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Abstract

We give a short uniqueness proof for the E8 root lattice, and in fact
for all positive definite unimodular lattices of rank up to 8. Our proof
is done with elementary arguments, mainly these: (1) invariant theory
for integer matrices; (2) an upper bound for the minimum of nonzero
norms (either of the elementary bounds of Hermite or Minkowski will
do). We make no use of p-adic completions, mass formulas or modular
forms.
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1 Introduction

A basic result in the theory of lattices2 is uniqueness of the rank 8 even
integral positive definite unimodular lattice. Such a lattice is isometric to
LE8

, the root lattice3 of E8. It is spanned by the 240 roots of a type E8 root
system. The isometry group is the Weyl group of type E8, a finite group
of order 21435527. It has shape 2·O+(8, 2) and the lattice modulo 2 may be

1The author has been supported by NSA grants USDOD-MDA904-00-1-0011 and
USDOD-MDA904-01-1-0042.

2See 4.1 for definitions. Most lattices in this article are positive definite.
3See 4.2 and 4.3.
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identified with the natural representation of O+(8, 2) on F8
2 with a quadratic

form.
The present article gives a short uniqueness proof for LE8

, using only
elementary techniques. In fact, we classify all positive definite lattices of
determinant 1 and rank at most 8. Besides LE8

, there are only square4

lattices. Our use of inequalities is limited to an easy upper bound on the
minimum nonzero norm of a positive definite lattice, for which the bound of
either Hermite or Minkowski will do.

A few impressions on uniqueness proofs of LE8
follow. The reader is

warned that our knowledge of this topic is not great.
The first proof of uniqueness of LE8

is probably due to Mordell [Mor1] (see
his comments about history). Mordell classifies all positive definite rank 8
unimodular lattices. His proof depends on “two deep theorems” on quadratic
forms. One is the exact value in ranks n = 6, 7, 8 for minJ{

µ(J)

det(J)1/n }, where

J ranges over all positive definite lattices of rank n and µ(J) denotes the
minimum norm of a nonzero vector5. The second is the characterization of a
particular integral rank 6 lattice6 of determinant 3 by the property of having
minimum norm 2.

In [K], Kneser proves that the positive definite square unimodular lattice
of rank 8 and LE8

have the property that an integral unimodular lattice of
rank 8 which is a neighbor7 of either of these is isometric to one of these.
An arithmetic argument (using completions) then proves that any positive
definite integral unimodular lattice of rank 8 is isometric to one of these.

There is a proof with a Siegel mass formula [Si], and an account of it is
given in [Se]. The sum of reciprocals of the orders of automorphism groups
of certain positive definite lattices equals a computable constant. In the case
of rank 8 unimodular and even, the contribution of LE8

exhausts the allowed
value, whence no other isometry type exists.

A later inequality due to Mordell [Mor2], based on works of Gauss and
Hermite, and some results on lattices of rank at most 7 can be used to

4A lattice is rectangular if it has an orthogonal basis and is square if it has an orthogonal
basis with all basis elements having the same norm.

5For all n, there are upper bounds for this minimum. Exact values of this minimum
seem to be known for just n ≤ 8 [Mor2], [Mar]; in [Mor1], this is denoted λn but the
notation γn seems to be more popular.

6This lattice is generally known as the E6 root lattice, LE6
.

7Call two lattices in the same rational vector space neighbors if their intersection has
index 2 in each one.
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prove uniqueness of LE8
. See the discussion which accompanies 6.1 Théorème

[Mar], Chapitre VI, or 6.6.1 in [Mar03].
The theory of modular forms easily determines the theta function of a

positive definite rank 8 even unimodular lattice (see [Se], p.110, 6.6.(i), and
p.93). The first nontrivial coefficient is 240, which means that the number of
norm 2 vectors in such a lattice is 240. The well-known classification of root
systems indicates that this root system must have type E8 and furthermore
that the sublattice they span is even and unimodular, whence the lattice is
uniquely determined.

Our article [POE], which revised the basic theory of the Leech lattice,
Mathieu groups and Conway groups, motivated the search for an elementary
characterization of LE8

. After the present article was essentially written, we
learned about similarities to work of Kneser ([K], [K73], [KS]), especially our
3.2. We do not use completions, however. We can classify positive definite
integral lattices of rank at most 7 and determinant 2 as an easy consequence
of our rank 8 unimodular classification 3.4 (the list is LE7

and rectangular
lattices). We can also deduce classification of positive definite lattices having
rank at most 6 and determinant 3, but this is a bit more technical (the list is
just LE6

and rectangular lattices). Incidentally, this result implies the rank 6
characterization which was used in the proof of [Mor1]. Such classifications
and more are contained in [K] Satz 3, p.250.

We thank Tom Fiore, Julia Gordon, Christopher Kennedy, Ivan Middle-
ton, Michael Roitman and Kevin Woods in my 2002 graduate course at the
University of Michigan for hearing an early version of my results. We are
grateful to Gerald Höhn, Jacques Martinet and Jean-Pierre Serre for use-
ful consultations. We are pleased to acknowledge the referee for a detailed,
sensitive and quick report.

2 Notations for lattices and bounds of Her-

mite and Minkowski

Some definitions and general results on lattices used in our proofs are col-
lected in the Appendix.

Notation 2.1. An orthogonal direct sum of lattices S and T is written S ⊥
T .
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Definition 2.2. Denote by Un the isometry types of integral unimodular
positive definite lattices of rank n. Denote by EUn and OUn those isometry
types in Un which are even and odd, respectively.

Notation 2.3. Let n be a positive integer and d ∈ (0,∞).

Define M(n, d) := 4
π
Γ(1 + n

2
)

2

n d
1

n , the Minkowski bound.

Define H(n, d) := (4
3
)

n−1

2 d
1

n , the Hermite bound.

Theorem 2.4. Let b(n, d) be M(n, d) or H(n, d). Let n be a positive integer
and d ∈ (0,∞). If a positive definite rank n lattice has determinant d, it
contains a nonzero vector of squared length at most b(n, d).

These are elementary results. For modern proofs, see [W], [MH] for the
Minkowski function and [J], [K73] for the Hermite function (note the com-
ments on p.60 of [J] about ranks 6, 7 and 8).

Below is a table containing approximate values of M(n, d) and H(n, d).
Since table entries will be used for upper bounds, we followed the referee’s
suggestion and used the Maple program below to round decimal expansions
upward.

Digits := 50;

M := (n,d) -> evalf(4/Pi*GAMMA(1+n/2)^(2/n)*d^(1/n));

H := (n,d) -> evalf((4/3)^((n-1)/2)*d^(1/n));

for k from 1 to 8 do ceil(10^9*M(k,1)),ceil(10^9*M(k,2)); od ;

for k from 1 to 8 do ceil(10^9*H(k,1)),ceil(10^9*H(k,2)); od ;

Column 1 for M(n, d) is consistent with the table on p.17 of [MH].

M(n, d) : d = 1 d = 2
n = 1 1.000000000 2.000000000
n = 2 1.273239545 1.800632633
n = 3 1.539338927 1.939445517
n = 4 1.800632633 2.141325138
n = 5 2.058451326 2.364539652
n = 6 2.313629797 2.596961641
n = 7 2.566728337 2.833897841
n = 8 2.818142368 3.073206044

H(n, d) : d = 1 d = 2
n = 1 1.000000000 2.000000000
n = 2 1.154700539 1.632993162
n = 3 1.333333334 1.679894734
n = 4 1.539600718 1.830904128
n = 5 1.777777778 2.042130409
n = 6 2.052800958 2.304191168
n = 7 2.370370371 2.617101070
n = 8 2.737067943 2.984793757

For n small, we can use either function for our needs, so from now on, let
b(n, d) denote either one.
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3 The classification

The idea is to find enough low norm orthogonal vectors to see that our lattice
in Un, for n ≤ 8, is a neighbor to a square lattice, hence easy to identify.

Lemma 3.1. Suppose that J is an integral lattice of rank at least 2. Assume
that J contains an element of norm 4.

Then J contains a unit vector or there exists an integral lattice K satis-
fying: det(K) = det(J), K ∩J has index 2 in both K and J , and K contains
a unit vector.

Proof. Let v be any norm 4 vector. If the unit vector u := 1
2
v is in J , we are

done. So we assume that u is not in J . Define S := {x ∈ J |(x, v) ∈ 2Z}, a
sublattice of index 1 or 2 in J which contains v. If |J : S| = 2, define T := S.
If J = S, let T be any index 2 sublattice of J containing v (this is where we
use rank(J) > 1). Define K := Zu + T . �

Lemma 3.2. Let P and Q be positive definite unimodular integral lattices
of rank n in V := Qn so that det(P ∩ Q) = 4 and Q is square.

(i) Then n ≥ 4 and P is the orthogonal direct sum P1 ⊥ P2, where P1

is spanned by a set of unit vectors in Q and P2 is isometric to the half-spin
lattice of rank m ∈ 4Z (see 4.3). Also, m > 0.

(ii) P is square if and only if m = 4.
(iii) If P does not contain a unit vector, then n = m ≥ 8.

Proof. (i) Since det(P ∩ Q) = 4, P ∩ Q has index 2 in each of P and Q
and P 6= Q, by 4.4. Write elements of V in coordinates with respect to
an orthonormal basis e1, . . . , en of Q. An element v of P \ Q has the form
(c1, . . . , cn) ∈ 1

2
Zn since P+Q/Q ∼= P/P∩Q ∼= Z/2Z. The set A ⊆ {1, . . . , n}

of indices where ci ∈
1
2

+ Z is nonempty (since v 6∈ Q) and has cardinality
divisible by 4 (since (v, v) ∈ Z). Furthermore, only one such A occurs here
since P + Q/Q ∼= Z/2Z.

We observe that P = (P ∩Q)+Zv and P ∩Q = P ∗∩Q = {x ∈ Q|(x, v) ∈
Z}.

Each element of Q of the form ei, for i 6∈ A, or ±ek ± eℓ, for {k, ℓ} ⊂ A,
has integral inner product with v, whence is in P ∗ ∩Q = P ∩Q. So, we may
replace v by v plus a linear combination of such elements to arrange that v
equals either v+ = 1

2

∑
i∈A ei or v− = −1

2
ej + 1

2

∑
i∈A′ ei where j ∈ A and

A′ := A \ {j}.
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Let s, t be the orthogonal projections of V to
∑

i∈A Qei,
∑

i∈{1,2,...,n}\A Qei.

So, v = s(v).
Obviously, Q = s(Q) ⊥ t(Q). Define R := {x ∈ s(Q)|(x, v) ∈ Z} =

P ∗ ∩ s(Q) = P ∩ s(Q). Since (v, t(Q)) = 0, t(Q) ≤ P ∗ ∩ Q = P ∩ Q and so
by the Dedekind law 4.7, we have P ∩ Q = t(Q) + (P ∩ s(Q)) = t(Q) ⊥ R.
Since P ∩ Q has index 2 in Q, R has index 2 in s(Q).

Set P1 := t(Q) and P2 := R + Zv ≤ s(V ). These lattices are orthogonal
and intersect trivially. Now, P = (P ∩Q) + Zv = t(Q) + R + Zv = P1 + P2.
We conclude that P = P1 ⊥ P2.

If v = v+, P2 is just the half-spin lattice defined in 4.3, over the index set
A. If v = v−, P2 is isometric to the half-spin lattice (see the alternate version
described in 4.3). Finally, note that m = |A| > 0.

(ii) This statement follows from the fact that the half-spin lattice is square
precisely when its rank is 4.

(iii) Trivial. �

Lemma 3.3. If an integral lattice L contains a unit vector u, then L is the
orthogonal direct sum L = Zu ⊥ (u⊥ ∩ L).

Proof. If x ∈ L, x = (x, u)u + (x − x(x, u)u). �

Theorem 3.4. Let n ≤ 8. Then OUn consists of just square lattices, EUn

is empty for n ≤ 7 and EU8 has just one isometry type, that of LE8
.

Proof. Let L be unimodular of rank n ≤ 8. The case n = 1 is trivial, so
assume n ≥ 2.

Since b(n, 1) < 3 and b(n− 1, 2) < 3 for n ≤ 8, 4.6 shows that L contains
a unit vector or an orthogonal pair of roots. If L contains a unit vector, we
are done by 3.3 and induction, and if it contains an orthogonal pair of roots,
we are done by 3.1, induction, and 3.2. �

4 Appendix: Background material for lat-

tices

For completeness, we assemble a few general definitions, notations and back-
ground results on lattices used in our proofs. Probably all may be found in
the literature or are well-known. In this appendix, a lattice has arbitrary
signature, except for 4.2, 4.3 and 4.6 where it is positive definite.
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Definition 4.1. A lattice is a free abelian group of finite rank with a rational
valued symmetric bilinear form. We think of it as embedded in a rational
vector space with the same basis. The dual of a lattice M is denoted M∗.
The determinant of a lattice is det(G), where G is any Gram matrix, meaning
the square matrix ((xi, xj)) of size rank(M), where {xi} is any basis. Now
assume that M is integral, i.e., (x, y) are integers for all x, y ∈ M . We call
M even if (x, x) is an even integer, for all x ∈ M . If M is not even, it is
odd. The discriminant group of M is D(M) := M∗/M . When det(M) 6= 0,
|D(M)| = |det(M)|. We call M unimodular if D(M) = 0, i.e., det(M) = ±1.
We say that M is positive definite if (x, x) > 0 for all x ∈ M, x 6= 0.

Definition 4.2. In a lattice, a root is an element of norm 2. A root lattice is
a lattice spanned by a root system whose indecomposable components have
types ADE only and which are normalized so that their members have norm
2 (so our two meanings of roots are compatible). When X is a type of root
system, we write LX for a root lattice spanned by a set of roots which forms
a system of type X. Thus, we write LE8

, LE7
, LE6

, LA1A1
, LA1A2E6

, etc.

Definition 4.3. For an integer n > 0, define the half-spin lattice to be
{(x1, . . . , xn) | xi ∈ 1

2
Z, xi − xj ∈ Z,

∑n

i=1 xi ∈ 2Z}. It is unimodular for
all n, integral for n ∈ 4Z and even for n ∈ 8Z. When n = 8, this lattice is
isometric to LE8

.
There is another version of the half-spin lattice, which is {(x1, . . . , xn) | xi ∈

1
2
Z, xi−xj ∈ Z,

∑n
i=1 xi ∈ 2Z when the xi ∈ Z,

∑n
i=1 xi ∈ 1+2Z when the xi ∈

1
2
+Z}. It is obtained from the previous lattice by applying a reflection which

changes sign at one of the coordinates (cf. [CS], p.120).

Lemma 4.4. Let L be a lattice and M a finite index sublattice. Then det(M) =
det(L)|L:M |2.

Proof. This follows from the theory of modules for a PID. There exists a
basis x1, . . . , xn of L and nonzero integers d1, . . . , dn so that d1x1, . . . , dnxn

is a basis of M . �

Lemma 4.5. Let L be an integral lattice and M any sublattice. Assume
det(L) 6= 0 and det(M) 6= 0.

(i) If π is the natural map of L to D(M), then det(M⊥ ∩ L)det(M) =
det(L)|π(L)|2.

(ii) Also, det(M⊥ ∩ L) divides det(M)det(L). In fact, det(M)det(L)
det(M⊥∩L)

is the
square of an integer.
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Proof. We have Ker(π) = (M⊥ ∩ L) ⊥ M and so det(M⊥ ∩ L)det(M) =

det(L)|π(L)|2, whence (i). This equation implies that det(M⊥∩L)(det(M)
|π(L)|

) =

|π(L)|det(L). By Lagrange’s theorem, |π(L)| divides |D(M)| = |det(M)|, so
we get the first part of (ii). By multiplying both sides of (i) by det(L), we

see that the ratio det(M)det(L)
det(M⊥∩L)

is the square of a rational number. Therefore

the second part of (ii) follows from the first. �

Lemma 4.6. Let L be a positive definite integral lattice and x1, x2, . . . , xm ∈
L be an orthogonal set of nonzero vectors with respective norms n1, n2, . . . , nm.
Their common annihilator in L contains a nonzero vector whose norm is at
most b(n − m, det(L)n1 . . . nm).

Proof. Let T be the span of x1, x2, . . . , xm. The possible values for q :=
det(T⊥ ∩ L) satisfy (among other conditions) q|det(L)det(T ) (see 4.5(ii)),
i.e., q|det(L)n1 . . . nm. We finish by quoting 2.4 and using the property that
b(n − m, d) is increasing for d ∈ (0,∞). �

Lemma 4.7. (Dedekind law.) If A, B, C are subgroups of some additive
group and A ≤ B ≤ A + C, then B = A + (B ∩ C).

Proof. Write b ∈ B as b = a+c, for a ∈ A, c ∈ C and note that c = b−a ∈ B.
�
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