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Abstract

We discuss some examples of nonassociative algebras which oc-
cur in VOA (vertex operator algebra) theory and finite group theory.
Methods of VOA theory and finite group theory provide a lot of nonas-
sociative algebras to study. Ideas from nonassociative algebra theory
could be useful to group theorists and VOA theorists.
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1 Introduction

This article is motivated by concerns from finite group theory.
The first is that we do not have good axiom systems for all of the finite

simple groups. The second is that we do not really understand how the
sporadic simple groups fit into mathematics.

An answer to the first concern could help us with the second. A good
theory of some relevant nonassociative algebras might be a suitable answer.

We hope that this article will encourage nonassociative theorists to think
about connections with finite simple groups, especially the sporadic groups.
Technicalities are kept to a minimum and references are provided.

The author acknowledges support from grant NSF (DMS-0600854).

1.1 A condensed list of the finite simple groups.

The finite simple groups

The alternating groups, Altn, n ≥ 5

Finite groups of Lie type,
An(q), Bn(q), . . . , E8(q),

2An(q), . . . , 2F4(q) (q is a prime power)

(for example, An(q) is PSL(n+ 1, q),
determinant 1 matrices mod scalars

over Fq, the finite field of q elements;
2An(q) is PSU(n+ 1, q),

Bn(q) is PSO(2n+ 1, q), etc. )

The 26 sporadic groups:
M11 (this is the first Mathieu group; it is the smallest sporadic group, order

7920 = 24325·11)
. . .

F1 = M (the largest, order
246320597611213317·19·23·29·31·41·47·59·71 ∼ 8× 1053 )

2 Theory for groups of Lie type

Most finite simple groups are groups of Lie type, so we concentrate on them
first. These are, roughly, analogues over finite fields of the simple real and
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complex Lie groups. The starting point is the definition of a Lie algebra,
given by a few simple axioms. One can quickly derive consequences to make
a structure theory. In a one-term course, it is possible to classify all the
simple finite dimensional Lie algebras over the complex numbers and describe
significant results in representation theory.

For groups of Lie type, we have an axiom system derived from Lie theory:

Definition 2.1. A (B, N) pair is a pair of subgroups B and N of a group G
such that the following axioms hold:

G is generated by B and N .
The intersection H := B ∩N is a normal subgroup of N .
The group W := N/H is generated by a nonempty set S of elements of

order 2 such that
if sH is one of the generators of W and n is any element of N , then

sBn ⊆ BsnB ∪BnB;
if sH ∈ S then sH contains no element which normalizes B

Example 2.2. G = GL(m,K), B = invertible upper triangular matrices,
N= all invertible monomial matrices (diagonal times permutation matrix),
H= diagonal matrices in G, W ∼= Symm.

These axioms lead to uniform proofs for structure theory, representation
theory, conjugacy, etc. They predict and explain a lot. For example, there are
uniform arguments for many aspects of GLn, orthogonal, symplectic groups,
G2, F4, E6, etc. which complement or replace theories of these groups as
isometry groups of forms (e.g., orthogonal and symplectic groups), as auto-
morphism groups of algebras (e.g., groups of type G2 and F4) or otherwise.

3 Theory for sporadic groups

We would like a theory with similar uniform qualities for sporadic groups.
None is known at this time, despite decades of study.

There are reasons for hope that the world of commutative associative al-
gebras will offer help to finding a theory. The following is generally true. Let
G be any finite group and Ω a G-set. Let K be a field. Form the permutation
module KΩ. We can define an algebra structure on the permutation module
by making α · β =: δaβ α, for α, β ∈ Ω. The permutation module is then
a direct sum of fields, indexed by Ω, and G permutes the indecomposable
summands and acts as a group of automorphisms.
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Notice that there is aG-invariant form based on making Ω an orthonormal
basis.

Now suppose that S is any algebra and that T is a subspace. Let U
complement T , so that S = T ⊕ U as vector spaces. Let π be the projection
to T . We may define an algebra structure on T as follows. For x, y ∈ T ,
define x∗ y = π(xy), where xy means the product in S. The algebra (T, ∗) is
called the contraction of S to T (more correctly, the contraction with respect
to the direct sum decomposition S = T ⊕U). Note that if S is commutative,
so is the contraction. However, the contraction of an associative algebra may
not be associative.

We now return to the earlier situation with G and KΩ. Take any G-
submodule A of KΩ. Let us assume that A is nonsingular and let π be the
orthogonal projection KΩ → A. As above, we define the contraction (A, ∗)
of KΩ. While the product is usually not associative, it has an associative
bilinear form (x, y ∗ z) = (x ∗ y, z). Finally, we observe that the action of G
preserves the product.

The Monster simple group was first constructed as a group of automor-
phisms of a 196883-dimensional algebra [10, 11]. We call this algebra B0.
This construction was achieved by piecing together representations of sev-
eral finite groups and choosing a suitable algebra structure. We point out in
the next example that B0 can be described as a contraction (given existence
of the Monster).

Example 3.1. If G is the Monster simple group, order about 1054, and Ω is
the conjugacy class of involutions called 2A, then |Ω| is about 1020. There is
a G-submodule A0 of the permutation module QΩ so that dim(A0) = 196883
and that A0 has dimension 196883. The contraction A0 is isomorphic to B0.

After the original construction of B0 and the Monster, a 196884 dimen-
sional algebra with unit B was proposed (possibly first in [8]). It contains
a copy of B0 as a subspace and its full automorphism group is the Monster.
The algebra B has become more widely used than the original B0. One nice
feature of B is that it has a 300-dimensional subalgebra which is the Jordan
algebra of degree 24 symmetric matrices. See consequence (4) below.

There is literature on commutative nonassociative algebras A which are
related to permutation representations of finite groups, including sporadic
groups (or central extension of such). In some cases, there are results on
Aut(A). See later sections in this article; also [26, 28, 21].
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Along came the theory of VOAs (vertex operator algebras) in the mid
1980s.

An abbreviated definition of VOA.
(V, Y,1, ω) is a VOA means:
V =

⊕
n∈Z Vn, each Vn is a finite dimensional complex vector space;

Y : V → End(V )[[z, z−1]] (Y is the “vertex operator”), so for a ∈ V ,
Y (a, z) =

∑
n∈Z anz

−n−1, for an ∈ End(V ).
1 is a vacuum element and ω is a Virasoro element.

There are many axioms including a kind of Jacobi identity (involving power
series in several variables).

The axioms imply that 1 ∈ V0 and ω ∈ V2. Therefore, dim(V0) ≥ 1 and
dim(V2) ≥ 1. Any dimension is possible for dim(V1).

See a full treatment and historical remarks in [8]. The survey [9] is useful.

Consequences.
We focus on a few points involving finite dimensional algebras.
(1) For each k, we have a product on V , a, b 7→ ak(b). We call it the kth

product. It takes Vi × Vj → Vi+j−k−1. If i = j = k + 1, then (Vk+1, k
th) is a

finite dimensional algebra.
(2) If V is CFT type (Vn = 0 for n ≤ −1, V0 = C1), then (V1, 0

th) is a Lie
algebra. (The abbreviation CFT means “conformal field theory”.)

(3) If V is an OZVOA (=CFT type and V1 = 0), then (V2, 1
st) is commu-

tative. (Here we may get associative algebras, classical Jordan algebras, B
and many others).

(4) If G is any group of automorphism of a VOA V , then the set V G

of fixed points is also a VOA. (By definition, an automorphism of a VOA
preserves 1 and ω and so preserves each Vn. Therefore, V G =

⊕
n V

G
n . )

4 Lattice type VOAs and their degree 2 sum-

mands

Suppose that L is an even lattice, i.e. a free abelian group in Euclidean space
so that (x, y) ∈ Z and (x, x) ∈ 2Z for all x, y ∈ L.

There is a standard way to make a lattice VOA from L. As a linear
space it looks like VL = S ⊗ C[L], where C[L] is the group algebra of L
(basis eα, α ∈ L) and where S is the symmetric algebra on the vector space
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(H ⊗ t−1)⊕ (H ⊗ t−2)⊕ (H ⊗ t−3)⊕ · · · . For details, see [8]. A lattice type
VOA is the fixed point subVOA V G

L , where VL is a lattice VOA and G is a
finite subgroup of Aut(VL).

Grading on V is based on deg(eα) = 1
2
(α, α), deg(H ⊗ t−m) = m.

In particular, if we take an isometry of the lattice L, it can be lifted to
an automorphism of VL (see [8] and the appendix of [20]). The −1 isometry
lifts, and the set of fixed points of the lift is denoted V +

L . Lifts of the −1
isometry are not unique, but any two are conjugate [20].

Note. Formulas for multiplying the standard basis elements of (VL)2

are given in several places, including [8] and [16]. Examples: S2(H ⊗ t−1)
is isomorphic to the Jordan algebra of symmetric matrices with product
A ◦B = 1

2
(AB +BA); also, (eα + e−α) ∗ (eβ + e−β) = ±(eα+β + e−α−β) when

α, β are norm 4 vectors such that (α, β) = −2.
Some care is needed for the “sign function” (though it may be arranged

to be identically 1 when (L,L) ≤ 2Z, e.g. for the 156-dimensional example
described later).

5 The 196884-dimensional algebra B
The algebra B occurs as the degree 2 piece of V \ the Moonshine VOA of
Frenkel-Lepowsky-Meurman. This VOA has graded dimension

1 + 196884q2 + 21493760q3 + 864299970q4 + 20245856256q5 + · · · ,

which is the elliptic modular function + constant, with degrees shifted. See
[8].

Theorem 5.1. There is no nonzero homogeneous polynomial identity for B
of degree less than or equal to 5. [17]

Question. A nontrivial homogeneous polynomial identity exists, by
finite dimensionality, but can it be of practical use if its degree is high?

There is a lot of work on subalgebras of B generated by idempotents
[25, 4, 24, 26]. A striking result is the following, which proved a conjecture
of Meyer-Neutsch [25].

Theorem 5.2. (Miyamoto) [24] A maximal set of pairwise orthogonal idem-
potents in B has cardinality 48. Therefore, 48 is the maximum dimension of
an associative semisimple subalgebra.

6



Miyamoto’s theory connects idempotents in B to so-called Virasoro ele-
ments in a VOA (these elements generate a subVOA of very special form, a
highest weight module for the Virasoro Lie algebra). The proof of this finite
dimensional result uses infinite dimensional techniques!

6 A 156-dimensional algebra

This example is based on an 8-dimensional lattice M ∼=
√

2E8 [16]. Define
H to be the ambient complex vector space C⊗M .

We take the lattice VOA VM and its subVOA V +
M . This is lattice type

and its degree 1 term is 0. Its degree 2-part looks, as a linear space, like
S2(H) ⊕

⊕
{α,−α}C(eα + e−α), where we sum over pairs α,−α of norm 4

vectors in M (there are 120 such pairs). The dimension of H is 8 and the
dimension of S2(H) is

(
9
2

)
= 36. So (V +

M )2 has dimension 120+36=156. Its
automorphism group is the finite orthogonal group O+(10, 2).

This algebra is a subalgebra of B. In Aut(B), isomorphic to the Mon-
ster, the stabilizer of such a subalgebra is a complicated group of the form
210+16.Ω+(10, 2). This subgroup induces the group Ω+(10, 2) on the subalge-
bra, an index 2 subgroup of its full automorphism group.

The VOA V +
M may also be realized as a subVOA of VL, the lattice VOA

based on the E8 lattice. It is isomorphic to the fixed points of an elementary
abelian group of order 32 in the automorphism group of VL, isomorphic to
E8(C). More specifically, there are two conjugacy classes of involutions in
the Lie group E8(C), called 2A and 2B. There exists an elementary abelian
group of order 2r which is 2B-pure (i.e., all involutions are in the class 2B)
if and only if r ≤ 5, and for each such r, there is a single conjugacy class of
such groups. See [1], [18], [19].

7 A 27-dimensional algebra

Here is an example coming from fixed points of a group of odd order [21].
Take the root lattice L = E6 and form VL. There is a group of automor-

phism, E, of order 33 so that (V E
L )1 = 0 and (V E

L )2 has dimension 27 and is
commutative. It has 33:SL(3, 3) in its automorphism group. It fixes 1 and
has an irreducible 26-dimensional complement.

At first, one may guess that the algebra (V E
L )2 is the famous exceptional
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Jordan algebra. The automorphism group of the exceptional Jordan algebra
is the group F4(C), which does in fact contain a subgroup isomorphic to
33:SL(3, 3).

The automorphism group of any finite dimensional algebra is a (possi-
bly disconnected) algebraic group. In particular, a such an automorphism
group could be finite. A search shows that there are several finite groups
with an irreducible degree 26 representation and which contain 33:SL(3, 3)
as a subgroup. Some of these groups leave invariant a commutative algebra
structure on a 26-dimensional representation. For example, one is the finite
group PGL(4, 3).

The analysis in [21] show that the algebra (V E
L )2 does not satisfy the Jor-

dan identity, so is not the exceptional 27-dimensional Jordan algebra. Finally,
it turns out that its automorphism group is the finite group 33:GL(3, 3) of
affine transformations on F3

3. We are not aware of other occurrences of the al-
gebra (V E

L )2. It would be interesting to know about the other 27-dimensional
algebras mentioned above.

8 Possible directions

(1) Study some VOAs V with small dimensional degree 2 term to determine
identities, connections between the algebra product on V2 and automorphisms
(e.g., idempotents and involutions).

(2) Assume that we are in characteristic 0. An algebra of dimension
196883 which supports the monster as a group of automorphisms is unique
up to isomorphism. An algebra of dimension 196884 which as a unit is
not uniquely determined by the property of having the monster as a group
of automorphisms, but is uniquely determined if a naturally defined 300-
dimensional subalgebra is isomorphic to the Jordan algebra of symmetric
degree 24 matrices (such a subalgebra is the set of fixed points of the extraspe-
cial group O2(C) of order 225, where C is the centralizer of a 2B-involution).

If the algebra B has a uniqueness result, purely as an algebra, (without the
assumption that it has the monster as automorphism group), there could be
important applications to VOA theory, in particular to the open uniqueness
problem for the moonshine VOA. One could try to approach this by proving
uniqueness results for subalgebras of B.

(3) A context for many commutative (not necessarily associative) algebras
is in VOA theory, as the degree 2 piece of some VOA [2, 22, 23]. Can one
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take a commutative algebra, A, and create a VOA V so that (V2, 1st) ∼= A?
This is open, and hard. A partial answer is announced in [27]. It may help
to assume that there is an associative form (i.e., (x ∗ y, z) = (x, y ∗ z) for all
x, y, z).

(4) Is the study of identities on a finite dimensional commutative algebra
the right way to go for developing a theory of finite simple groups? Is there
a good alternative?

(5) Take a root lattice, L. The automorphism group of the VOA VL is
the adjoint group of type L extended by graph automorphisms [5]. If S is a
subgroup of G := Aut(VL), then V S (the subVOA of fixed points) inherits
an action of the quotient group NG(S)/S as automorphisms.

More studies of such VOAs V S
L would be fascinating. In this article,

we have mentioned examples at rank 6 (for the E6 lattice) and rank 8 (for
the E8 lattice). Examples of this in rank 1 are already quite interesting
and nontrivial [6], [7]. For the case where S is a finite group, there is an
enormous amount of information available (see the survey [18, 19] to get
started on examples). In case V S

1 = 0, the finite dimensional algebra (V S
2 , 1

st)
is commutative and typically nonassociative, so falls into the general category
we considered earlier.

(6) The author has done some work on loops and their relations to struc-
ture theory of finite groups, nonassociative algebras and group cohomology
[12, 14, 13, 15].
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