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Abstract

Let E be an integral lattice. We first discuss some general prop-
erties of an SDC lattice, i.e., a sum of two diagonal copies of E in
E ⊥ E. In particular, we show that its group of isometries contains a
wreath product. We then specialize this study to the case of E = E8

and provide a new and fairly natural model for those rootless lattices
which are sums of a pair of EE8-lattices. This family of lattices was
classified in [7]. We prove that this set of isometry types is in bijection
with the set of conjugacy classes of rootless elements in the isometry
group O(E8), i.e., those h ∈ O(E8) such that the sublattice (h− 1)E8

contains no roots. Finally, our model gives new embeddings of several
of these lattices in the Leech lattice.
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1 Introduction

In this article, lattice means a finitely generated free abelian group with a
rational valued symmetric bilinear form.

We begin by defining the main construction used in this article.

Notation 1.1. Suppose that we are given an integral lattice, E, and an
isometry h ∈ O(E). In E ⊥ E, we have two sublattices

M := {(x, x) | x ∈ E} and N := {(x, hx) | x ∈ E}.

Clearly, M ∼= N ∼=
√
2E (where ∼= indicates isometry of quadratic spaces).

Define L := L(E, h) := M+N . We call L an SDC-lattice or, more precisely,
an SCD(E, h)-lattice or SDC(E)-lattice, meaning a sum of diagonal copies
(of the fixed input lattice, E, using the isometry h).
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Clearly, L is integral (since it is a sublattice of E ⊥ E) and even (since
the generating set M ∪N has only even norm vectors). Our first main result
shows that L has a large group of isometries (1.2).

Theorem 1.2. Let L, h be as in (1.1), where h has order n. Then O(L)
contains a chain of subgroups 〈tM , tN〉 ≤ WM,N

∼= Zn ≀Z2. Furthermore, each
of tM , tN is a wreathing involution of WM,N .

Some lattices of great interest have this form. One has for instance the
Barnes-Wall lattices (for whichM,N are scaled copies of smaller rank Barnes-
Wall lattices and h2 = −1). Additional examples are listed in Section 5. One
should note the trivial cases h = 1, for which M = N , and h = −1, for which
M +N = M ⊥ N .

The term EE8-lattice means a lattice isometric to
√
2E8 [7].

We now consider rootless integral lattices spanned by a pair of EE8-
lattices. They were studied and classified in [7]. Recently, we realized that
they may be expressed as SDC-lattices (1.3). The next two main results
shows how they may be expressed as SDC-lattices (1.3).

Theorem 1.3. All rootless EE8 pairs listed in [7, Table 1] can be embedded
into E8 ⊥ E8 as SDC(E8)-lattices (1.1).

Theorem 1.4. There is a bijection between the conjugacy classes of rootless
elements in O(E8) and the isometry classes of rootless EE8 pairs.

An application of modeling the lattices of [7] as SDC(E8)-lattices is that
one can see relatively natural embeddings of some of them into the Leech
lattice; see Section A. Such embeddings were first demonstrated in [7], but
the proofs were rather technical.

Conventions. Group actions will be on the left. Notations are generally
standard. We mention the relatively new notations EE8 for

√
2E8 [7], RSSD

and SSD (2.1). For background on groups and lattices, see [6].

2 About SDC lattices

In this section, E is an arbitrary integral lattice. Later in this article, we
shall specialize to the case E = E8.
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Definition 2.1. A sublattice X of an integral lattice Y is called RSSD if
2Y ≤ X + ann(X). If X is RSSD, the orthogonal transformation tX which
is −1 on X and 1 on ann(X) takes Y to itself, whence tX ∈ O(Y ).

The lattice X is called SSD if 2X∗ ≤ X. An SSD lattice X contained in
the integral lattice Y is RSSD in Y . See [5, 7, 6].

We use the notations of (1.1).

Lemma 2.2. As maps on E ⊥ E, tM : (x, y) 7→ (−y,−x) and tN : (x, y) 7→
(−h−1y,−hx).

Proof. Direct calculation. Here is an argument for tM . Write (x, y) =
(1
2
(x+ y), 1

2
(x+ y))+ (1

2
(x− y),−1

2
(x− y)) and note that the first summand

on the right side is in M and the second is in ann(M). Therefore, tM negates
the first summand and fixes the second.

To verify the formula for tN , notice that this map negates N and fixes all
(w,−hw), w ∈ L. Then use the decomposition

(x, y) = (1
2
(x+ h−1y), 1

2
(hx+ y)) + (1

2
(x− h−1y), 1

2
(−hx+ y)). �

Notation 2.3. Define sublattices N ′ := {(x, h−1x) | x ∈ E} and L′ :=
M +N ′.

Define the following elements of O(E ⊥ E):
β : (x, y) 7→ (hx, y);
γ : (x, y) 7→ (x, hy);
δ : (x, y) 7→ (hx, hy);
δ′ : (x, y) 7→ (h−1x, hy).

These maps satisfy δ = βγ = γβ and δ′ = β−1γ = γβ−1.
We denote by W (E, h) the group 〈tM , tN , β, γ〉. It is a subgroup of O(E ⊥

E) (but we shall see that it embeds in O(L) (2.11)).

Lemma 2.4. (i) tN tM = δ′;
(ii) β = tMγtM = tNγtN ;
(iii) W (E, h) is generated by any three of tM , tN , β, γ. Furthermore,

W (E, h) = (〈β〉 × 〈γ〉)〈tM〉 is isomorphic to the wreath product Z|h| ≀ Z2;
(iv) 〈β, γ〉 contains 〈δ, δ′〉 with index (2, |h|).
(v) In W (E, h), the stabilizer of M is 〈tM〉 × 〈δ〉 and the stabilizer of N

is 〈tN 〉 × 〈δ〉.
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Proof. (i) Direct calculation.
(ii) One may check the first equality by direct calculation. For the second,

note that tN = δ′tM = tM (δ′)−1 and that δ′ and γ commute.
(iii) Let V be the subgroup of W (E, h) generated by three of the gen-

erators and let H := 〈β〉 × 〈γ〉. Then V covers W (E, h)/H ∼= 2, i.e.,
W (E, h) = HV . If V includes generators β, γ, then V ≥ H and we are
done. If not, V contains both tM and tN , whence also δ′. Clearly, H is
generated by any two of β, γ, δ′ and so we conclude that V = W (E, h).

(iv) Clearly, 〈β, γ〉 contains 〈δ, δ′〉. The latter equals 〈β2, γ2, δ〉 and has
index (2, |h|) in 〈β, γ〉.

(v) Let S be the stabilizer of M in W (E, h). We have 〈tM〉 ≤ S. Since
W (E, h) = 〈tM〉H , the Dedekind law implies that S = 〈tM〉(S ∩H). Clearly,
(S ∩ H) = 〈δ〉. This completes the analysis for M . The argument for N is
similar. �

Lemma 2.5. γ(M) = N , γ(N ′) = M and γ(L′) = L.

Lemma 2.6. (i) 2L ≤ M + ann(M);
(ii) 2L′ ≤ M + ann(M).

Proof. (i) It suffices to prove that 2N ≤ M + ann(M). An element of N
has shape (x, hx) for some x ∈ E. We have 2(x, hx) = (x + hx, x + hx) +
(x−hx,−x+hx). The first summand is in M and the second is in ann(M).

(ii) Use (i) with h replaced by h−1. �

Lemma 2.7. 2L ≤ N + ann(N).

Proof. Apply γ to the containment (2.6) (ii).

Corollary 2.8. 〈tM , tN〉 maps L to itself.

Proof. We have shown that M and N are RSSD lattices. Therefore the
isometries tM and tN map L to itself. �

Remark 2.9. The isometry group of L contains an isomorphic copy C(E, h)
of CO(E)(h), acting diagonally on E ⊥ E. We have 〈−1, δ〉 ≤ C(E, h) and
C(E, h) centralizes 〈tM , tN〉.

Lemma 2.10. We have
(i) L ∩ (E ⊥ 0) = Im(h− 1) ⊥ 0; and
(ii) L ∩ (0 ⊥ E) = 0 ⊥ Im(h− 1).
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Proof. (i) Consider a, b ∈ E. Then (a, a) + (b, hb) ∈ E ⊥ 0 if and only
if a = −hb if and only if a + b = (1 − h)b. This proves L ∩ (E ⊥ 0) ≤
Im(h−1) ⊥ 0. Conversely, suppose that c ∈ E. Then by (2.2), ((1−h)c, 0) =
(c, c)+ (−hc,−c) = tM(−(c, c) + (c, hc)) ∈ tM(M +N) = M +N (2.8). This
proves L ∩ (E ⊥ 0) ≥ Im(h− 1) ⊥ 0.

(ii) This follows from (i) and use of tM (2.2), (2.8). �

Proposition 2.11. (i) W (E, h) stabilizes L.
(ii) The action of W (E, h) on L is faithful, so restriction gives an em-

bedding of W (E, h) in O(L).

Proof. (i) In view of (2.4)(iii) and (2.8), it suffices to prove that γ is in O(L).
By (2.5), it suffices to prove that γ(N) ≤ L. We take a ∈ E and calculate
γ(a, ha) = (a, h2a) = (a, ha) + (0, h2a − ha)). Obviously, (a, ha) ∈ N ≤ L.
We have (0, h2a − ha)) = (0, (h− 1)ha), which is in L ∩ (0 ⊥ E) by (2.10),
so we are done.

(ii) Let K be the kernel of the action of W (E, h) on L. We may assume
that E 6= 0. By (2.4)(v), K ≤ 〈tM , δ〉.

We shall argue that K ≤ 〈δ〉. Suppose otherwise. Consider an integer i
so that z := δitM ∈ K. Then z takes (x, x) to (−hix,−hix) which is (x, x)
since z ∈ K. It follows that hi = −1 on E. By (2.2), z takes (x, hx) to
(hx, x), which must equal (x, hx), for all x ∈ E. We conclude that h = 1.
Since E 6= 0, this incompatible with hi = −1.

We have K ≤ 〈δ〉. Since the group 〈δ〉 acts faithfully on M , it acts
faithfully on L and we conclude that K = 1. �

Lemma 2.12. Let M and N be defined as above. Then

annN (M) ={(α,−α) | α ∈ E and hα = −α}, and

annM (N) ={(α, α) | α ∈ E and hα = −α}.

Proof. We prove the first equality. The proof of the second is similar.
Let (α, hα) ∈ N . Then

(α, hα) annihilates M

if and only if (α, β) + (hα, β) = 0 for all β ∈ E

if and only if (hα + α, β) = 0 for all β ∈ E

if and only if hα = −α.

Thus, annN (M) = {(α,−α) ∈ E ⊥ E | α ∈ E and hα = −α} as desired. �
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Remark 2.13. (i) Given a pair of isometric doubly even lattices, M,N in
Euclidean space, such that M+N is integral and M,N are RSSD in M +N ,
when is there a representation of M + N in the form of (1.1)? One would
need to define a suitable h. The following example indicates a caution.

Let the lattice L have basis u, v and Gram matrix

(

2a b
b 2a

)

, for integers

a ≥ 1 and b. For positive definiteness, we require 4a2−b2 > 0. The A2-lattice
is such an example.

Let E be the rank 1 lattice with Gram matrix (a). Then M := span{u}
and N := span{v} are sublattices of L isometric to

√
2E and their sum is

L. The condition that M and N be RSSD in L is a|b.
If L were isometric to SDC(E, h) with M,N as in (1.1), then h = ±1 and

so b ∈ 2aZ, which implies the RSSD condition a|b. The necessary condition
b ∈ 2aZ implies that L is not positive definite if b 6= 0, so the above L are
not SDC(E, h) if b 6= 0.

(ii) A study of SDC lattices was carried out by Paul Lewis in his 2010
undergraduate research project [8]. For many cases of familiar input lattice
E and isometry h, the resulting SDC(E, h) is another familiar lattice, but
there are surprises.

3 About rootless isometries

We continue to use the notations (1.1).

Definition 3.1. We say h ∈ O(E) is rootless if (h− 1)E contains no roots.

Lemma 3.2. Let E be an even lattice. The sum M + N is rootless if and
only if h is rootless.

Proof. Let x = (α + β, α+ hβ) ∈ M +N , where α, β ∈ E. If both α + hβ
and α + β are non-zero, then (x, x) ≥ 2 + 2 = 4.

If α + β = 0, then x = (0, (h − 1)β) and if α + hβ = 0, then x =
(−(h− 1)β, 0). Thus, (x, x) > 2 if (h− 1)E is rootless.

On the other hand, (0, (h − 1)α) ∈ M + N for any α ∈ E. Therefore,
(h− 1)E is rootless if M +N is. �

We now take E to be E8 and begin determination of those h for which
the conditions of (3.2) hold.
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Lemma 3.3. Suppose that h ∈ O(E) and h is rootless. Then so is hi for all
i ∈ Z.

Proof. We may assume that i ≥ 1. Since hi− 1 = (h− 1)(1+h+h2+ · · ·+
hi−1), this is clear. �

Notation 3.4. Recall that if g is a group element of finite order mn, with
(m,n) = 1, then g is uniquely expressible as g = hk, where h has order m
and k has order n and hk = kh. Such h, k lie in 〈g〉. If m is a power of the
prime p, we call h, k the p-part, p′-part of g, respectively. Denote by gp, gp′
be the p-part, p′-part of g, respectively.

Corollary 3.5. If h ∈ O(E) is rootless, then so are the p-parts of h, for all
primes p.

Corollary 3.6. Suppose that E contains roots, that h ∈ O(E) is rootless and
that p, q are distinct primes so that pq||h|. Then at most one of hp, hq has
no eigenvalue 1.

Proof. If hp has no eigenvalue 1, (hp−1)E has index a power of p. If hq has
no eigenvalue 1, (hq−1)E has index a power of q. If both of these statements
are true then (h − 1)E contains (hp − 1)E + (hq − 1)E, which by relative
primeness has index 1 in E. This contradicts the rootless property of h. �

3.1 Root lattice of type A

We shall review some basic properties of the root lattices of type An.
We use the standard model for An, i.e.,

An =

{

(x1, x2, . . . , xn+1) ∈ Zn+1

∣

∣

∣

∣

∣

n+1
∑

i=1

xi = 0

}

.

Then the roots of An are given by

{±(ei − ej) | 1 ≤ i < j ≤ n+ 1},

where {e1 = (1, 0, . . . , 0), . . . , en+1 = (0, 0, . . . , 1)} is the standard basis of
Zn+1.
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Notation 3.7. Recall that (A∗
n)/An

∼= Zn+1. Let γAn
(0) = 0 and

γAn
(j) =

1

n+ 1

(

−(n + 1− j)

j
∑

i=1

ei + j
n+1
∑

i=j+1

ei

)

, for j = 1, . . . , n.

Then γAn
(j) ∈ A∗

n. In fact, {γAn
(0), γAn

(1), . . . , γAn
(n)} forms a transversal

of An in A∗
n [2, Chapter 4]. We also note that the norm of γAn

(j) is equal to
j(n+ 1− j)/(n+ 1) for all j = 0, . . . , n.

Notation 3.8. Let hAn
be an (n+ 1)-cycle in Weyl(An) ∼= Symn+1.

Lemma 3.9. For j = 1, . . . , n, (hAn
− 1)(γAn

(j)) is a root.

Proof. By definition, (hAn
− 1)(γAn

(j)) = e1 − ej+1 is a root. �

Lemma 3.10. (hAn
− 1)An is rootless.

Proof. Wemay assume hAn
is the cyclic permutation of the n+1-coordinates.

Suppose (hAn
− 1)α is a root for some α = (x1, x2, . . . , xn+1) ∈ An.

Without loss, we may assume (hAn
− 1)α = e1 − ej for some j ≥ 2.

Then we have

xn+1 − x1 = 1, xj−1 − xj = −1, x1 = · · · = xj−1 and xj = · · · = xn+1.

That implies xn+1 = 1 + x1. Moreover, x1 + · · ·+ xn+1 = 0. Thus, we have
(j − 1)x1 + (n + 2− j)(x1 + 1) = 0 or x1 = −n+2−j

n+1
, which is not an integer

since 2 ≤ j ≤ n + 1, a contradiction. �

Lemma 3.11. Let A∗
n be the dual lattice of An. Then (hAn

− 1)A∗
n = An

Proof. First proof: Again, we shall use the standard model for An. Then
A∗

n is the Z-span of

1

n + 1
(1, 1, 1, . . . , 1,−n),

1

n + 1
(1, 1, . . . ,−n, 1), . . . ,

1

n+ 1
(1,−n, 1, . . . , 1, 1).

Note that

(hAn
− 1)

(

1

n+ 1
(1, 1, 1, . . . , 1,−n)

)

= (1, 0, . . . , 0,−1) ∈ An.

Similarly, we can show that (hAn
− 1)A∗

n ≤ An.
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On the other hand, the set

{(1, 0, . . . , 0,−1), (0, 0, . . . ,−1, 1), . . . , (0,−1, 1, . . . , 0)}

spans An and hence (hAn
− 1)A∗

n = An.
Second proof: Since (h − 1)A∗

n = (h − 1)Zn+1 = span{ei − ei+1 | i =
1, 2 . . . }, this is clear. �
Lemma 3.12. Let X be a type Am lattice contained in E8. Then X is a
direct summand unless m = 8.

Proof. If X is properly contained in a summand, S, of E8, then there exists
an integer d ≥ 2 so that d2|det(X). Since det(X) = m+1 and m ≤ 8, m = 3
or m = 8. If m = 3, d = 2 and so det(S) = 1, whence S ∼= Z4, which is an
odd lattice, a contradiction. Therefore, m = 8. �

Lemma 3.13. Identify Q := Ai1 ⊥ · · · ⊥ Aiℓ with a rank 8 sublattices of E8.
For any 1 ≤ k ≤ ℓ, define h := hk := hAi1

⊕ · · · ⊕ hAik
⊕ id⊕ · · · ⊕ id.

(a) Suppose that for any x ∈ E8 \Q, (h− 1)x is either 0 or has non-zero
projections to at least two of the Ai’s. Then (h− 1)E8 is rootless.

(b) Suppose there exists an element x ∈ E8 \ Q such that (h − 1)x has
non-zero projections to exactly one of the Ai’s. Then (h− 1)E8 has a root.

Proof. (a) By Lemma 3.10, it is clear that (h− 1)Q has no roots. Now let
x ∈ E8 \ Q. Then by our assumption and Lemma 3.11, (h − 1)x is either 0
or has norm ≥ 2× 2. Hence, (h− 1)E8 has no roots.

(b) Let x ∈ E8 \Q such that (h− 1)x has non-zero projections to exactly
one of the Ai’s, say to Ai1 .

Let a be the projection of x to A∗
i1
. Then there exists j ∈ {1, . . . , i1} such

that a is in the coset γAi1
(j) + Ai1 (cf. Notation 3.7). Thus, there exists

b ∈ Ai1 such that a+ b = γAi1
(j). In this case,

(h− 1)(x+ b) = (hAi1
− 1)(a+ b) = (hAi1

− 1)(γj),

which is a root by Lemma (3.9). �

4 Eliminating cases

We begin to study the cases where h is p-element for some prime p. Recall
that O(E8) has order 2

14·35·52·7.
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Convention. When we consider an embedding of lattices X ≤ Y , we
may describe it informally as containment of isometry types, for example
“A8

1 ≤ E8” or “A3
2 ≤ E6”. Given such a containment, one may use notations

for isometries of the sublattice and make use of their unique extensions to
overlattices. This informally should not cause confusion.

4.1 The prime 7

Lemma 4.1. There is no rootless element of order 7 in O(E8).

Proof. By Sylow’s theorem, there is only one conjugacy class of order 7
subgroups in O(E8). Without loss, we may assume

h = hA6
⊕ idB,

where B = annE8
(A6). However, (h− 1)E8 has roots by Lemma 3.9. �

4.2 The prime 5

Theorem 4.2. A rootless element of order 5 is fixed point free and is con-
jugate to hA4

⊕ hA4
.

Proof. Let h be an order 5 in O(E8). Then there is a root α such that hα 6= α
since E8 is generated by roots. Then, (h4 + h3 + h2 + h + 1)(α) = 0 and
((h4+h3+h2+h+1)(α), α) = 0. This implies (hα, α)+(h2α, α) = −1 since
(hα, α) = (h4α, α), (h2α, α) = (h3α, α) and (α, α) = 2. By Cauchy-Schwarz
inequality, we have |(hα, α)| < 2 and |(h2α, α)| < 2 and thus (hα, α) = −1 ,
(h2α, α) = 0 or (hα, α) = 0, (h2α, α) = −1. Therefore, K = span{hiα | 0 ≤
i ≤ 3} ∼= A4 since the Gram matrix of K is given by









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2









.

Then annE8
(K) ∼= A4 [6, (5.3.2)] and h stabilizes both K and annE8

(K).
Case 1: h fixes annE8

(K) pointwise. Then h is conjugate to hA4
⊕ idA4

,
which is not rootless by (3.13) (b).

Case 2: There exists a root β ∈ annE8
(K) such that hβ 6= β. Then

annE8
(K) = span{hiβ | 0 ≤ i ≤ 4} ∼= A4. In this case, h is fixed point free

11



and lies in Weyl(K) × Weyl(annE8
(K)) ∼= Sym5 × Sym5. Such elements

form a single conjugacy class, so h is conjugate to hA4
⊕hA4

and h is rootless
(3.11). �

4.3 The prime 3

Order 3

Notation 4.3. Let h be an element of order 3 in O(E8). Let F be the fixed
point sublattice of h in E8. Let J := annE8

(F ).

By the analysis in [7], D(F ) ∼= 3s for some integer s. Thus, by [7, Lemma
D.9], F ∼= 0, A2, A2 ⊥ A2, or E6. Note that in each case, F contains an
orthogonal direct sum of A2’s with finite index.

We have J ∼= E8, E6, A2 ⊥ A2 and A2, respectively and h is fixed point
free on J . Recall that the fixed point free elements of order 3 in O(E8) form
one conjugacy class and they are conjugate to h⊕4

A2
in O(E8). The fixed point

free elements of order 3 also form one conjugacy class in O(E6) and they are
conjugate to h⊕3

A2
(see for example [1]). Therefore, in each case, there exists a

sublattice of E8 which we may identify with A4
2 such that h = h⊕4−k

A2
⊕ id⊕k

A2
,

where k = 1
2
dimF . Recall that E8/A

4
2 can be identified with the tetracode

C4, which is a self-dual code of length 4, minimal weight 3 [2, 3]. Now, by
Lemma 3.13, we have the theorem.

Theorem 4.4. Let h be an element of order 3 in O(E8). Then h is rootless
if and only if F = Fix(h) = 0 or ∼= A2. Identify A4

2 with a sublattice of E8.
Then, h is conjugate to h⊕4

A2
if F = 0 and h⊕3

A2
⊕ idA2

if F ∼= A2.

Order 9

Notation 4.5. Let h be an element of order 9 in O(E8). Let g := h3 and
F := Fix(h3) = Ker(h3 − 1). Let J := annE8

(F ).

Then the minimal polynomial of h on J is divisible by the irreducible
cyclotomic polynomial x6 +x3 +1 and the minimal polynomial for h on F is
x− 1 or x2+x+1. Hence, rank(F ) = 2 (whence F ∼= A2) and rank(J) is 6.
Since h stabilizes both F and J = annE8

(F ) ∼= E6, h|F defines an element of
order 1 or 3 in O(F ) and h|J is an order 9 element in O(J).
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Lemma 4.6. In Zp ≀ Zp, there are (p− 1)2 conjugacy classes of elements of
order p2. More precisely, we let B = B1 × · · · ×Bp where each factor Bi has
order p and the order p automorphism g acts on B by cyclically permuting
the p factors. Thus the semidirect product B〈g〉 is isomorphic to Zp ≀Zp. The
classes of order p2 are represented by ui

kgi, i = 1, 2, . . . , p−1, k = 1, . . . , p−1,
where for each i, ui is a generator for B as a 〈g〉-module.

Proof. We count. Two such elements uk
i g

i and uℓ
jig

j can not be conjugate if
i 6= j or k 6= ℓ since their images modulo (B〈g〉)′ are distinct. The conjugacy
class of such an element has cardinality pp−1 since B is a free module for
B〈g〉/B. Therefore, we have accounted for (p − 1)(pp − pp−1) elements of
B〈g〉. The pp elements of B have order 1 or p. If i = 1, 2, . . . , p − 1 and
v ∈ B does not generate B as a 〈g〉-module, then vgi has order 1 or p. This
latter category accounts for the remaining (p− 1)pp−1 elements of B〈g〉. �
Corollary 4.7. In O(E6), there is just one conjugacy class of elements of
order 9.

Proof. We view the E6 lattice as an overlattice of A3
2, defined by glue

vector (1, 1, 1). From this viewpoint, it is obvious that we have a group
of automorphisms H := Weyl(A2) ≀ Sym3. The analysis of (4.6) shows that
we have exactly four conjugacy classes of elements of order 9 in a Sylow
3-subgroup of H . These classes are fused in a Sylow 3-normalizer in H . �

Theorem 4.8. There are no rootless elements of order 9 in O(E8).

Proof. Let h′ = h|J ∈ O(E6) be an element of order 9. Recall that E6

contains a sublattice of type A3
2 and we may assume

E6 = span{A3
2, (γ, γ, γ)}

where γ = 1
3
(1, 1,−2) ∈ A∗

2.
Note that there is only one conjugacy class of order 9 in O(E6) (4.7).

Thus, we may assume that h′ = τσ, where σ = hA2
⊕ idA2

⊕ idA2
and τ is a

cyclic permutation of the 3 copies of A2.
Let α = (γ, γ, γ) = 1

3
(1, 1,−2; 1, 1,−2; 1, 1,−2). Then

h′(α) =
1

3
(1, 1,−2;−2, 1, 1; 1, 1,−2) and (h′ − 1)α = (0, 0, 0; 1, 0,−1; 0, 0, 0),

which is a root. �
There are no elements of order 27 in O(E8), by (4.6) and the fact that

Weyl(E6) ×Weyl(A2) embeds with index prime to 3 in O(E8). Therefore,
we have treated all cases of 3-elements in O(E8).
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4.4 The prime 2

Order 2

Suppose h ∈ O(E8) has order 2. Then the (−1)-eigenlattice L−(h) of
h is a RSSD sublattice of E8. By the classification of RSSD lattices in
E8 [7, Lemma D.2], there are nine possible cases up to conjugation and
L−(h) ∼= Ak

1, k ≤ 4, D4, D4 ⊥ A1, D6, E7 or E8. For each case, there exists

a sublattice A8
1 < E8 such that h = h⊕k

A1
⊕ id

⊕(8−k)
A1

, where k = dimL−(h)
(proof: each of the above RSSD lattices contains an orthogonal direct sum
of A1s with finite index).

Theorem 4.9. Suppose h ∈ O(E8) has order 2. Then h is rootless if and
only if L−(h) ∼= D4, D6, E7 or E8.

Proof. Suppose dim(L−(h)) = k. Then there exists α1, . . . , αk ∈ L−(h) such
that (αi, αj) = 2δi,j for i, j = 1, . . . , k. Take αk+1, . . . , α8 ∈ annE8

(L−(h))
such that

A = Zα1 ⊕ · · · ⊕ Zα8
∼= A8

1.

Then the quotient group E8/A can be identified with the Hamming [8, 4, 4]
code H8.

Case 1: L−(h) ∼= Ak
1, 1 ≤ k ≤ 4. By identifying a codeword with its

support, we know that {1, . . . , k} /∈ H8 since the minimal weight of H8 is 4
and L−(h) ∼= D4 if {1, 2, 3, 4} ∈ H8. Hence there exists a ∈ H8 such that
|{1, . . . , k} ∩ a| is odd. Without loss, we may assume a has weight 4. Then
|{1, . . . , k} ∩ a| = 1 or 3.

If |{1, . . . , k} ∩ a| = 1, let αa = 1
2

∑

i∈a αi. Then (h − 1)αa = −αj is a
root, where {j} = {1, . . . , k}∩a. If |{1, . . . , k}∩a| = 3, let ā = {1, . . . , 8}\a.
Then |{1, . . . , k} ∩ ā| = 1 and we get a contradiction as before. We conclude
that h is not rootless.

Case 2: L−(h) ∼= D4 ⊕ A1. Then k = 5. There exists {i1, i2, i3, i4} ⊂
{1, . . . , 5} such that {i1, i2, i3, i4} ∈ H8. Let a = {1, . . . , 8} \ {i1, i2, i3, i4}.
Then |a ∩ {1, . . . , 5}| = 1 and (h− 1)αa is a root.

Case 3: L−(h) ∼= D4. Then k = 4 and {1, 2, 3, 4} ∈ H8. Since H8 is
a self dual code, for any a ∈ H8, |a ∩ {1, 2, 3, 4}| is even. Hence, for any
α ∈ E8 \A, (h−1)α is either 0 or has 2 or 4 non-zero projections to the A1’s.
Thus, by Lemma (3.13) (a), h is rootless.

Case 4: L−(h) ∼= D6, E7 or E8. Then k ≥ 6. Since the minimal weight
of H8 is 4, we have |a ∩ {1, . . . , k}| ≥ 2 for any nonzero element a ∈ H8.
Hence, h is rootless by Lemma (3.13) (a). �
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Order 4

Notation 4.10. Let h be a rootless element of order 4 and set J := Ker(h2+
1).

Then J has even rank and h2 is also rootless. Since det(h2) = 1, (4.9)
implies that J ∼= D4, D6, or E8.

Lemma 4.11. Let h ∈ O(D2n) be an element of order 4 and h2 = −1.
Then there exists an orthogonal set of roots {α1, . . . , α2n} ⊂ D2n such that
h(α2i−1) = α2i and h(α2i) = −α2i−1 for all i = 1, . . . , n.

Proof. We shall use the standard model for D2n, i.e.,

D2n = {
2n
∑

i=1

xiei | x1 + · · ·+ x2n ≡ 0 mod 2},

where {e1, . . . , e2n} is the standard basis of Z2n.
Then up to conjugacy in O(D2n), we may assume that h = DP , where

P is a matrix associated to a permutation σ ∈ Sym2n and D is a diagonal
matrix with diagonal entries 1 or −1. Note that

P =

2n
∑

i=1

Eσi,i,

where Ei,j is a matrix whose (i, j)-entry is 1 and all other entries are 0.
Let ǫ1, . . . , ǫ2n be the diagonal entries of D. Then

DPD =
2n
∑

i=1

ǫσiǫiEσi,i

and
(DP )(DP ) = (DPD)P =

∑

1≤i,j≤2n

ǫiǫσi
δi,σj

Eσi,j .

By h2 = −1, we have (DP )(DP ) = (DPD)P = −I. This implies σ2 = 1
and ǫσi

ǫi = −1. Therefore, by rearranging the indices if necessary, the matrix
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of h with respect to the standard basis is given by






















0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 −1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0























.

Now define α2i−1 = e2i−1 − e2i and α2i = e2i−1 + e2i for i = 1, . . . n. Then
{α1, α2, . . . , α2n−1, α2n} satisfies the required properties. �

We now treat the order 4 case according to the three types of J (4.10).

Notation 4.12. Let F := annE8
(J). Note that h2 acts trivially on F .

Case 1: J ∼= E8. Then h is fixed point free and h2 acts as −1 on E8.
Such elements form one conjugacy class (4.11).

Case 2: J ∼= D6. Then F ∼= A1 ⊥ A1. Then by Lemma 4.11, there exists
{α1, α2, . . . , α6} ⊂ J such that h(α2i−1) = α2i, h(α2i) = −α2i−1 for i = 1, 2, 3
and

J = spanZ{α1, . . . , α6,
1

2
(α1 + α2 + α3 + α4),

1

2
(α3 + α4 + α5 + α6)}.

Let {α7, α8} be a basis of F . Then we may also arrange indexing so that

E8 = spanZ

{

α1, . . . , α8,
1
2
(α1 + α2 + α3 + α4),

1
2
(α3 + α4 + α5 + α6),

1
2
(α5 + α6 + α7 + α8),

1
2
(α1 + α3 + α5 + α7)

}

.

Next we shall study the action of h on F .

Lemma 4.13. In above notation, h(α7) ∈ spanZ{α8}.
Proof. Suppose h(α7) /∈ spanZ{α8}. Then h(α7) = ±α7 and h(α8) = ±α8.

In this case, we have

(h−1)
1

2
(α1+α3+α5+α7) =

1

2
(−α1+α2−α3+α4−α5+α6−α7+ǫα7), ǫ = ±1,

which has norm 3 or 5. It is a contradiction since E8 is even. �
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By the lemma above, we may assume h(α7) = α8 and h(α8) = α7 (by
replacing α8 by −α8 if necessary). Then

(h− 1)
1

2
(α5 + α6 + α7 + α8) = α5,

which is a root. Thus, h is not rootless.

Case 3: J ∼= D4 and F ∼= D4. This will lead to two cases for h.

Notation 4.14. Let {α1, α2, α3, α4} ⊂ J such that h(α1) = α2, h(α2) =
−α1, h(α3) = α4, h(α4) = −α3 (cf. Lemma (4.11)).

Let {α5, α6, α7, α8} ⊂ F such that (αi, αj) = 2δi,j.
We may reindex to assume

E8 = spanZ

{

α1, . . . , , α8,
1
2
(α1 + α2 + α3 + α4),

1
2
(α3 + α4 + α5 + α6),

1
2
(α5 + α6 + α7 + α8),

1
2
(α1 + α3 + α5 + α7)

}

.

Lemma 4.15. If h is rootless, then h(αi) = ±αi for all i = 5, . . . , 8.

Proof. Suppose h(αk) = ǫαℓ for some ǫ = ±1, k 6= ℓ and k, ℓ ∈ {5, 6, 7, 8}.
Then h(ǫαℓ) = h2(αk) = αk since αk ∈ F .

Take i, j ∈ {1, 2, 3, 4} with i < j such that

1

2
(αi + αj + αk + ǫαℓ) ∈ E8.

Then

h

(

1

2
(αi + αj + αk + ǫαℓ)

)

=

{

1
2
(αi − αj + αk + ǫαℓ) if h(αi) ∈ spanZ(αj),

1
2
(±αi′ ± αj′ + αk + ǫαℓ) if h(αi) /∈ spanZ(αj),

where {αi, αj, α
′
i, α

′
j} = {α1, α2, α3, α4}.

In either case, (h− 1)1
2
(αi + αj + αk + ǫαℓ) is a root. �

Lemma 4.16. Let Y be the fixed point sublattice of h on F . Then rank Y ≤
1.
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Proof. Suppose rank Y ≥ 2. Then by the previous lemma, h fixes αk and
αℓ for some k 6= ℓ and k, ℓ ∈ {5, 6, 7, 8}. Take i, j ∈ {1, 2, 3, 4} with i < j
such that

1

2
(αi + αj + αk + αℓ) ∈ E8.

Then by the same argument as in Lemma 4.15, (h− 1)1
2
(αi + αj + αk + αℓ)

is a root. �
Since h(αi) = ±αi for i = 5, . . . , 8 and rank Y ≤ 1, {α5, α6} or {α7, α8}

is contained in the (−1)-eigenspace of h.
By reindexing, we may assume α5, α6 are in the (−1)-eigenspace of h.

Define

β1 :=
1

2
(α1 + α2 + α5 + α6),

β ′
1 :=

1

2
(α3 + α4 + α5 − α6) =

1

2
(α3 + α4 + α5 + α6)− α6.

Then by our convention (4.14), β1 and β ′
1 are in E8. Let

β2 := h(β1) =
1

2
(−α1+α2−α5−α6), β3 := h2(β1) =

1

2
(−α1−α2+α5+α6),

β ′
2 := h(β ′

1) =
1

2
(−α3+α4−α5+α6), β ′

3 := h2(β ′
1) =

1

2
(−α3−α4+α5−α6).

Then β2, β3, β
′
2, β

′
3 are also in E8 since h ∈ O(E8).

Let A := span{β1, β2, β3} and A′ := span{β ′
1, β

′
2, β

′
3}. Then A ∼= A′ ∼= A3

and (A,A′) = 0. By identifying A,A′ with A3, h|A and h|A′ are identified
with hA3

.
Let X := annF (span{α5, α6}). Then X ∼= A1 ⊕ A1 and Y = FixF (h) <

X . Note also that (X,A) = (X,A′) = 0.
If Y = 0, then h|X = −idX . If Y ∼= A1, then h acts trivially on Y and

acts as −1 on X ′ := annX(Y ) ∼= A1. Thus, h may be identified with

{

hA3
⊕ hA3

⊕ hA1
⊕ hA1

if Y = Fix(h) = 0,

hA3
⊕ hA3

⊕ hA1
⊕ idA1

if Y = Fix(h) ∼= A1.

Let Q ∼= A3 ⊕ A3 ⊕ A1 ⊕ A1 be a sublattice of E8. Then |E8/Q| = 8
and any element in E8 \Q has non-zero projections to at least three Ai’s. If
h = hA3

⊕hA3
⊕hA1

⊕hA1
or hA3

⊕hA3
⊕hA1

⊕idA1
, then (h−1)x, x ∈ E8\Q,
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has at least two non-zero projections to the Ai’s. Therefore, they are rootless
by (3.13).

As a summary, we have

Theorem 4.17. Let h be a rootless element of order 4. Then J = Ker(h2 +
1) ∼= D4 or E8.

(1) If J ∼= D4, then h conjugate to hA3
⊕ hA3

⊕ hA1
⊕ hA1

or hA3
⊕ hA3

⊕
hA1

⊕ idA1
.

(2) If J ∼= E8, then h is fixed point free and h2 acts as −1 on E8. Such
elements form one conjugacy class.

Order 8

Theorem 4.18. There is no rootless element of order 8.

Proof. Suppose h is a rootless element of order 8. Then g = h2 is a rootless
element of order 4. By the analysis of order 4 elements, Ker(g2 + 1) ∼= D4

or E8 (cf. Theorem 4.17).
In either case, there exists a D4 sublattice of E8 which h acts (cf. Lemma

4.11).
Recall that O(D4) has the shape (23:Sym4).Sym3 (see (4.3.12) in [6])

Since h has order 8, h acts on D4 as a product of a 4-cycle in Sym4 and an
outer involution with respect to the standard model of D4. Therefore, there
exists {α1, α2, α3, α4} such that (αi, αj) = 2δi,j for i = 1, 2, 3, 4 and

h(α1) = α2, h(α2) = α3, h(α3) = α4, h(α4) = −α1.

However,

(h− 1)
1

2
(α1 + α2 + α3 + α4) = −α1,

which is root, a contradiction. �

4.5 Rootless elements of composite orders

Order 6

Let h be a rootless element of order 6. Let g := h2 and t := h3. Then, g
has order 3 and t has order 2.

Let L+(t) and L−(t) be the (+1) and (−1)-eigenlattice of t on E8.

Lemma 4.19. If h is rootless of order 6, then L+(t) ∼= D4.
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Proof. First, we note that g = h2 acts on both L+(t) and L−(t).
By the order 2 analysis, L+(t) ∼= 0, A1, A

2
1, or D4.

Case 1: L+(t) = 0 and thus t acts as −1 on E8. Therefore,

h = tg2 = −g2,

By the order 3 analysis, we may identify g2 with either h⊕4
A2

or h⊕3
A2

⊕ idA2
.

In either case, let γ̂ = (γ1, γ2, γ3, 0) be a root in E8, where γ1, γ2, γ3 ∈ A∗
2

and have norm 2/3. Since 1 + hA2
+ h2

A2
= 0 on A∗

2, (−hA2
− 1)γi = h2

A2
γi

also has norm 2/3 for i = 1, 2, 3. Therefore,

(h− 1)(γ̂) = ((−hA2
− 1)γ1, (−hA2

− 1)γ2, (−hA2
− 1)γ3, 0)

has norm 2 and is a root.

Case 2: L+(t) ∼= A1. Then g acts trivially on L+(t). Thus, Fix(g) 6= 0 and
hence Fix(g) ∼= A2 and g2 may be identified with h⊕3

A2
⊕ idA2

by Theorem
4.4. Note that L+(t) < Fix(g). Therefore, annE8

(Fix(g)) < annE8
(L+(t)) =

L−(t) and we have
h|annE8

(F ix(g)) = −g2.

Let γ̂ = (γ1, γ2, γ3, 0) be a root in annE8
(Fix(g)) ∼= E6, where γ1, γ2, γ3 ∈ A∗

2

have norm 2/3 . Then, as in Case 1,

(h− 1)γ̂ = ((−hA2
− 1)γ1, (−hA2

− 1)γ2, (−hA2
− 1)γ3, 0)

is a root.

Case 3: L+(t) ∼= A1 ⊕ A1. Then g acts trivially on L+(t) since O(A1 ⊕ A1)
has no elements of order 3. This is impossible since Fix(g) ∼= A2 does not
contain a sublattice of type A1 + A1.

Therefore, the only possible case is L+(t) ∼= D4. �

Since L+(t) ∼= D4, we also have L−(t) = annE8
(L+(t)) ∼= annE8

(D4) ∼=
D4 [6, (5.3.1)]. Note that g acts on both L+(t) and L−(t).

Lemma 4.20. Let FixL±(t)(g) be the fixed points of g on L±(t). Then the
rank of FixL±(t)(g) is even.

Proof. Note that the minimal polynomial of g on annL±(t)(FixL±(t)(g)) is
x2 + x + 1, which is irreducible. Thus rank(annL±(t)(FixL±(t)(g))) is even
and so is rank(FixL±(t)(g)). �
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Lemma 4.21. We use the same notation as in (4.20). Then FixL−(t)(g) 6= 0.

Proof. Suppose g is fixed point free on L−(t). Then span{α, gα} ∼= A2

for any root α ∈ L−(t). Now choose a root α ∈ L−(t) and define A :=
span{α, gα}.

Let B := annL−(t)(A). Then B ∼=
√
2A2. Thus, we obtain a sublattice A⊕

B ∼= A2⊕
√
2A2 in L−(t) and g acts fixed point freely on the indecomposable

direct summands.
By the previous lemma, FixL+(t)(g) has even rank and hence FixL+(t)(g) ∼=

A2 or 0. We shall first obtain information in these two cases, then finally a
contradiction to prove this lemma.

Case 1: X := FixL+(t)(g) ∼= A2. Then C := annL+(t)(X) ∼=
√
2A2 and g

acts fixed point freely on C. Thus, we obtain a sublattice

X ⊕ A⊕ B ⊕ C ∼= A2 ⊕ A2 ⊕
√
2A2 ⊕

√
2A2

in E8 such that g acts on each indecomposable summand and is fixed point
free on B and C.

Notice that B ⊕ C < annE8
(X ⊕A) ∼= A2 ⊕ A2 and

|annE8
(X ⊕ A)/(B ⊕ C)| = 22.

Since annE8
(X ⊕ A) ∼= A2 ⊕ A2 has roots, there exist β ∈ B and γ ∈ C

with (β, β) = (γ, γ) = 4 such that 1
2
(β + γ) is a root in annE8

(X ⊕ A).
Then we also have 1

2
(gβ + gγ) ∈ annE8

(X ⊕ A). Recall that the 2-part

of D(
√
2A2) = (

√
2A2)

∗/
√
2A2 is generated by the elements of the form

1
2
δ +

√
2A2 for δ ∈

√
2A2 with (δ, δ) = 4.

By comparing the determinants, we have

annE8
(X ⊕ A) = span{B ⊕ C,

1

2
(β + γ),

1

2
(gβ + gγ)} ∼= A2 ⊕A2.

Let A+ = span{1
2
(β+γ), 1

2
(gβ+gγ)} and A− = span{1

2
(−β+γ), 1

2
(−gβ+

gγ)}. Then A+ and A− are sublattices of annE8
(X ⊕ A). Since g satisfies

x2 + x+ 1 = 0 on annL(X), we have (v, gv) = −1
2
(v, v) for all v ∈ annL(X).

It follows that A+ ∼= A− ∼= A2 and (A+, A−) = 0. Moreover, g stabilizes each
of A+ and A−.

Note that t commutes with g and h = tg2. Since X,C < L+(t) and
A,B < L−(t) , we have

h|X = idX , h|A = −g2|A,
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h(
1

2
(β + γ)) =

1

2
(−g2β + g2γ), h(

1

2
(−β + γ)) =

1

2
(g2β + g2γ).

Thus we have h(A+) = A− and h(A−) = A+. Note that

t(
1

2
(β + γ)) =

1

2
(−β + γ) and t(

1

2
(gβ + gγ)) =

1

2
(−gβ + gγ).

Therefore, h acts on A+ ⊕ A− and t interchanges A+ and A−.
By identifying X ⊕A⊕A+ ⊕A− with A4

2 and g2 with hA2
on A,A+ and

A−, h is conjugate to στ , where

σ = idA2
⊕ (−hA2

)⊕ hA2
⊕ hA2

and τ performs a transposition on the 3rd and 4th copies of A2 and is the
identity on the first two summands.

Case 2: FixL+(t)(g) = 0. Then g acts fixed point freely on FixL+(t)(g).
Let α ∈ L+(t) be a root. Then X ′ := span{α, gα} ∼= A2. Let C ′ :=
annL+(t)(X). Then C ′ ∼=

√
2A2 and we obtain a sublattice X ′⊕A⊕B⊕C ′ ∼=

A2⊕A2⊕
√
2A2⊕

√
2A2 in E8 such that g acts fixed point freely on X ′, A, B

and C ′. Then by an argument as in case 1, one can show that h is conjugate
to σ′τ , where

σ′ = hA2
⊕ (−hA2

)⊕ hA2
⊕ hA2

and τ is a transposition on the 3rd and 4th copies of A2.
We now get a contradiction to both Case 1 and Case 2. We take a

sublattice A4
2 of E8 so that g preserves each summand and h has the form

στ , σ′τ , as described in the two cases. Let η := 1
3
(0, a, b, c) be a root in E8

where a, b, c ∈ A2 have norm 6. Then, hη = 1
3
(0,−hA2

a, hA2
c, hA2

b) and

(η, hη) =
1

9
(3 + (b, hA2

c) + (c, hA2
b)) =

1

9
(3− (b, c))

since (1 + hA2
+ h2

A2
)b = 0 and (c, hA2

b) = (b, h2
A2
c).

Since η is a root, (η, hη) = 0,±1 or ±2. Thus, we have (b, c) = −6 or
3 because |(b, c)| ≤ 6 and 1

9
(3 − (b, c)) ∈ Z. It implies c = −b or −hi

A2
b for

i = 1, 2.
Since hA2

stabilizes all cosets of A2 in A∗
2, we also have

1
3
(0, a, b, hi

A2
c) ∈ E8

for all i = 1, 2. Thus, by replacing c by hi
A2
c if necessary, we may assume

c = −b. Then

(h− 1)η = −1

3
(0, (hA2

+ 1)a, (hA2
+ 1)b, (hA2

+ 1)c).
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Recall that (hA2
α, α) = −1

2
(α, α) for α = a, b, c (cf. [7, Lemma 3.2]) Thus,

(hA2
+1)a, (hA2

+1)b and (hA2
+1)c have norm 6 and (h−1)η is a root. This

final contradiction proves that FixL−(t)(g) 6= 0. �

Lemma 4.22. We use the same notation as in (4.20) and (4.21). Then
FixL−(t)(g) ∼= A2 and g acts fixed point freely on L+(t).

Proof. We first note that FixL(g) ∼= A2 or 0 (see (4.4)). Since FixL−(t)(g) 6=
0 and has even rank, we have FixL−(t)(g) ∼= A2 and FixL+(t)(g) = 0. �

By the same argument as in Lemma (4.21), we have the following.

Lemma 4.23. Let h be a rootless element of order 6. Then h is conjugate
to στ = τσ, where σ = (−idA2

) ⊕ hA2
⊕ hA2

⊕ hA2
and τ is an involution

which interchanges the 3rd and 4th copies of A2.

Proof. Let P := FixL−(t)(g) ∼= A2 and R := annL−(t)(P )(∼=
√
2A2). Take a

root α ∈ L+(t). Then Q := span{α, gα} ∼= A2 since g acts fixed point freely
on L+(t). Also, S := annL+(t)(Q) ∼=

√
2A2. Thus we obtain a sublattice

P⊕Q⊕R⊕S ∼= A2⊕A2⊕
√
2A2⊕

√
2A2 in E8 such that g acts trivially on P

and fixed point freely onQ,R and S. Again, we have R⊕S < annE8
(P⊕Q) ∼=

A2 ⊕ A2. Thus, by the same argument as in Lemma (4.21), one can show
that h is conjugate to στ , where σ = (−idA2

)⊕ hA2
⊕ hA2

⊕ hA2
and τ is an

involution which interchanges the 3rd and 4th copies of A2.�

Let σ and τ be as in Lemma 4.23 and assume h = στ . Then we determine
a sublattice (A2)

4 in E8.
Let η := 1

3
(β, 0, γ, γ′) ∈ (A∗

2)
4 be a root in E8, where β, γ and γ′ have

norm 6. Then h(η) = 1
3
(−β, 0, hA2

γ′, hA2
γ) and

(η, hη) =
1

9
((β,−β) + (γ, hA2

γ′) + (γ′, hA2
γ)) =

1

9
(−6 − (γ, γ′)).

Since (η, hη) = 0,±1 or ±2, we have (γ, γ′) = 3 or −6 and hence γ′ = −hi
A2
γ

for i = 0, 1, 2. Without loss, we may assume γ′ = −hA2
γ since hA2

stabilizes
all cosets of A2 in A∗

2.
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Then, we have η = 1
3
(β, 0, γ,−hA2

γ) and

hη =
1

3
(−β, 0,−h2

A2
γ, hA2

γ),

h2η =
1

3
(β, 0, h2

A2
γ,−γ),

h3η =
1

3
(−β, 0,−hA2

γ, γ),

h4η =
1

3
(β, 0, hA2

γ,−h2
A2
γ).

Thus we have (hη, η) = (h−1η, η) = −1, (h2η, η) = (h−2η, η) = 0 and
(h3η, η) = 0. It implies that A = span{hiη | i = 0, . . . , 5} ∼= A5 and
{η, hη, h2η, h3η, h4η} is a fundamental set of simple roots. By identifying A
with A5, we may identify h|A with hA5

.
Let B be the second summand isometric to A2 and C := annL−(h)(β).

Then C ∼= A1 and h acts as −1 on C. Thus we have a rank 8 sublattice
A ⊕ B ⊕ C in E8 such that A ∼= A5, B ∼= A2, C ∼= A1. Moreover, we may
identify h|A with hA5

, h|B with hA2
and h|C = −idC . The following theorem

now follows.

Theorem 4.24. Let h be a rootless element of order 6. Then h is conjugate
to hA5

⊕ hA2
⊕ hA1

.

Other composite orders

Theorem 4.25. There is no rootless element of order 12.

Proof. Let h be a rootless element of order 12. Then g = h4 has order 3,
f = h3 has order 4 and both are rootless. By the analysis of rootless order
6 elements, we have FixL−(f2)(g) ∼= A2 (see (4.22)). Since f commutes with
g, f also acts on FixL−(f2)(g). For any root α ∈ L−(f 2), we have

(fα, α) = (f 2α, fα) = −(α, fα).

Hence (fα, α) = 0 and span{α, fα} ∼= A1 ⊕ A1. Since A2 does not contain
any sublattice isometric to A1 ⊕ A1, f cannot stabilize any A2-sublattice in
L−(f 2), which is a contradiction. �

Lemma 4.26. If h ∈ O(L) is rootless, |h| is not 10 or 15.

24



Proof. Let h be rootless and have order 10 or 15. We use the notations
in (3.4). Since h5 is fixed point free, if q is the other prime dividing |h|,
the q-part has eigenvalue 1. This means if q = 3, then h3 has rank 2 fixed
point sublattice, which is impossible since h5 does not leave invariant a rank
2 sublattice. Now suppose that q = 2. Since the fixed point sublattice F of
h2 is nonzero and is h-invariant, rank(F ) = 4. However, no rank 4 RSSD
sublattice of L has an automorphism of order 5, contradiction. �

5 How the surviving cases give all rootless

EE8 pairs

Each of the 11 lattices from the main result of [7] has the form M+N , where
M ∼= N ∼= EE8 and is denoted by some notation DIH2k(d, · · · ), where d is
the rank and 2k = |〈tM , tn〉|. Their structures are summarized in Table 1.
We shall prove that each of the 11 cases occurs as some SDC-lattice L(E8, h)
by using the rootless h, which we classified in preceding sections.

We exclude the case h = 1, which is indeed rootless, but for which M =
N = L.

Table 1: Integral rootless lattices which are sums of EE8s

Name 〈tM , tN〉 Isometry type of L (contains) D(L) In Leech?

DIH4(12) Dih4 ≥ DD⊥3
4 142642 Yes

DIH4(14) Dih4 ≥ AA⊥2
1 ⊥ DD⊥2

6 142842 Yes
DIH4(15) Dih4 ≥ AA1 ⊥ EE⊥2

7 12214 No
DIH4(16) Dih4

∼= EE8 ⊥ EE8 216 Yes
DIH6(14) Dih6 ≥ AA2 ⊥ A2 ⊗ E6 173362 Yes
DIH6(16) Dih6

∼= A2 ⊗E8 1838 Yes
DIH8(15) Dih8 ≥ AA⊥7

1 ⊥ EE8 11045 Yes
DIH8(16, DD4) Dih8 ≥ DD⊥2

4 ⊥ EE8 182444 Yes
DIH8(16, 0) Dih8

∼= BW16 1828 Yes
DIH10(16) Dih10 ≥ A4 ⊗A4 11254 Yes
DIH12(16) Dih12 ≥ AA2 ⊥ AA2 ⊥ A2 ⊗E6 11264 Yes

X⊥n denotes the orthogonal sum of n copies of the lattice X .

There are 11 rootless nonidentity conjugacy classes. If we form the associ-
ated 11 SDC lattices, it suffices to argue that they give 11 distinct EE8-pairs.
Notice that the dihedral group 〈tM , tN〉 has order 2|h| (2.4).
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We now prove the bijection by use of Table 2. In column 1, we list
the possibilities for rootless h. Columns 2 and 3 are consequences of our
classification of rootless elements of O(E8). Our intended correspondence is
expressed in column 4, which we shall now justify.

Table 2: Rootless classes in O(E8)
Notation for h Order of 〈tM , tN〉 rank(M +N) Lattice name in [7]

h8
A1

4 16 DIH4(16)
h7
A1

⊕ idA1
4 15 DIH4(15)

h6
A1

⊕ idA2
1

4 14 DIH4(14)

h4
A1

⊕ idA1
4 12 DIH4(12)

h4
A2

6 16 DIH6(16)
h3
A2

⊕ idA2
6 14 DIH6(14)

h2
A3

⊕ h2
A1

8 16 DIH8(16, DD4)
h2
A3

⊕ hA1
⊕ idA1

8 15 DIH8(15)
h2 = −1 8 16 DIH8(16, 0)

h2
A4

10 16 DIH10(16)
hA5

⊕ hA2
⊕ hA1

12 16 DIH12(16)

We observe that two lattices which occur for different entries in column
1 of Table 1 are distinguished by the orders of the dihedral groups and their
ranks, with the exception of the two cases of rank 16 lattices when the dihe-
dral group has order 8. The latter two lattices are distinguished by annM (N),
which can be 0 or DD4. By Lemma 2.12, annN (M) = {(α,−α) | α ∈
E and hα = −α}. Therefore, annM (N) ∼= DD4 when h has form h2

A3
⊕ h2

A1

(Theorem 4.17 (1) ) and annM(N) = 0 when h satisfies h2 = −1. Our set
of rootless classes in O(E8) therefore gives 11 distinct SDC lattices, which
must be the 11 types listed in [7] and which appear in column 4 of Table 2.

The main theorems (1.2), (1.3), (1.4) of this article are now proved. The
rest of this article demonstrates new embeddings of a few of the above lattices
into the Leech lattice.

A Embeddings of EE8 pairs in the Leech lat-

tice

As usual, Λ denotes a copy of the Leech lattice.
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In this appendix, we shall construct several lattices E ∼= E8 ⊥ E8 in
Λ⊗Z Q such that E ∩Λ is an SDC(E8)-lattice. This will give relatively easy
embeddings of some rootless EE8 pairs into the Leech lattice. An account
of embeddings for all cases of EE8-pairs was given in [7].

A.1 Order 2

Let Ω be a 24-set and let G be the extended Golay code of length 24 indexed
by Ω.

For explicit calculations, we shall use some 4 × 6 arrays to denote the
codewords of the Golay code and the vectors in the Leech lattice. For each
codeword in G, 0 and 1 are indicated by an empty and filled space, respec-
tively, at the corresponding positions in the array.

The following is a standard construction of the Leech lattice.

Definition A.1 ([2, 3]). Let ei := 1√
8
(0, . . . , 4, . . . , 0) for i ∈ Ω. Then

(ei, ej) = 2δi,j. Denote eX :=
∑

i∈X ei for X ∈ G. The standard Leech

lattice Λ is a lattice of rank 24 generated by the vectors:

1

2
eX , where X runs over all codewords of the Golay code G;

1

4
eΩ − e1 ;

ei ± ej , i, j ∈ Ω.

Let D be the subcode of G generated by

O1 =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

, O2 =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

,

O3 =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

, O4 =

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ .

Note that D is supported at O1 ∪ O2 and is isomorphic to d(H8), where H8

is the Hamming [8, 4, 4]-code and d : Z8
2 → Z16

2 is defined by d(α) = (α, α).
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Remark A.2. Recall that A∗
1 = 1

2
A1, A

∗
1/A1

∼= Z2 and the root lattice E8

can be constructed by A8
1 and H8 as follows [2, 6].

Let ρ : (A∗
1)

8 → (A∗
1/A1)

8 ∼= Z8
2 be the natural map. Then ρ−1(0) =

Kerρ = A8
1 and ρ−1(H8) ∼= E8.

Let

A =
4√
8















a b a b
c d c d
e f e f
g h g h

∣

∣

∣

∣

∣

∣

∣

∣

a, b, c, d, e, f, g, h ∈ Z















.

and denote M = spanA ∪ {1
2
eX | X ∈ D}. Then A ∼= AA8

1 and M ∼= EE8.
Note that both A and M are sublattices of Λ.

Let

O =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

, Ô =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

and denote by PO and PÔ the natural projections to O and Ô, respectively.

Let E1 = PO(M) and E2 = PÔ(M). Then E1 ∼= E2 ∼= E8 and E1 ⊥ E2.
Moreover, E1 ⊥ E2 < 1

2
Λ. By identifying E1 with E2, we have

M = {(α, α) | α ∈ E1}.

Case 1: Now let h1 = εÔ, i.e., h1 acts as −1 on the basis vectors indexed

by Ô and as 1 on the basis vectors indexed by Ω \ Ô.
Then h1 acts as −1 on E2 and fixes E1 pointwise. Then N = h1(M) =

{(α, h1α) | α ∈ E1} < E1 ⊥ E2 is also a diagonal copy. In this case, M ⊥ N
and M +N ∼= EE8 ⊥ EE8.

Case 2: Let

O′ =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

and define h2 = εO′. Then |O ∩ O′| = 0 and |Ô ∩ O′| = 4. Thus, h2 may be
identified with h4

A1
⊕ id4A1

on E2

and fixes E1 pointwise. Let N = h2(M). Then N ∩ M ∼= DD4 and
M +N ∼= DIH4(12).
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A.2 Order 3

First, we recall the ternary construction of the Leech lattice Λ [2]. Let ∆ be
a 12-set and let T G be a ternary Golay code with index set ∆.

We also use the standard model for A2, i.e.,

A2 = {(a, b, c) ∈ Z3 | a+ b+ c = 0}.

Let γ0 := 0, γ1 :=
1
3
(1, 1,−2) and γ2 :=

1
3
(−1,−1, 2) be elements in A∗

2.
Let Ai, i ∈ ∆, be isometric copies of A2 and X := ⊕i∈∆Ai an orthogonal

sum of 12 copies of A2. Then the dual lattice X ∗ = ⊕i∈∆A∗
i and D(X ) has

a natural identification with F12
3 .

For each codeword x = (x1, . . . , x12) ∈ T G, let γx = (γx1
, . . . , γx12

) ∈ X ∗

be some vector which modulo X gives the codeword x. Then

N := spanX ∪ {γx | x ∈ T G}

is isometric to the Niemeier lattice of type A12
2 .

Let δ := 1
3
(1, 0,−1) be in the standard model of A2 and δ̂ := (δ, . . . δ).

Then
N 0 = {α ∈ N | (α, δ̂) ∈ Z}

is a sublattice of index 3 and has no roots.
Let β = (−1, 1, 0) ∈ A2. Then (β, 0, 0 . . . , 0)+δ̂ has norm 4 and the lattice

N 0 + Z((β, 0, 0 . . . , 0) + δ̂) is even unimodular and has no root. Hence, it is
isometric to the Leech lattice Λ [2, Chapter 24].

Next, we construct some EE8 sublattices ofN 0 < Λ. We shall arrange the
12-set ∆ into a 3×4 array. For each codeword in T G, 0, 1 and 2 are marked by
a blank space and + and − signs, respectively, at the corresponding positions
in the array.

Let TD be the subcode of T G generated by

X =
+ −
+ −
+ −

, Y =
+ +
− − −

+
.

Let

Ω1 =
∗ ∗

∗
∗

, Ω2 =
∗

∗ ∗
∗
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be subsets of ∆ and let PΩ1
and PΩ2

be the natural projections, from F∆
3 to

FΩ1

3 , FΩ2

3 , respectively.
Then PΩ1

(TD) and PΩ2
(TD) are both isomorphic to the tetracode C4

since they are self-orthogonal and have dimension 2 and length 4.
Define a permutation ϕ of ∆ by

b b b b

b b b b

b b b b

Then ϕ(Ω1) = Ω2 and ϕ induces an isomorphism between PΩ1
(TD) and

PΩ2
(TD).
Let

B =







a b −d
−a c −b

d −c

∣

∣

∣

∣

∣

∣

a, b, c, d ∈ A2







< X

and M = span B ∪ {γx | x ∈ TD} < X ∗. Then B ∼= AA4
2.

For any subset S ⊂ ∆, let P̃S : X ∗ → ⊕i∈SA∗
i be the natural projection.

Then P̃Ω1
(B) ∼= P̃Ω2

(B) ∼= A4
2. Moreover, we have P̃Ω1

(M) ∼= P̃Ω2
(M) ∼= E8

since PΩ1
(TD) ∼= PΩ2

(TD) ∼= C4, the tetracode.
Let E1 := P̃Ω1

(M) and E2 := P̃Ω2
(M). Then (E1, E2) = 0 and E1 ⊥

E2 < 1
3
Λ. Note that the permutation ϕ also induces a map on X ∗ by permu-

tating the A∗
i ’s. Then we have ϕ(E1) = E2 and M = {(α,−ϕα) | α ∈ E1} <

E1 ⊥ E2. By identifying E1 with E2 using ϕ, we have M = {(α,−α) | α ∈
E1} ∼= EE8.

Let h := hX := hx1

A2
⊕ · · · ⊕ hx12

A2
. Note that h defines an isometry of N

and Λ [2, 3]. Moreover, h acts on E1 ⊥ E2 as g⊕g−1, where g = h3
A2

⊕idA2
∈

O(E8). Then

N = h(M) = {(gα, g−1α) | α ∈ E1} = {(α, gα) | α ∈ E1}.

In this case, M ∩N ∼= AA2 and M +N ∼= DIH6(14).

A.3 Order 5

First we recall a construction of the Leech lattice from A6
4 [2].

Let Si, i = 1, . . . , 6, be isometric copies of A4 and S = ⊕6
i=1Si an orthog-

onal sum of six copies of A4’s. Then the dual lattice S∗ = ⊕6
i=1S

∗
i .
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Let C be the subcode of Z6
5 generated by

(1, 0, 1, 4, 4, 1), (1, 1, 0, 1, 4, 4), (1, 4, 1, 0, 1, 4).

Then C is a self-dual code over Z5 and is a glue code associated to the
construction of N(A6

4) from A6
4 [2, Chapter 16].

Let a[1] := 1
5
(1, 1, 1, 1,−4), a[2] := 1

5
(2, 2, 2,−3,−3), a[3] := −a[2], a[4] :=

−a[1] in A∗
4 and a[0] := 0. For each α = (α1, . . . , α6) ∈ C, let

γα := (a[α1], a[α2], . . . , a[α6]).

Define
N := spanZ(S ∪ {γα | α ∈ C}) < S∗

Then N is isometric to the Niemeier lattice of type A6
4.

Let η := 1
5
(2, 1, 0,−1,−2) and η̂ := (η, η, η, η, η, η). Then

N 0 = {α ∈ N | (α, η̂) ∈ Z}

is an index 5 sublattice of N and has no roots.
Let

Λ := spanZ(N 0 ∪ {(β, 0, 0, 0, 0, 0) + η̂}),
where β := (−1, 1, 0, 0, 0) ∈ A4.

Then Λ is even unimodular and has no roots. That means Λ is isometric
to the Leech lattice [2, Chapter 24].

Next we shall construct some EE8’s in Λ. Let

K := {(0, a, 0,−a,−b, b) | a, b ∈ A4} < S

and
M := spanZ( K ∪ {(0, a[1], 0,−a[1],−a[2], a[2])}).

Then K ∼= AA4 ⊥ AA4 and M ∼= EE8.
Note that

(0, 1, 0,−1,−2, 2) = (1, 0, 1, 4, 4, 1)− (1, 4, 1, 0, 1, 4) ∈ C

and hence M < N 0 < Λ.
Let P1 : S

∗ → S∗
2 ⊕S∗

6 and P2 : S
∗ → S∗

4 ⊕S∗
5 be the natural projections.

Let E1 := P1(M) and E2 := P2(M). Then E1 ∼= E2 ∼= E8 and (E1, E2) =
0. By identifying S2 with S4 and S6 with S5, we may identify E1 with E2.
Then, we have M = {(α,−α) | α ∈ E1}.
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Let h := (1, hA4
, 1, h−1

A4
, h−2

A4
, h2

A4
) ∈ O((A∗

4)
6). Since (0, 1, 0,−1,−2, 2) ∈

C, one can verify that h(Λ) = Λ (see [1] or [2]). Note that h acts as hA4
⊕h2

A4

on E1 and as h−1
A4

⊕ h−2
A4

on E2.
Let N := h(M) and let g := h|E1. Then by the identification of E2 to

E1, we may identify h|E2 with g−1. Hence, we have

N = h(M) = {(gα,−g−1α) | α ∈ E1} = {(α,−g−2α) | α ∈ E1}.

In this case, M ∩ N = 0 and M + N is an SDC lattice and is isometric
to DIH10(16).
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