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Abstract

We give some examples of nonassociative algebras
which occur in VOA theory and finite group theory. A
good theory of these algebras could be useful.

1 Introduction

This talk is motivated by concerns from finite group the-

ory.

The first is that we do not have good axiom systems

for all of the finite simple groups.

The second is that we do not really understand how

the sporadic simple groups fit into mathematics.

A satisfactory answer to the first concern could help us

with the second. A possible answer to the first concern

could be a good theory of some relevant nonassociative

algebras.
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The finite simple groups

The alternating groups, Altn, n ≥ 5

Finite groups of Lie type,

An(q), Bn(q), . . . , E8(q), 2An(q), . . . 2F4(q) (q is a prime

power)

(for example, An(q) is PSL(n + 1, q),

determinant 1 matrices mod scalars

over Fq, the finite field of q elements;
2An(q) is PSU(n + 1, q),

Bn(q) is PSO(2n + 1, q), etc. )

The 26 sporadic groups:

M11 (the smallest, order 7920 = 24325·11)

. . .

F1 = M (the largest, order

246320597611213317·19·23·29·31·41·47·59·71 ∼ 8× 1053 )
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2 Theory for groups of Lie type

Let me concentrate on the groups of Lie type. These are,

roughly, analogues over finite fields of the simple real Lie

groups.

We start with Lie algebras. These are given by a few

simple axioms. One can quickly derive consequences to

make a structure theory. In a one term course, one can

classify all the simple finite dimensional Lie algebras over

the complex numbers.

For groups of Lie type, we have an axiom system de-

rived from Lie theory:
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Definition 2.1. A (B, N) pair is a pair of subgroups

B and N of a group G such that the following axioms

hold:

G is generated by B and N .

The intersection H := B ∩N is a normal subgroup of

N .

The group W := N/H is generated by a nonempty

set of elements S of order 2 such that

if sH is one of the generators ofW and n is any element

of N , then sBn ⊆ BsnB ∪BnB;

if sH ∈ S then sH contains no element which nor-

malizes B

Example 2.2. G = GL(m,K), B = invertible upper

triangular matrices, N= all invertible monomial matri-

ces (diagonal times permutation matrix), H= diagonal

matrices in G, W ∼= Symm.

These axioms lead to uniform proofs for structure the-

ory, representation theory, conjugacy, etc. They predict

and explain a lot. For example, there are uniform argu-

ments for many aspects of GLn, orthogonal, symplectic

groups, G2, etc.
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3 Theory for sporadic groups

We would like theory with similar qualities for sporadic

groups. None is known at this time.

There are reasons to favor the world of commutative

associative algebras as a clue to finding a theory. One

can see that the following is generally true. Let G be

any finite group and Ω a G-set. Form the permutation

module CΩ. This is a direct sum of fields, indexed by Ω,

and G permutes the indecomposalbe summands and acts

as automorphisms.

Take any submodule A of this and let π be the or-

thogonal projection CΩ→ A. Then the product ∗ on A,

defined by x∗y := π(x ·y), is a G-invariant commutative

algebra structure on A, though it is often not associative.

It has an associative bilinear form (x, y ∗ z) = (x ∗ y, z).

There is literature on many cases of this where A is

a sporadic group (or central extension of such). In some

cases, there are results on Aut(A, ∗).
Example 3.1. If G is the Monster simple group, order

about 1054, and Ω is the conjugacy class 2A, then |Ω| is

about 1020. There is a direct summand A of the permu-

tation module so that dim(A) = 196884 and that A is

an algebra with 1 so that A0, the annihilator in A of 1,

is an irreducible module and has dimension 196883.
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Along comes the theory of VOAs in the mid 1980s.

An abbreviated definition of VOA.

(V, Y,1, ω) is a VOA means

V =
⊕

n∈Z Vn, each Vn finite dimensional

Y : V → End(V )[[z, z−1]] (Y is the “vertex oper-

ator”), so for a ∈ V , Y (a, z) =
∑

n∈Z anz
−n−1, for

an ∈ End(V ).

satisfying MANY axioms including a kind of Jacobi

identity (power series in several variables; 1 is a vacuum

element, ω is a Virasoro element)

Consequences.

(1) For each k, we have a product on V , a, b 7→
ak(b), where Y (a, z) =

∑
i aiz

−i−1. It takes Vi × Vj →
Vi+j−k−1. If i = j = k + 1, then (Vk+1, k

th) is a finite

dimensional algebra.

(2) If V is CFT type (Vn = 0 for n ≤ −1, V0 = C1),

then (V1, 0
th) is a Lie algebra.

(3) If V is an OZVOA (=CFT type and V1 = 0), then

(V2, 1
st) is commutative.

(Here we get associative algebras, classical Jordan al-

gebras, B and many others).

(4) If G is any group of automorphism of a VOA, V ,

the set of fixed points V G is also a VOA. (By definition,

an automorphism of a VOA preserves 1 and ω and so

preserves each Vn. Therefore, V G =
⊕

n V
G
n . )
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4 Lattice type VOAs and algebra for the de-

gree 2 term

Suppose that L is a lattice, i.e. a free abelian group in

Euclidean space so that (x, y) ∈ Z for all x, y ∈ L.

There is a standard way to make a VOA from L. As

a linear space it looks like V = S⊗ C[L], where C[L] is

the group algebra of L (basis eα,

a ∈ L) and where S is the symmetric algebra on the

vector space H ⊗ t−1 ⊕H ⊗ t−2 ⊕H ⊗ t−3 ⊕ · · · .
Grading on V based on deg(eα) = 1

2(α, α), deg(H ⊗
t−m) = m.

In particular, if we take an isometry of the lattice L, it

can be lifted to an automorphism of VL. The−1 isometry

lifts, and the set of fixed points of the lift is denoted V +
L .

A context for many commutative algebras associated

to finite simple groups is in VOAs, as the degree 2 piece.

Note. Formulas for multiplying the standard basis

elements of (VL)2 are given in several places, including

[1] and [2]. Examples: S2(H ⊗ t−1) is isomorphic to the

algebra of symmetric matrices with product A ◦ B =
1
2(AB+BA); (eα+e−α)∗ (eβ +e−β) = ±(eα+β +e−α−β)

when α, β are norm 4 vectors such that (α, β) = −2.

Some care is needed for the “sign function” (though it

is identically 1 for the 156-dimensional example).
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5 The 196884-dimensional algebra B

The dimension 196884 dimensional algebra for the Mon-

ster, usually denoted B, occurs as the degree 2 piece of

V \ the Moonshine VOA of Frenkel-Lepowsky-Meurman.

This VOA has graded dimension 1+196884q2+21493760q3+

864299970q4 + 20245856256q5 + · · · , which is essentially

the elliptic modular function + constant with degrees

shifted.

Theorem 5.1. There is no nonzero homogeneous poly-

nomial identity for B of degree less than or equal to

5.

Question. A nontrivial homogeneous polynomial

identity exists, but can it be of practical use?

There is a lot of work on subalgebras of B generated by

idempotents, by Conway, Matsuo, Meyer-Neutsch, Nor-

ton, ...

Theorem 5.2. (Miyamoto) A maximal set of pair-

wise orthogonal idempotents in B has cardinality 48.

Therefore, 48 is the maximum dimension of an asso-

ciative semisimple subalgebra.

The proof uses VOA theory. A finite dimensional state-

ment uses infinite dimensional techniques!
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6 A 156-dimensional algebra

This uses an 8-dimensional lattice M ∼=
√

2E8. Define

H to be the ambient complex vector space C⊗M .

We take the lattice VOA VM and its subVOA V +
M .

This is lattice type and the degree 1 term is 0. This has

degree 2-part which looks, as a linear space, like S2(H)⊕⊕
C(eα + e−α), sum over pairs α,−α of norm 4 vectors

in M (there are 120 such pairs). The dimension of H

is 8 and the dimension of S2(H) is
(

9
2

)
= 36. So (V +

M )2

has dimension 120+36=156. Its automorphism group is

O+(10, 2).

This algebra is a subalgebra of B.
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7 A 27-dimensional algebra

Here is an example coming from fixed points of a group

of odd order.

Take the root lattice L = E6 and form VL. There is a

group of automorphism, E of order 33 so that (V E
L )1 = 0

and (V E
L )2 has dimension 27 and is commutative. It has

33:SL(3, 3) in its automorphism group. It fixes 1 and has

an irreducible 26-dimensional complement.

There is a long list of finite groups with an irreducible

degree 26 representation and which contains 33:SL(3, 3)

as a subgroup. Some of these groups leave invariant a

commutative algebra structure. One is the finite group

PGL(4, 3) and another is the Lie group F4(C).

The algebra (V E
L )2 does not satisfy the Jordan identity,

so is not the exceptional 27-dimensional Jordan algebra.

Finally, it turns out to have finite automorphism group

33:GL(3, 3).
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8 Possible directions

(1) Study some VOAs V with small dimensional degree

2 term to determine identities, connections between the

algebra product on V2 and automorphisms (e.g., idempo-

tents and involutions).

(2) If the algebra B has a uniqueness result (aside the

requirement that it supports the monster as automor-

phism group), it would have important applications to

VOA theory. One could approach this by proving unique-

ness results for some of its subalgebras. We need a char-

acterization of B in some way as an algebra.

(3) Can one take a commutative algebra, A, and create

a VOA V so that (V2, 1st) ∼= A? This is open, and hard.

(4) Is the study of identities on a finite dimensional

commutative algebra the right way to go? Is there a

good alternative?

9 References

There will be references and other material on my web

page, in the research section on nonassociative algebras

and loops.
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