume that $\operatorname{rank}(M)>\operatorname{rank}(\mathcal{D}(M))$, or else we deduce that $M \cong A_{1}^{\operatorname{rank}(M)}$. It follows that $\operatorname{det}(M)$ is a proper divisor of 128 .

Note that $\mathcal{D}(M)$ has rank which is congruent to $\operatorname{rank}(M) \bmod 2$ (this follows from the index determinant formula plus the fact that $\mathcal{D}(M)$ is an elementary abelian 2-group). Therefore, $\operatorname{since} \operatorname{rank}(M) \leq 7, \operatorname{det}(M)$ is a proper divisor of 64 , i.e. is a divisor of 32 .

For any $d \geq 2, H(n, d)$ is an increasing function of n for $n \in[5, \infty)$. For fixed $n, H(n, d)$ is increasing as a function of d. Since $H(7,32)=3.888997243 \ldots$, we conclude that M contains a root, say r.

Since $L /(M \perp N)$ is an elementary abelian 2-group by (A.6), $M \perp N \geq 2 L$. Also, $r+2 L$ contains a frame, F, a subset of 16 roots which span an A_{1}^{8}-sublattice of L. Since roots are orthogonally indecomposable in $L, F=(F \cap M) \cup(F \cap N)$. It follows that M contains a sublattice M^{\prime} spanned by $F \cap M, M^{\prime} \cong A_{1}^{\operatorname{rank}(M)}$, and so
M is generated by M^{\prime} and glue vectors of the form $\frac{1}{2}(a+b+c+d)$, where a, b, c, d are linearly independent elements of $F \cap M$. It is now straightforward to obtain the list in the conclusion by considering the cases of rank 5,6 and 7 and subspaces of the binary length 8 Hamming code.

Lemma D.3. Let $X \cong D_{6}$ and let $\mathfrak{S}=\left\{Y \subset X \mid Y \cong D D_{6}\right\}$. Then $O(X)$ acts transitively on \mathfrak{S}.

Proof. Let $X \cong D_{6}$ and $R=2 X^{*}$. Since $D_{6}^{*} / D_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we have $X \geq R \geq 2 X$ and $R / 2 X \cong D_{6}^{*} / D_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Thus, the index of R in X is $2^{6} / 2^{2}=2^{4}$.

Let ${ }^{-}: X \rightarrow X / 2 X$ be the natural projection. Then for any $Y \in \mathfrak{S}, \bar{Y}$ is a totally isotropic subspace of \bar{X}. Note that $R / 2 X$ is the radical of \bar{X} and thus $X / R \cong 2^{4}$ is nonsingular. Therefore, $\operatorname{dim}(Y+R) / R \leq 2$ and $Y /(Y \cap R) \cong(Y+R) / R$ also has dimension ≤ 2.

First we shall show that $Y \geq 2 X$ and $\operatorname{dim}(Y+R) / R=2$. Consider the tower

$$
Y \geq Y \cap R \geq Y \cap 2 X
$$

Since $Y \cap R+2 X$ is doubly even but R is not, $R \neq Y \cap R+2 X$ and $(Y \cap R+2 X) / 2 X \nsupseteq$ $R / 2 X$. Thus $(Y \cap R+2 X) / 2 X \cong Y \cap R / Y \cap 2 X$ has dimension ≤ 1 and hence

$$
|Y: Y \cap 2 X|=|Y: Y \cap R| \cdot|Y \cap R: Y \cap 2 X| \leq 2^{3}
$$

However, $\operatorname{det}(Y)=2^{8}$ and $\operatorname{det}(2 X)=2^{12} 4=2^{14}$. Therefore, $|Y: Y \cap 2 X| \geq 2^{3}$ and hence $|Y: Y \cap 2 X|=2^{3}$. This implies $Y \cap 2 X=2 X$, i.e., $Y \geq 2 X$. It also implies that $|Y+R: R|=|Y: Y \cap R|=2^{2}$ and hence $(Y+R) / R$ is a maximal isotropic subspace of $X / R \cong \mathbb{Z}_{2}^{4}$.

Let $2 X \leq M \leq X$ be such that $M / 2 X$ is maximal totally isotropic subspace. Then $M \geq R$ and $\frac{1}{\sqrt{2}} M$ is an integral lattice. Set $M_{\text {even }}=\left\{\alpha \in M \left\lvert\, \frac{1}{2}(\alpha, \alpha) \in 2 \mathbb{Z}\right.\right\}$. Then $M_{\text {even }}$ is a sublattice of M of index 1 or 2 . If Y is contained in such M, then $Y=M_{\text {even }}$. That means Y is uniquely determined by M.

Finally, we shall note that the Weyl group acts on X / R as the symmetric group $S_{y m}{ }_{6}$. Moreover, $S_{y m}$ acts faithfully on $X / R \cong \mathbb{Z}_{2}^{4}$ and fixes the form (,), so it acts as $S p(4,2)$. Thus it acts transitively on maximal totally isotropic subspace and we have the desired conclusion.

Lemma D.4. Let $X \cong D_{6}$ and let $Y \cong D D_{6}$ be a sublattice of X. Then there exists a subset $\left\{\eta_{1}, \ldots, \eta_{6}\right\} \subset X$ with $\left(\eta_{i}, \eta_{j}\right)=2 \delta_{i, j}$ such that

$$
Y=\operatorname{span}_{\mathbb{Z}}\left\{\eta_{i} \pm \eta_{j} \mid i, j=1, \ldots, 6\right\}
$$

and

$$
X=\operatorname{span}_{\mathbb{Z}}\left\{\eta_{1}, \eta_{2}, \eta_{4}, \eta_{6}, \frac{1}{2}\left(-\eta_{1}+\eta_{2}-\eta_{3}+\eta_{4}\right), \frac{1}{2}\left(-\eta_{3}+\eta_{4}-\eta_{5}+\eta_{6}\right)\right\} .
$$

Proof. We shall use the standard model for D_{6}, i.e.,

$$
D_{6}=\left\{\left(x_{1}, x_{2}, \ldots, x_{6}\right) \in \mathbb{Z}^{6} \mid x_{1}+\cdots+x_{6} \equiv 0 \quad \bmod 2\right\} .
$$

Let $\beta_{1}=(1,1,0,0,0,0), \beta_{2}=(-1,1,0,0,0,0), \beta_{3}=(0,0,1,1,0,0), \beta_{4}=(0,0,-1,1,0,0)$, $\beta_{5}=(0,0,0,0,1,1)$, and $\beta_{6}=(0,0,0,0,-1,1)$. Then, $\left(\beta_{i}, \beta_{j}\right)=2 \delta_{i, j}$ and

$$
W=\operatorname{span}_{\mathbb{Z}}\left\{\beta_{i} \pm \beta_{j} \mid i, j=1,2,3,4,5,6\right\} \cong D D_{6}
$$

Note also that $\{(1,1,0,0,0,0),(-1,1,0,0,0,0),(0,0,-1,1,0,0),(0,0,0,0,-1,1)$, $(-1,0,-1,0,0,0),(0,0,-1,0,-1,0)\}$ forms a basis for X (since their Gram matrix has determinant 4). By expressing them in $\beta_{1}, \ldots, \beta_{6}$, we have

$$
X=\operatorname{span}_{\mathbb{Z}}\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{6}, \frac{1}{2}\left(-\beta_{1}+\beta_{2}-\beta_{3}+\beta_{4}\right), \frac{1}{2}\left(-\beta_{3}+\beta_{4}-\beta_{5}+\beta_{6}\right)\right\}
$$

Let $Y \cong D D_{6}$ be a sublattice of X. Then by Lemma D.3 there exists $g \in O(X)$ such that $Y=W g$. Now set $\eta_{i}=\beta_{i} g$ and we have the desired result.

Lemma D.5. Let $X \cong D_{4}$ and let $Y \cong D D_{4}$ be a sublattice of X. Then $Y=2 X^{*}$ and hence $X \leq \frac{1}{2} Y$.
Proof. The radical of the form on $X / 2 X$ is $2 X^{*} / 2 X$. If W is any A_{2}-sublattice of X, its image in $X / 2 X$ complements $2 X^{*} / 2 X$. Therefore, every element of $X \backslash 2 X^{*}$ has norm $2(\bmod 4)$. It follows that $Y \leq 2 X^{*}$. By determinants, $Y=2 X^{*}$.

Lemma D.6. Let L be the A_{2}-lattice, with basis of roots r, s. Let $g \in O(L)$ and $|g|=3$. (i) Then $L^{*} \cong \frac{1}{\sqrt{3}} L$ and every nontrivial coset of L in L^{*} has minimum norm $\frac{2}{3}$. All norms in such a coset lie in $\frac{2}{3}+2 \mathbb{Z}$. (ii) If x is any root, $\operatorname{ann}_{L}(x)=$ $\mathbb{Z}\left(x g-x g^{2}\right)$ and $x g-x g^{2}$ has norm 6 .

Proof. (i) The transformation $g: r \mapsto s, s \mapsto-r-s$ is an isometry of order 3 and $h:=g-g^{-1}$ satisfies $h^{2}=-3$ and $(x h, y h)=3(x, y)$ for all $x, y \in \mathbb{Q} \otimes L$. Furthermore, g acts indecomposably on $L / 3 L \cong 3^{2}$. We have $\frac{1}{3} L=L h^{-2} \geq L h^{-1} \geq$ L, with each containment having index 3 (since $h^{2}=-3$). Since L^{*} lies strictly between L and $\frac{1}{3} L$ and is g-invariant, $L^{*}=L h^{-1}$.

Since $L^{*} \cong \frac{1}{\sqrt{3}} L$, the minimum norm in L^{*} is $\frac{2}{3}$ by (D.6). The final statement follows since the six roots $\pm r, \pm s, \pm(r+s)$ fall in two orbits under the action of $\langle g\rangle$, the differences $r g^{i}-s g^{i}$ lie in $3 L^{*}$ and r and $-r$ are not congruent modulo $3 L^{*}$.
(ii) The element $x g-x g^{2}$ has norm 6 and is clearly in $a n n_{L}(x)$. The sublattice $\mathbb{Z} x \perp \mathbb{Z}\left(x g-x g^{2}\right)$ has norm $2 \cdot 6=12$, so has index 3 in L, which has determinant 3. Since L is indecomposable, $a n n_{L}(x)$ is not properly larger than $\mathbb{Z}\left(x g-x g^{2}\right)$.

Lemma D.7. Let $X \cong A_{2}$ and let $Y \leq X,|X: Y|=3$. Then either $Y=3 X^{*}$ and its Smith invariant sequence 3 , 9 ; or Y has Gram matrix $\left(\begin{array}{cc}2 & -3 \\ -3 & 18\end{array}\right)$, which has Smith invariant sequence 1,27. In particular, such Y has $\mathcal{D}(Y)$ of rank 2 if and only if $Y=3 X^{*}$.
Proof. Let r, s, t be roots in X such that $r+s+t=0$. Any two of them form a basis for X. The sublattices $\operatorname{span}\{r, 3 s\}, \operatorname{span}\{s, 3 t\}, \operatorname{span}\{t, 3 r\}$ of index 3 are distinct (since their sets of roots partition the six roots of X) and the index 3 sublattice $3 X^{*}$ contains no roots. Since there are just four sublattices of index 3 in X, we have listed all four. It is straightforward to check the assertions about the Gram matrices. Note that $3 X^{*} \cong \sqrt{3} X$.

Proposition D.8. Suppose that M is a sublattice of $L \cong E_{8}$, that M is a direct summand of M, that M has discriminant group which is elementary abelian of order 3^{s}, for some s. Then M is $0, L$, or is a natural $A_{2}, A_{2} \perp A_{2}$, or E_{6} sublattice. The respective values of s are $0,0,1,2$ and 1 . In case M is not a direct summand, the list of possibilities expands to include $A_{2} \perp A_{2} \perp A_{2}, A_{2} \perp A_{2} \perp A_{2} \perp A_{2}$ and $A_{2} \perp E_{6}$ sublattices.

Proof. One of M and $a n n_{L}(M)$ has rank at most 4 and the images of L in their discriminant group are isomorphic. Therefore, $s \leq 4$. If s were equal to 4 , then both M and $a n n_{L}(M)$ would have rank 4, and each would be isometric to $\sqrt{3}$ times some rank 4 integral unimodular lattice. By (B.4), each would be isomorphic to $\sqrt{3} \mathbb{Z}^{4}$, which would contradict their evenness. Therefore, $s \leq 3$.

The second statement is easy to derive from the first, which we now prove.
We may replace M by its annihilator in L if necessary to assume that $r:=$ $\operatorname{rank}(M) \leq 4$. Since M is even and $\operatorname{det}(M)$ is a power of $3, r$ is even. We may assume that $r \geq 2$ and that $s \geq 1$. If $r=2, M \cong A_{2}$ (B.1]. We therefore may and do assume that $r=4$.

For $s \in\{1,3\}$, we quote (C.2) and (C.3) to see that there is no such M. If $s=2$ we quote (B.11) to identify M.

Proposition D.9. Suppose that M is a sublattice of $L \cong E_{8}$, that M is a direct summand, that M has discriminant group which is elementary abelian of order 5^{s}, for some $s \leq 4$. Then M is 0 , a natural A_{4} sublattice, the rank 4 lattice $M(4,25)$ (cf. B.7)), the rank 4 lattice $\sqrt{5} A_{4}^{*} \cong A_{4}(1)(c f$. (D.10)) or L. The respective values of s are 0, 1, 2, 3 and 0.

Proof. We may replace M by its annihilator in L if necessary to assume that $r:=\operatorname{rank}(M) \leq 4$. Since M is even and $\operatorname{det}(M)$ is a power of $5, r$ is even. We may assume that $r \geq 2$ and that $s \geq 1$. If $r=2$, $\operatorname{det}(M) \equiv 3(\bmod 4)$ (consider the form of a Gram matrix $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$, which has even entries on the diagonal and odd determinant, whence b is odd). This is not possible since $\operatorname{det}(M)$ is a power of 5 .

We therefore may and do assume that $r=4$.
Suppose that $s=4$, i.e., that $\mathcal{D}(M) \cong 5^{4}$. Then $M \cong \sqrt{5} J$, where J is an integral lattice of determinant 1 . Then $J \cong \mathbb{Z}^{\operatorname{rank}(M)}$, which is not an even lattice. This is a contradiction since M is even. We conclude $s=\operatorname{rank}(\mathcal{D}(M)) \leq 3$. If $s=0$, M is a rank 4 unimodular integral lattice, hence is odd by (B.4), a contradiction. Therefore, $1 \leq s \leq 3$. The results (B.6), (B.8) and (B.10) identify M.

Notation D.10. The lattice $A_{4}(1)$ is defined by the Gram matrix

$$
\left(\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right)
$$

It is spanned by vectors v_{1}, \cdots, v_{5} which satisfy $v_{1}+v_{2}+v_{3}+v_{4}+v_{5}=0$ and $\left(v_{i}, v_{j}\right)=-1+5 \delta_{i j}$. Its isometry group contains Sym ${ }_{5} \times\langle-1\rangle$.

Lemma D.11. Suppose that u is a norm 4 vector in an integral lattice U where D acts as isometries so that $1+g+g^{2}+g^{3}+g^{4}$ acts as 0 . Then one of three possibilities occurs.
(i) The unordered pair of scalars $(u, u g)=\left(u, g^{4} u\right)$ and $\left(u, u g^{2}\right)=\left(u, u g^{3}\right)$ equals the unordered set $\{0,-2\}$; or
(ii) The unordered pair of scalars $(u, u g)=\left(u, g^{4} u\right)$ and $\left(u, u g^{2}\right)=\left(u, u g^{3}\right)$ equals the unordered set $\{-3,1\}$; or
(iii) $(u, u g)=\left(u, u g^{2}\right)=\left(u, u g^{3}\right)=\left(u, g^{4} u\right)=-1$.

The isometry types of the lattice span $\left\{u, u g, u g^{2}, u g^{3}, u g^{4}\right\}$ in these respective cases are $A A_{4}, A_{4}, A_{4}(1)$.

Proof. Straightforward.
Lemma D.12. Let $X \cong A_{4}(1)$ (D.10). Then
(i) X is rootless and contains exactly 10 elements of norm 4;
(ii) Suppose $u \in X$ has norm 4. Then $\operatorname{ann}_{X}(u) \cong \sqrt{5} A_{3}$.
(iii) $O(X) \cong 2 \times S y m_{5}$; furthermore, if X_{4} is the set of norm 4 vectors and \mathcal{O} is an orbit of a subgroup of order 5 in $O(X)$ on X_{4}, then the subgroup of $O(X)$ which preserves \mathcal{O} is a subgroup isomorphic to $S y m_{5}$, and is the subgroup generated by all reflections.
(iv) Suppose that $Y \cong A_{4}$ and that $g \in O(Y)$ has order 5 , then $Y(g-1) \cong X$. Also, $O(Y) \cap O(Y(g-1))=N_{O(Y)}(\langle g\rangle) \cong 2 \times 5: 4$, where the right direct factor is a Frobenius group of order 20.
(v) $\mathcal{D}(X)$ is elementary abelian.

Proof. (i) If the set of roots R in X were nonempty, then R would have an isometry of order 5 . Since the rank of R is at most $4, R$ would be an A_{4}-system and so the sublattice of X which R generates would be A_{4}, which has determinant 5 . Since $\operatorname{det}(X)=5^{3}$, this is a contradiction.

By construction, X has an cyclic group Z of order 10 in $O(X)$ which has an orbit of 10 norm 4 vectors, which are denoted $\pm v_{i}$ in (D.10). Suppose that w is a norm 4 vector outside the previous orbit. Let $g \in Z$ have order 5 . Then $w+w g+w g^{2}+w g^{3}+w g^{4}=0$. Therefore $0=\left(v, w+w g+w g^{2}+w g^{3}+w g^{4}\right)$, which means that there exists an index i so that $\left(w, v g^{i}\right)$ is even. Since $v g^{i}$ and w are linearly independent, $\left(v g^{i}, w\right)$ is not ± 4 and the sublattice X^{\prime} which $v g^{i}$ and w span has rank 2. Since $\left(v g^{i}, w\right) \in\{-2,0,2\}, X^{\prime} \cong A A_{1} \perp A A_{1}$ or $A A_{2}$. This contradicts (A.3) (in that notation, $n=4, m=2, p=5, r=3$).
(ii) Let $K:=a n n_{X}(u)$. Since $(u, u)=4$ is relatively prime to $\operatorname{det}(X)$, the natural map $X \rightarrow \mathcal{D}(\mathbb{Z} u)$ is onto. Therefore $\mathbb{Z} u \perp K$ has index 4 in X. Hence $\operatorname{det}(\mathbb{Z} u \perp K)=4^{2} \cdot 5^{3}$ and $\operatorname{det} K=4 \cdot 5^{3}$. Since $\mathcal{D}(X) \leq \mathcal{D}(\mathbb{Z} u \perp K)=\mathcal{D}(\mathbb{Z} u) \times \mathcal{D}(K)$ and the Smith invariant sequence of X is $1,5,5,5, \mathcal{D}(K)$ contains an elementary group 5^{3}. Moreover, the image of X in $\mathcal{D}(K)$ isomorphic to the image of X in $\mathcal{D}(\mathbb{Z} u)$, which is isomorphic to \mathbb{Z}_{4}. Therefore, $\mathcal{D}(K)=\mathbb{Z}_{4} \times \mathbb{Z}_{5}^{3}$ by determinants. Hence, the Smith invariant sequence for K is $5,5,20$ and so $K \cong \sqrt{5} W$, for an integral lattice W such that $\mathcal{D}(W)=4$. Since X is even, W is even. We identify W with A_{3} by (B.2).
(iii) We use the notation in the proof of (i). By (D.11), for any two distinct vectors of the form $v g^{i}$, the inner product is -1 , so the symmetric group on the set of all $v g^{i}$ acts as isometries on the \mathbb{Z}-free module spanned by them, and on the quotient of this module by the \mathbb{Z}-span of $v+v g+v g^{2}+v g^{3}+v g^{4}$, which is isometric to X.

Pairs of elements of norm 4 fall into classes according to their inner products: $\pm 4, \pm 1$. An orbit of an element of order 5 on X_{4} gives pairs only with inner products $4,-1$ (since the sum of these five values is 0). There are two such orbits and an inner product between norm 4 vectors from different orbits is one of $-4,1$. The map -1 interchanges these two orbits. Therefore, the stabilizer of \mathcal{O} has index 2 in $O(X)$. It contains the map which interchanges distinct $v g^{i}$ and $v g^{j}$ and fixes other $v g^{k}$ in the orbit. Such a map is a reflection on the ambient vector space. Since $S_{5} m_{5}$ has just two classes of involutions, it is clear that every reflection in $O(X)=\langle-1\rangle \times \operatorname{Stab}_{O(X)}(\mathcal{O})$ is contained in $\operatorname{Stab}_{O(X)}(\mathcal{O})$.
(iv) We have $Y(g-1)=\operatorname{span}_{\mathbb{Z}}\left\{v g^{i}-v g^{j} \mid i, j \in \mathbb{Z}\right\}$. By checking a Gram matrix, one sees that it is isometric to X. We consider $O(Y) \cap O(Y(g-1))$, which clearly contains $N_{O(Y)}(\langle g\rangle)$. We show that this containment is equality. We take for Y the standard model, the set of coordinate sum 0 vectors in \mathbb{Z}^{5}. Take $v \in Y(g-1)$, a norm 4 vector. It has shape $(1,1,-1,-1,0)$ (up to reindexing). The coordinate permutation t which transposes the last two coordinates is not in $O(Y(g-1)$) (since $v(t-1)$ has norm 2). Therefore $O(Y)$ does not stabilize $Y(g-1)$. Since $N_{O(Y)}(\langle g\rangle)$ is a maximal subgroup of $O(Y)$, it equals $O(Y) \cap O(Y(g-1))$.
(v) Since $A_{4}(1) \cong \sqrt{5} A_{4}^{*}$ by (B.10), $\left(A_{4}(1)\right)^{*} \cong \frac{1}{\sqrt{5}} A_{4}$. Thus, $5 A_{4}(1)^{*}<A_{4}(1)$ and $\mathcal{D}\left(A_{4}(1)\right)$ is elementary abelian.

Lemma D.13. Let $X \cong A_{4}(1)$ be a sublattice of E_{8}. If X is a direct summand, then $\operatorname{ann}_{E_{8}}(X) \cong A_{4}(1)$.

Proof. . Let $Y \cong E_{8}$ and let $X \cong A_{4}(1)$ be a sublattice of Y. Since X is a direct summand, the natural map $Y \rightarrow \mathcal{D}(X)$ is onto. Similarly, the natural map from $Y \rightarrow \mathcal{D}\left(\operatorname{ann}_{Y}(X)\right)$ is also onto and these two images are isomorphic. Thus, $\mathcal{D}\left(a n n_{Y}(X)\right) \cong \mathcal{D}(X) \cong 5^{3}$. Hence, $\operatorname{ann}_{Y}(X)$ is isomorphic to $A_{4}(1)$ by (B.10).

Remark D.14. Note that $A_{4}(1)$ can be embedded into E_{8} as a direct summand. Recall that

$$
\begin{aligned}
& A_{4}(1) \cong \sqrt{5} A_{4}^{*} \\
& =\operatorname{span}_{\mathbb{Z}}\left\{\frac{1}{\sqrt{5}}(1,1,1,1,-4), \frac{1}{\sqrt{5}}(1,1,1,-4,1), \frac{1}{\sqrt{5}}(1,1,-4,1,1), \frac{1}{\sqrt{5}}(1,-4,1,1,1)\right\}
\end{aligned}
$$

Then,

$$
\left(A_{4}(1)\right)^{*} \cong \frac{1}{\sqrt{5}} A_{4}=\left\{\left.\frac{1}{\sqrt{5}}\left(x_{1}, \ldots, x_{5}\right) \right\rvert\, \sum_{i=1}^{5} x_{i}=0 \text { and } x_{i} \in \mathbb{Z}, i=1, \ldots, 5\right\}
$$

Let

$$
Y=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
A_{4}(1) \perp A_{4}(1), \quad \frac{1}{\sqrt{5}}(1,-1,0,0,0 \mid 2,-2,0,0,0) \\
\frac{1}{\sqrt{5}}(0,1,-1,0,0 \mid 0,2,-2,0,0), \frac{1}{\sqrt{5}}(0,0,1,-1,0 \mid 0,0,2,-2,0,)
\end{array}\right\} .
$$

Then Y is a rank 8 even lattice and $\left|Y: A_{4}(1) \perp A_{4}(1)\right|=5^{3}$. Thus $\operatorname{det}(Y)=1$ and $Y \cong E_{8}$. Clearly, $A_{4}(1)$ is a direct summand by the construction.
Remark D.15. We have $O\left(E_{6}\right) \cong W e y l\left(E_{6}\right) \times\langle-1\rangle$. Thus, outer involutions are negatives of inner involutions. The next result does not treat inner and outer cases differently.

Lemma D.16. Let $t \in O\left(E_{6}\right)$ be an involution. The negated sublattice for t is either $S S D$ (so occurs in the list for E_{8} (D.2)) or is RSSD but not $S S D$ and is isometric to one of $A A_{2}, A A_{2} \perp A_{1}, A A_{2} \perp A_{1} \perp A_{1}, A A_{2} \perp A_{1} \perp A_{1} \perp A_{1}, A_{5}, A_{5} \perp A_{1}, E_{6}$. Moreover, the isometry types of the RSSD sublattices determine them uniquely up to the action of $O\left(E_{6}\right)$.

Proof. Let S be the negated sublattice and assume that it is not SSD. Then the image of E_{6} in $\mathcal{D}(S)$ has index 3 and is an elementary abelian 2-group, so that $\operatorname{det}(S)=2^{a} 3$, where $a \leq \operatorname{rank}(S)$. Note that $\operatorname{rank}(S) \geq 2$. Now, let $T:=a n n_{E_{6}}(S)$, a sublattice of rank at most 4. Since $\operatorname{det}(S \perp T)=2^{2 a} 3, \operatorname{det}(T)=2^{a}$ and the image of E_{6} in $\mathcal{D}(T)$ is all of $\mathcal{D}(T)$. Therefore, T is SSD and we may find the isometry type of T among the SSD sublattices of E_{8}. As we search through SSD sublattices of rank at most 4 (all have the form A_{1}^{m} or D_{4}), it is routine to determine the annihilators of their embeddings in E_{6}.

Lemma D.17. Suppose that $R \perp Q$ is an orthogonal direct sum with $Q \cong A A_{2}$ and $R \cong D_{4}$. Let $\phi: \mathcal{D}(R) \rightarrow \mathcal{D}(Q)$ be any monomorphism (recall that $\mathcal{D}(R) \cong 2 \times 2$ and $\mathcal{D}(Q) \cong 2 \times 2 \times 3)$. Then the lattice X which is between $R \perp Q$ and $R^{*} \perp Q^{*}$ and which is the diagonal with respect to ϕ is isometric to E_{6}. Furthermore, if X is a lattice isometric to E_{6} which contains $R \perp Q$, then X is realized this way.
Proof. Such X have determinant 3. The cosets of order 2 for D_{4} in its dual have odd integer norms (the minimum is 1). The cosets of order 2 for $A A_{2}$ in its dual have odd integer norms (the minimum is 1). It follows that such X above are even lattices. By a well-known characterization, $X \cong E_{6}$ (cf. (B.5)).

Conversely, suppose that X is a lattice containing $R \perp Q, X \cong E_{6}$. Since $\operatorname{det}(X)$ is odd, the image of the natural map $X \rightarrow \mathcal{D}(R)$ is onto. Therefore, $|X: R \perp Q|=4$. The image of X in $\mathcal{D}(Q)$ is isomorphic to the image of X in $\mathcal{D}(R)$. The last statement follows.

Corollary D.18. (i) Let Y be a sublattice of $X \cong E_{6}$ so that $Y \cong D_{4}$. Then $a n n_{X}(Y) \cong A A_{2}$.
(ii) Let U be a sublattice of $X \cong E_{6}$ so that $U \cong A A_{2}$ and $X /\left(U \perp\right.$ ann $\left.n_{X}(U)\right)$ is an elementary abelian 2-group. Then $X /\left(U \perp\right.$ ann $\left.n_{X}(U)\right) \cong 2^{2}$ and ann $X_{X}(U) \cong D_{4}$.
Proof. (i) Let $Z:=a n n_{X}(Y)$. Since $(\operatorname{det}(X), \operatorname{det}(Y))=1$, the natural map of X to $\mathcal{D}(Y) \cong 2 \times 2$ is onto, so the natural map of X to $\mathcal{D}(Z) \cong 2 \times 2 \times 3$ has image 2×2. Since $\operatorname{rank}(Z)=2$, this means $\frac{1}{\sqrt{2}} Z$ is an integral lattice of determinant 2. It is not rectangular, or else there exists a root of X whose annihilator contains Y, whereas a root of E_{6} has annihilator which is an A_{5}-sublattice, which does not contain a D_{4}-sublattice (since an A_{5} lattice does not contain an A_{1}^{4}-sublattice). Therefore, by (B.1) $\frac{1}{\sqrt{2}} Z \cong A_{2}$.
(ii) Use (B.3).

Notation D.19. We define two rank 4 lattices X, Q. First, $X \cong A_{1}^{2} A_{2}, \mathcal{D}(X) \cong$ $2^{2} \times 3$. Let X have the decomposition into indecomposable summands $X=X_{1} \perp$ $X_{2} \perp X_{3}$, where $X_{1} \cong X_{2} \cong A_{1}$ and $X_{3} \cong A_{2}$. Let $\alpha_{1} \in X_{1}, \alpha_{2} \in X_{2}, \alpha_{3}, \alpha_{4} \in X_{3}$ be roots with $\left(\alpha_{3}, \alpha_{4}\right)=-1$.

We define $Q \cong \operatorname{ann}_{E_{6}}(P)$, where P is a sublattice of E_{6} isometric to A_{1}^{2}. Then $\mathcal{D}(Q) \cong 2^{2} \times 3$ and $\operatorname{rank}(Q)=4$. Then Q is not a root lattice (because in E_{6}, the annihilator of an A_{1}-sublattice is an A_{5}-sublattice; in an A_{5}-lattice, the annihilator of an A_{1}-sublattice is not a root lattice).

We use the standard model for E_{6}, the annihilator in the standard model of E_{8} of $J:=\operatorname{span}\{(1,-1,0,0,0,0,0,0),(0,1,-1,0,0,0,0,0)\}$. So, E_{6} is the set of E_{8} vectors with equal first three coordinates.

We may take P to be the span of $(0,0,0,1,1,0,0,0)$ and $(0,0,0,1,-1,0,0,0)$. Therefore, $Q=\operatorname{span}\left\{u, Q_{1}, w\right\}$, where $u=(2,2,2,0,0,0,0,0), Q_{1}$ is the $D_{3^{-}}$ sublattice supported on the last three coordinates, and $w:=(1,1,1,0,0,1,1,1)$.

Lemma D.20. The action of $O\left(Q_{1}\right) \cong 2 \times$ Sym $_{3}$ extends to an action on Q. This action is faithful on $Q / 3 Q^{*}$.

Proof. The action of $O\left(Q_{1}\right) \cong 2 \times S y m_{3}$ extends to an action on Q by letting reflections in roots of Q_{1} act trivially on u and by making the central involution of $O\left(Q_{1}\right)$ act as -1 on Q. The induced action on $Q / 3 Q^{*}$ is faithful since Q_{1} maps onto $Q / 3 Q^{*}$ (because $\left.\left(3, \operatorname{det}\left(Q_{1}\right)\right)=1\right)$ and the action on $Q_{1} / 3 Q_{1}$ is faithful. In more detail, the action of $O_{2}\left(O\left(Q_{1}\right)\right) \cong 2^{3}$ is by diagonal matrices and any normal subgroup of $O\left(Q_{1}\right)$ meets $O_{2}\left(O\left(Q_{1}\right)\right)$ nontrivially.

Lemma D.21. We use notation (D.19). Then X contains a sublattice $Y \cong \sqrt{3} Q$ and $X>Y>3 X$.

Proof. We define $\beta_{1}:=\alpha_{1}+\alpha_{2}+\alpha_{3}, \beta_{2}:=-2 \alpha_{3}-\alpha_{4}, \beta_{3}:=\alpha_{3}+2 \alpha_{4}$. Then $Y_{1}:=\operatorname{span}\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\} \cong \sqrt{3} D_{3}$. The vector $\beta_{4}:=3 \alpha_{1}-3 \alpha_{2}$ is orthogonal to Y_{1} and has norm 36. Finally, define $\gamma:=\frac{1}{2} \beta_{4}+\frac{1}{2}\left(\beta_{1}+2 \beta_{2}+3 \beta_{3}\right)=2 \alpha_{1}-\alpha_{2}+2 \alpha_{4}$. Then $Y:=\operatorname{span}\left\{Y_{1}, \beta_{4}, \gamma\right\}$ is the unique lattice containing $Y_{1} \perp \mathbb{Z} \beta_{4}$ with index 2 whose intersection with $\frac{1}{2} Y_{1}$ is Y_{1} and whose intersection with $\frac{1}{2} \mathbb{Z} \beta_{4}$ is $\mathbb{Z} \beta_{4}$. There is an analogous characterization for Q and $\sqrt{3} Q$. We conclude that $Y \cong \sqrt{3} Q$.

Moreover, by direct calculation, it is easy to show that

$$
\begin{aligned}
& 3 \alpha_{1}=\gamma+\beta_{1}-\beta_{3}, \quad 3 \alpha_{2}=\gamma+\beta_{1}-\beta_{3}-\beta_{4} \\
& 3 \alpha_{3}=\beta_{1}+2 \beta_{3}+\beta_{4}-2 \gamma, \quad 3 \alpha_{4}=2 \gamma-\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}\right)
\end{aligned}
$$

Hence, Y also contains $3 X$.
Lemma D.22. Let \mathcal{M} be the set of rank n integral lattices. For $q \in \mathbb{Z}$, let $\mathcal{M}(q)$ be the set of $X \in \mathcal{M}$ such that $X \leq q X^{*}$. Suppose that q is a prime, $X, Y \in \mathcal{M}(q)$, $Y \geq X$ and q divides $|Y: X|$. Then q^{n+2} divides $\operatorname{det}(X)$. In particular, if q^{n+2} does not divide $\operatorname{det}(X)$, then X is not properly contained in a member of $\mathcal{M}(q)$.

Proof. Use the index formula for determinants of lattices.

Proposition D.23. For an integral lattice K, define $\tilde{K}:=K+2 K^{*}$. Let

$$
\begin{gathered}
\mathcal{A}:=\left\{(R, S) \mid R \leq S \leq \mathbb{R}^{4}, R \cong \sqrt{3} Q, S \cong X\right\} \\
\mathcal{B}:=\left\{(T, U) \mid T \leq U \leq \mathbb{R}^{4}, T \cong \sqrt{3} X, U \cong Q\right\} \\
\mathcal{A}^{\prime}:=\left\{(R, S) \mid R \leq S \leq \mathbb{R}^{4}, R \leq 3 R^{*}, \operatorname{det}(R)=2^{2} 3^{5}, S \cong X\right\} \\
\mathcal{B}^{\prime}:=\left\{(T, U) \mid T \leq U \leq \mathbb{R}^{4}, T \leq 3 T^{*}, \operatorname{det}(T)=2^{2} 3^{5}, U \cong Q\right\} .
\end{gathered}
$$

Then (i) $\mathcal{A}=\mathcal{A}^{\prime} \neq \emptyset$ and $\mathcal{B}=\mathcal{B}^{\prime} \neq \emptyset$;
(ii) the map $(T, U) \mapsto\left(\sqrt{3} U, \frac{1}{\sqrt{3}} T\right)$ gives a bijection from \mathcal{B} onto \mathcal{A}; furthermore if $(T, U) \in \mathcal{B}$, then $T \geq 3 \tilde{U}$ and if $(R, S) \in \mathcal{A}$, then $R \geq 3 \tilde{S}$;
(iii) $O\left(\mathbb{R}^{4}\right)$ has one orbit on \mathcal{A} and on \mathcal{B}.

Proof. Clearly, $\mathcal{A} \subseteq \mathcal{A}^{\prime}$ and $\mathcal{B} \subseteq \mathcal{B}^{\prime}$. From (D.21), $\mathcal{A} \neq \emptyset$ and $\mathcal{B} \neq \emptyset$. Moreover, the formula in (ii) gives a bijection between \mathcal{A} and \mathcal{B}.

Now, let (E, F) be in $\mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}$.
We claim that $3 \tilde{F}=F \cap 3 F^{*}$. We prove this with the theory of modules over a PID. Since $\mathcal{D}(F) \cong 2^{2} \times 3$, there exists a basis a, b, c, d of F^{*} so that $a, b, 2 c, 6 d$ is a basis of F. Then $a, b, 2 c, 2 d$ is a basis of \tilde{F}. Since $3 F^{*}$ has basis $3 a, 3 b, 3 c, 3 d$, $F \cap 3 F^{*}$ has basis $3 a, 3 b, 6 c, 6 d$. The claim follows.

Note that $F / 3 \tilde{F}$ is an elementary abelian 3 -group of rank 3 and the claim implies that it is a nonsingular quadratic space. Therefore, its totally singular subspaces have dimension at most 1 .

We now study $E^{\prime}:=E+3 \tilde{F}$, which maps onto a totally singular subspace of $F / 3 \tilde{F}$. Since totally singular subspaces have dimension at most $1,\left|F: E^{\prime}\right|$ is divisible by 3^{2} and so its determinant is $\left|F: E^{\prime}\right|^{2} \operatorname{det}(F)=\left|F: E^{\prime}\right|^{2} 2^{2} 3$. However, E^{\prime} contains E, which has determinant $2^{2} 3^{5}$. We conclude that $E=E^{\prime}$ has index 9 in F. Therefore, $E=E^{\prime} \geq 3 \tilde{F}$. The remaining parts of (ii) follow.

Let $(T, U) \in \mathcal{B}$. The action of $O(U) \cong S y m_{4} \times 2$ on $U / 3 \tilde{U}$ is that of a monomial group with respect to a basis of equal norm nonsingular vectors (D.20). It follows that the action is transitive on maximal totally singular subspaces, of which $T / 3 \tilde{U}$ is one. This proves transitivity for \mathcal{B}. Therefore $\mathcal{B}=\mathcal{B}^{\prime}$ and, using the $O(U)$ equivariant bijection (ii), $\mathcal{A}=\mathcal{A}^{\prime}$.
Corollary D.24. $\sqrt{3} Q$ does not embed in Q and $\sqrt{3} X$ does not embed in X.
Proof. Use (D.23), (D.21) and the fact that X is not isometric to Q (X is a root lattice and Q is not).

Lemma D.25. Suppose that $S \perp T$ is an orthogonal direct sum with $S \cong A_{2}, T \cong$ E_{6}. The set of E_{8} lattices which contain $S \perp T$ is in bijection with $\{X \mid S \perp T \leq$ $\left.X \leq S^{*} \perp T^{*},|X: S \perp T|=3, S^{*} \cap X=S, T^{*} \cap X=T\right\}$.

Proof. This is clear since any E_{8} lattice containing $S \perp T$ lies in $S^{*} \perp T^{*}$ and since the nontrivial cosets of S in S^{*} have norms in $\frac{2}{3}+2 \mathbb{Z}$ and the nontrivial cosets of T in T^{*} have norms in $\frac{4}{3}+2 \mathbb{Z}$.
Lemma D.26. Let $X \cong D_{4}$ and let $H \cong A A_{1}$ be a sublattice of X. Then the image of the natural map X^{*} to H^{*} is $H^{*}=\frac{1}{4} H$.

Proof. A generator of H has norm 4, so H is a direct summand of L. In general, if W is a lattice and Y is a direct summand of W, the natural map $W^{*} \rightarrow Y^{*}$ is onto. The lemma follows.

Lemma D.27. (i) Up to the action of the root reflection group of D_{4}, there is a unique embedding of $A A_{2}$ sublattices.
(ii) We have transitivity of $O\left(D_{4}\right)$ on the set of A_{2} sublattices and on the set of $A A_{2}$-sublattices. In D_{4}, the annihilator of an $A A_{2}$ sublattice is an A_{2} sublattice, and the annihilator of an A_{2} sublattice is an $A A_{2}$-sublattice.

Proof. (i) Let $X \cong D_{4}$ and $Y \cong A A_{2}$. Since every element of Y has norm divisible by $4, Y \leq 2 X^{*}$. Now let $s:=f-1$, where $f \in O_{2}(W e y l(X)), f^{2}=-1$. Then s^{-1} takes $2 X^{*}$ to X and takes Y to an A_{2} sublattice of X. Now use the well-known results that A_{2} sublattices form one orbit under $W e y l(X)$ and $O\left(A_{2}\right) \cong D i h_{12}$ is induced on an A_{2} sublattice of D_{4} by its stabilizer in $W e y l\left(D_{4}\right)$.
(ii) We may take $Y:=\operatorname{span}\{(-2,0,0,0),(1,1,1,1)\} \cong A A_{2}$. Its annihilator is $Z:=\operatorname{span}\{(0,1,-1,0),(0,0,1,-1)\} \cong A_{2}$. Trivially, ann $X_{X}=(Z)=Y$.

Lemma D.28. Let $X \cong E_{6}$ and Y, Z sublattices such that $Z \cong D_{4}$ and $Y:=$ ann $n_{X}(Z) \cong A A_{2}$. Define $W:=2 Y^{*}$ (alternatively, W may be characterized by the property that $\left.Y \leq W \leq Y^{*}, W / Y \cong 3\right)$. Then $W \leq X^{*}$.

Proof. By coprimeness, the natural map $X \rightarrow Z^{*}$ is onto, and the image of X in $\mathcal{D}(Z)$ has order 4. Therefore, the image of the natural map $X \rightarrow \mathcal{D}(Y)$ has order 4 and so the image of the natural map $X \rightarrow Y^{*}$ is $\frac{1}{2} Y$. The dual of $\frac{1}{2} Y$ is $2 Y^{*}$, which contains Y with index 3 and satisfies $\left(X, 2 Y^{*}\right) \leq \mathbb{Z}$.

Lemma D.29. We have $\left(E_{6}^{*}, E_{6}^{*}\right)=\frac{1}{3} \mathbb{Z}$ and the norms of vectors in $E_{6}^{*} \backslash E_{6}$ are in $\frac{4}{3}+\mathbb{Z}$.

Proof. This follows from the fact that E_{6} has a sublattice of index 3 which is isometric to A_{2}^{3} and the facts that $\left(A_{2}^{*}, A_{2}^{*}\right)=\frac{2}{3} \mathbb{Z}$ and that a glue vector for A_{2}^{3} in E_{6} has nontrivial projection to the spaces spanned by each of the three summands.

Hypothesis D.30. L is a rank 12 even integral lattice, $\mathcal{D}(L) \cong 3^{k}$, for some integer k, L is rootless and L^{*} contains no vector of norm $\frac{2}{3}$.

Lemma D.31. The quadratic space $\mathcal{D}(L)$ in (D.30) has nonmaximal Witt index if k is even.

Proof. If the Witt index were maximal for k is even, there would exist a lattice M which satisfies $3 L \leq 3 M \leq L$ and $3 M / 3 L$ is a totally singular space of dimension $\frac{k}{2}$. Such an M is even and unimodular. A well-known theorem says that $\operatorname{rank}(M) \in 8 \mathbb{Z}$, a contradiction.

Proposition D.32. Let L, L^{\prime} be two lattices which satisfy hypothesis (D.30) for k even, and which have the same determinant. There exists an embedding of $L \perp L^{\prime}$ into the Leech lattice.

Proof. We form $L \perp L^{\prime}$. The quadratic spaces $\mathcal{D}(L), \mathcal{D}(L)^{\prime}$ have nonmaximal Witt index.

Let g be a linear isomorphism from $\mathcal{D}(L)$ to $\mathcal{D}\left(L^{\prime}\right)$ which takes the quadratic form on $\mathcal{D}(L)$ to the negative of the quadratic form on $\mathcal{D}\left(L^{\prime}\right)$ (A.19).

Now, form the overlattice J by gluing from $\mathcal{D}(L)$ to $\mathcal{D}\left(L^{\prime}\right)$ with g. Clearly, J has rank 24 , is even and unimodular. The famous characterization of the Leech lattices reduces the proof to showing that J is rootless.

Suppose that J has a root, s. Write $s=r+r^{\prime}$ as a sum of its projections to the rational spaces spanned by L, L^{\prime} respectively. The norm of any element $x \in L^{*}$ has the form $a / 3$, where a is an even integer at least 4 . The norm of any element $x \in L^{\prime *}$ has the form $b / 3$, where b is an even integer at least 4. Therefore, we may assume that r, r^{\prime} have respective norms at least $\frac{4}{3}$. Then $(s, s) \geq \frac{8}{3}>2$, a contradiction.
Lemma D.33. Let L be an even integral rootless lattice with $\mathcal{D}(L) \cong 3^{k}$, for an integer k, and an automorphism g of order 3 without eigenvalue 1 such that $L^{*}(g-$ $1) \leq L$. Then L satisfies hypothesis (D.30).
Proof. We need to show that if $v \in L^{*}$, then $(v, v) \geq \frac{4}{3}$. This follows since $v(g-1) \in L,(v(g-1), v(g-1))=3(v, v)$ and L is rootless.

Corollary D.34. If L, L^{\prime} satisfy hypotheses of (D.33) and each of L, L^{\prime} is not properly contained in a rank 12 integral rootless lattice (such an overlattice satisfies (D.33)), then $L \cong L^{\prime}$ and $k=6$.

Proof. Let Λ be the Leech lattice. We use results from [Gr12] which analyze the elements of order 3 in Λ.

Take two copies L_{1}, L_{2} of L. We have by (D.32), an embedding of $L_{1} \perp L_{2}$ in Λ. Identify $L_{1} \perp L_{2}$ with a sublattice of Λ.

Since L_{1}, L_{2} are not properly contained in another lattice which satisfies (D.33) and since Λ is rootless, L_{1} and L_{2} are direct summands of Λ. Since they are direct summands, $L_{2}=a n n_{\Lambda}\left(L_{1}\right), L_{1}=a n n_{\Lambda}\left(L_{2}\right)$ and the natural maps of Λ to $\mathcal{D}\left(L_{1}\right)$ and $\mathcal{D}\left(L_{2}\right)$ are onto. The gluing construction shows that the automorphism g of order 3 in L as in (D.33) extends to an automorphism of Λ by given action on L_{2} and trivial action on L_{1}. Denote the extension by g.

We now do the same for L^{\prime}, g^{\prime} in place of L, g.
From Theorem 10.35 of [Gr12], g and g^{\prime} are conjugate in $O(\Lambda)$ and $\operatorname{det}(L)=$ $\operatorname{det}\left(L^{\prime}\right)=3^{6}$. A conjugating element takes the fixed point sublattice L_{1} of g to the fixed point sublattice L_{1}^{\prime} of g^{\prime}. Therefore, L and L^{\prime} are isometric.

Corollary D.35. The Coxeter-Todd lattice is not properly contained in an integral, rootless lattice.

Proof. Embed the Coxeter-Todd lattice P in a lattice Q satisfying the hypothesis of (D.34). Since $\operatorname{det}(P)=3^{6}=\operatorname{det}(Q), P=Q$.

Lemma D.36. Let $X \cong E_{8}, P \leq X, P \cong E_{6}$ and $Q:=\operatorname{ann}_{X}(P)$.
(i) There exists a sublattice $R \cong A_{2}$ so that $R \cap(P \cup Q)$ contains no roots.
(ii) If $r \in R$ is a root, then the orthogonal projection of r to P has norm $\frac{4}{3}$ and the projection to Q has norm $\frac{2}{3}$.

Proof. (i) We may pass to a sublattice $Q_{1} \perp Q_{2} \perp Q_{3} \perp Q$ of type A_{2}^{4}, where $P \geq Q_{1} \perp Q_{2} \perp Q_{3}$. Then X is described by a standard gluing with a tetracode, the subspace of \mathbb{F}_{3}^{4} spanned by $(0,1,1,1),(1,0,1,2)$, and elements v_{i} of the dual of $Q_{i}\left(Q_{4}:=Q\right)$ where v_{i} has norm $\frac{2}{3}$. Then for example take R to be the span of $v_{2}+v_{3}+v_{4}, v_{1}+v_{3}-w$, where $w \in v_{4}+Q$ has norm $\frac{2}{3}$ but $\left(w, v_{4}\right)=-\frac{1}{3}$. See (D.6).
(ii) This follows since the norms in any nontrivial coset of Q in Q^{*} is $\frac{2}{3}+2 \mathbb{Z}$.

E Values of the Hermite function

Notation E.1. Let n and d be positive integers. Define the Hermite function

$$
H(n, d):=\left(\frac{4}{3}\right)^{\frac{n-1}{2}} d^{(1 / n)} .
$$

Theorem E. 2 (Hermite: cf. proof in Kn, p. 83). If a positive definite rank n lattice has determinant d, it contains a nonzero vector of norm $\leq H(n, d)$.

Table 12: Values of the Hermite function $H(n, d)$; see [Kn], p.83.

n	d	$H(n, d)$	n	d	$H(n, d)$	n	d	$H(n, d)$
2	2	1.632993162		2	1.679894733	4	2	1.830904128
2	3	2.000000000	3	3	1.922999426	4	3	2.026228495
2	4	2.309401077	3	4	2.116534735	4	4	2.177324216
2	5	2.581988897	3	5	2.279967929	4	5	2.302240057
2	6	2.828427125	3	6	2.422827457	4	6	2.409605343
2	7	3.055050464	3	8	2.666666666	4	7	2.504278443
2	8	3.265986324	3	10	2.872579586	4	8	2.589289450
2	9	3.464101616	3	12	3.052571313	4	9	2.666666668
2	12	4.000000000	3	16	3.359789466	4	12	2.865519818
2	20	5.163977796	3	24	3.845998854	4	25	3.442651865
2	24	5.656854249	3	50	4.912041997	4	125	5.147965271
5	6	2.543945033	6	3	2.465284531	7	32	3.888997243

F Embeddings of NREE8 pairs in the Leech lattice

If M, N is an NREE8 pair, then except for the case $\mathrm{DIH}_{4}(15), L=M+N$ can be embedded in the Leech lattice Λ. In this section, we shall describe such embeddings explicitly.

In the exceptional case $D I H_{4}(15), M \cap N \cong A A_{1}$ and $\left|t_{M} t_{N}\right|=2$. See (5.5).

F. 1 Leech lattice and its isometry group

We shall recall some notations and review certain basic properties of the Leech lattice Λ and its isometry group $O(\Lambda)$, which is also known as $C o_{0}$, a perfect group of order $2^{22} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$.

Let $\Omega=\{1,2,3, \ldots, 24\}$ be a set of 24 element and let \mathcal{G} be the extended Golay code of length 24 indexed by Ω. A subset $S \subset \Omega$ is called a \mathcal{G}-set if $S=\operatorname{supp} \alpha$ for some codeword $\alpha \in \mathcal{G}$. We shall identify a \mathcal{G}-set with the corresponding codeword in \mathcal{G}. A \mathcal{G}-set \mathcal{O} is called an octad if $|\mathcal{O}|=8$ and is called a dodecad if $|\mathcal{O}|=12$. A sextet is a partition of Ω into six 4 -element sets of which the union of any two forms a octad. Each 4 -element set in a sextet is called a tetrad.

For explicit calculations, we shall use the notion of hexacode balance to denote the codewords of the Golay code and the vectors in the Leech lattice. First we arrange the set Ω into a 4×6 array such that the six columns forms a sextet.

For each codeword in $\mathcal{G}, 0$ and 1 are marked by a blanked and non-blanked space, respectively, at the corresponding positions in the array. For example, $\left(1^{8} 0^{16}\right)$ is denoted by the array

The following is a standard construction of the Leech lattice.
Definition F. 1 (Standard Leech lattice [CS, Gr12]). Let $e_{i}:=\frac{1}{\sqrt{8}}(0, \ldots, 4, \ldots, 0)$ for $i \in \Omega$. Then $\left(e_{i}, e_{j}\right)=2 \delta_{i, j}$. Denote $e_{X}:=\sum_{i \in X} e_{i}$ for $X \in \mathcal{G}$. The standard Leech lattice Λ is a lattice of rank 24 generated by the vectors:

$$
\begin{aligned}
& \frac{1}{2} e_{X}, \quad \text { where } X \text { is a generator of the Golay code } \mathcal{G} \text {; } \\
& \frac{1}{4} e_{\Omega}-e_{1} ; \\
& e_{i} \pm e_{j}, \quad i, j \in \Omega
\end{aligned}
$$

Remark F.2. By arranging the set Ω into a 4×6 array, every vector in the Leech lattice Λ can be written as the form

$$
X=\frac{1}{\sqrt{8}}\left[X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right], \quad \text { juxtaposition of column vectors. }
$$

For example,

$\frac{1}{\sqrt{8}}$| 2 | 2 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 0 | 0 | 0 | 0 |
| 2 | 2 | 0 | 0 | 0 | 0 |
| 2 | 2 | 0 | 0 | 0 | 0 |

denotes the vector $\frac{1}{2} e_{A}$, where A is the codeword

$*$	$*$		
$*$	$*$		
$*$	$*$		
$*$	$*$		

Definition F.3. A set of vectors $\left\{ \pm \beta_{1}, \ldots, \pm \beta_{24}\right\} \subset \Lambda$ is called a frame of Λ if $\left(\beta_{i}, \beta_{j}\right)=8 \delta_{i, j}$ for all $i, j \in\{1, \ldots, 24\}$. For example, $\left\{ \pm 2 e_{1}, \ldots, \pm 2 e_{24}\right\}$ is a frame and we call it the standard frame.

Next, we shall recall some basic facts about the involutions in $O(\Lambda)$.
Let $\mathcal{F}=\left\{ \pm \beta_{1}, \ldots, \pm \beta_{24}\right\}$ be a frame. For any subset $S \subset \Omega$, we can define an isometry $\varepsilon_{S}^{\mathcal{F}}: \mathbb{R}^{24} \rightarrow \mathbb{R}^{24}$ by $\varepsilon_{S}^{\mathcal{F}}\left(\beta_{i}\right)=-\beta_{i}$ if $i \in S$ and $\varepsilon_{S}^{\mathcal{F}}\left(\beta_{i}\right)=\beta_{i}$ if $i \notin S$. The involutions in $O(\Lambda)$ can be characterized as follows:

Theorem F. 4 (CS, Gr12]). There are exactly 4 conjugacy classes of involutions in $O(\Lambda)$. They correspond to the involutions $\varepsilon_{S}^{\mathcal{F}}$, where \mathcal{F} is a frame and $S \in \mathcal{G}$ is an octad, the complement of an octad, a dodecad, or the set Ω. Moreover, the eigen-sublattice $\left\{v \in \Lambda \mid \varepsilon_{S}^{\mathcal{F}}(v)=-v\right\}$ is isomorphic to $E E_{8}, B W_{16}, D D_{12}^{+}$and Λ, respectively, where $B W_{16}$ is the Barnes-Wall lattice of rank 16.

F. 2 Standard $E E_{8} \mathrm{~s}$ in the Leech lattice

We shall describe some standard $E E_{8} \mathrm{~s}$ in the Leech lattice in this subsection.

F.2.1 $E E_{8}$ corresponding to octads in different frames

Let $\mathcal{F}=\left\{ \pm \beta_{1}, \ldots, \pm \beta_{24}\right\} \subset \Lambda$ be a frame and denote $\alpha_{i}:=\beta_{i} / 2$. For any octad \mathcal{O}, denote

$$
E_{\mathcal{F}}(\mathcal{O})=\operatorname{span}\left\{\alpha_{i} \pm \alpha_{j}, i, j \in \mathcal{O}, \frac{1}{2} \sum_{i \in \mathcal{O}} \alpha_{i}\right\} .
$$

Then $E_{\mathcal{F}}(\mathcal{O})$ is a sublattice of Λ isomorphic to $E E_{8}$. If $\left\{ \pm 2 e_{1}, \ldots, \pm 2 e_{24}\right\}$ is the standard frame, we shall simply denote $E_{\mathcal{F}}(\mathcal{O})$ by $E(\mathcal{O})$.

Next we shall consider another frame. Let

$$
A=\frac{1}{2}\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]
$$

Notation F.5. Define a linear map $\xi: \Lambda \rightarrow \Lambda$ by $X \xi=A X D$, where

$$
X=\frac{1}{\sqrt{8}}\left[X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right]
$$

is a vector in the Leech lattice Λ and D is the diagonal matrix

$$
\left(\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Recall that ξ defines an isometry of Λ (cf. [CS, p. 288] and [Gr12, p. 97]).
Let $\mathcal{F}:=\left\{ \pm 2 e_{1}, \ldots, \pm 2 e_{24}\right\}$ be the standard frame. Then $\mathcal{F}_{\xi}=\left\{ \pm 2 e_{1}, \ldots, \pm 2 e_{24}\right\} \xi$ is also a frame. In this case, $E(\mathcal{O}) \xi=E_{\mathcal{F}_{\xi}}(\mathcal{O})$ is also isomorphic to $E E_{8}$ for any octad \mathcal{O}. Note that if \mathcal{F} is a frame and $g \in O(\Lambda)$, then $\mathcal{F} g$ is also frame.

F.2.2 $E E_{8}$ associated to an even permutation in octad stabilizer

The subgroup of $\operatorname{Sym}_{\Omega}$ which fixes \mathcal{G} setwise is the Mathieu group M_{24}, which is a simple group of order $2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$. Recall that M_{24} is transitive on octads. The stabilizer of an octad is the group $2^{4}: A l t_{8} \cong A G L(4,2)$ and it acts as the alternating group $A l t_{8}$ on the octad. If we fix a particular point outside the octad, then every even permutation on the octad can be extended to a unique element of M_{24} which fixes the point.

Let $\sigma=(i j)(k \ell) \in \operatorname{Sym}(\mathcal{O})$ be a product of 2 disjoint transpositions on the standard octad \mathcal{O}. Then σ determines a sextet which contains $\{i, j, k, \ell\}$ as a tetrad and σ extends uniquely to an element $\tilde{\sigma}$ which fixes a particular point outside the octad. Note that $\tilde{\sigma}$ fixes 2 tetrads and keeps the other 4 tetrads invariant. Moreover, $\tilde{\sigma}$ has a rank $8(-1)$-eigenlattice which we call E, and that E is isometric to $E E_{8}$.

Take $\tilde{\sigma}$ to be the involution (UP6) listed in [Gr12, pp. 49-52].

(UP 6)

Then $\tilde{\sigma}$ stabilizes the octad

and determines as above the sublattice

$$
E=\operatorname{span}_{\mathbb{Z}}\left\{ \pm \alpha_{i} \pm \alpha_{j}, \frac{1}{2} \sum_{i=1}^{8} \epsilon_{i} \alpha_{i}\right\}
$$

where

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 2 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{3}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 2 & 0 \\
\hline
\end{array}, \quad \alpha_{4}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 2 & 0 \\
\hline
\end{array}, \\
& \alpha_{5}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{7}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc}
\hline 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{8}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{6}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$i, j=1, \ldots, 8$ and $\epsilon_{i}= \pm 1$ such that $\prod_{i=1}^{8} \epsilon_{i}=1$. Then E is a sublattice in Λ which is isomorphic to $E E_{8}$. By our construction, it is also clear that $\tilde{\sigma}$ acts as -1 on E and 1 on $a n n_{\Lambda}(E)$.

Recall that $\tilde{\sigma}$ is acting on Λ from the right according to our convention.

F. $3 E E_{8}$ pairs in the Leech lattice

In this subsection, we shall describe certain NREE8 pairs M, N explicitly inside the Leech lattice. By using the uniqueness theorem (cf. Theorem 4.1), we know that our examples are actually isomorphic to the lattices in Table It turns out that except for $\mathrm{DIH}_{4}(15)$, all lattices in Table \rceil can be embedded into the Leech lattice.

We shall note that the lattice $L=M+N$ is uniquely determined (up to isometry) by the rank of L and the order of the dihedral group $D:=\left\langle t_{M}, t_{N}\right\rangle$ except for $D I H_{8}(16,0)$ and $D I H_{8}\left(16, D D_{4}\right)$. Extra information about $a n n_{M}(N)$ is needed to distinguish them.

Let M and N be $E E_{8}$ sublattices of the Leech lattice Λ. Let $t:=t_{M}$ and $u:=t_{N}$ be the involutions of Λ such that t and u act on M and N as -1 and act as 1 on M^{\perp} and N^{\perp}, respectively. Set $g:=u t$ and $D:=\langle t, u\rangle$, the dihedral group generated by t and u.

Notation F.6. In this subsection, $\mathcal{O}, \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}$, etc denote some arbitrary octads
while $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$, and \mathcal{O}_{4} denote the fixed octads given as follows.

Remark F.7. All the Gram matrices in this subsection are computed by multiplying the matrix A by its transpose A^{t}, where A is the matrix whose rows form an ordered basis given in each case. The Smith invariants sequences are computed using the command ismith in Maple 8.

F.3.1 $|g|=2$.

In this case, $M \cap N \cong 0, A A_{1}, A A_{1} \perp A A_{1}$ or $D D_{4}$.
Case: $\mathrm{DIH}_{4}(15)$: This case does not embed into Λ.
If $M \cap N \cong A A_{1}$, then $L=M+N \cong D I H_{4}(15)$ contains a sublattice isometric to $A A_{1} \perp E E_{7} \perp E E_{7}$, which cannot be embedded in the Leech lattice Λ because the (-1)-eigenlattice of the involution $g=t_{M} t_{N}$ has rank 14 but there is no such involution in $O(\Lambda)$ (cf. Theorem F.4).

Notation F.8. Let $\mathcal{O}=\left\{i_{1}, \ldots, i_{8}\right\}$ and $\mathcal{O}^{\prime}=\left\{j_{1}, \ldots, j_{8}\right\}$ be 2 distinct octads and denote $M:=E(\mathcal{O})$ and $N:=E\left(\mathcal{O}^{\prime}\right)$. Since the Golay code \mathcal{G} is a type $I I$ code (doubly even) and the minimal norm of \mathcal{G} is $8,\left|\mathcal{O} \cap \mathcal{O}^{\prime}\right|$ is either 0 , 2, or 4 .

$\mathrm{DIH}_{4}(16)$

When $\left|\mathcal{O} \cap \mathcal{O}^{\prime}\right|=0$, clearly $M \cap N=0$ and $M+N \cong E E_{8} \perp E E_{8}$.

$\mathrm{DIH}_{4}(14)$

Suppose $\mathcal{O} \cap \mathcal{O}^{\prime}=\left\{i_{1}, i_{2}\right\}=\left\{j_{1}, j_{2}\right\}$. Then $\left|\mathcal{O} \cap \mathcal{O}^{\prime}\right|=2$ and $F=M \cap N=$ $\operatorname{span}_{\mathbb{Z}}\left\{e_{i_{1}}+e_{i_{2}}, e_{i_{1}}-e_{i_{2}}\right\} \cong A A_{1} \perp A A_{1}$. In this case, $\operatorname{ann}_{M}(F) \cong a n n_{N}(F) \cong D D_{6}$ and L contains a sublattice of type $A A_{1} \perp A A_{1} \perp D D_{6} \perp D D_{6}$ which has index 2^{4} in L. Note that L is of rank 14. By computing the Gram matrices, it is easy to check that

$$
\left\{\frac{1}{2}\left(e_{i_{1}}+\cdots+e_{i_{8}}\right)\right\} \cup\left\{-e_{i_{k}}+e_{i_{k-1}} \mid 7 \geq k \geq 3\right\} \cup\left\{-e_{i_{2}}+e_{i_{1}},-e_{i_{1}}-e_{i_{2}}\right\}
$$

is a basis of M and

$$
\left\{-e_{i_{2}}+e_{i_{1}},-e_{i_{1}}-e_{i_{2}}\right\} \cup\left\{e_{j_{k-1}}-e_{j_{k}} \mid 3 \leq k \leq 7\right\} \cup\left\{\frac{1}{2}\left(e_{j_{1}}+\cdots+e_{j_{8}}\right)\right\}
$$

is a basis of N. Thus,

$$
\begin{aligned}
& \left\{\frac{1}{2}\left(e_{i_{1}}+\cdots+e_{i_{8}}\right)\right\} \cup\left\{-e_{i_{k}}+e_{i_{k-1}} \mid 8 \geq k \geq 3\right\} \cup\left\{-e_{i_{2}}+e_{i_{1}},-e_{i_{1}}-e_{i_{2}}\right\} \\
& \cup\left\{e_{j_{k-1}}-e_{j_{k}} \mid 3 \leq k \leq 8\right\} \cup\left\{\frac{1}{2}\left(e_{j_{1}}+\cdots+e_{j_{8}}\right)\right\}
\end{aligned}
$$

is a basis of L and the Gram matrix of L is given by

$$
\left[\begin{array}{cccccccccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 4 & -2 & -2 & 2 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & -2 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & -2 \\
1 & 0 & 0 & 0 & 0 & 2 & -2 & -2 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right] .
$$

The Smith invariant sequence is 11112222222244 .

$\mathrm{DIH}_{4}(12)$

Suppose $\mathcal{O} \cap \mathcal{O}^{\prime}=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}$ (cf. Notation F.8). Then $\left|\mathcal{O} \cap \mathcal{O}^{\prime}\right|=4$ and $F=M \cap N=\operatorname{span}_{\mathbb{Z}}\left\{e_{i_{k}} \pm e_{i_{l}} \mid 1 \leq k<l \leq 4\right\} \cong D D_{4}$. Thus, $a n n_{M}(F) \cong a n n_{N}(F) \cong D D_{4}$. In this case, L is of rank 12 and it contains a sublattice of type $D D_{4} \perp D D_{4} \perp D D_{4}$ which has index 2^{4} in L. Note that $\left\{e_{i_{1}}+\right.$ $\left.e_{i_{2}}, e_{i_{1}}-e_{i_{2}}, e_{i_{2}}-e_{i_{3}}, e_{i_{3}}-e_{i_{4}}\right\}$ is a basis of $F=M \cap N$. A check of Gram matrices also shows that
$\left\{e_{i_{1}}+e_{i_{2}}, e_{i_{1}}-e_{i_{2}}, e_{i_{2}}-e_{i_{3}}, e_{i_{3}}-e_{i_{4}}\right\} \cup\left\{e_{i_{4}}-e_{i_{5}}, e_{i_{5}}-e_{i_{6}}, e_{i_{6}}-e_{i_{7}}, \frac{-1}{2}\left(e_{i_{1}}+\cdots+e_{i_{8}}\right)\right\}$
is a basis of M and

$$
\left\{e_{i_{1}}+e_{i_{2}}, e_{i_{1}}-e_{i_{2}}, e_{i_{2}}-e_{i_{3}}, e_{i_{3}}-e_{i_{4}}\right\} \cup\left\{e_{j_{4}}-e_{j_{5}}, e_{j_{5}}-e_{j_{6}}, e_{j_{6}}-e_{j_{7}}, \frac{-1}{2}\left(e_{j_{1}}+\cdots+e_{j_{8}}\right)\right\}
$$

is a basis of N. Therefore, $L=M+N$ has a basis

$$
\begin{aligned}
& \quad\left\{e_{i_{1}}+e_{i_{2}}, e_{i_{1}}-e_{i_{2}}, e_{i_{2}}-e_{i_{3}}, e_{i_{3}}-e_{i_{4}}\right\} \\
& \cup\left\{e_{i_{4}}-e_{i_{5}}, e_{i_{5}}-e_{i_{6}}, e_{i_{6}}-e_{i_{7}}, \frac{-1}{2}\left(e_{i_{1}}+\cdots+e_{i_{8}}\right)\right\} \\
& \cup\left\{e_{j_{4}}-e_{j_{5}}, e_{j_{5}}-e_{j_{6}}, e_{j_{6}}-e_{j_{7}}, \frac{-1}{2}\left(e_{j_{1}}+\cdots+e_{j_{8}}\right)\right\}
\end{aligned}
$$

and the Gram matrix of L is given by

$$
\left[\begin{array}{cccccccccccc}
4 & 0 & 2 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & -2 \\
0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & -2 & 2 & 0 & 0 & -1 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 \\
-2 & 0 & 0 & 0 & -1 & 0 & 0 & 2 & 0 & 0 & 0 & 4
\end{array}\right]
$$

whose Smith invariant sequence is 111122222244 .

F.3.2 $|g|=3$.

In this case, $M \cap N=0$ or $A A_{2}$.
DIH $_{6}(16)$
Notation F.9. Let $M:=E\left(\mathcal{O}_{1}\right) \cong E E_{8}$, where \mathcal{O}_{1} is the octad described in Notation (F.6). We choose a basis $\left\{\beta_{1}, \ldots, \beta_{8}\right\}$ of M, where

$$
\begin{aligned}
& \beta_{1}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc}
4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \quad, \quad \beta_{2}=\frac{1}{\sqrt{8}} \begin{array}{|r|r|rr|rr|}
\begin{array}{rl}
0 & 4 \\
-4 & 0
\end{array} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \beta_{3}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|ll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \beta_{5}=\frac{1}{\sqrt{8}} \begin{array}{|rr|ll|ll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \beta_{7}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
-4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{l}
\beta_{4}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
\beta_{6}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{array}
\end{aligned}
$$

Let N be the lattice generated by the vectors

$\alpha_{1}=\frac{1}{\sqrt{8}}$| 2 | -2 | 2 | -2 | 2 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 | 2 |
| 0 | 0 | 0 | 0 | 0 | 2 |
| 0 | 0 | 0 | 0 | 0 | 2 |,$\quad \alpha_{2}=\frac{1}{\sqrt{8}}$| 0 | 2 | 0 | 2 | 0 | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -2 | 0 | -2 | 0 | 0 | -2 |
| 0 | 0 | 0 | 0 | 2 | -2 |
| 0 | 0 | 0 | 0 | 0 | 0 |,

$\alpha_{3}=\frac{1}{\sqrt{8}}$| 0 | 0 | 0 | 0 | 0 | -2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | -2 | 2 | -2 | 2 | 0 |
| 0 | 0 | 0 | 0 | -2 | 0 |
| 0 | 0 | 0 | 0 | 2 | 0 | $\alpha_{4}=\frac{1}{\sqrt{8}}$| 0 | 0 | 0 | 0 | 0 | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 2 | 0 | 2 | -2 | 2 |
| -2 | 0 | -2 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | -2 |,

$\alpha_{5}=\frac{1}{\sqrt{8}}\left[\begin{array}{rr|rr|rr}0 & 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 2 & -2 & 2 & -2 & 2 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 \\ \hline\end{array}\right.$,
$\alpha_{6}=\frac{1}{\sqrt{8}}\left[\begin{array}{rr|rr|rr}0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & -2 \\ 0 & 2 & 0 & 2 & -2 & 2 \\ -2 & 0 & -2 & 0 & 0 & 0 \\ \hline\end{array}\right.$

$\alpha_{7}=\frac{1}{\sqrt{8}}$| -2 | -2 | -2 | -2 | 0 | -2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | -2 | 0 |
| 0 | 0 | 0 | 0 | -2 | 0 |
| 0 | 0 | 0 | 0 | -2 | 0 |,

$$
\alpha_{8}=\frac{1}{\sqrt{8}}\left[\begin{array}{ll|ll|ll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

By checking the inner products, it is easy to shows that $N \cong E E_{8}$. Note that $\alpha_{1}, \ldots, \alpha_{7}$ are supported on octads and thus $N \leq \Lambda$ by (F.1).

In this case, $M \cap N=0$. Then $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{8}, \alpha_{1}, \ldots, \alpha_{8}\right\}$ is a basis of $L=M+N$ and the Gram matrix of $L=M+N$ is given by

$$
\left[\begin{array}{rrrrrrrr|rrrrrrrr}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & -1 & 0 & 0 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \\
\hline 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & -1 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & -2 & 0 & 0 & 0 & 0 & 4 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4
\end{array}\right]
$$

By looking at the Gram matrix, it is clear that $L=M+N \cong A_{2} \otimes E_{8}$. The Smith invariant sequence is 1111111133333333 .

$\mathrm{DIH}_{6}(12)$

Let $M:=E\left(\mathcal{O}_{2}\right)$ and $N:=M \xi$, where \mathcal{O}_{2} is the octad described in Notation (F.6) and ξ is the isometry defined in Notation (F.5).

Notation F.10. Set

$$
\begin{aligned}
& \gamma_{1}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \gamma_{2}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{3}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & -4 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \gamma_{4}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 4 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \gamma_{5}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 4 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{6}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 4 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \gamma_{7}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \gamma_{8}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 2 & 2 & 2 & 2 & 2 \\
2 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Then $\left\{\gamma_{1}, \ldots, \gamma_{8}\right\}$ is a basis of M and $\left\{\gamma_{1} \xi, \ldots, \gamma_{8} \xi\right\}$ is a basis of N.
By the definition of ξ, it is easy to show that $\gamma_{1} \xi=-\gamma_{1}, \gamma_{2} \xi=-\gamma_{2}$. Moreover, for any $\alpha \in M=E\left(\mathcal{O}_{2}\right), \alpha \xi$ is supported on \mathcal{O}_{2} if and only if $\alpha \in \operatorname{span}_{\mathbb{Z}}\left\{\gamma_{1}, \gamma_{2}\right\}$. Hence, $F=M \cap N=\operatorname{span}_{\mathbb{Z}}\left\{\gamma_{1}, \gamma_{2}\right\} \cong A A_{2}$. Then $\operatorname{ann}_{M}(F) \cong a n n_{N}(F) \cong E E_{6}$ and $L=M+N$ is of rank 14 .

Note that $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{8}\right\}$ is a basis of M and $\left.\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}, \ldots, \gamma_{8} \xi\right\}$ is a basis of N. Therefore,

$$
\left\{\gamma_{1}, \gamma_{2}\right\} \cup\left\{\gamma_{3}, \ldots, \gamma_{8}\right\} \cup\left\{\gamma_{3} \xi, \ldots, \gamma_{8} \xi\right\}
$$

is a basis of L and the Gram matrix of L is given by

$$
\left[\begin{array}{cccccccccccccc}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 & -2 & 0 & -2 & 0 & 0 & 0 & 2 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 & 4 & -2 & 2 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & -1 & -2 \\
0 & -2 & 0 & 1 & 0 & 0 & 2 & 0 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 \\
0 & 2 & -2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 2 & 4
\end{array}\right]
$$

whose Smith invariant sequence is 11111111133366 .
Recall that $\operatorname{ann}_{M}(F)+a n n_{N}(F) \cong A_{2} \otimes E_{6}$ (cf. (3.2)) and thus L contains a sublattice isometric to $A A_{2} \perp\left(A_{2} \otimes E_{6}\right)$.

F.3.3 $|g|=4$.

In this case, $M \cap N=0$ or $A A_{1}$. There are 2 subcases for $M \cap N=0$.
$\mathbf{D I H}_{8}(\mathbf{1 6}, \mathbf{0})$
Let $M:=E\left(\mathcal{O}_{1}\right)$, where \mathcal{O}_{1} is the octad as described in Notation (F.6).
Take $\left\{\beta_{1}, \ldots, \beta_{8}\right\}$ as defined in Notation (F.9). Then it is a basis of $M=E\left(\mathcal{O}_{1}\right)$. Let N be the $E E_{8}$ sublattice generated by

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -2 & -2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -2 & -2 & -2 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{2}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{3}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
-4 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{4}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 2 & 0 & 2 & 0 & 0 & 0 \\
-2 & 0 & -2 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{5}=\frac{1}{\sqrt{8}}\left[\begin{array}{rr|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right. \\
& \alpha_{6}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
0 & 2 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 \\
-2 & 0 & -2 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{7}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & -4 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{8}=\frac{1}{\sqrt{8}}\left[\begin{array}{rr|rr|rr|}
0 & 2 & 0 & 2 & 0 & 0 \\
0 & -2 & 0 & -2 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 2 & 0 & 0 \\
\hline
\end{array}\right.
\end{aligned}
$$

In this case, $M \cap N=0$ and $\operatorname{ann}_{N}(M)=\operatorname{ann}_{M}(N)=0$. Moreover, the set $\left\{\beta_{1}, \ldots, \beta_{8}, \alpha_{1}, \ldots \alpha_{8}\right\}$ forms a basis of $L=M+N$ and the Gram matrix of L is

$$
\left[\begin{array}{ccccccccccccccccc}
4 & 0 & -2 & 0 & 0 & 0 & 0 & -2 & 1 & -2 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & -2 & 2 & 0 & 0 & 0 & 0 \\
-2 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & -2 & 2 & -1 & 0 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -2 & 2 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & -2 & 2 & -1 \\
0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & -2 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -2 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 & 1 & -1 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -2 & 2 & 0 & 0 & 0 & 0 & 1 & -2 & 4 & 0 & -2 & 0 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & 2 & -2 & 0 & 1 & 0 & 0 & 1 & 0 & -2 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 2 & -2 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & -1 & 2 & -2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\
0 & 0 & 0 & 0 & 2 & -2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 \\
0 & 0 & 0 & 0 & -1 & 2 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4
\end{array}\right] .
$$

The Smith invariant sequence is 1111111122222222 .
It is clear that $L \leq a n n_{\Lambda}\left(E\left(\mathcal{O}_{3}\right)\right)$ (see (F.6) for the definition of $\left.\mathcal{O}_{3}\right)$. On the other hand, $\operatorname{det}(L)=2^{8}=\operatorname{det}\left(a n n_{\Lambda}\left(E\left(\mathcal{O}_{3}\right)\right)\right)$. Hence, $L=a n n_{\Lambda}\left(E\left(\mathcal{O}_{3}\right)\right)$ is isomorphic to $B W_{16}$ (cf. Section (5.2.2)).

$\mathbf{D I H}_{8}\left(\mathbf{1 6}, \mathrm{DD}_{4}\right)$

Define $M:=E\left(\mathcal{O}_{2}\right) \xi$ and $N:=E\left(\mathcal{O}_{4}\right)$, where \mathcal{O}_{2} and \mathcal{O}_{4} are defined as in Notation (F.6). We shall use the set $\left\{\gamma_{1} \xi, \ldots, \gamma_{8} \xi\right\}$ defined in Notation (F.10) as a basis of M and the set $\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}$ as a basis of N, where

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{8}} \begin{array}{|cc|rr|rr}
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}, \quad \alpha_{2}=\frac{1}{\sqrt{8}} \begin{array}{|cc|cc|cc|}
\hline 0 & 0 & 0 & -4 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{3}=\frac{1}{\sqrt{8}} \begin{array}{|ll|lr|ll|}
\hline 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{5}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rr|}
\hline 0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{7}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|ll}
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{8}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & -2 & -2 & -2 & -2 \\
0 & 0 & -2 & -2 & -2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{4}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rr|}
\hline 0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{array}{ll|ll|lr|}
\hline 0 & 0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 4 & 0 \\
8 & \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{array}
\end{aligned}
$$

Recall that
and

$$
\frac{1}{2}\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
\pm 2 \\
0 \\
0 \\
0
\end{array}\right]= \pm\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Therefore, no vector in $M=E\left(\mathcal{O}_{2}\right) \xi$ can be supported on \mathcal{O}_{4} and hence $M \cap N=0$.
Moreover, we have

$$
\begin{aligned}
\operatorname{ann}_{M}(N) & =\left\{\gamma \xi \in M \mid\left(\gamma \xi, \alpha_{i}\right)=0, \text { for all } i=1, \ldots, 8\right\} \\
& =\left\{\gamma \xi \in M \mid \operatorname{supp} \gamma \cap \mathcal{O}_{4}=\emptyset\right\} \\
& =\operatorname{span}_{\mathbb{Z}}\left\{\gamma_{1} \xi, \gamma_{2} \xi, \gamma_{3} \xi, \gamma_{7} \xi\right\} \cong D D_{4}
\end{aligned}
$$

Set

$$
\begin{aligned}
& \delta_{1}=\begin{array}{|ll|rr|rr}
\hline 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \delta_{2}=\begin{array}{|ll|ll|ll|}
\hline 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array} \\
& \delta_{3}=\begin{array}{|ll|ll|ll}
\hline 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}, \quad \delta_{4}=\begin{array}{|ll|ll|lll}
\hline 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{ann}_{N}(M) & =\left\{\alpha \in E\left(\mathcal{O}_{4}\right) \mid\left(\alpha, \gamma_{i} \xi\right)=0 \text { for all } i=1, \ldots, 8\right\} \\
& =\left\{\alpha \in E\left(\mathcal{O}_{4}\right) \mid\left(\alpha, \delta_{i}\right)=0 \text { for all } i=1,2,3,4\right\} \\
& =\frac{1}{\sqrt{8}} \operatorname{span}_{\mathbb{Z}}\left\{\left.\begin{array}{|lllll|l|l|ll|ll|ll|}
\hline 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array} \right\rvert\,, \begin{array}{|cc|rr|rr}
0 & 0 & -2 & -2 & -2 & -2 \\
0 & 0 & -2 & -2 & -2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right\}
\end{aligned}
$$

In this case, $L=M+N$ is of rank 16 and $\left\{\alpha_{1}, \ldots, \alpha_{8}, \gamma_{1} \xi, \ldots, \gamma_{8} \xi\right\}$ is a basis of L.

The Gram matrix of L is given by

$$
\left[\begin{array}{cccccccc|cccccccc}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 & -1 \\
-2 & 4 & -2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -2 & 0 & 1 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & -1 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -2 & 1 \\
0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & 2 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
-2 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 2 \\
0 & 1 & -2 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 \\
-1 & 0 & 1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 4
\end{array}\right]
$$

whose Smith invariant sequence is 1111111122224444 .
A check of the Gram matrices also shows that

$$
\operatorname{ann}_{M}\left(\operatorname{ann}_{M}(N)\right)=\operatorname{span}_{\mathbb{Z}}\left\{\gamma_{5} \xi, \gamma_{6} \xi, \gamma_{7}^{\prime} \xi, \gamma_{8}^{\prime} \xi\right\} \cong D D_{4}
$$

and

$$
\operatorname{ann}_{N}\left(a n n_{N}(M)\right)=\operatorname{span} \mathbb{Z}\left\{\alpha_{1}, \alpha_{3}, \alpha_{5}, \alpha_{8}^{\prime}\right\} \cong D D_{4},
$$

where

$$
\begin{gathered}
\left.\gamma_{7}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|lr}
0 & 0 & 0 & 0 & 4 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \gamma_{8}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|l|ll|ll|}
\hline 0 & 0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
\alpha_{8}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & -2 & -2 & -2 & -2 \\
0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0
\end{array}
\end{gathered}
$$

Let $K=a n n_{M}\left(a n n_{M}(N)\right)+a n n_{N}\left(a n n_{N}(M)\right)$. Then K is generated by

$$
\gamma_{5} \xi, \gamma_{6} \xi, \gamma_{7}^{\prime} \xi, \gamma_{8}^{\prime} \xi, \alpha_{1}, \alpha_{3}, \alpha_{5}, \alpha_{8}^{\prime}
$$

The determinant of K is 2^{8} and thus it is also isometric to $E E_{8}$.

$\mathrm{DIH}_{8}(15)$

When $M \cap N \cong A A_{1}$, this is the only possible case.

Let σ_{1} and σ_{2} be the involutions given as follows.

Then,

is of order 4 .

Let M and N be the $E E_{8}$ lattices corresponding to σ_{1} and σ_{2}, respectively.
Then,

$$
M \cap N=\operatorname{span}_{\mathbb{Z}}\left\{\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & -2 & 2 \\
0 & 0 & 2 & -2 & -2 & 2 \\
\hline
\end{array}\right\} \cong A A_{1} .
$$

Let

$$
\begin{aligned}
& \left.\alpha_{1}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|lr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 4 & 0
\end{array}\right], \quad \alpha_{2}=\frac{1}{\sqrt{8}} \begin{array}{|cc|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & -2 & 2 \\
0 & 0 & 2 & -2 & -2 & 2 \\
\hline
\end{array}, \\
& \left.\alpha_{3}=\frac{1}{\sqrt{8}} \begin{array}{|cc|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0
\end{array}\right], \quad \alpha_{4}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 2 & -2 \\
0 & 0 & -2 & -2 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{5}=\frac{1}{\sqrt{8}}\left[\begin{array}{|c|cc|cr|}
0 & 0 & 0 & 0 & 4 \\
0 & -4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0
\end{array}\right] \quad \alpha_{6}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & -2 & 2 \\
-2 & 2 & 0 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \left.\alpha_{7}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \alpha_{8}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 2 \\
0 & -2 & -2 & 0 & 2 & 0 \\
0 & 2 & 2 & 0 & 0 & -2 \\
\hline
\end{array} \\
& \alpha_{1}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -4 & 4 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{3}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|lr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{4}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 2 & -2 \\
0 & 0 & -2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{5}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{6}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 2 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & -2 & -2 & 2 & 2 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{7}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array} \quad, \quad \alpha_{8}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline-2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 2 \\
0 & 0 & -2 & 0 & 0 & 2 \\
0 & 2 & 0 & 0 & 2 & -2 \\
\hline
\end{array}
\end{aligned}
$$

Note that $M \cap N=\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{2}\right\}$. A check of Gram matrices also shows that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{8}\right\}$ is a basis of M and $\left\{\alpha_{1}^{\prime}, \alpha_{2}, \alpha_{3}^{\prime}, \ldots, \alpha_{8}^{\prime}\right\}$ is a basis of N. Thus, $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{8}\right\} \cup\left\{\alpha_{1}^{\prime}, \alpha_{3}^{\prime}, \ldots, \alpha_{8}^{\prime}\right\}$ is a basis of $L=M+N$ and the Gram matrix of L is given by

$$
\left[\begin{array}{cccccccccccccccc}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & -2 & 2 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & -1 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 & 4 & -1 & -1 & 0 & 1 & -1 & 1 & 2 \\
0 & -2 & 2 & 0 & 0 & 0 & 0 & -1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & -2 & 2 & -1 & 0 & 0 & 0 & -1 & 0 & 4 & -2 & 0 & 0 & 0 & -2 \\
-1 & 0 & -1 & 2 & 0 & -1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 1 & 0 & 0 & -2 & 4 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & -2 & 4 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 & 0 & -2 & 0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

The Smith invariant sequence for L is 111111111144444 .
F.3.4 $|g|=5$.

In this case, $M \cap N=0$ and $a n n_{M}(N)=a n n_{N}(M)=0$.
$\mathbf{D I H}_{\mathbf{1 0}}(\mathbf{1 6})$ Let σ_{1} and σ_{2} be the involutions given as follows:

Then,

is of order 5.

Let M and N be the $E E_{8}$ lattices corresponding to σ_{1} and σ_{2}, respectively. Then, $M \cap N=0$ and $a n n_{M}(N)=a n n_{N}(M)=0$. The lattice $L=M+N$ is of rank 16. By Gram matrices, it is easy to check

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{3}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rl|ll|}
\hline 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{5}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rl|ll|}
\hline 0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{7}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|ll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{2}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
-2 & 2 & 0 & -2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & -2 \\
0 & -2 & 0 & 0 & 2 & 0 \\
\hline
\end{array}, \\
& \alpha_{4}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & -2 & -2 & 0 \\
0 & 0 & 2 & 0 & 0 & -2 \\
0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 & -2 & 0 \\
\hline
\end{array}, \\
& \alpha_{6}=\frac{1}{\sqrt{8}} \begin{array}{|ll|lr|rr|}
\hline 0 & 0 & 0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 2 & -2 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{8}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 2 & 0 & 0 & -2 \\
0 & 2 & -2 & 0 & 2 & 0 \\
\hline
\end{array}
\end{aligned}
$$

form a basis of M and

$$
\begin{aligned}
& \alpha_{1}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{2}^{\prime}=\frac{1}{\sqrt{8}}\left[\begin{array}{rr|rr|rr|}
-2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -2 & -2 & 2 & 2 \\
0 & -2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
\hline
\end{array},\right. \\
& \alpha_{3}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rl|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{4}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 2 & -2 \\
0 & 0 & -2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{5}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{6}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & -2 & 2 \\
0 & 0 & -2 & 2 & -2 & 2 \\
\hline
\end{array},
\end{aligned}
$$

$$
\alpha_{7}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|lr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & -4
\end{array} \quad, \quad \alpha_{8}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & -2 & 0 & 2 \\
0 & 2 & -2 & 0 & 0 & 2 \\
0 & 0 & 2 & -2 & 0 & 0 \\
\hline
\end{array}
$$

form a basis of N. In addition, $\left\{\alpha_{1}, \ldots, \alpha_{8}, \alpha_{1}^{\prime}, \ldots, \alpha_{8}^{\prime}\right\}$ is a basis of $L=M+N$. The Gram matrix of L is then given by

$$
\left[\begin{array}{ccccccccccccccccc}
4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 1 & -1 & 1 & 0 \\
0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & -2 & 4 & -2 & 0 & -2 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 1 & -2 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 1 & -2 & 2 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & 4 & -1 & 1 & 0 & -1 & 2 & -1 & 1 & -2 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 1 & -1 & 0 & 0 & 1 & 1 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 1 & -2 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & -2 & 2 & -1 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -2 & 1 & 0 & 2 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & -2 \\
0 & -1 & 0 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 \\
0 & 0 & 0 & -1 & 1 & 1 & 0 & -2 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 4
\end{array}\right]
$$

The Smith invariant sequence is 1111111111115555.

F.3.5 $|g|=6$.

In this case, $M \cap N=0$, and $a n n_{N}(M) \cong \operatorname{ann}_{M}(N) \cong A A_{2}$.

$\mathbf{D I H}_{12}(\mathbf{1 6})$

Let σ_{1} and σ_{2} be the involutions given as follows:

Then,

(UP $11 \times$ UP $6 \times$ UP 10)

Let M and N be the $E E_{8}$ lattices corresponding to σ_{1} and σ_{2}, respectively. Then, $M \cap N=0$. Moreover, we have

$$
\begin{aligned}
\operatorname{ann}_{M}(N) & =\frac{1}{\sqrt{8}} \operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{|rr|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \begin{array}{|rr|rr|rr}
0 & 0 & 0 & 0 & 2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 2 & 0 & 2 & 0 \\
2 & 0 & -2 & 0 & 0 & -2 \\
\hline
\end{array}\right\} \\
& \cong A A_{2}
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
\operatorname{ann}_{N}(M) & \left.=\frac{1}{\sqrt{8}} \operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{rr|rr|rr}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 & 0 & 0
\end{array}\right], \begin{array}{|rr|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -2 \\
0 & -2 & 0 & -2 & 0 & 2 \\
0 & -2 & 0 & 2 & -2 & 0
\end{array}\right]
\end{array}\right\}
$$

In this case, $L=M+N$ is of rank 16. By Gram matrices, it is easy to check

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr}
4 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{2}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline-2 & 2 & 0 & -2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & -2 & 0 \\
-2 & 0 & 0 & 0 & 0 & 2 \\
\hline
\end{array}, \\
& \alpha_{3}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr}
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{4}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & -2 & 2 & 0 \\
0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & -2 & 2 & 0 \\
0 & 0 & -2 & 0 & 0 & -2 \\
\hline
\end{array} \\
& \alpha_{5}=\frac{1}{\sqrt{8}}\left[\begin{array}{|ll|ll|rr}
0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{6}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 & 2 & -2 \\
0 & 0 & -2 & 2 & 0 & 0 \\
0 & 0 & -2 & -2 & 0 & 0 \\
\hline
\end{array}\right. \\
& \alpha_{7}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rl|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{8}=\frac{1}{\sqrt{8}}
\end{aligned}
$$

form a basis of M and

$$
\begin{aligned}
& \alpha_{1}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array} \quad, \quad \alpha_{2}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline-2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -2 & 2 & -2 & 2 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{3}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|ll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \quad \alpha_{4}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 2 & -2 \\
0 & 0 & -2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{5}^{\prime}=\frac{1}{\sqrt{8}}\left[\begin{array}{|ll|ll|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \quad \alpha_{6}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 2 & -2 \\
0 & 0 & -2 & -2 & 2 & 2 \\
\hline
\end{array},\right. \\
& \alpha_{7}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & -4 & 0 \\
\hline
\end{array}, \quad \alpha_{8}^{\prime}=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 2 \\
0 & -2 & -2 & 0 & 2 & 0 \\
0 & 2 & 2 & 0 & 0 & -2 \\
\hline
\end{array}
\end{aligned}
$$

form a basis for N. Note that $\left\{\alpha_{1}, \ldots, \alpha_{8}, \alpha_{1}^{\prime}, \cdots, \alpha_{8}^{\prime}\right\}$ is a basis of L and the Gram matrix of L is given by
$\left[\begin{array}{cccccccc|cccccccc}4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 \\ 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 & 4 & -2 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & -1 & 0 & 1 & -1 & 2 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 & 0 & 1 & 0 & -1 & 0 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & -2 & 0 & 0 & 4 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & -2 \\ \hline 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 & -2 & 4 & -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 2 & 0 & 0 & 0 & -2 & 4 & -2 & 0 & -2 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 4 & 0 \\ 0 & -1 & 0 & 1 & 1 & -1 & 1 & -2 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 4\end{array}\right]$

The Smith invariant sequence is 1111111111116666 .
Now let $g=\left(\sigma_{1} \sigma_{2}\right)^{2}$. Then

Note that $M g$ is also isometric to $E E_{8}$ and it has a basis

$$
\begin{aligned}
& \left.\alpha_{1} g=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr}
-4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \alpha_{2} g=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 2 & 0 & 0 & 0 & -2 & 2 \\
0 & -2 & -2 & 2 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}, \\
& \alpha_{3} g=\frac{1}{\sqrt{8}} \begin{array}{|ll|lr|ll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \alpha_{4} g=\frac{1}{\sqrt{8}} \begin{array}{|ll|rr|rr|}
\hline 0 & 0 & 0 & 0 & 2 & -2 \\
0 & 0 & -2 & 2 & 0 & 2 \\
0 & 0 & 2 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & -2 & -2 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{5} g=\frac{1}{\sqrt{8}}\left[\begin{array}{|ll|rr|rr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 \\
\hline
\end{array}, \quad \alpha_{6} g=\frac{1}{\sqrt{8}} \begin{array}{|ll|lr|rr|}
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -2 & -2 & -2 \\
0 & 0 & 2 & 2 & 2 & -2 \\
\hline
\end{array},\right. \\
& \left.\alpha_{7} g=\frac{1}{\sqrt{8}} \begin{array}{|ll|ll|lr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 4 & 0 & 0
\end{array}\right], \quad \alpha_{8} g=\frac{1}{\sqrt{8}} \begin{array}{|rr|rr|rr|}
\hline 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 2 & 0 & 2 & 0 \\
2 & 0 & -2 & 0 & 0 & -2 \\
\hline
\end{array}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \cong D D_{4}
\end{aligned}
$$

Note that

$$
t_{M g}=g^{-1} t_{M} g=\begin{array}{|ll|ll|ll|}
\hline \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\hline \bullet & \bullet & \bullet & \ddots \\
0 & \bullet & \bullet & \ddots & \\
\hline
\end{array}
$$

and it commutes with t_{N}. In this case, $t_{M g}$ and t_{N} generates a dihedral group of order 4 and $M g+N$ is isometric to the lattice $\mathrm{DIH}_{4}(12)$.

References

[CS] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd Edition, Springer, New York, 1999.
[DLMN] C. Dong, H. Li, G. Mason and S.P. Norton, Associative subalgebras of Griess algebra and related topics, Proc. of the Conference on the Monster and Lie algebra at the Ohio State University, May 1996, ed. by J. Ferrar and K. Harada, Walter de Gruyter, Berlin - New York, 1998.
[DMZ] C. Dong, G. Mason and Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, Pro. Symp. Pure. Math., American Math. Soc. 56 II (1994), 295-316.
[FLM] I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math., Vol. 134, Academic Press, 1988.
[GHig] G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
[GlNo] G. Glauberman and S. P. Norton, On McKay's connection between the affine E_{8} diagram and the Monster, Proceedings on Moonshine and related topics (Montreal, QC, 1999), 37-42, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001
[GNAVOA1] R. L. Griess, Jr., GNAVOA. I, Studies in groups, nonassociative algebras and vertex operator algebras, Vertex Operator Algebras in Mathematics and Physics (Toronto, ON, 2000), 71-88, Fields Inst. Commun., 39, Amer. Math. Soc., Providence, RI, 2003.
[GL] R.L. Griess, Jr. and Ching Hung Dong, Rootless pairs of $E E_{8}$-lattices, about 9 pages, submitted. (This is an announcement for results in the present manuscript.)
[GMS] R. L. Griess, Jr., U. Meierfrankenfeld and Y. Segev, A uniqueness proof for the Monster, Ann. of Math.(2) 130 (1989), no. 3, 567-602.
[GrO+] R.L. Griess, Jr., A vertex operator algebra related to E_{8} with automorphism group $\mathrm{O}^{+}(10,2)$. The Monster and Lie algebras (Columbus, OH, 1996), 43-58, Ohio State Univ. Math. Res. Inst. Publ., 7, de Gruyter, Berlin, 1998.
[GrE8] R.L. Griess, Jr., Positive definite lattices of rank at most 8, Journal of Number Theory, 103 (2003), 77-84.
[GrBWY] R. L. Griess, Jr., Pieces of 2^{d} : existence and uniqueness for Barnes-Wall and Ypsilanti lattices, Adv. Math. 196 (2005), no. 1, 147-192.
[GrIBW1] R. L. Griess, Jr., Involutions on the Barnes-Wall lattices and their fixed point sublattices. I, Pure Appl. Math. Q. 1 (2005), no. 4, 989-1022.
[Gr12] R. L. Griess, Jr., Twelve Sporadic Groups, Springer Verlag, 1998.
[Kn] M. Kneser and R. Scharlau, Quadratische Formen, Springer, Berlin (2001).
[LS] C. H. Lam and H. Shimakura, Ising vectors in the vertex operator algebra V_{Λ}^{+} associated with the Leech lattice Λ, Int. Math. Res. Not. (2007), Vol. 2007: article ID rnm132, 21 pages.
[LSY] C.H.Lam, S. Sakuma and H. Yamauchi, Ising vectors and automorphism groups of commutant subalgebras related to root systems, Math. Z. 255 (2007) 597-626.
[LYY] C. H. Lam, H. Yamada and H. Yamauchi, Vertex operator algebras, extended E_{8}-diagram, and McKay's observation on the Monster simple group, Trans. Amer. Math. Soc 359 (2007), 4107-4123.
[Mi] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra 179 (1996), 523-548.
[Mi1] M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number field, Ann. of Math 159 (2004), 535-596.
[Sa] S. Sakuma, 6 -transposition property of τ-involutions of vertex operator algebras, Int. Math. Res. Not. (2007), Vol. 2007 : article ID rnm030, 19 pages, doi:10.1093/imrn/rnm030.
[Wit] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, Journal fưr die reine und angewandte Mathematik, 176 (1937), pp. 31-44.

