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The dynamics of a compound vesicle (a lipid bilayer membrane enclosing a fluid with a suspended
particle) in shear flow is investigated using both numerical simulations and theoretical analysis. We
find that the non-linear hydrodynamic interaction between the inclusion and the confining membrane
gives rise to new features of the vesicle dynamics: Transition from tank–treading to tumbling can
occur in the absence of any viscosity mismatch, and a vesicle can swing if the enclosed particle is
non-spherical. Our results highlight the complex effects of internal cellular structures have on cell
dynamics in microcirculatory flows. For example, parasites in malaria-infected erythrocytes increase
cytoplasmic viscosity, which leads to increase in blood viscosity.

PACS numbers: 87.16.dm,47.63.mf,83.50.Ax,47.57.Qk

The biological cell is, in essence, a lipid bilayer mem-
brane encapsulating the cellular content. Giant vesi-
cles made of lipid membrane serve as simple cell mimics
[1], especially for the red blood cell (RBC) [2]. Under
shear flow, vesicles and RBCs display two main types
of dynamics: tank-treading (TT) and tumbling (TB)
[3–5]. Vesicles also display a vacillating-breathing mo-
tion (VB) (also called trembling [4] and swinging [6]), in
which the vesicle long axis oscillates about the shear di-
rection while the shape undergoes strong deformation.
Theoretical analyses highlighted the membrane area–
incompressibility as the source of the non-linear dynamics
[7]; unlike vesicles, droplets do not tumble in shear flow.
Moreover, for a vesicle with a given area-to-volume ratio,
the mismatch between the encapsulated and suspend-
ing fluids viscosities selects the TT or TB mode; only
vesicle containing very viscous fluid tumbles [7]. This
unusual dynamics of individual vesicles results in novel
rheology: the effective viscosity of a dilute suspension of
TT-vesicles decreases with the increasing viscosity of the
inner fluid and exhibits a minimum at the TT–TB tran-
sition [8]. In contrast, emulsion viscosity monotonically
increases with drop viscosity [9].

Thus far, all studies of vesicle dynamics have focused
on a vesicle enclosing homogeneous fluid. However, eu-
karyotic cells contain nucleus and organelles (one notable
exception are the mature red blood cells): The nucleus
occupies 18% - 44% of the volume in human leukocytes
[10] and affects leukocyte adhesion during inflammatory
response [11]. RBCs infected with malaria parasites have
reduced deformability which causes disruption (and even
obstruction) of blood flow in the microcirculation [12],
similar to the symptoms casued by sickle cell anemia [13].
One of the main causes for the impaired RBC deformabil-
ity is the increased cytoplasmic viscosity due to parasites
(in the case of malaria) or polymerized sickle hemoglobin
(in sickle cell anemia).

A question naturally arises: Can we quantify the in-
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FIG. 1: Snapshots of a compound vesicle suspended in linear shear

flow and the streamlines in its vicinity. In this simulation, the re-

duced area of the vesicle is 0.78 and the filling fraction is 0.27. The

membrane color indicates the magnitude of the tension σ. In con-

trast to the classical interior flow of an inclusion–free vesicle, which

is circular with a single vortex, [14], the flow inside a compound

vesicle separates after a critical filling fraction leading to tumbling.

crease of cytoplasmic viscosity due to internal structure?
Does the inclusion introduce new features in the cell dy-
namics? In the case of double emulsion droplet (a vis-
cous drop encapsulating another rigid particle or viscous
drop), the hydrodynamic interactions between the en-
closed particle and the confining interface destabilize and
may cause a breakup of the aggregate [16]. In this Letter,
we report the first study of the effect of an inclusion on
vesicle behavior in shear flow. Using both theory and nu-
merical simulations, we investigate the TT–TB transition
and rheology of suspension of vesicles with a solid particle
inside. We perform the small-deformation analysis in two
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dimensions and make detailed comparison with the two-
dimensional simulation results. Analytical results from
the three-dimensional theory confirm the general conclu-
sions from the two—dimensional studies.

We consider a compound vesicle immersed in a lin-
ear shear flow U = (γ̇y, 0, 0) with γ̇ the constant shear
rate. The deformable vesicle, in 2D, is characterized by
the reduced area A∗ (the ratio of the vesicle area A0 to
the area of a circle with the vesicle circumference L0)
and the inclusion filling fraction φ = a2π/A0, where a is
the inclusion equivalent-circle radius. The excess length
∆l ≡ L0/

√
A0/π − 2π = 2π(A∗2 − 1), and for a circle

∆l = 0 and A∗ = 1.
The velocity outside and inside the vesicle is governed

by the incompressible Stokes equations, which are solved
numerically by the Boundary Integral Method [17]. Fo-
cusing on cases where the interior and suspending fluids
have the same viscosity (viscosity ratio ηin/ηout = 1), the
velocity v(x) at any arbitrary point x in the fluid can be
written as

v(x) = U(x) + S[fb + fσ](x) + S[f ](x) + T [u](x) (1)

where U is the imposed velocity, fb and fσ are membrane
tractions, f is the traction and u is the velocity at the
interface of the rigid inclusion. S[·] and T [·] are convolu-
tions with the 2D Stokeslet and the Stresslet respectively:

S[f ] =
1

4πη

∫
γ

(
− log ||r||I +

r⊗ r

||r||2

)
f dγ, r = x−y, (2)

T [u] =
1

π

∫
γ

r⊗ r

||r||4
(r · n)u dγ, (3)

with n the normal to the interface γ and I the identity
tensor. The local inextensibility constraint requires the
velocity along the membrane be solenoidal, divγ(v) = 0.
This constraint introduces tension σ as a Lagrange multi-
plier [18]. Energy is required to bend the lipid membrane,
and the membrane tractions are thus [14, 15]

fb = κB

(
css +

c3

2

)
n, fσ = (σxs)s , (4)

where κB is the bending rigidity, c is the curvature, and s
is the arclength parameter; subscript s denotes a deriva-
tive with respect to arclength.

In the limit of x approaching the membrane interface,
equation (1) gives an integro-differential equation for the
evolution of the membrane. Similarly, taking the limit
to the boundary of the rigid particle, we get an integral
equation for the traction and velocity on the inclusion
boundary. The system of equations is closed by the in-
extensibility constraint and the condition for a force–free
and torque–free rigid body particle motion. We solve the
coupled set of nonlinear integro-differential equations us-
ing a high-order time-marching scheme and a spectrally
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FIG. 2: Inclination angle ψ/π of a compound vesicle suspended in

linear shear flow as a function of the inclusion filling fraction. The

solid and dashed lines are the analytical result whereas the points

are from simulations.
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FIG. 3: Plot of the tank-treading frequency averaged over a period,

〈ω〉, as a function of the filling fraction. Snapshots show the steady

shapes. The lines are plotted to guide the eye.

accurate spatial discretization scheme. More details of
the numerical scheme can be found in [14, 19].

An example from our numerical simulations is shown
in Figure 1, illustrating the dramatic changes the inclu-
sion introduces in the interior flow. One feature is the
formation of two vortices (seen at time 1.87). The inte-
rior flow streamlines for a particle–free vesicle are always
circular. However, as the filing fraction (i.e. the inclu-
sion size) increases it becomes inefficient to maintain a
circulatory flow everywhere in the interior and the flow
separates. Since the presence of the inclusion enhances
dissipation, the compound vesicle behaves similarly to
an inclusion–free vesicle encapsulating a higher viscosity
fluid: The larger the inclusion size, the larger the effec-
tive interior fluid viscosity. Figures 2 and 3 show that
indeed the inclination angle and the tank-treading fre-
quency both reduce with increasing inclusion size. The
TT-TB transition occurs when the steady inclination an-
gle reaches zero, which gives a dependence of the critical
filling fraction φc on the vesicle reduced area. Figure 4
shows the boundary for TT-TB transition. For compari-
son, the TT-TB transition from the 3D analysis is plotted
against the 3D reduced volume V ∗.
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FIG. 4: Critical filling fraction (φc) versus reduced area A∗ for

tank–treading to tumbling transition obtained using boundary in-

tegral simulations, and the 2D and 3D analytical models.

In order to gain better physical insight and understand
the hydrodynamic coupling of the inclusion dynamics and
the confinement geometry (vesicle shape), we also de-
veloped analytical models for the compound vesicle dy-
namics in two– and three–dimensions. The 3D system is
characterized by reduced volume V ∗ ≡ (1 + ∆a/4π)−3/2

(or excess area ∆a ≡ A0/(3V0/4π)2/3 − 4π) and the fill-
ing fraction φ = 4πa3/3/V0 with V0 the vesicle volume
and A0 the vesicle area. In order to make analytical
progress, we consider concentric configuration and vesi-
cle shape close to a circle (in 2D) or a sphere (in 3D).
In 2D, the nearly–circular vesicle shape is described by
r = 1+

∑
n 6=0

fne
inθ with |fn| ∼ O(

√
∆l). The velocity field

is expanded in basis of solutions of the Stokes equations
v±nq [23], where in 2D q = 0, 1,

v = U +
∑
nq

cnq[v
±
nq +

∑
q′

Xn
qq′v

−
nq′ ] (5)

The scattering matrix X accounts for the flow perturba-
tion due to the inclusion. Focusing on the n = ±2 modes
(the only modes that are excited by the external shear
flow), the leading-order equations for the membrane de-
formation are (for details of the derivation see [23])

ḟ = g − 3β

∆l
gf, ġ = −f − 3β

∆l
g2 + β, (6)

where f±2 = f±gi. β is a function of the inclusion radius
a:

β = −
√

2π

4

−1 + 3X2
00 +X2

10

2 + 3X2
00 − 3X2

01 +X2
10 −X2

11

ξ, (7)

ξ = 1 +X2
01 +X2

11 − (8)(
1 +X2

00 +X2
10

) (
−3 + 3X2

01 +X2
11

)
−1 + 3X2

00 +X2
10

,

where X2
00 = a4, X2

01 = 2a6, X2
10 = −2a4, and X2

11 =
−3a4. A steady TT state corresponds to f = ∆l/3β
and g2 = ∆l/3(1 − ∆l/3β

2). The TT inclination angle
is ψ = −1/2 arctan(g/f) = −1/2 arctan(

√
3β2/∆l − 1).
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FIG. 5: Effective interior fluid viscosity versus filling fraction φ.

Solid (dash-dotted) line is for 2D (3D) vesicle, and the dotted line

is the effective interior viscosity from [22].
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FIG. 6: Variation of effective shear viscosity Txy versus the filling

fraction for ∆l = 1.0. The inset shows N1 as a function of φ.

The critical filling fraction for TT–TB transition (which
occurs when ψ = 0) is computed from 3β(φc)

2 = ∆l.
Good agreement in the inclination angle between numer-
ical simulations and analysis is found for reduced area
close to 1, while larger deviation is found for smaller re-
duced area, see Figure 2. This is also reflected in the TT–
TB transition boundary (Figure 4). For an inclusion-free
2D vesicle, the critical viscosity ratio λc for the TT–TB
transition is computed from 3π/2(λc+1)2 = ∆l [20]. The
compound vesicle can be viewed as a membrane enclosing
a homogeneous fluid with a higher viscosity due to the
inclusion. The effective viscosity of the “equivalent fluid”
can be estimated from the TT-TB transition: at φc,
3β(φc)

2 = 3π/2(λc + 1)2. Thus, ηin/ηout =
√
π/2/β − 1.

The same estimate can be made for the 3D compound
vesicle. Thus we find that if the inclusion takes 10% of
the vesicle volume, the interior viscosity doubles (Fig-
ure 5), which is different from estimating the interior vis-
cosity using the average shear viscosity of a suspension
of rigid spheres without the confining membrane [22].

Next we explore the effect of the inclusion on the rhe-
ology of a dilute suspension of compound vesicles. Our
numerical and analytical study shows that the steady ef-
fective bulk viscosity increases with the inclusion size.
For a three-dimensional compound vesicle, the variation
of the effective shear viscosity Txy with the 3D filling frac-
tion φ is plotted in Figure 6 (see [23] for details of calcula-
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FIG. 7: A tank–treading vesicle with a tumbling ellipse at the

center.

tions). At a fixed reduced volume, both Txy and the first
normal stress N1 decrease with the filling fraction in the
TT regime. In the TB and VB regimes, the averaged Txy
increases while N1 averages to 0. Close to the transition,
the effective viscosity Txy in the VB mode is lower than
the TB mode value but eventually approaches it for large
φ (and hence large effective interior viscosity), which is
significantly different from the inclusion–free vesicle case
where the stresses in the VB and TB mode diverge as
the interior fluid viscosity increases.

If the inclusion shape is non–spherical, the dynamics
become more complex. For example, an ellipsoidal par-
ticle tumbles while the enclosing vesicle major axis os-
cillates around a non–zero inclination angle as seen in
Figure 7. This motion resembles the swinging of RBC
[21], but its mechanism is different. For RBCs the swing-
ing arises from a periodic variation in the elastic mem-
brane energy during tank treading. For compound vesicle
the swinging is due to a periodic vesicle deformation as
the tumbling inclusion pushes on the membrane. The
“swinging” is more pronounced for larger inclusion size
as seen by the increasing amplitude of the swings with
the filling fraction.

To summarize, in this Letter we investigate the effect of
an inclusion on vesicle behavior in linear shear flow. Par-
ticle dynamics in a confined geometry with dynamically
evolving boundaries is a problem of fundamental inter-
est, yet it is virtually unexplored. Our analytical theory
and boundary integral simulations show that “internal”
hydrodynamic interactions between the inclusion and the
moving membrane induce TT–TB transition even if the
inner and suspending fluids are the same and swinging
in the presence of non–spherical inclusion. In a broader
context, the results provide insights into the effects of
internal structures such as the nucleus in leukocytes or
parasites in malaria-infected erythrocytes on cell dynam-
ics in microcirculatory flows. Multiple inclusions are ex-
pected to give rise to richer vesicle behavior, but pose
greater challenge to numerical simulations [23]. We hope
our study will stimulate further theoretical and experi-

mental work on this interesting problem.
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