Diagonal lattices and rootless $E E_{8}$ pairs

Robert L. Griess Jr.
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109 USA
rlg@umich.edu
Ching Hung Lam
Institute of Mathematics
Academia Sinica
Taipei 10617, Taiwan
chlam@math.sinica.edu.tw

Abstract

Let E be an integral lattice. We first discuss some general properties of an SDC lattice, i.e., a sum of two diagonal copies of E in $E \perp E$. In particular, we show that its group of isometries contains a wreath product. We then specialize this study to the case of $E=E_{8}$ and provide a new and fairly natural model for those rootless lattices which are sums of a pair of $E E_{8}$-lattices. This family of lattices was classified in [7]. We prove that this set of isometry types is in bijection with the set of conjugacy classes of rootless elements in the isometry group $O\left(E_{8}\right)$, i.e., those $h \in O\left(E_{8}\right)$ such that the sublattice $(h-1) E_{8}$ contains no roots. Finally, our model gives new embeddings of several of these lattices in the Leech lattice.

Keywords: integral lattice, rootless lattice, isometry, E_{8}-lattice, Leech lattice AMS subject classification: 20C10 Integral representations of finite groups; 11H56 Automorphism groups of lattices

Contents

1 Introduction 2
2 About SDC lattices 3
3 About rootless isometries 6
3.1 Root lattice of type A 8
4 Eliminating cases 10
4.1 The prime 7 10
4.2 The prime 5 10
4.3 The prime 3 11
4.4 The prime 2 13
4.5 Rootless elements of composite orders 18
5 How the surviving cases give all rootless $E E_{8}$ pairs 24
A Embeddings of $E E_{8}$ pairs in the Leech lattice 25
A. 1 Order 2 26
A. 2 Order 3 28
A. 3 Order 5 29

1 Introduction

In this article, lattice means a finitely generated free abelian group with a rational valued symmetric bilinear form.

We begin by defining the main construction used in this article.
Notation 1.1. Suppose that we are given an integral lattice, E, and an isometry $h \in O(E)$. In $E \perp E$, we have two sublattices

$$
M:=\{(x, x) \mid x \in E\} \quad \text { and } \quad N:=\{(x, h x) \mid x \in E\} .
$$

Clearly, $M \cong N \cong \sqrt{2} E$ (where \cong indicates isometry of quadratic spaces). Define $L:=L(E, h):=M+N$. We call L an SDC-lattice or, more precisely, an $S C D(E, h)$-lattice or $S D C(E)$-lattice, meaning a sum of diagonal copies (of the fixed input lattice, E, using the isometry h).

Clearly, L is integral (since it is a sublattice of $E \perp E$) and even (since the generating set $M \cup N$ has only even norm vectors). Our first main result shows that L has a large group of isometries (1.2).

Theorem 1.2. Let L, h be as in (1.1), where h has order n. Then $O(L)$ contains a chain of subgroups $\left\langle t_{M}, t_{N}\right\rangle \leq W_{M, N} \cong \mathbb{Z}_{n} \mathbb{Z}_{2}$. Furthermore, each of t_{M}, t_{N} is a wreathing involution of $W_{M, N}$.

Some lattices of great interest have this form. One has for instance the Barnes-Wall lattices (for which M, N are scaled copies of smaller rank BarnesWall lattices and $h^{2}=-1$). Additional examples are listed in Section 5. One should note the trivial cases $h=1$, for which $M=N$, and $h=-1$, for which $M+N=M \perp N$.

The term $E E_{8}$-lattice means a lattice isometric to $\sqrt{2} E_{8}[7]$.
We now consider rootless integral lattices spanned by a pair of $E E_{8^{-}}$ lattices. They were studied and classified in [7]. Recently, we realized that they may be expressed as SDC-lattices (1.3). The next two main results shows how they may be expressed as SDC-lattices (1.3).

Theorem 1.3. All rootless EE8 pairs listed in [7, Table 1] can be embedded into $E_{8} \perp E_{8}$ as $S D C\left(E_{8}\right)$-lattices (1.1).

Theorem 1.4. There is a bijection between the conjugacy classes of rootless elements in $O\left(E_{8}\right)$ and the isometry classes of rootless $E E_{8}$ pairs.

An application of modeling the lattices of [7] as $S D C\left(E_{8}\right)$-lattices is that one can see relatively natural embeddings of some of them into the Leech lattice; see Section A. Such embeddings were first demonstrated in [7], but the proofs were rather technical.

Conventions. Group actions will be on the left. Notations are generally standard. We mention the relatively new notations $E E_{8}$ for $\sqrt{2} E_{8}[7]$, RSSD and SSD (2.1). For background on groups and lattices, see [6].

2 About SDC lattices

In this section, E is an arbitrary integral lattice. Later in this article, we shall specialize to the case $E=E_{8}$.

Definition 2.1. A sublattice X of an integral lattice Y is called RSSD if $2 Y \leq X+\operatorname{ann}(X)$. If X is RSSD, the orthogonal transformation t_{X} which is -1 on X and 1 on ann (X) takes Y to itself, whence $t_{X} \in O(Y)$.

The lattice X is called $S S D$ if $2 X^{*} \leq X$. An SSD lattice X contained in the integral lattice Y is RSSD in Y. See [5, 7, 6].

We use the notations of (1.1).
Lemma 2.2. As maps on $E \perp E, t_{M}:(x, y) \mapsto(-y,-x)$ and $t_{N}:(x, y) \mapsto$ $\left(-h^{-1} y,-h x\right)$.

Proof. Direct calculation. Here is an argument for t_{M}. Write $(x, y)=$ $\left(\frac{1}{2}(x+y), \frac{1}{2}(x+y)\right)+\left(\frac{1}{2}(x-y),-\frac{1}{2}(x-y)\right)$ and note that the first summand on the right side is in M and the second is in $\operatorname{ann}(M)$. Therefore, t_{M} negates the first summand and fixes the second.

To verify the formula for t_{N}, notice that this map negates N and fixes all $(w,-h w), w \in L$. Then use the decomposition
$(x, y)=\left(\frac{1}{2}\left(x+h^{-1} y\right), \frac{1}{2}(h x+y)\right)+\left(\frac{1}{2}\left(x-h^{-1} y\right), \frac{1}{2}(-h x+y)\right)$.
Notation 2.3. Define sublattices $N^{\prime}:=\left\{\left(x, h^{-1} x\right) \mid x \in E\right\}$ and $L^{\prime}:=$ $M+N^{\prime}$.

Define the following elements of $O(E \perp E)$:
$\beta:(x, y) \mapsto(h x, y)$;
$\gamma:(x, y) \mapsto(x, h y) ;$
$\delta:(x, y) \mapsto(h x, h y) ;$
$\delta^{\prime}:(x, y) \mapsto\left(h^{-1} x, h y\right)$.
These maps satisfy $\delta=\beta \gamma=\gamma \beta$ and $\delta^{\prime}=\beta^{-1} \gamma=\gamma \beta^{-1}$.
We denote by $W(E, h)$ the group $\left\langle t_{M}, t_{N}, \beta, \gamma\right\rangle$. It is a subgroup of $O(E \perp$ $E)$ (but we shall see that it embeds in $O(L)$ (2.11)).

Lemma 2.4. (i) $t_{N} t_{M}=\delta^{\prime}$;
(ii) $\beta=t_{M} \gamma t_{M}=t_{N} \gamma t_{N}$;
(iii) $W(E, h)$ is generated by any three of $t_{M}, t_{N}, \beta, \gamma$. Furthermore, $W(E, h)=(\langle\beta\rangle \times\langle\gamma\rangle)\left\langle t_{M}\right\rangle$ is isomorphic to the wreath product $\mathbb{Z}_{|h|}\left\langle\mathbb{Z}_{2}\right.$;
(iv) $\langle\beta, \gamma\rangle$ contains $\left\langle\delta, \delta^{\prime}\right\rangle$ with index $(2,|h|)$.
(v) In $W(E, h)$, the stabilizer of M is $\left\langle t_{M}\right\rangle \times\langle\delta\rangle$ and the stabilizer of N is $\left\langle t_{N}\right\rangle \times\langle\delta\rangle$.

Proof. (i) Direct calculation.
(ii) One may check the first equality by direct calculation. For the second, note that $t_{N}=\delta^{\prime} t_{M}=t_{M}\left(\delta^{\prime}\right)^{-1}$ and that δ^{\prime} and γ commute.
(iii) Let V be the subgroup of $W(E, h)$ generated by three of the generators and let $H:=\langle\beta\rangle \times\langle\gamma\rangle$. Then V covers $W(E, h) / H \cong 2$, i.e., $W(E, h)=H V$. If V includes generators β, γ, then $V \geq H$ and we are done. If not, V contains both t_{M} and t_{N}, whence also δ^{\prime}. Clearly, H is generated by any two of $\beta, \gamma, \delta^{\prime}$ and so we conclude that $V=W(E, h)$.
(iv) Clearly, $\langle\beta, \gamma\rangle$ contains $\left\langle\delta, \delta^{\prime}\right\rangle$. The latter equals $\left\langle\beta^{2}, \gamma^{2}, \delta\right\rangle$ and has index $(2,|h|)$ in $\langle\beta, \gamma\rangle$.
(v) Let S be the stabilizer of M in $W(E, h)$. We have $\left\langle t_{M}\right\rangle \leq S$. Since $W(E, h)=\left\langle t_{M}\right\rangle H$, the Dedekind law implies that $S=\left\langle t_{M}\right\rangle(S \cap H)$. Clearly, $(S \cap H)=\langle\delta\rangle$. This completes the analysis for M. The argument for N is similar.

Lemma 2.5. $\gamma(M)=N, \gamma\left(N^{\prime}\right)=M$ and $\gamma\left(L^{\prime}\right)=L$.
Lemma 2.6. (i) $2 L \leq M+\operatorname{ann}(M)$;
(ii) $2 L^{\prime} \leq M+\operatorname{ann}(M)$.

Proof. (i) It suffices to prove that $2 N \leq M+\operatorname{ann}(M)$. An element of N has shape $(x, h x)$ for some $x \in E$. We have $2(x, h x)=(x+h x, x+h x)+$ $(x-h x,-x+h x)$. The first summand is in M and the second is in $\operatorname{ann}(M)$.
(ii) Use (i) with h replaced by h^{-1}.

Lemma 2.7. $2 L \leq N+\operatorname{ann}(N)$.
Proof. Apply γ to the containment (2.6) (ii).
Corollary 2.8. $\left\langle t_{M}, t_{N}\right\rangle$ maps L to itself.
Proof. We have shown that M and N are RSSD lattices. Therefore the isometries t_{M} and t_{N} map L to itself.

Remark 2.9. The isometry group of L contains an isomorphic copy $C(E, h)$ of $C_{O(E)}(h)$, acting diagonally on $E \perp E$. We have $\langle-1, \delta\rangle \leq C(E, h)$ and $C(E, h)$ centralizes $\left\langle t_{M}, t_{N}\right\rangle$.

Lemma 2.10. We have
(i) $L \cap(E \perp 0)=\operatorname{Im}(h-1) \perp 0$; and
(ii) $L \cap(0 \perp E)=0 \perp \operatorname{Im}(h-1)$.

Proof. (i) Consider $a, b \in E$. Then $(a, a)+(b, h b) \in E \perp 0$ if and only if $a=-h b$ if and only if $a+b=(1-h) b$. This proves $L \cap(E \perp 0) \leq$ $\operatorname{Im}(h-1) \perp 0$. Conversely, suppose that $c \in E$. Then by $(2.2),((1-h) c, 0)=$ $(c, c)+(-h c,-c)=t_{M}(-(c, c)+(c, h c)) \in t_{M}(M+N)=M+N$ (2.8). This proves $L \cap(E \perp 0) \geq \operatorname{Im}(h-1) \perp 0$.
(ii) This follows from (i) and use of $t_{M}(2.2),(2.8)$.

Proposition 2.11. (i) $W(E, h)$ stabilizes L.
(ii) The action of $W(E, h)$ on L is faithful, so restriction gives an embedding of $W(E, h)$ in $O(L)$.

Proof. (i) In view of (2.4)(iii) and (2.8), it suffices to prove that γ is in $O(L)$. By (2.5), it suffices to prove that $\gamma(N) \leq L$. We take $a \in E$ and calculate $\left.\gamma(a, h a)=\left(a, h^{2} a\right)=(a, h a)+\left(0, h^{2} a-h a\right)\right)$. Obviously, $(a, h a) \in N \leq L$. We have $\left.\left(0, h^{2} a-h a\right)\right)=(0,(h-1) h a)$, which is in $L \cap(0 \perp E)$ by (2.10), so we are done.
(ii) Let K be the kernel of the action of $W(E, h)$ on L. We may assume that $E \neq 0$. By (2.4)(v), $K \leq\left\langle t_{M}, \delta\right\rangle$.

We shall argue that $K \leq\langle\delta\rangle$. Suppose otherwise. Consider an integer i so that $z:=\delta^{i} t_{M} \in K$. Then z takes (x, x) to $\left(-h^{i} x,-h^{i} x\right)$ which is (x, x) since $z \in K$. It follows that $h^{i}=-1$ on E. By (2.2), z takes $(x, h x)$ to ($h x, x$), which must equal $(x, h x)$, for all $x \in E$. We conclude that $h=1$. Since $E \neq 0$, this incompatible with $h^{i}=-1$.

We have $K \leq\langle\delta\rangle$. Since the group $\langle\delta\rangle$ acts faithfully on M, it acts faithfully on L and we conclude that $K=1$.

Lemma 2.12. Let M and N be defined as above. Then

$$
\begin{aligned}
& \operatorname{ann}_{N}(M)=\{(\alpha,-\alpha) \mid \alpha \in E \text { and } h \alpha=-\alpha\}, \quad \text { and } \\
& \operatorname{ann}_{M}(N)=\{(\alpha, \alpha) \mid \alpha \in E \text { and } h \alpha=-\alpha\} .
\end{aligned}
$$

Proof. We prove the first equality. The proof of the second is similar.
Let $(\alpha, h \alpha) \in N$. Then

$$
\begin{array}{ll}
& (\alpha, h \alpha) \text { annihilates } M \\
\text { if and only if } & (\alpha, \beta)+(h \alpha, \beta)=0 \text { for all } \beta \in E \\
\text { if and only if } & (h \alpha+\alpha, \beta)=0 \text { for all } \beta \in E \\
\text { if and only if } & h \alpha=-\alpha
\end{array}
$$

Thus, $\operatorname{ann}_{N}(M)=\{(\alpha,-\alpha) \in E \perp E \mid \alpha \in E$ and $h \alpha=-\alpha\}$ as desired.

Remark 2.13. (i) Given a pair of isometric doubly even lattices, M, N in Euclidean space, such that $M+N$ is integral and M, N are RSSD in $M+N$, when is there a representation of $M+N$ in the form of (1.1)? One would need to define a suitable h. The following example indicates a caution.

Let the lattice L have basis u, v and Gram matrix $\left(\begin{array}{cc}2 a & b \\ b & 2 a\end{array}\right)$, for integers $a \geq 1$ and b. For positive definiteness, we require $4 a^{2}-b^{2}>0$. The A_{2}-lattice is such an example.

Let E be the rank 1 lattice with Gram matrix (a). Then $M:=\operatorname{span}\{u\}$ and $N:=\operatorname{span}\{v\}$ are sublattices of L isometric to $\sqrt{2} E$ and their sum is L. The condition that M and N be RSSD in L is a|b.

If L were isometric to $S D C(E, h)$ with M, N as in (1.1), then $h= \pm 1$ and so $b \in 2 a \mathbb{Z}$, which implies the RSSD condition a|b. The necessary condition $b \in 2 a \mathbb{Z}$ implies that L is not positive definite if $b \neq 0$, so the above L are not $S D C(E, h)$ if $b \neq 0$.
(ii) A study of SDC lattices was carried out by Paul Lewis in his 2010 undergraduate research project [8]. For many cases of familiar input lattice E and isometry h, the resulting $S D C(E, h)$ is another familiar lattice, but there are surprises.

3 About rootless isometries

We continue to use the notations (1.1).
Definition 3.1. We say $h \in O(E)$ is rootless if $(h-1) E$ contains no roots.
Lemma 3.2. Let E be an even lattice. The sum $M+N$ is rootless if and only if h is rootless.

Proof. Let $x=(\alpha+\beta, \alpha+h \beta) \in M+N$, where $\alpha, \beta \in E$. If both $\alpha+h \beta$ and $\alpha+\beta$ are non-zero, then $(x, x) \geq 2+2=4$.

If $\alpha+\beta=0$, then $x=(0,(h-1) \beta)$ and if $\alpha+h \beta=0$, then $x=$ $(-(h-1) \beta, 0)$. Thus, $(x, x)>2$ if $(h-1) E$ is rootless.

On the other hand, $(0,(h-1) \alpha) \in M+N$ for any $\alpha \in E$. Therefore, $(h-1) E$ is rootless if $M+N$ is.

We now take E to be E_{8} and begin determination of those h for which the conditions of (3.2) hold.

Lemma 3.3. Suppose that $h \in O(E)$ and h is rootless. Then so is h^{i} for all $i \in \mathbb{Z}$.

Proof. We may assume that $i \geq 1$. Since $h^{i}-1=(h-1)\left(1+h+h^{2}+\cdots+\right.$ h^{i-1}), this is clear.

Notation 3.4. Recall that if g is a group element of finite order mn, with $(m, n)=1$, then g is uniquely expressible as $g=h k$, where h has order m and k has order n and $h k=k h$. Such h, k lie in $\langle g\rangle$. If m is a power of the prime p, we call h, k the p-part, p^{\prime}-part of g, respectively. Denote by $g_{p}, g_{p^{\prime}}$ be the p-part, p^{\prime}-part of g, respectively.

Corollary 3.5. If $h \in O(E)$ is rootless, then so are the p-parts of h, for all primes p.

Corollary 3.6. Suppose that E contains roots, that $h \in O(E)$ is rootless and that p, q are distinct primes so that $p q \| h \mid$. Then at most one of h_{p}, h_{q} has no eigenvalue 1.

Proof. If h_{p} has no eigenvalue $1,\left(h_{p}-1\right) E$ has index a power of p. If h_{q} has no eigenvalue $1,\left(h_{q}-1\right) E$ has index a power of q. If both of these statements are true then $(h-1) E$ contains $\left(h_{p}-1\right) E+\left(h_{q}-1\right) E$, which by relative primeness has index 1 in E. This contradicts the rootless property of h.

3.1 Root lattice of type A

We shall review some basic properties of the root lattices of type A_{n}.
We use the standard model for A_{n}, i.e.,

$$
A_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{Z}^{n+1} \mid \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

Then the roots of A_{n} are given by

$$
\left\{ \pm\left(e_{i}-e_{j}\right) \mid 1 \leq i<j \leq n+1\right\}
$$

where $\left\{e_{1}=(1,0, \ldots, 0), \ldots, e_{n+1}=(0,0, \ldots, 1)\right\}$ is the standard basis of \mathbb{Z}^{n+1}.

Notation 3.7. Recall that $\left(A_{n}^{*}\right) / A_{n} \cong \mathbb{Z}_{n+1}$. Let $\gamma_{A_{n}}(0)=0$ and

$$
\gamma_{A_{n}}(j)=\frac{1}{n+1}\left(-(n+1-j) \sum_{i=1}^{j} e_{i}+j \sum_{i=j+1}^{n+1} e_{i}\right), \text { for } j=1, \ldots, n
$$

Then $\gamma_{A_{n}}(j) \in A_{n}^{*}$. In fact, $\left\{\gamma_{A_{n}}(0), \gamma_{A_{n}}(1), \ldots, \gamma_{A_{n}}(n)\right\}$ forms a transversal of A_{n} in $A_{n}^{*}\left[2\right.$, Chapter 4]. We also note that the norm of $\gamma_{A_{n}}(j)$ is equal to $j(n+1-j) /(n+1)$ for all $j=0, \ldots, n$.

Notation 3.8. Let $h_{A_{n}}$ be an $(n+1)$-cycle in $W e y l\left(A_{n}\right) \cong \operatorname{Sym}_{n+1}$.
Lemma 3.9. For $j=1, \ldots, n$, $\left(h_{A_{n}}-1\right)\left(\gamma_{A_{n}}(j)\right)$ is a root.
Proof. By definition, $\left(h_{A_{n}}-1\right)\left(\gamma_{A_{n}}(j)\right)=e_{1}-e_{j+1}$ is a root.
Lemma 3.10. $\left(h_{A_{n}}-1\right) A_{n}$ is rootless.
Proof. We may assume $h_{A_{n}}$ is the cyclic permutation of the $n+1$-coordinates. Suppose $\left(h_{A_{n}}-1\right) \alpha$ is a root for some $\alpha=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in A_{n}$. Without loss, we may assume $\left(h_{A_{n}}-1\right) \alpha=e_{1}-e_{j}$ for some $j \geq 2$.

Then we have

$$
x_{n+1}-x_{1}=1, x_{j-1}-x_{j}=-1, x_{1}=\cdots=x_{j-1} \text { and } x_{j}=\cdots=x_{n+1}
$$

That implies $x_{n+1}=1+x_{1}$. Moreover, $x_{1}+\cdots+x_{n+1}=0$. Thus, we have $(j-1) x_{1}+(n+2-j)\left(x_{1}+1\right)=0$ or $x_{1}=-\frac{n+2-j}{n+1}$, which is not an integer since $2 \leq j \leq n+1$, a contradiction.

Lemma 3.11. Let A_{n}^{*} be the dual lattice of A_{n}. Then $\left(h_{A_{n}}-1\right) A_{n}^{*}=A_{n}$
Proof. First proof: Again, we shall use the standard model for A_{n}. Then A_{n}^{*} is the \mathbb{Z}-span of
$\frac{1}{n+1}(1,1,1, \ldots, 1,-n), \frac{1}{n+1}(1,1, \ldots,-n, 1), \ldots, \frac{1}{n+1}(1,-n, 1, \ldots, 1,1)$.
Note that

$$
\left(h_{A_{n}}-1\right)\left(\frac{1}{n+1}(1,1,1, \ldots, 1,-n)\right)=(1,0, \ldots, 0,-1) \in A_{n}
$$

Similarly, we can show that $\left(h_{A_{n}}-1\right) A_{n}^{*} \leq A_{n}$.

On the other hand, the set

$$
\{(1,0, \ldots, 0,-1),(0,0, \ldots,-1,1), \ldots,(0,-1,1, \ldots, 0)\}
$$

spans A_{n} and hence $\left(h_{A_{n}}-1\right) A_{n}^{*}=A_{n}$.
Second proof: \quad Since $(h-1) A_{n}^{*}=(h-1) \mathbb{Z}^{n+1}=\operatorname{span}\left\{e_{i}-e_{i+1} \mid i=\right.$ $1,2 \ldots\}$, this is clear.

Lemma 3.12. Let X be a type A_{m} lattice contained in E_{8}. Then X is a direct summand unless $m=8$.

Proof. If X is properly contained in a summand, S, of E_{8}, then there exists an integer $d \geq 2$ so that $d^{2} \mid \operatorname{det}(X)$. Since $\operatorname{det}(X)=m+1$ and $m \leq 8, m=3$ or $m=8$. If $m=3, d=2$ and so $\operatorname{det}(S)=1$, whence $S \cong \mathbb{Z}^{4}$, which is an odd lattice, a contradiction. Therefore, $m=8$.

Lemma 3.13. Identify $Q:=A_{i_{1}} \perp \cdots \perp A_{i_{\ell}}$ with a rank 8 sublattices of E_{8}. For any $1 \leq k \leq \ell$, define $h:=h_{k}:=h_{A_{i_{1}}} \oplus \cdots \oplus h_{A_{i_{k}}} \oplus i d \oplus \cdots \oplus i d$.
(a) Suppose that for any $x \in E_{8} \backslash Q,(h-1) x$ is either 0 or has non-zero projections to at least two of the A_{i} 's. Then $(h-1) E_{8}$ is rootless.
(b) Suppose there exists an element $x \in E_{8} \backslash Q$ such that $(h-1) x$ has non-zero projections to exactly one of the A_{i} 's. Then $(h-1) E_{8}$ has a root.

Proof. (a) By Lemma 3.10, it is clear that $(h-1) Q$ has no roots. Now let $x \in E_{8} \backslash Q$. Then by our assumption and Lemma 3.11, $(h-1) x$ is either 0 or has norm $\geq 2 \times 2$. Hence, $(h-1) E_{8}$ has no roots.
(b) Let $x \in E_{8} \backslash Q$ such that $(h-1) x$ has non-zero projections to exactly one of the A_{i} 's, say to $A_{i_{1}}$.

Let a be the projection of x to $A_{i_{1}}^{*}$. Then there exists $j \in\left\{1, \ldots, i_{1}\right\}$ such that a is in the coset $\gamma_{A_{i_{1}}}(j)+A_{i_{1}}$ (cf. Notation 3.7). Thus, there exists $b \in A_{i_{1}}$ such that $a+b=\gamma_{A_{i_{1}}}(j)$. In this case,

$$
(h-1)(x+b)=\left(h_{A_{i_{1}}}-1\right)(a+b)=\left(h_{A_{i_{1}}}-1\right)\left(\gamma_{j}\right),
$$

which is a root by Lemma (3.9).

4 Eliminating cases

We begin to study the cases where h is p-element for some prime p. Recall that $O\left(E_{8}\right)$ has order $2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$.

Convention. When we consider an embedding of lattices $X \leq Y$, we may describe it informally as containment of isometry types, for example " $A_{1}^{8} \leq E_{8}$ " or " $A_{2}^{3} \leq E_{6}$ ". Given such a containment, one may use notations for isometries of the sublattice and make use of their unique extensions to overlattices. This informally should not cause confusion.

4.1 The prime 7

Lemma 4.1. There is no rootless element of order 7 in $O\left(E_{8}\right)$.
Proof. By Sylow's theorem, there is only one conjugacy class of order 7 subgroups in $O\left(E_{8}\right)$. Without loss, we may assume

$$
h=h_{A_{6}} \oplus i d_{B},
$$

where $B=\operatorname{ann}_{E_{8}}\left(A_{6}\right)$. However, $(h-1) E_{8}$ has roots by Lemma 3.9.

4.2 The prime 5

Theorem 4.2. A rootless element of order 5 is fixed point free and is conjugate to $h_{A_{4}} \oplus h_{A_{4}}$.

Proof. Let h be an order 5 in $O\left(E_{8}\right)$. Then there is a root α such that $h \alpha \neq \alpha$ since E_{8} is generated by roots. Then, $\left(h^{4}+h^{3}+h^{2}+h+1\right)(\alpha)=0$ and $\left(\left(h^{4}+h^{3}+h^{2}+h+1\right)(\alpha), \alpha\right)=0$. This implies $(h \alpha, \alpha)+\left(h^{2} \alpha, \alpha\right)=-1$ since $(h \alpha, \alpha)=\left(h^{4} \alpha, \alpha\right),\left(h^{2} \alpha, \alpha\right)=\left(h^{3} \alpha, \alpha\right)$ and $(\alpha, \alpha)=2$. By Cauchy-Schwarz inequality, we have $|(h \alpha, \alpha)|<2$ and $\left|\left(h^{2} \alpha, \alpha\right)\right|<2$ and thus $(h \alpha, \alpha)=-1$, $\left(h^{2} \alpha, \alpha\right)=0$ or $(h \alpha, \alpha)=0,\left(h^{2} \alpha, \alpha\right)=-1$. Therefore, $K=\operatorname{span}\left\{h^{i} \alpha \mid 0 \leq\right.$ $i \leq 3\} \cong A_{4}$ since the Gram matrix of K is given by

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

Then $\operatorname{ann}_{E_{8}}(K) \cong A_{4}[6,(5.3 .2)]$ and h stabilizes both K and $a n n_{E_{8}}(K)$.
Case 1: h fixes $\operatorname{ann}_{E_{8}}(K)$ pointwise. Then h is conjugate to $h_{A_{4}} \oplus i d_{A_{4}}$, which is not rootless by (3.13) (b).

Case 2: There exists a root $\beta \in \operatorname{ann}_{E_{8}}(K)$ such that $h \beta \neq \beta$. Then $a n n_{E_{8}}(K)=\operatorname{span}\left\{h^{i} \beta \mid 0 \leq i \leq 4\right\} \cong A_{4}$. In this case, h is fixed point free
and lies in $W \operatorname{eyl}(K) \times W \operatorname{eyl}\left(\operatorname{ann}_{E_{8}}(K)\right) \cong \operatorname{Sym}_{5} \times \operatorname{Sym}_{5}$. Such elements form a single conjugacy class, so h is conjugate to $h_{A_{4}} \oplus h_{A_{4}}$ and h is rootless (3.11).

4.3 The prime 3

Order 3

Notation 4.3. Let h be an element of order 3 in $O\left(E_{8}\right)$. Let F be the fixed point sublattice of h in E_{8}. Let $J:=a n n_{E_{8}}(F)$.

By the analysis in $[7], \mathcal{D}(F) \cong 3^{s}$ for some integer s. Thus, by [7, Lemma D.9], $F \cong 0, A_{2}, A_{2} \perp A_{2}$, or E_{6}. Note that in each case, F contains an orthogonal direct sum of A_{2} 's with finite index.

We have $J \cong E_{8}, E_{6}, A_{2} \perp A_{2}$ and A_{2}, respectively and h is fixed point free on J. Recall that the fixed point free elements of order 3 in $O\left(E_{8}\right)$ form one conjugacy class and they are conjugate to $h_{A_{2}}^{\oplus 4}$ in $O\left(E_{8}\right)$. The fixed point free elements of order 3 also form one conjugacy class in $O\left(E_{6}\right)$ and they are conjugate to $h_{A_{2}}^{\oplus 3}$ (see for example [1]). Therefore, in each case, there exists a sublattice of E_{8} which we may identify with A_{2}^{4} such that $h=h_{A_{2}}^{\oplus 4-k} \oplus i d_{A_{2}}^{\oplus k}$, where $k=\frac{1}{2} \operatorname{dimF}$. Recall that E_{8} / A_{2}^{4} can be identified with the tetracode \mathcal{C}_{4}, which is a self-dual code of length 4 , minimal weight $3[2,3]$. Now, by Lemma 3.13, we have the theorem.

Theorem 4.4. Let h be an element of order 3 in $O\left(E_{8}\right)$. Then h is rootless if and only if $F=F i x(h)=0$ or $\cong A_{2}$. Identify A_{2}^{4} with a sublattice of E_{8}. Then, h is conjugate to $h_{A_{2}}^{\oplus 4}$ if $F=0$ and $h_{A_{2}}^{\oplus 3} \oplus i d_{A_{2}}$ if $F \cong A_{2}$.

Order 9

Notation 4.5. Let h be an element of order 9 in $O\left(E_{8}\right)$. Let $g:=h^{3}$ and $F:=\operatorname{Fix}\left(h^{3}\right)=\operatorname{Ker}\left(h^{3}-1\right)$. Let $J:=a n n_{E_{8}}(F)$.

Then the minimal polynomial of h on J is divisible by the irreducible cyclotomic polynomial $x^{6}+x^{3}+1$ and the minimal polynomial for h on F is $x-1$ or $x^{2}+x+1$. Hence, $\operatorname{rank}(F)=2\left(\right.$ whence $\left.F \cong A_{2}\right)$ and $\operatorname{rank}(J)$ is 6 . Since h stabilizes both F and $J=a n n_{E_{8}}(F) \cong E_{6},\left.h\right|_{F}$ defines an element of order 1 or 3 in $O(F)$ and $\left.h\right|_{J}$ is an order 9 element in $O(J)$.

Lemma 4.6. In $\mathbb{Z}_{p} \backslash \mathbb{Z}_{p}$, there are $(p-1)^{2}$ conjugacy classes of elements of order p^{2}. More precisely, we let $B=B_{1} \times \cdots \times B_{p}$ where each factor B_{i} has order p and the order p automorphism g acts on B by cyclically permuting the p factors. Thus the semidirect product $B\langle g\rangle$ is isomorphic to $\left.\mathbb{Z}_{p}\right\rangle \mathbb{Z}_{p}$. The classes of order p^{2} are represented by $u_{i}{ }^{k} g^{i}, i=1,2, \ldots, p-1, k=1, \ldots, p-1$, where for each i, u_{i} is a generator for B as a $\langle g\rangle$-module.
Proof. We count. Two such elements $u_{i}^{k} g^{i}$ and $u_{j}^{\ell} i g^{j}$ can not be conjugate if $i \neq j$ or $k \neq \ell$ since their images modulo $(B\langle g\rangle)^{\prime}$ are distinct. The conjugacy class of such an element has cardinality p^{p-1} since B is a free module for $B\langle g\rangle / B$. Therefore, we have accounted for $(p-1)\left(p^{p}-p^{p-1}\right)$ elements of $B\langle g\rangle$. The p^{p} elements of B have order 1 or p. If $i=1,2, \ldots, p-1$ and $v \in B$ does not generate B as a $\langle g\rangle$-module, then $v g^{i}$ has order 1 or p. This latter category accounts for the remaining $(p-1) p^{p-1}$ elements of $B\langle g\rangle$.
Corollary 4.7. In $O\left(E_{6}\right)$, there is just one conjugacy class of elements of order 9.
Proof. We view the E_{6} lattice as an overlattice of A_{2}^{3}, defined by glue vector $(1,1,1)$. From this viewpoint, it is obvious that we have a group of automorphisms $H:=W e y l\left(A_{2}\right)$ 乙 Sym $_{3}$. The analysis of (4.6) shows that we have exactly four conjugacy classes of elements of order 9 in a Sylow 3 -subgroup of H. These classes are fused in a Sylow 3-normalizer in H.
Theorem 4.8. There are no rootless elements of order 9 in $O\left(E_{8}\right)$.
Proof. Let $h^{\prime}=\left.h\right|_{J} \in O\left(E_{6}\right)$ be an element of order 9. Recall that E_{6} contains a sublattice of type A_{2}^{3} and we may assume

$$
E_{6}=\operatorname{span}\left\{A_{2}^{3},(\gamma, \gamma, \gamma)\right\}
$$

where $\gamma=\frac{1}{3}(1,1,-2) \in A_{2}^{*}$.
Note that there is only one conjugacy class of order 9 in $O\left(E_{6}\right)$ (4.7). Thus, we may assume that $h^{\prime}=\tau \sigma$, where $\sigma=h_{A_{2}} \oplus i d_{A_{2}} \oplus i d_{A_{2}}$ and τ is a cyclic permutation of the 3 copies of A_{2}.

Let $\alpha=(\gamma, \gamma, \gamma)=\frac{1}{3}(1,1,-2 ; 1,1,-2 ; 1,1,-2)$. Then
$h^{\prime}(\alpha)=\frac{1}{3}(1,1,-2 ;-2,1,1 ; 1,1,-2)$ and $\left(h^{\prime}-1\right) \alpha=(0,0,0 ; 1,0,-1 ; 0,0,0)$, which is a root.

There are no elements of order 27 in $O\left(E_{8}\right)$, by (4.6) and the fact that $W e y l\left(E_{6}\right) \times W e y l\left(A_{2}\right)$ embeds with index prime to 3 in $O\left(E_{8}\right)$. Therefore, we have treated all cases of 3 -elements in $O\left(E_{8}\right)$.

4.4 The prime 2

Order 2

Suppose $h \in O\left(E_{8}\right)$ has order 2. Then the (-1)-eigenlattice $L^{-}(h)$ of h is a RSSD sublattice of E_{8}. By the classification of RSSD lattices in E_{8} [7, Lemma D.2], there are nine possible cases up to conjugation and $L^{-}(h) \cong A_{1}^{k}, k \leq 4, D_{4}, D_{4} \perp A_{1}, D_{6}, E_{7}$ or E_{8}. For each case, there exists a sublattice $A_{1}^{8}<E_{8}$ such that $h=h_{A_{1}}^{\oplus k} \oplus i d_{A_{1}}^{\oplus(8-k)}$, where $k=\operatorname{dim} L^{-}(h)$ (proof: each of the above RSSD lattices contains an orthogonal direct sum of $A_{1} \mathrm{~S}$ with finite index).
Theorem 4.9. Suppose $h \in O\left(E_{8}\right)$ has order 2. Then h is rootless if and only if $L^{-}(h) \cong D_{4}, D_{6}, E_{7}$ or E_{8}.
Proof. Suppose $\operatorname{dim}\left(L^{-}(h)\right)=k$. Then there exists $\alpha_{1}, \ldots, \alpha_{k} \in L^{-}(h)$ such that $\left(\alpha_{i}, \alpha_{j}\right)=2 \delta_{i, j}$ for $i, j=1, \ldots, k$. Take $\alpha_{k+1}, \ldots, \alpha_{8} \in \operatorname{ann}_{E_{8}}\left(L^{-}(h)\right)$ such that

$$
A=\mathbb{Z} \alpha_{1} \oplus \cdots \oplus \mathbb{Z} \alpha_{8} \cong A_{1}^{8}
$$

Then the quotient group E_{8} / A can be identified with the Hamming [8, 4, 4] code H_{8}.

Case 1: $L^{-}(h) \cong A_{1}^{k}, 1 \leq k \leq 4$. By identifying a codeword with its support, we know that $\{1, \ldots, k\} \notin H_{8}$ since the minimal weight of H_{8} is 4 and $L^{-}(h) \cong D_{4}$ if $\{1,2,3,4\} \in H_{8}$. Hence there exists $a \in H_{8}$ such that $|\{1, \ldots, k\} \cap a|$ is odd. Without loss, we may assume a has weight 4. Then $|\{1, \ldots, k\} \cap a|=1$ or 3 .

If $|\{1, \ldots, k\} \cap a|=1$, let $\alpha_{a}=\frac{1}{2} \sum_{i \in a} \alpha_{i}$. Then $(h-1) \alpha_{a}=-\alpha_{j}$ is a root, where $\{j\}=\{1, \ldots, k\} \cap a$. If $|\{1, \ldots, k\} \cap a|=3$, let $\bar{a}=\{1, \ldots, 8\} \backslash a$. Then $|\{1, \ldots, k\} \cap \bar{a}|=1$ and we get a contradiction as before. We conclude that h is not rootless.

Case 2: $L^{-}(h) \cong D_{4} \oplus A_{1}$. Then $k=5$. There exists $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \subset$ $\{1, \ldots, 5\}$ such that $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\} \in H_{8}$. Let $a=\{1, \ldots, 8\} \backslash\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$. Then $|a \cap\{1, \ldots, 5\}|=1$ and $(h-1) \alpha_{a}$ is a root.

Case 3: $L^{-}(h) \cong D_{4}$. Then $k=4$ and $\{1,2,3,4\} \in H_{8}$. Since H_{8} is a self dual code, for any $a \in H_{8},|a \cap\{1,2,3,4\}|$ is even. Hence, for any $\alpha \in E_{8} \backslash A,(h-1) \alpha$ is either 0 or has 2 or 4 non-zero projections to the A_{1} 's. Thus, by Lemma (3.13) (a), h is rootless.

Case 4: $L^{-}(h) \cong D_{6}, E_{7}$ or E_{8}. Then $k \geq 6$. Since the minimal weight of H_{8} is 4 , we have $|a \cap\{1, \ldots, k\}| \geq 2$ for any nonzero element $a \in H_{8}$. Hence, h is rootless by Lemma (3.13) (a).

Order 4

Notation 4.10. Let h be a rootless element of order 4 and set $J:=\operatorname{Ker}\left(h^{2}+\right.$ 1).

Then J has even rank and h^{2} is also rootless. Since $\operatorname{det}\left(h^{2}\right)=1,(4.9)$ implies that $J \cong D_{4}, D_{6}$, or E_{8}.

Lemma 4.11. Let $h \in O\left(D_{2 n}\right)$ be an element of order 4 and $h^{2}=-1$. Then there exists an orthogonal set of roots $\left\{\alpha_{1}, \ldots, \alpha_{2 n}\right\} \subset D_{2 n}$ such that $h\left(\alpha_{2 i-1}\right)=\alpha_{2 i}$ and $h\left(\alpha_{2 i}\right)=-\alpha_{2 i-1}$ for all $i=1, \ldots, n$.

Proof. We shall use the standard model for $D_{2 n}$, i.e.,

$$
D_{2 n}=\left\{\sum_{i=1}^{2 n} x_{i} e_{i} \mid x_{1}+\cdots+x_{2 n} \equiv 0 \quad \bmod 2\right\}
$$

where $\left\{e_{1}, \ldots, e_{2 n}\right\}$ is the standard basis of $\mathbb{Z}^{2 n}$.
Then up to conjugacy in $O\left(D_{2 n}\right)$, we may assume that $h=D P$, where P is a matrix associated to a permutation $\sigma \in S y m_{2 n}$ and D is a diagonal matrix with diagonal entries 1 or -1 . Note that

$$
P=\sum_{i=1}^{2 n} E_{\sigma i, i}
$$

where $E_{i, j}$ is a matrix whose (i, j)-entry is 1 and all other entries are 0 .
Let $\epsilon_{1}, \ldots, \epsilon_{2 n}$ be the diagonal entries of D. Then

$$
D P D=\sum_{i=1}^{2 n} \epsilon_{\sigma i} \epsilon_{i} E_{\sigma i, i}
$$

and

$$
(D P)(D P)=(D P D) P=\sum_{1 \leq i, j \leq 2 n} \epsilon_{i} \epsilon_{\sigma_{i}} \delta_{i, \sigma_{j}} E_{\sigma i, j} .
$$

By $h^{2}=-1$, we have $(D P)(D P)=(D P D) P=-I$. This implies $\sigma^{2}=1$ and $\epsilon_{\sigma_{i}} \epsilon_{i}=-1$. Therefore, by rearranging the indices if necessary, the matrix
of h with respect to the standard basis is given by

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 0 & -1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & 0 & \ldots & -1 & 0
\end{array}\right) .
$$

Now define $\alpha_{2 i-1}=e_{2 i-1}-e_{2 i}$ and $\alpha_{2 i}=e_{2 i-1}+e_{2 i}$ for $i=1, \ldots n$. Then $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n-1}, \alpha_{2 n}\right\}$ satisfies the required properties.

We now treat the order 4 case according to the three types of J (4.10).
Notation 4.12. Let $F:=a n n_{E_{8}}(J)$. Note that h^{2} acts trivially on F.
Case 1: $J \cong E_{8}$. Then h is fixed point free and h^{2} acts as -1 on E_{8}. Such elements form one conjugacy class (4.11).

Case 2: $J \cong D_{6}$. Then $F \cong A_{1} \perp A_{1}$. Then by Lemma 4.11, there exists $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{6}\right\} \subset J$ such that $h\left(\alpha_{2 i-1}\right)=\alpha_{2 i}, h\left(\alpha_{2 i}\right)=-\alpha_{2 i-1}$ for $i=1,2,3$ and

$$
J=\operatorname{span}_{\mathbb{Z}}\left\{\alpha_{1}, \ldots, \alpha_{6}, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\right)\right\} .
$$

Let $\left\{\alpha_{7}, \alpha_{8}\right\}$ be a basis of F. Then we may also arrange indexing so that

$$
E_{8}=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
\alpha_{1}, \ldots, \alpha_{8}, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\right) \\
\frac{1}{2}\left(\alpha_{5}+\alpha_{6}+\alpha_{7}+\alpha_{8}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\alpha_{5}+\alpha_{7}\right)
\end{array}\right\} .
$$

Next we shall study the action of h on F.
Lemma 4.13. In above notation, $h\left(\alpha_{7}\right) \in \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{8}\right\}$.
Proof. Suppose $h\left(\alpha_{7}\right) \notin \operatorname{span}_{\mathbb{Z}}\left\{\alpha_{8}\right\}$. Then $h\left(\alpha_{7}\right)= \pm \alpha_{7}$ and $h\left(\alpha_{8}\right)= \pm \alpha_{8}$. In this case, we have
$(h-1) \frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\alpha_{5}+\alpha_{7}\right)=\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}-\alpha_{3}+\alpha_{4}-\alpha_{5}+\alpha_{6}-\alpha_{7}+\epsilon \alpha_{7}\right), \quad \epsilon= \pm 1$,
which has norm 3 or 5 . It is a contradiction since E_{8} is even.

By the lemma above, we may assume $h\left(\alpha_{7}\right)=\alpha_{8}$ and $h\left(\alpha_{8}\right)=\alpha_{7}$ (by replacing α_{8} by $-\alpha_{8}$ if necessary). Then

$$
(h-1) \frac{1}{2}\left(\alpha_{5}+\alpha_{6}+\alpha_{7}+\alpha_{8}\right)=\alpha_{5}
$$

which is a root. Thus, h is not rootless.
Case 3: $J \cong D_{4}$ and $F \cong D_{4}$. This will lead to two cases for h.
Notation 4.14. Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \subset J$ such that $h\left(\alpha_{1}\right)=\alpha_{2}, h\left(\alpha_{2}\right)=$ $-\alpha_{1}, h\left(\alpha_{3}\right)=\alpha_{4}, h\left(\alpha_{4}\right)=-\alpha_{3}$ (cf. Lemma (4.11)).

Let $\left\{\alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}\right\} \subset F$ such that $\left(\alpha_{i}, \alpha_{j}\right)=2 \delta_{i, j}$.
We may reindex to assume

$$
E_{8}=\operatorname{span}_{\mathbb{Z}}\left\{\begin{array}{c}
\alpha_{1}, \ldots,, \alpha_{8}, \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right), \frac{1}{2}\left(\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\right) \\
\frac{1}{2}\left(\alpha_{5}+\alpha_{6}+\alpha_{7}+\alpha_{8}\right), \frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\alpha_{5}+\alpha_{7}\right)
\end{array}\right\}
$$

Lemma 4.15. If h is rootless, then $h\left(\alpha_{i}\right)= \pm \alpha_{i}$ for all $i=5, \ldots, 8$.
Proof. Suppose $h\left(\alpha_{k}\right)=\epsilon \alpha_{\ell}$ for some $\epsilon= \pm 1, k \neq \ell$ and $k, \ell \in\{5,6,7,8\}$. Then $h\left(\epsilon \alpha_{\ell}\right)=h^{2}\left(\alpha_{k}\right)=\alpha_{k}$ since $\alpha_{k} \in F$.

Take $i, j \in\{1,2,3,4\}$ with $i<j$ such that

$$
\frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}+\epsilon \alpha_{\ell}\right) \in E_{8} .
$$

Then

$$
\begin{aligned}
& h\left(\frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}+\epsilon \alpha_{\ell}\right)\right) \\
= & \begin{cases}\frac{1}{2}\left(\alpha_{i}-\alpha_{j}+\alpha_{k}+\epsilon \alpha_{\ell}\right) & \text { if } h\left(\alpha_{i}\right) \in \operatorname{span}_{\mathbb{Z}}\left(\alpha_{j}\right), \\
\frac{1}{2}\left(\pm \alpha_{i^{\prime}} \pm \alpha_{j^{\prime}}+\alpha_{k}+\epsilon \alpha_{\ell}\right) & \text { if } h\left(\alpha_{i}\right) \notin \operatorname{span}_{\mathbb{Z}}\left(\alpha_{j}\right),\end{cases}
\end{aligned}
$$

where $\left\{\alpha_{i}, \alpha_{j}, \alpha_{i}^{\prime}, \alpha_{j}^{\prime}\right\}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.
In either case, $(h-1) \frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}+\epsilon \alpha_{\ell}\right)$ is a root.
Lemma 4.16. Let Y be the fixed point sublattice of h on F. Then rank $Y \leq$ 1.

Proof. Suppose $\operatorname{rank} Y \geq 2$. Then by the previous lemma, h fixes α_{k} and α_{ℓ} for some $k \neq \ell$ and $k, \ell \in\{5,6,7,8\}$. Take $i, j \in\{1,2,3,4\}$ with $i<j$ such that

$$
\frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}+\alpha_{\ell}\right) \in E_{8}
$$

Then by the same argument as in Lemma 4.15, $(h-1) \frac{1}{2}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}+\alpha_{\ell}\right)$ is a root.

Since $h\left(\alpha_{i}\right)= \pm \alpha_{i}$ for $i=5, \ldots, 8$ and $\operatorname{rank} Y \leq 1,\left\{\alpha_{5}, \alpha_{6}\right\}$ or $\left\{\alpha_{7}, \alpha_{8}\right\}$ is contained in the (-1)-eigenspace of h.

By reindexing, we may assume α_{5}, α_{6} are in the (-1)-eigenspace of h. Define

$$
\begin{aligned}
& \beta_{1}:=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{5}+\alpha_{6}\right), \\
& \beta_{1}^{\prime}:=\frac{1}{2}\left(\alpha_{3}+\alpha_{4}+\alpha_{5}-\alpha_{6}\right)=\frac{1}{2}\left(\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\right)-\alpha_{6} .
\end{aligned}
$$

Then by our convention (4.14), β_{1} and β_{1}^{\prime} are in E_{8}. Let
$\beta_{2}:=h\left(\beta_{1}\right)=\frac{1}{2}\left(-\alpha_{1}+\alpha_{2}-\alpha_{5}-\alpha_{6}\right), \quad \beta_{3}:=h^{2}\left(\beta_{1}\right)=\frac{1}{2}\left(-\alpha_{1}-\alpha_{2}+\alpha_{5}+\alpha_{6}\right)$,
$\beta_{2}^{\prime}:=h\left(\beta_{1}^{\prime}\right)=\frac{1}{2}\left(-\alpha_{3}+\alpha_{4}-\alpha_{5}+\alpha_{6}\right), \quad \beta_{3}^{\prime}:=h^{2}\left(\beta_{1}^{\prime}\right)=\frac{1}{2}\left(-\alpha_{3}-\alpha_{4}+\alpha_{5}-\alpha_{6}\right)$.
Then $\beta_{2}, \beta_{3}, \beta_{2}^{\prime}, \beta_{3}^{\prime}$ are also in E_{8} since $h \in O\left(E_{8}\right)$.
Let $A:=\operatorname{span}\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ and $A^{\prime}:=\operatorname{span}\left\{\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right\}$. Then $A \cong A^{\prime} \cong A_{3}$ and $\left(A, A^{\prime}\right)=0$. By identifying A, A^{\prime} with $A_{3},\left.h\right|_{A}$ and $\left.h\right|_{A^{\prime}}$ are identified with $h_{A_{3}}$.

Let $X:=\operatorname{ann}_{F}\left(\operatorname{span}\left\{\alpha_{5}, \alpha_{6}\right\}\right)$. Then $X \cong A_{1} \oplus A_{1}$ and $Y=\operatorname{Fix}_{F}(h)<$ X. Note also that $(X, A)=\left(X, A^{\prime}\right)=0$.

If $Y=0$, then $\left.h\right|_{X}=-i d_{X}$. If $Y \cong A_{1}$, then h acts trivially on Y and acts as -1 on $X^{\prime}:=a n n_{X}(Y) \cong A_{1}$. Thus, h may be identified with

$$
\begin{cases}h_{A_{3}} \oplus h_{A_{3}} \oplus h_{A_{1}} \oplus h_{A_{1}} & \text { if } Y=F i x(h)=0 \\ h_{A_{3}} \oplus h_{A_{3}} \oplus h_{A_{1}} \oplus i d_{A_{1}} & \text { if } Y=\operatorname{Fix}(h) \cong A_{1}\end{cases}
$$

Let $Q \cong A_{3} \oplus A_{3} \oplus A_{1} \oplus A_{1}$ be a sublattice of E_{8}. Then $\left|E_{8} / Q\right|=8$ and any element in $E_{8} \backslash Q$ has non-zero projections to at least three A_{i} 's. If $h=h_{A_{3}} \oplus h_{A_{3}} \oplus h_{A_{1}} \oplus h_{A_{1}}$ or $h_{A_{3}} \oplus h_{A_{3}} \oplus h_{A_{1}} \oplus i d_{A_{1}}$, then $(h-1) x, x \in E_{8} \backslash Q$,
has at least two non-zero projections to the A_{i} 's. Therefore, they are rootless by (3.13).

As a summary, we have
Theorem 4.17. Let h be a rootless element of order 4. Then $J=\operatorname{Ker}\left(h^{2}+\right.$ $1) \cong D_{4}$ or E_{8}.
(1) If $J \cong D_{4}$, then h conjugate to $h_{A_{3}} \oplus h_{A_{3}} \oplus h_{A_{1}} \oplus h_{A_{1}}$ or $h_{A_{3}} \oplus h_{A_{3}} \oplus$ $h_{A_{1}} \oplus i d_{A_{1}}$.
(2) If $J \cong E_{8}$, then h is fixed point free and h^{2} acts as -1 on E_{8}. Such elements form one conjugacy class.

Order 8

Theorem 4.18. There is no rootless element of order 8 .
Proof. Suppose h is a rootless element of order 8. Then $g=h^{2}$ is a rootless element of order 4. By the analysis of order 4 elements, $\operatorname{Ker}\left(g^{2}+1\right) \cong D_{4}$ or E_{8} (cf. Theorem 4.17).

In either case, there exists a D_{4} sublattice of E_{8} which h acts (cf. Lemma 4.11).

Recall that $O\left(D_{4}\right)$ has the shape $\left(2^{3}:\right.$ Sym $\left._{4}\right)$. Sym $_{3}$ (see (4.3.12) in [6]) Since h has order $8, h$ acts on D_{4} as a product of a 4 -cycle in $S y m_{4}$ and an outer involution with respect to the standard model of D_{4}. Therefore, there exists $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ such that $\left(\alpha_{i}, \alpha_{j}\right)=2 \delta_{i, j}$ for $i=1,2,3,4$ and

$$
h\left(\alpha_{1}\right)=\alpha_{2}, h\left(\alpha_{2}\right)=\alpha_{3}, h\left(\alpha_{3}\right)=\alpha_{4}, h\left(\alpha_{4}\right)=-\alpha_{1} .
$$

However,

$$
(h-1) \frac{1}{2}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)=-\alpha_{1}
$$

which is root, a contradiction.

4.5 Rootless elements of composite orders

Order 6

Let h be a rootless element of order 6. Let $g:=h^{2}$ and $t:=h^{3}$. Then, g has order 3 and t has order 2 .

Let $L^{+}(t)$ and $L^{-}(t)$ be the $(+1)$ and (-1)-eigenlattice of t on E_{8}.
Lemma 4.19. If h is rootless of order 6 , then $L^{+}(t) \cong D_{4}$.

Proof. First, we note that $g=h^{2}$ acts on both $L^{+}(t)$ and $L^{-}(t)$.
By the order 2 analysis, $L^{+}(t) \cong 0, A_{1}, A_{1}^{2}$, or D_{4}.
Case 1: $L^{+}(t)=0$ and thus t acts as -1 on E_{8}. Therefore,

$$
h=t g^{2}=-g^{2},
$$

By the order 3 analysis, we may identify g^{2} with either $h_{A_{2}}^{\oplus 4}$ or $h_{A_{2}}^{\oplus 3} \oplus i d_{A_{2}}$.
In either case, let $\hat{\gamma}=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, 0\right)$ be a root in E_{8}, where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in A_{2}^{*}$ and have norm 2/3. Since $1+h_{A_{2}}+h_{A_{2}}^{2}=0$ on $A_{2}^{*},\left(-h_{A_{2}}-1\right) \gamma_{i}=h_{A_{2}}^{2} \gamma_{i}$ also has norm $2 / 3$ for $i=1,2,3$. Therefore,

$$
(h-1)(\hat{\gamma})=\left(\left(-h_{A_{2}}-1\right) \gamma_{1},\left(-h_{A_{2}}-1\right) \gamma_{2},\left(-h_{A_{2}}-1\right) \gamma_{3}, 0\right)
$$

has norm 2 and is a root.
Case 2: $L^{+}(t) \cong A_{1}$. Then g acts trivially on $L^{+}(t)$. Thus, Fix $(g) \neq 0$ and hence $\operatorname{Fix}(g) \cong A_{2}$ and g^{2} may be identified with $h_{A_{2}}^{\oplus 3} \oplus i d_{A_{2}}$ by Theorem 4.4. Note that $L^{+}(t)<$ Fix (g). Therefore, ann $E_{E_{8}}(F i x(g))<a n n_{E_{8}}\left(L^{+}(t)\right)=$ $L^{-}(t)$ and we have

$$
\left.h\right|_{a n n_{E_{8}}(F i x(g))}=-g^{2} .
$$

Let $\hat{\gamma}=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, 0\right)$ be a root in $\operatorname{ann}_{E_{8}}(F i x(g)) \cong E_{6}$, where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in A_{2}^{*}$ have norm $2 / 3$. Then, as in Case 1 ,

$$
(h-1) \hat{\gamma}=\left(\left(-h_{A_{2}}-1\right) \gamma_{1},\left(-h_{A_{2}}-1\right) \gamma_{2},\left(-h_{A_{2}}-1\right) \gamma_{3}, 0\right)
$$

is a root.
Case 3: $L^{+}(t) \cong A_{1} \oplus A_{1}$. Then g acts trivially on $L^{+}(t)$ since $O\left(A_{1} \oplus A_{1}\right)$ has no elements of order 3. This is impossible since $\operatorname{Fix}(g) \cong A_{2}$ does not contain a sublattice of type $A_{1}+A_{1}$.

Therefore, the only possible case is $L^{+}(t) \cong D_{4}$.
Since $L^{+}(t) \cong D_{4}$, we also have $L^{-}(t)=a n n_{E_{8}}\left(L^{+}(t)\right) \cong a n n_{E_{8}}\left(D_{4}\right) \cong$ $D_{4}[6,(5.3 .1)]$. Note that g acts on both $L^{+}(t)$ and $L^{-}(t)$.

Lemma 4.20. Let Fix ${L^{ \pm}(t)}(g)$ be the fixed points of g on $L^{ \pm}(t)$. Then the rank of Fix ${L^{ \pm}(t)}(g)$ is even.

Proof. Note that the minimal polynomial of g on $a n n_{L^{ \pm}(t)}\left(F i x_{L^{ \pm}(t)}(g)\right)$ is $x^{2}+x+1$, which is irreducible. Thus $\operatorname{rank}\left(\operatorname{ann}_{L^{ \pm}(t)}\left(F_{i x_{L^{ \pm}(t)}}(g)\right)\right)$ is even and so is $\operatorname{rank}\left(\operatorname{Fix}_{L^{ \pm}(t)}(g)\right)$.

Lemma 4.21. We use the same notation as in (4.20). Then Fix $x_{L^{-}(t)}(g) \neq 0$.
Proof. Suppose g is fixed point free on $L^{-}(t)$. Then $\operatorname{span}\{\alpha, g \alpha\} \cong A_{2}$ for any root $\alpha \in L^{-}(t)$. Now choose a root $\alpha \in L^{-}(t)$ and define $A:=$ $\operatorname{span}\{\alpha, g \alpha\}$.

Let $B:=a n n_{L^{-}(t)}(A)$. Then $B \cong \sqrt{2} A_{2}$. Thus, we obtain a sublattice $A \oplus$ $B \cong A_{2} \oplus \sqrt{2} A_{2}$ in $L^{-}(t)$ and g acts fixed point freely on the indecomposable direct summands.

By the previous lemma, $\operatorname{Fix}_{L^{+}(t)}(g)$ has even rank and hence Fix $_{L^{+}(t)}(g) \cong$ A_{2} or 0 . We shall first obtain information in these two cases, then finally a contradiction to prove this lemma.

Case 1: $X:=\operatorname{Fix}_{L^{+}(t)}(g) \cong A_{2}$. Then $C:=\operatorname{ann}_{L^{+}(t)}(X) \cong \sqrt{2} A_{2}$ and g acts fixed point freely on C. Thus, we obtain a sublattice

$$
X \oplus A \oplus B \oplus C \cong A_{2} \oplus A_{2} \oplus \sqrt{2} A_{2} \oplus \sqrt{2} A_{2}
$$

in E_{8} such that g acts on each indecomposable summand and is fixed point free on B and C.

Notice that $B \oplus C<\operatorname{ann}_{E_{8}}(X \oplus A) \cong A_{2} \oplus A_{2}$ and

$$
\left|a n n_{E_{8}}(X \oplus A) /(B \oplus C)\right|=2^{2}
$$

Since $a n n_{E_{8}}(X \oplus A) \cong A_{2} \oplus A_{2}$ has roots, there exist $\beta \in B$ and $\gamma \in C$ with $(\beta, \beta)=(\gamma, \gamma)=4$ such that $\frac{1}{2}(\beta+\gamma)$ is a root in $\operatorname{ann}_{E_{8}}(X \oplus A)$. Then we also have $\frac{1}{2}(g \beta+g \gamma) \in \operatorname{ann}_{E_{8}}(X \oplus A)$. Recall that the 2-part of $\mathcal{D}\left(\sqrt{2} A_{2}\right)=\left(\sqrt{2} A_{2}\right)^{*} / \sqrt{2} A_{2}$ is generated by the elements of the form $\frac{1}{2} \delta+\sqrt{2} A_{2}$ for $\delta \in \sqrt{2} A_{2}$ with $(\delta, \delta)=4$.

By comparing the determinants, we have

$$
\operatorname{ann}_{E_{8}}(X \oplus A)=\operatorname{span}\left\{B \oplus C, \frac{1}{2}(\beta+\gamma), \frac{1}{2}(g \beta+g \gamma)\right\} \cong A_{2} \oplus A_{2}
$$

Let $A^{+}=\operatorname{span}\left\{\frac{1}{2}(\beta+\gamma), \frac{1}{2}(g \beta+g \gamma)\right\}$ and $A^{-}=\operatorname{span}\left\{\frac{1}{2}(-\beta+\gamma), \frac{1}{2}(-g \beta+\right.$ $g \gamma)\}$. Then A^{+}and A^{-}are sublattices of $a n n_{E_{8}}(X \oplus A)$. Since g satisfies $x^{2}+x+1=0$ on $\operatorname{ann}_{L}(X)$, we have $(v, g v)=-\frac{1}{2}(v, v)$ for all $v \in a n n_{L}(X)$. It follows that $A^{+} \cong A^{-} \cong A_{2}$ and $\left(A^{+}, A^{-}\right)=0$. Moreover, g stabilizes each of A^{+}and A^{-}.

Note that t commutes with g and $h=t g^{2}$. Since $X, C<L^{+}(t)$ and $A, B<L^{-}(t)$, we have

$$
\left.h\right|_{X}=i d_{X},\left.\quad h\right|_{A}=-\left.g^{2}\right|_{A},
$$

$$
h\left(\frac{1}{2}(\beta+\gamma)\right)=\frac{1}{2}\left(-g^{2} \beta+g^{2} \gamma\right), \quad h\left(\frac{1}{2}(-\beta+\gamma)\right)=\frac{1}{2}\left(g^{2} \beta+g^{2} \gamma\right)
$$

Thus we have $h\left(A^{+}\right)=A^{-}$and $h\left(A^{-}\right)=A^{+}$. Note that

$$
t\left(\frac{1}{2}(\beta+\gamma)\right)=\frac{1}{2}(-\beta+\gamma) \text { and } t\left(\frac{1}{2}(g \beta+g \gamma)\right)=\frac{1}{2}(-g \beta+g \gamma)
$$

Therefore, h acts on $A^{+} \oplus A^{-}$and t interchanges A^{+}and A^{-}.
By identifying $X \oplus A \oplus A^{+} \oplus A^{-}$with A_{2}^{4} and g^{2} with $h_{A_{2}}$ on A, A^{+}and A^{-}, h is conjugate to $\sigma \tau$, where

$$
\sigma=i d_{A_{2}} \oplus\left(-h_{A_{2}}\right) \oplus h_{A_{2}} \oplus h_{A_{2}}
$$

and τ performs a transposition on the 3 rd and 4th copies of A_{2} and is the identity on the first two summands.

Case 2: $\operatorname{Fix}_{L^{+}(t)}(g)=0$. Then g acts fixed point freely on Fix $_{L^{+}(t)}(g)$. Let $\alpha \in L^{+}(t)$ be a root. Then $X^{\prime}:=\operatorname{span}\{\alpha, g \alpha\} \cong A_{2}$. Let $C^{\prime}:=$ $a n n_{L^{+}(t)}(X)$. Then $C^{\prime} \cong \sqrt{2} A_{2}$ and we obtain a sublattice $X^{\prime} \oplus A \oplus B \oplus C^{\prime} \cong$ $A_{2} \oplus A_{2} \oplus \sqrt{2} A_{2} \oplus \sqrt{2} A_{2}$ in E_{8} such that g acts fixed point freely on X^{\prime}, A, B and C^{\prime}. Then by an argument as in case 1 , one can show that h is conjugate to $\sigma^{\prime} \tau$, where

$$
\sigma^{\prime}=h_{A_{2}} \oplus\left(-h_{A_{2}}\right) \oplus h_{A_{2}} \oplus h_{A_{2}}
$$

and τ is a transposition on the 3rd and 4th copies of A_{2}.
We now get a contradiction to both Case 1 and Case 2. We take a sublattice A_{2}^{4} of E_{8} so that g preserves each summand and h has the form $\sigma \tau, \sigma^{\prime} \tau$, as described in the two cases. Let $\eta:=\frac{1}{3}(0, a, b, c)$ be a root in E_{8} where $a, b, c \in A_{2}$ have norm 6. Then, $h \eta=\frac{1}{3}\left(0,-h_{A_{2}} a, h_{A_{2}} c, h_{A_{2}} b\right)$ and

$$
(\eta, h \eta)=\frac{1}{9}\left(3+\left(b, h_{A_{2}} c\right)+\left(c, h_{A_{2}} b\right)\right)=\frac{1}{9}(3-(b, c))
$$

since $\left(1+h_{A_{2}}+h_{A_{2}}^{2}\right) b=0$ and $\left(c, h_{A_{2}} b\right)=\left(b, h_{A_{2}}^{2} c\right)$.
Since η is a root, $(\eta, h \eta)=0, \pm 1$ or ± 2. Thus, we have $(b, c)=-6$ or 3 because $|(b, c)| \leq 6$ and $\frac{1}{9}(3-(b, c)) \in \mathbb{Z}$. It implies $c=-b$ or $-h_{A_{2}}^{i} b$ for $i=1,2$.

Since $h_{A_{2}}$ stabilizes all cosets of A_{2} in A_{2}^{*}, we also have $\frac{1}{3}\left(0, a, b, h_{A_{2}}^{i} c\right) \in E_{8}$ for all $i=1,2$. Thus, by replacing c by $h_{A_{2}}^{i} c$ if necessary, we may assume $c=-b$. Then

$$
(h-1) \eta=-\frac{1}{3}\left(0,\left(h_{A_{2}}+1\right) a,\left(h_{A_{2}}+1\right) b,\left(h_{A_{2}}+1\right) c\right) .
$$

Recall that $\left(h_{A_{2}} \alpha, \alpha\right)=-\frac{1}{2}(\alpha, \alpha)$ for $\alpha=a, b, c$ (cf. [7, Lemma 3.2]) Thus, $\left(h_{A_{2}}+1\right) a,\left(h_{A_{2}}+1\right) b$ and $\left(h_{A_{2}}+1\right) c$ have norm 6 and $(h-1) \eta$ is a root. This final contradiction proves that Fix $_{L^{-}(t)}(g) \neq 0$.

Lemma 4.22. We use the same notation as in (4.20) and (4.21). Then Fix $L_{L^{-}(t)}(g) \cong A_{2}$ and g acts fixed point freely on $L^{+}(t)$.

Proof. We first note that $\operatorname{Fix}_{L}(g) \cong A_{2}$ or 0 (see (4.4)). Since Fix $x_{L^{-}(t)}(g) \neq$ 0 and has even rank, we have $\operatorname{Fix}_{L^{-(}(t)}(g) \cong A_{2}$ and $\operatorname{Fix}_{L^{+}(t)}(g)=0$.

By the same argument as in Lemma (4.21), we have the following.
Lemma 4.23. Let h be a rootless element of order 6 . Then h is conjugate to $\sigma \tau=\tau \sigma$, where $\sigma=\left(-i d_{A_{2}}\right) \oplus h_{A_{2}} \oplus h_{A_{2}} \oplus h_{A_{2}}$ and τ is an involution which interchanges the 3rd and 4 th copies of A_{2}.

Proof. Let $P:=\operatorname{Fix}_{L^{-}(t)}(g) \cong A_{2}$ and $R:=\operatorname{ann}_{L^{-}(t)}(P)\left(\cong \sqrt{2} A_{2}\right)$. Take a root $\alpha \in L^{+}(t)$. Then $Q:=\operatorname{span}\{\alpha, g \alpha\} \cong A_{2}$ since g acts fixed point freely on $L^{+}(t)$. Also, $S:=a n n_{L^{+}(t)}(Q) \cong \sqrt{2} A_{2}$. Thus we obtain a sublattice $P \oplus Q \oplus R \oplus S \cong A_{2} \oplus A_{2} \oplus \sqrt{2} A_{2} \oplus \sqrt{2} A_{2}$ in E_{8} such that g acts trivially on P and fixed point freely on Q, R and S. Again, we have $R \oplus S<a n n_{E_{8}}(P \oplus Q) \cong$ $A_{2} \oplus A_{2}$. Thus, by the same argument as in Lemma (4.21), one can show that h is conjugate to $\sigma \tau$, where $\sigma=\left(-i d_{A_{2}}\right) \oplus h_{A_{2}} \oplus h_{A_{2}} \oplus h_{A_{2}}$ and τ is an involution which interchanges the 3rd and 4th copies of A_{2}.

Let σ and τ be as in Lemma 4.23 and assume $h=\sigma \tau$. Then we determine a sublattice $\left(A_{2}\right)^{4}$ in E_{8}.

Let $\eta:=\frac{1}{3}\left(\beta, 0, \gamma, \gamma^{\prime}\right) \in\left(A_{2}^{*}\right)^{4}$ be a root in E_{8}, where β, γ and γ^{\prime} have norm 6. Then $h(\eta)=\frac{1}{3}\left(-\beta, 0, h_{A_{2}} \gamma^{\prime}, h_{A_{2}} \gamma\right)$ and

$$
(\eta, h \eta)=\frac{1}{9}\left((\beta,-\beta)+\left(\gamma, h_{A_{2}} \gamma^{\prime}\right)+\left(\gamma^{\prime}, h_{A_{2}} \gamma\right)\right)=\frac{1}{9}\left(-6-\left(\gamma, \gamma^{\prime}\right)\right)
$$

Since $(\eta, h \eta)=0, \pm 1$ or ± 2, we have $\left(\gamma, \gamma^{\prime}\right)=3$ or -6 and hence $\gamma^{\prime}=-h_{A_{2}}^{i} \gamma$ for $i=0,1,2$. Without loss, we may assume $\gamma^{\prime}=-h_{A_{2}} \gamma$ since $h_{A_{2}}$ stabilizes all cosets of A_{2} in A_{2}^{*}.

Then, we have $\eta=\frac{1}{3}\left(\beta, 0, \gamma,-h_{A_{2}} \gamma\right)$ and

$$
\begin{aligned}
h \eta & =\frac{1}{3}\left(-\beta, 0,-h_{A_{2}}^{2} \gamma, h_{A_{2}} \gamma\right), \\
h^{2} \eta & =\frac{1}{3}\left(\beta, 0, h_{A_{2}}^{2} \gamma,-\gamma\right), \\
h^{3} \eta & =\frac{1}{3}\left(-\beta, 0,-h_{A_{2}} \gamma, \gamma\right), \\
h^{4} \eta & =\frac{1}{3}\left(\beta, 0, h_{A_{2}} \gamma,-h_{A_{2}}^{2} \gamma\right) .
\end{aligned}
$$

Thus we have $(h \eta, \eta)=\left(h^{-1} \eta, \eta\right)=-1,\left(h^{2} \eta, \eta\right)=\left(h^{-2} \eta, \eta\right)=0$ and $\left(h^{3} \eta, \eta\right)=0$. It implies that $A=\operatorname{span}\left\{h^{i} \eta \mid i=0, \ldots, 5\right\} \cong A_{5}$ and $\left\{\eta, h \eta, h^{2} \eta, h^{3} \eta, h^{4} \eta\right\}$ is a fundamental set of simple roots. By identifying A with A_{5}, we may identify $\left.h\right|_{A}$ with $h_{A_{5}}$.

Let B be the second summand isometric to A_{2} and $C:=a n n_{L^{-}(h)}(\beta)$. Then $C \cong A_{1}$ and h acts as -1 on C. Thus we have a rank 8 sublattice $A \oplus B \oplus C$ in E_{8} such that $A \cong A_{5}, B \cong A_{2}, C \cong A_{1}$. Moreover, we may identify $\left.h\right|_{A}$ with $h_{A_{5}},\left.h\right|_{B}$ with $h_{A_{2}}$ and $\left.h\right|_{C}=-i d_{C}$. The following theorem now follows.

Theorem 4.24. Let h be a rootless element of order 6 . Then h is conjugate to $h_{A_{5}} \oplus h_{A_{2}} \oplus h_{A_{1}}$.

Other composite orders

Theorem 4.25. There is no rootless element of order 12.
Proof. Let h be a rootless element of order 12. Then $g=h^{4}$ has order 3, $f=h^{3}$ has order 4 and both are rootless. By the analysis of rootless order 6 elements, we have $\operatorname{Fix}_{L^{-}\left(f^{2}\right)}(g) \cong A_{2}$ (see (4.22)). Since f commutes with g, f also acts on $\operatorname{Fix}_{L^{-}\left(f^{2}\right)}(g)$. For any root $\alpha \in L^{-}\left(f^{2}\right)$, we have

$$
(f \alpha, \alpha)=\left(f^{2} \alpha, f \alpha\right)=-(\alpha, f \alpha)
$$

Hence $(f \alpha, \alpha)=0$ and $\operatorname{span}\{\alpha, f \alpha\} \cong A_{1} \oplus A_{1}$. Since A_{2} does not contain any sublattice isometric to $A_{1} \oplus A_{1}, f$ cannot stabilize any A_{2}-sublattice in $L^{-}\left(f^{2}\right)$, which is a contradiction.

Lemma 4.26. If $h \in O(L)$ is rootless, $|h|$ is not 10 or 15 .

Proof. Let h be rootless and have order 10 or 15 . We use the notations in (3.4). Since h_{5} is fixed point free, if q is the other prime dividing $|h|$, the q-part has eigenvalue 1 . This means if $q=3$, then h_{3} has rank 2 fixed point sublattice, which is impossible since h_{5} does not leave invariant a rank 2 sublattice. Now suppose that $q=2$. Since the fixed point sublattice F of h_{2} is nonzero and is h-invariant, $\operatorname{rank}(F)=4$. However, no rank 4 RSSD sublattice of L has an automorphism of order 5 , contradiction.

5 How the surviving cases give all rootless $E E_{8}$ pairs

Each of the 11 lattices from the main result of [7] has the form $M+N$, where $M \cong N \cong E E_{8}$ and is denoted by some notation $D I H_{2 k}(d, \cdots)$, where d is the rank and $2 k=\left|\left\langle t_{M}, t_{n}\right\rangle\right|$. Their structures are summarized in Table 1. We shall prove that each of the 11 cases occurs as some SDC-lattice $L\left(E_{8}, h\right)$ by using the rootless h, which we classified in preceding sections.

We exclude the case $h=1$, which is indeed rootless, but for which $M=$ $N=L$.

Table 1: Integral rootless lattices which are sums of $E E_{8} \mathrm{~s}$

Name	$\left\langle t_{M}, t_{N}\right\rangle$	Isometry type of L (contains)	$\mathcal{D}(L)$	In Leech?
$D I H_{4}(12)$	$D i h_{4}$	$\geq D D_{4}^{\perp 3}$	$1^{4} 2^{6} 4^{2}$	Yes
$D I H_{4}(14)$	$D i h_{4}$	$\geq A A_{1}^{\perp 2} \perp D D_{6}^{\perp 2}$	$1^{4} 2^{8} 4^{2}$	Yes
$D I H_{4}(15)$	$D i h_{4}$	$\geq A A_{1} \perp E E_{7}^{\perp 2}$	$1^{2} 2^{14}$	No
$D I H_{4}(16)$	$D i h_{4}$	$\cong E E_{8} \perp E E_{8}$	2^{16}	Yes
$D I H_{6}(14)$	$D i h_{6}$	$\geq A A_{2} \perp A_{2} \otimes E_{6}$	$1^{7} 3^{3} 6^{2}$	Yes
$D I H_{6}(16)$	$D i h_{6}$	$\cong A_{2} \otimes E_{8}$	$1^{8} 3^{8}$	Yes
$D I H_{8}(15)$	$D i h_{8}$	$\geq A A_{1}^{\perp 7} \perp E E_{8}$	$1^{10} 4^{5}$	Yes
$D I H_{8}\left(16, D D_{4}\right)$	$D i h_{8}$	$\geq D D_{4}^{\perp 2} \perp E E_{8}$	$1^{8} 2^{4} 4^{4}$	Yes
$D I H_{8}(16,0)$	$D i h_{8}$	$\cong B W_{16}$	$1^{8} 2^{8}$	Yes
$D I H_{10}(16)$	$D i h_{10}$	$\geq A_{4} \otimes A_{4}$	$1^{12} 5^{4}$	Yes
$D I H_{12}(16)$	$D i h_{12}$	$\geq A A_{2} \perp A A_{2} \perp A_{2} \otimes E_{6}$	$1^{12} 6^{4}$	Yes

$X^{\perp n}$ denotes the orthogonal sum of n copies of the lattice X.
There are 11 rootless nonidentity conjugacy classes. If we form the associated 11 SDC lattices, it suffices to argue that they give 11 distinct $E E_{8}$-pairs. Notice that the dihedral group $\left\langle t_{M}, t_{N}\right\rangle$ has order $2|h|$ (2.4).

We now prove the bijection by use of Table 2. In column 1, we list the possibilities for rootless h. Columns 2 and 3 are consequences of our classification of rootless elements of $O\left(E_{8}\right)$. Our intended correspondence is expressed in column 4 , which we shall now justify.

Table 2: Rootless classes in $O\left(E_{8}\right)$

Notation for h	Order of $\left\langle t_{M}, t_{N}\right\rangle$	$\operatorname{rank}(M+N)$	Lattice name in [7]
$h_{A_{1}}^{8}$	4	16	$D I H_{4}(16)$
$h_{A_{1}}^{7} \oplus i d_{A_{1}}$	4	15	$D I H_{4}(15)$
$h_{A_{1}}^{6} \oplus i d_{A_{1}^{2}}$	4	14	$D I H_{4}(14)$
$h_{A_{1}}^{4} \oplus i d_{A_{1}}$	4	12	$D I H_{4}(12)$
$h_{A_{2}}^{4}$	6	16	$D I H_{6}(16)$
$h_{A_{2}}^{3} \oplus i d_{A_{2}}$	6	14	$D I H_{6}(14)$
$h_{A_{3}}^{2} \oplus h_{A_{1}}^{2}$	8	16	$D I H_{8}\left(16, D D_{4}\right)$
$h_{A_{3}}^{2} \oplus h_{A_{1}} \oplus i d_{A_{1}}$	8	15	$D I H_{8}(15)$
$h^{2}=-1$	8	16	$D I H_{8}(16,0)$
$h_{A_{4}}^{2}$	10	16	$D I H_{10}(16)$
$h_{A_{5}} \oplus h_{A_{2}} \oplus h_{A_{1}}$	12	16	$D I H_{12}(16)$

We observe that two lattices which occur for different entries in column 1 of Table 1 are distinguished by the orders of the dihedral groups and their ranks, with the exception of the two cases of rank 16 lattices when the dihedral group has order 8 . The latter two lattices are distinguished by $a n n_{M}(N)$, which can be 0 or $D D_{4}$. By Lemma 2.12, $\operatorname{ann}_{N}(M)=\{(\alpha,-\alpha) \mid \alpha \in$ E and $h \alpha=-\alpha\}$. Therefore, $\operatorname{ann}_{M}(N) \cong D D_{4}$ when h has form $h_{A_{3}}^{2} \oplus h_{A_{1}}^{2}$ (Theorem 4.17 (1)) and $a n n_{M}(N)=0$ when h satisfies $h^{2}=-1$. Our set of rootless classes in $O\left(E_{8}\right)$ therefore gives 11 distinct SDC lattices, which must be the 11 types listed in [7] and which appear in column 4 of Table 2.

The main theorems (1.2), (1.3), (1.4) of this article are now proved. The rest of this article demonstrates new embeddings of a few of the above lattices into the Leech lattice.

A Embeddings of $E E_{8}$ pairs in the Leech lattice

As usual, Λ denotes a copy of the Leech lattice.

In this appendix, we shall construct several lattices $\mathcal{E} \cong E_{8} \perp E_{8}$ in $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$ such that $\mathcal{E} \cap \Lambda$ is an $S D C\left(E_{8}\right)$-lattice. This will give relatively easy embeddings of some rootless $E E_{8}$ pairs into the Leech lattice. An account of embeddings for all cases of $E E_{8}$-pairs was given in [7].

A. 1 Order 2

Let Ω be a 24 -set and let \mathcal{G} be the extended Golay code of length 24 indexed by Ω.

For explicit calculations, we shall use some 4×6 arrays to denote the codewords of the Golay code and the vectors in the Leech lattice. For each codeword in $\mathcal{G}, 0$ and 1 are indicated by an empty and filled space, respectively, at the corresponding positions in the array.

The following is a standard construction of the Leech lattice.
Definition A. 1 ([2, 3]). Let $e_{i}:=\frac{1}{\sqrt{8}}(0, \ldots, 4, \ldots, 0)$ for $i \in \Omega$. Then $\left(e_{i}, e_{j}\right)=2 \delta_{i, j}$. Denote $e_{X}:=\sum_{i \in X} e_{i}$ for $X \in \mathcal{G}$. The standard Leech lattice Λ is a lattice of rank 24 generated by the vectors:

$$
\begin{aligned}
& \frac{1}{2} e_{X}, \quad \text { where } X \text { runs over all codewords of the Golay code } \mathcal{G} \\
& \frac{1}{4} e_{\Omega}-e_{1} \\
& e_{i} \pm e_{j}, \quad i, j \in \Omega
\end{aligned}
$$

Let \mathcal{D} be the subcode of \mathcal{G} generated by

$$
\begin{aligned}
& \mathcal{O}_{1}=\begin{array}{|l|l|l|}
\hline * & * & \\
* & * & \\
* & * & \\
* & * & \\
\hline
\end{array} \\
& \mathcal{O}_{2}=\begin{array}{ll|l|}
\hline * & * & \\
* & * & \\
* & * & \\
* & * & \\
\hline
\end{array} \\
& \mathcal{O}_{3}=\begin{array}{|ll|ll|l|}
\hline * & * & * & * & \\
* & * & * & * & \\
& & & & \\
\hline
\end{array} \\
& \mathcal{O}_{4}=\begin{array}{|ll|ll|l|}
\hline * & * & * & * & \\
* & * & * & * & \\
\hline
\end{array}
\end{aligned}
$$

Note that \mathcal{D} is supported at $\mathcal{O}_{1} \cup \mathcal{O}_{2}$ and is isomorphic to $d\left(H_{8}\right)$, where H_{8} is the Hamming [8, 4, 4]-code and $d: \mathbb{Z}_{2}^{8} \rightarrow \mathbb{Z}_{2}^{16}$ is defined by $d(\alpha)=(\alpha, \alpha)$.

Remark A.2. Recall that $A_{1}^{*}=\frac{1}{2} A_{1}, A_{1}^{*} / A_{1} \cong \mathbb{Z}_{2}$ and the root lattice E_{8} can be constructed by A_{1}^{8} and H_{8} as follows [2, 6].

Let $\rho:\left(A_{1}^{*}\right)^{8} \rightarrow\left(A_{1}^{*} / A_{1}\right)^{8} \cong \mathbb{Z}_{2}^{8}$ be the natural map. Then $\rho^{-1}(0)=$ $\operatorname{Ker} \rho=A_{1}^{8}$ and $\rho^{-1}\left(H_{8}\right) \cong E_{8}$.

Let

$$
A=\frac{4}{\sqrt{8}}\left\{\begin{array}{|ll|ll}
\hline \begin{array}{lll}
a & b & a \\
b \\
c & d & c \\
\hline & d \\
e & f & e
\end{array} & f \\
g & h & g & h
\end{array}|\quad| \quad a, b, c, d, e, f, g, h \in \mathbb{Z}\right\} .
$$

and denote $M=\operatorname{span} A \cup\left\{\left.\frac{1}{2} e_{X} \right\rvert\, X \in \mathcal{D}\right\}$. Then $A \cong A A_{1}^{8}$ and $M \cong E E_{8}$. Note that both A and M are sublattices of Λ.

Let

$$
\mathcal{O}=\begin{array}{|ll|l|}
\hline * & * \\
* & * & \\
* & * & \\
* & * & \\
\hline
\end{array}, \quad \hat{\mathcal{O}}=\begin{array}{|l|l|l|}
\hline & & * \\
* & * & \\
* & * & \\
* & * & \\
\hline
\end{array}
$$

and denote by $P_{\mathcal{O}}$ and $P_{\hat{\mathcal{O}}}$ the natural projections to \mathcal{O} and $\hat{\mathcal{O}}$, respectively.
Let $E^{1}=P_{\mathcal{O}}(M)$ and $E^{2}=P_{\hat{O}}(M)$. Then $E^{1} \cong E^{2} \cong E_{8}$ and $E^{1} \perp E^{2}$. Moreover, $E^{1} \perp E^{2}<\frac{1}{2} \Lambda$. By identifying E^{1} with E^{2}, we have

$$
M=\left\{(\alpha, \alpha) \mid \alpha \in E^{1}\right\}
$$

Case 1: Now let $h_{1}=\varepsilon_{\hat{\mathcal{O}}}$, i.e., h_{1} acts as -1 on the basis vectors indexed by $\hat{\mathcal{O}}$ and as 1 on the basis vectors indexed by $\Omega \backslash \hat{\mathcal{O}}$.

Then h_{1} acts as -1 on E^{2} and fixes E^{1} pointwise. Then $N=h_{1}(M)=$ $\left\{\left(\alpha, h_{1} \alpha\right) \mid \alpha \in E^{1}\right\}<E^{1} \perp E^{2}$ is also a diagonal copy. In this case, $M \perp N$ and $M+N \cong E E_{8} \perp E E_{8}$.

Case 2: Let

$$
\mathcal{O}^{\prime}=\begin{array}{|l|ll|ll|}
\hline & * & * & * & * \\
& * & * & * & * \\
\hline
\end{array}
$$

and define $h_{2}=\varepsilon_{\mathcal{O}^{\prime}}$. Then $\left|\mathcal{O} \cap \mathcal{O}^{\prime}\right|=0$ and $\left|\hat{\mathcal{O}} \cap \mathcal{O}^{\prime}\right|=4$. Thus, h_{2} may be identified with $h_{A_{1}}^{4} \oplus i d_{A_{1}}^{4}$ on E^{2}
and fixes E^{1} pointwise. Let $N=h_{2}(M)$. Then $N \cap M \cong D D_{4}$ and $M+N \cong D I H_{4}(12)$.

A. 2 Order 3

First, we recall the ternary construction of the Leech lattice Λ [2]. Let Δ be a 12 -set and let $\mathcal{T G}$ be a ternary Golay code with index set Δ.

We also use the standard model for A_{2}, i.e.,

$$
A_{2}=\left\{(a, b, c) \in \mathbb{Z}^{3} \mid a+b+c=0\right\} .
$$

Let $\gamma_{0}:=0, \gamma_{1}:=\frac{1}{3}(1,1,-2)$ and $\gamma_{2}:=\frac{1}{3}(-1,-1,2)$ be elements in A_{2}^{*}.
Let $\mathcal{A}^{i}, i \in \Delta$, be isometric copies of A_{2} and $\mathcal{X}:=\oplus_{i \in \Delta} \mathcal{A}_{i}$ an orthogonal sum of 12 copies of A_{2}. Then the dual lattice $\mathcal{X}^{*}=\oplus_{i \in \Delta} \mathcal{A}_{i}^{*}$ and $\mathcal{D}(\mathcal{X})$ has a natural identification with \mathbb{F}_{3}^{12}.

For each codeword $x=\left(x_{1}, \ldots, x_{12}\right) \in \mathcal{T G}$, let $\gamma_{x}=\left(\gamma_{x_{1}}, \ldots, \gamma_{x_{12}}\right) \in \mathcal{X}^{*}$ be some vector which modulo \mathcal{X} gives the codeword x. Then

$$
\mathcal{N}:=\operatorname{span} \mathcal{X} \cup\left\{\gamma_{x} \mid x \in \mathcal{T} \mathcal{G}\right\}
$$

is isometric to the Niemeier lattice of type A_{2}^{12}.
Let $\delta:=\frac{1}{3}(1,0,-1)$ be in the standard model of A_{2} and $\hat{\delta}:=(\delta, \ldots \delta)$. Then

$$
\mathcal{N}^{0}=\{\alpha \in N \mid(\alpha, \hat{\delta}) \in \mathbb{Z}\}
$$

is a sublattice of index 3 and has no roots.
Let $\beta=(-1,1,0) \in A_{2}$. Then $(\beta, 0,0 \ldots, 0)+\hat{\delta}$ has norm 4 and the lattice $\mathcal{N}^{0}+\mathbb{Z}((\beta, 0,0 \ldots, 0)+\hat{\delta})$ is even unimodular and has no root. Hence, it is isometric to the Leech lattice Λ [2, Chapter 24].

Next, we construct some $E E_{8}$ sublattices of $\mathcal{N}^{0}<\Lambda$. We shall arrange the 12 -set Δ into a 3×4 array. For each codeword in $\mathcal{T} \mathcal{G}, 0,1$ and 2 are marked by a blank space and + and - signs, respectively, at the corresponding positions in the array.

Let $T D$ be the subcode of $\mathcal{T G}$ generated by

$$
\left.X=\begin{array}{|l|l|l}
\hline & + \\
+ & - \\
+ & - \\
+ & -
\end{array}\right] \quad Y=\begin{array}{|l|l|l|l|}
\hline+ & + & & \\
- & - & - & \\
\hline
\end{array} .
$$

Let

$$
\Omega_{1}=\begin{array}{|l|l|l}
\hline * & * & \\
* & \\
* & \\
*
\end{array}, \left.\quad \Omega_{2}=\begin{array}{|l|l|l|}
\hline * & & * \\
* & \\
*
\end{array} \right\rvert\,
$$

be subsets of Δ and let $P_{\Omega_{1}}$ and $P_{\Omega_{2}}$ be the natural projections, from \mathbb{F}_{3}^{Δ} to $\mathbb{F}_{3}^{\Omega_{1}}, \mathbb{F}_{3}^{\Omega_{2}}$, respectively.

Then $P_{\Omega_{1}}(T D)$ and $P_{\Omega_{2}}(T D)$ are both isomorphic to the tetracode \mathcal{C}_{4} since they are self-orthogonal and have dimension 2 and length 4.

Define a permutation φ of Δ by

Then $\varphi\left(\Omega_{1}\right)=\Omega_{2}$ and φ induces an isomorphism between $P_{\Omega_{1}}(T D)$ and $P_{\Omega_{2}}(T D)$.

Let

$$
B=\left\{\begin{array}{c|c|c|}
\hline a & b & -d \\
-a & c & -b \\
d & -c
\end{array}| | a, b, c, d \in A_{2}\right\}<\mathcal{X}
$$

and $M=\operatorname{span} B \cup\left\{\gamma_{x} \mid x \in T D\right\}<\mathcal{X}^{*}$. Then $B \cong A A_{2}^{4}$.
For any subset $S \subset \Delta$, let $\tilde{P}_{S}: \mathcal{X}^{*} \rightarrow \oplus_{i \in S} \mathcal{A}_{i}^{*}$ be the natural projection. Then $\tilde{P}_{\Omega_{1}}(B) \cong \tilde{P}_{\Omega_{2}}(B) \cong A_{2}^{4}$. Moreover, we have $\tilde{P}_{\Omega_{1}}(M) \cong \tilde{P}_{\Omega_{2}}(M) \cong E_{8}$ since $P_{\Omega_{1}}(T D) \cong P_{\Omega_{2}}(T D) \cong \mathcal{C}_{4}$, the tetracode.

Let $E^{1}:=\tilde{P}_{\Omega_{1}}(M)$ and $E^{2}:=\tilde{P}_{\Omega_{2}}(M)$. Then $\left(E^{1}, E^{2}\right)=0$ and $E^{1} \perp$ $E^{2}<\frac{1}{3} \Lambda$. Note that the permutation φ also induces a map on \mathcal{X}^{*} by permutating the \mathcal{A}_{i}^{*} 's. Then we have $\varphi\left(E^{1}\right)=E^{2}$ and $M=\left\{(\alpha,-\varphi \alpha) \mid \alpha \in E^{1}\right\}<$ $E^{1} \perp E^{2}$. By identifying E^{1} with E^{2} using φ, we have $M=\{(\alpha,-\alpha) \mid \alpha \in$ $\left.E^{1}\right\} \cong E E_{8}$.

Let $h:=h_{X}:=h_{A_{2}}^{x_{1}} \oplus \cdots \oplus h_{A_{2}}^{x_{12}}$. Note that h defines an isometry of \mathcal{N} and $\Lambda[2,3]$. Moreover, h acts on $E^{1} \perp E^{2}$ as $g \oplus g^{-1}$, where $g=h_{A_{2}}^{3} \oplus i d_{A_{2}} \in$ $O\left(E_{8}\right)$. Then

$$
N=h(M)=\left\{\left(g \alpha, g^{-1} \alpha\right) \mid \alpha \in E^{1}\right\}=\left\{(\alpha, g \alpha) \mid \alpha \in E^{1}\right\} .
$$

In this case, $M \cap N \cong A A_{2}$ and $M+N \cong D I H_{6}(14)$.

A. 3 Order 5

First we recall a construction of the Leech lattice from $A_{4}^{6}[2]$.
Let $S_{i}, i=1, \ldots, 6$, be isometric copies of A_{4} and $S=\oplus_{i=1}^{6} S_{i}$ an orthogonal sum of six copies of A_{4} 's. Then the dual lattice $S^{*}=\oplus_{i=1}^{6} S_{i}^{*}$.

Let \mathcal{C} be the subcode of \mathbb{Z}_{5}^{6} generated by

$$
(1,0,1,4,4,1),(1,1,0,1,4,4),(1,4,1,0,1,4)
$$

Then \mathcal{C} is a self-dual code over \mathbb{Z}_{5} and is a glue code associated to the construction of $N\left(A_{4}^{6}\right)$ from A_{4}^{6} [2, Chapter 16].

Let $a[1]:=\frac{1}{5}(1,1,1,1,-4), a[2]:=\frac{1}{5}(2,2,2,-3,-3), a[3]:=-a[2], a[4]:=$ $-a[1]$ in A_{4}^{*} and $a[0]:=0$. For each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{6}\right) \in \mathcal{C}$, let

$$
\gamma_{\alpha}:=\left(a\left[\alpha_{1}\right], a\left[\alpha_{2}\right], \ldots, a\left[\alpha_{6}\right]\right) .
$$

Define

$$
\mathcal{N}:=\operatorname{span}_{\mathbb{Z}}\left(S \cup\left\{\gamma_{\alpha} \mid \alpha \in \mathcal{C}\right\}\right)<S^{*}
$$

Then \mathcal{N} is isometric to the Niemeier lattice of type A_{4}^{6}.
Let $\eta:=\frac{1}{5}(2,1,0,-1,-2)$ and $\hat{\eta}:=(\eta, \eta, \eta, \eta, \eta, \eta)$. Then

$$
\mathcal{N}^{0}=\{\alpha \in \mathcal{N} \mid(\alpha, \hat{\eta}) \in \mathbb{Z}\}
$$

is an index 5 sublattice of \mathcal{N} and has no roots.
Let

$$
\Lambda:=\operatorname{span}_{\mathbb{Z}}\left(\mathcal{N}^{0} \cup\{(\beta, 0,0,0,0,0)+\hat{\eta}\}\right)
$$

where $\beta:=(-1,1,0,0,0) \in A_{4}$.
Then Λ is even unimodular and has no roots. That means Λ is isometric to the Leech lattice [2, Chapter 24].

Next we shall construct some $E E_{8}$'s in Λ. Let

$$
K:=\left\{(0, a, 0,-a,-b, b) \mid a, b \in A_{4}\right\}<S
$$

and

$$
M:=\operatorname{span}_{\mathbb{Z}}(K \cup\{(0, a[1], 0,-a[1],-a[2], a[2])\})
$$

Then $K \cong A A_{4} \perp A A_{4}$ and $M \cong E E_{8}$.
Note that

$$
(0,1,0,-1,-2,2)=(1,0,1,4,4,1)-(1,4,1,0,1,4) \in \mathcal{C}
$$

and hence $M<\mathcal{N}^{0}<\Lambda$.
Let $P_{1}: S^{*} \rightarrow S_{2}^{*} \oplus S_{6}^{*}$ and $P_{2}: S^{*} \rightarrow S_{4}^{*} \oplus S_{5}^{*}$ be the natural projections.
Let $E^{1}:=P_{1}(M)$ and $E^{2}:=P_{2}(M)$. Then $E^{1} \cong E^{2} \cong E_{8}$ and $\left(E^{1}, E^{2}\right)=$ 0 . By identifying S_{2} with S_{4} and S_{6} with S_{5}, we may identify E^{1} with E^{2}. Then, we have $M=\left\{(\alpha,-\alpha) \mid \alpha \in E^{1}\right\}$.

Let $h:=\left(1, h_{A_{4}}, 1, h_{A_{4}}^{-1}, h_{A_{4}}^{-2}, h_{A_{4}}^{2}\right) \in O\left(\left(A_{4}^{*}\right)^{6}\right)$. Since $(0,1,0,-1,-2,2) \in$ \mathcal{C}, one can verify that $h(\Lambda)=\Lambda$ (see [1] or [2]). Note that h acts as $h_{A_{4}} \oplus h_{A_{4}}^{2}$ on E^{1} and as $h_{A_{4}}^{-1} \oplus h_{A_{4}}^{-2}$ on E^{2}.

Let $N:=h(M)$ and let $g:=\left.h\right|_{E^{1}}$. Then by the identification of E^{2} to E^{1}, we may identify $\left.h\right|_{E^{2}}$ with g^{-1}. Hence, we have

$$
N=h(M)=\left\{\left(g \alpha,-g^{-1} \alpha\right) \mid \alpha \in E^{1}\right\}=\left\{\left(\alpha,-g^{-2} \alpha\right) \mid \alpha \in E^{1}\right\} .
$$

In this case, $M \cap N=0$ and $M+N$ is an SDC lattice and is isometric to $D I H_{10}(16)$.

Acknowledgements. The authors thank Kavili Institute of Theoretical Physics in Beijing for hospitality during July and August, 2010.

The first author thanks the US National Science Foundation (DMS-0600854) and the US National Security Agency for financial support (H98230-10-10201) and the Academia Sinica for hospitality during his visit in Taipei, August 2010.

The second author thanks National Science Council (NSC 97-2115-M-006-015-MY3) and National Center for Theoretical Sciences, Taiwan for financial support and University of Michigan for hospitality during a visit, March 2010.

References

[1] J. H. Conway, R.T.Curtis, S.P. Norton, R.A.Parker and R. A. Wilson, ATLAS of finite groups, Clarendon Press, Oxford, 1985.
[2] J. H. Conway and N. J.A. Sloane, Sphere packings, lattices and groups, 3rd Edition, Springer, New York, 1999.
[3] R. L. Griess, Jr., Twelve Sporadic Groups, Springer Verlag, 1998.
[4] R. L. Griess, Jr., Pieces of Eight, Adv. Math., 148, 75-104 (1999).
[5] R. L. Griess, Jr., Positive definite lattices of rank at most 8, J. Number Theory, 103 (2003), 77-84.
[6] R. L. Griess, Jr., An introduction to groups and lattices: finite groups and positive definite rational lattices, Higher Education Press (in China) and by the International Press (2010).
[7] R. L. Griess, Jr. and C.H. Lam, Dihedral groups and $E E_{8}$ lattices, Pure Appl. Math. Q., Volume 7, Number 3 (Special Issue: In honor of Professor Jacques Tits) 621-743, 2011.
[8] P. Lewis, Sums of isometric pairs of lattices, arXiv:1009.0060.

