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Abstract

In this paper, we develop a new boundary integral equation formulation that describes the
coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to
external flow and electric fields. The dynamics of the vesicle are characterized by a competition
between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher
leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy
model combined with local inextensibility is employed for its elastic response. The coupled
governing equations for the vesicle position and its transmembrane electric potential are solved
using a numerical method that is spectrally accurate in space and first-order in time. The method
uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with
the governing equations.

1 Introduction

Electric-field induced dynamics of soft or deformable particulate suspensions is a fundamental phys-
ical phenomenon that arises ubiquitously in natural and engineered systems. Unlike the electro-
hydrodynamics (EHD) of colloidal suspensions, which received much attention, little progress has
been made in direct numerical simulations of the EHD of soft particle suspensions. This is owing
to the numerous computational challenges associated with the complex moving geometries and the
multi-scale, multi-physics nature of the problem. In this paper, we consider the EHD of a partic-
ular soft particle, namely, a vesicle – closed lipid bilayer membrane that encloses a viscous fluid.
Understanding vesicle EHD can bring valuable insights into the behavior of general biological cells
under applied electric fields since both share the same structural component, the enclosing bilipid
membrane. Not surprisingly, characterizing the combined effect of flow and electric fields via exper-
iments on the so called giant unilamellar vesicles is an active area of research [1, 8, 29, 38, 39, 42].

The vesicle membrane resists bending and is locally inextensible. The Helfrich energy is typically
used to model the membrane elastic energy combined with tension as a Lagrange multiplier to
enforce the local inextensibility [16, 23, 51]. The Taylor-Melcher model [30, 43, 47], developed in
the context of fluid-fluid interfaces, has been extended to model vesicle EHD in [53]. In this model,
the electric charge convection is neglected and the charges are assumed to be present only at the
interface and not in the bulk. Unlike simple interfaces, the vesicle membrane acts as a charging
capacitor when an external electric field is applied since it is impermeable to ions.

Theoretical investigation of vesicle EHD has been done only recently in [45, 53]. Using small
deformation theory, they were able to obtain the experimentally observed prolate-to-oblate shape
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transitions [1] that depend on the interior-to-exterior fluid conductivity ratio (see [52] for a review
on the dynamics of vesicles in electric fields). A spheroidal model has been developed in [33,
55] that can handle large deformations (as long as the shape remains spheroidal). While the
aforementioned models offered key insights in some settings, they cannot, however, be applied to
general three-dimensional EHD flows. Methods for direct numerical simulations, therefore, need
to be developed to handle the large membrane deformations and dynamics in general 3D flows.
They also are crucial for technological applications, specially those classified by electroporation
[7, 13, 17, 32], electromanipulation [18], and electroformation [48], which require precise knowledge
of the membrane variables such as the tension and transmembrane electric potential to predict
their efficacy.

Numerical methods for solving the coupled electric, elastic and hydrodynamic governing equa-
tions for the vesicle EHD have been developed only recently [19–21, 27–29]. While the works of
[20] and [21] use the immersed interface method (IIM) to solve the electric potential problem and
level sets to track the moving interface, the recent work of [19] employs a hybrid approach and
uses immersed boundary method for fluid flow and IIM to evolve the electric variables. On the
other hand, the works of [27] and [29] are based on boundary integral equation (BIE) methods,
which are particularly well-suited for the vesicle EHD problem since the governing equations for the
fluid motion as well as the electric potential are linear. In this setting, BIE methods offer several
advantages over domain discretization methods as they lead to reduction in dimensionality, satisfy
the far-field boundary conditions exactly and can be solved via highly scalable fast algorithms.

However, both [27] and [29] were restricted to two-dimensional problems. Several challenges
confront the design of BIE methods for three dimensional EHD problem including (i) the interfacial
conditions for the electric problem, treating the membrane as a charging capacitor, lead to first-
kind integral equations when the standard direct formulation is used (as was done in [27, 29]),
(ii) the high-order spatial derivatives in the elastic force arising from the Helfrich energy introduce
numerical stiffness into the interfacial evolution equation, (iii) due to lack of in-plane shear resistance
in the model, numerical instabilities arise because of the loss of mesh (or surface representation)
quality as the vesicle undergoes large deformations. Some of the challenges have been addressed
in our previous work on vesicle hydrodynamics [51]. The present work extends [51] to the EHD
setting.

Contributions. We employ a new indirect formulation and derive second-kind BIEs for solving
the electric potential problem. Combined with the interfacial evolution, we arrive at a coupled
system of integro-differential equations that govern the vesicle EHD. We introduce a semi-implicit
time-stepping scheme to solve this coupled system and evolve the EHD variables and the membrane
position. We construct a spectrally-accurate scheme to compute the interfacial forces, differential
and integral operators on the interface using spherical harmonic representations. We outline a
spectrally-accurate numerical method to compute the hyper-singular integrals that arise in our
BIE formulation. It is based on reducing them to weakly singular integrals and using a fast pole-
rotation based quadrature scheme [12]. We present numerical results verifying the convergence
of our method and simulations that qualitatively match the existing experimental and theoretical
results.

The paper is organized as follows. In the next section, we describe the partial differential
equations governing the fluid motion and the electric potential along with the interfacial condi-
tions. In Section 3, we reformulate the governing equations as integro-differential equations with
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the unknowns residing only on the vesicle membrane. In Section 4, we introduce our spatial dis-
cretization and time-marching scheme to evolve the membrane position and the electric variables.
Subsequently, we present numerical results testing the accuracy and stability of our method and
simulations in Section 5, followed by conclusions and future directions in Section 6.

2 Problem formulation

Consider a vesicle suspended in an unbounded viscous fluid domain, subjected to an imposed flow
v∞(x), for any x ∈ R3. Assume that the interior and exterior fluids have the same viscosity µ and
the same dielectric permittivity ε while their conductivities differ, given by σi and σe, respectively.
Let x be the position of the vesicle membrane γ, v the fluid velocity and p the pressure. In the
vanishing Reynolds number limit, the governing equations for the vesicle hydrodynamics can be
written as:

−∇p+ µ4v = 0 in R3 \ γ (conservation of momentum in bulk fluid), (1a)

∇ · v = 0 in R3 \ γ (fluid incompressibility), (1b)

v(x)→ v∞(x) as ||x|| → ∞ (far-field boundary condition), (1c)

ẋ = v on γ (velocity continuity), (1d)

∇γ · ẋ = 0 (surface inextensibility), (1e)[[
n · (Σel + Σhd)

]]
γ

= fm (membrane force balance). (1f)

In the last equation, [[·]]γ denotes the jump across the interface (e.g., [[σ]]γ = σi − σe), n is the

outward normal to γ, Σel is the electric stress, Σhd is the hydrodynamic stress and fm is the total
membrane force. The classical Helfrich energy model for the vesicle membrane and an augmented
Lagrangian approach to enforce the surface inextensibility locally lead to a bending force fb and a
tension force fλ on the membrane, so that fm = fb + fλ. They are defined by [51],

fb = −κB (4γH + 2H(H2 −K))n, fλ = λ4γx +∇γλ, (2)

where κB is the bending modulus, H is the mean curvature and K is the Gaussian curvature. The
tension λ acts as a Lagrange multiplier to enforce the surface inextensibility constraint and it is
computed as part of the solution.

The electric stress Σel is given by the Maxwell stress tensor, defined as,

Σel = εE⊗E− 1

2
ε||E||2 I. (3)

Therefore, the electric field E on both sides of the vesicle membrane needs to be determined to
enforce the stress balance at the interface for a given vesicle shape. We use the Taylor-Melcher
leaky dielectric model [30], in which, the electric charges are assumed to be present only at the
interface and not in the bulk. Hence, the electric field is solenoidal in the bulk and the electric
potential φ satisfies the Laplace equation. Assuming that the vesicle membrane is charge-free and
has a conductivity Gm, a capacitance Cm, the boundary value problem for the electric potential
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can be written as [44]:

−4φ = 0 in R3 \ γ (potential equation), (4a)

[[n · (σ∇φ)]]γ = 0 (current continuity), (4b)

[[φ]]γ = Vm (transmembrane potential), (4c)

−∇φ(x)→ E∞(x) as ||x|| → ∞ (far-field boundary condition), (4d)

CmV̇m +GmVm = −n · (σi∇φi) on γ (conservation of electric current). (4e)

Note that we have neglected the charge convection due to fluid flow along the membrane while
enforcing the current continuity in the direction normal to γ. The jump in the electric potential
across the membrane, Vm, also termed as the transmembrane potential, is an unknown that needs to
be determined as part of the solution process. In the current conservation equation (4e), φi denotes
the interior electric potential evaluated at the interface (analogously φe, the exterior potential).
CmV̇m is the transient current due to charging of the capacitative interface (the vesicle membrane).

When an external electric field is applied, charges accumulate on both sides of the membrane,
giving rise to a non-zero transmembrane potential. Since the electric field is discontinuous across
the membrane, it experiences an electric stress (3). The vesicle deforms until the elastic stress
due to bending and tension balances out this electric stress and the hydrodynamic stress at the
interface.

3 Integral equation formulation

Boundary integral equation formulation for vesicle hydrodynamics is now well-established and sev-
eral studies have employed it for problems in two [3, 5, 6, 26, 36, 50] and three [4, 10, 24, 37, 46, 51]
dimensions. The standard procedure, for a single vesicle with no viscosity-contrast, is to convert
the PDE formulation (1) into coupled integro-differential equations of the following form [51]:

ẋ = v∞(x) +

∫
γ
Gs(x− y)f(y) dγ, ∇γ · ẋ = 0, (5)

where x is the membrane position at certain time, f is the total force exerted by the membrane on
the fluid, given by f =

[[
n · Σhd

]]
γ
, and Gs is the Stokesian fundamental solution given by,

Gs(x− y) =
1

8πµ

(
1

||x− y||
I +

(x− y)⊗ (x− y)

||x− y||3

)
. (6)

In the absence of electric fields, f is simply the sum of bending and tension forces and the two
equations in (5) are numerically solved for the two unknowns, the tension λ, and the membrane
position update, at any given time-step. Classical results such as the existence of various families
of equilibrium shapes in quiescent flows and tank-treading of a vesicle suspended in linear shear
flows can be obtained from the numerical solution of these integro-differential equations.

In the presence of electric fields, however, f = fm −
[[
n · Σel

]]
γ
, and the electric stress on the

membrane needs to computed by solving (4) for a given vesicle shape. Since (4) is a linear partial
differential equation, similar to the fluid problem, we can recast it as a boundary integral equation
with the unknowns residing only on the interface. We discuss this formulation next.
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3.1 BIE formulation for electric potential

Similar to (5), our goal is to express the solution to (4) in terms of operators defined on the
boundary γ only. BIEs for (4) can be formulated in multiple ways (including the standard direct
BIE formulation [27]), however, the main objective is to arrive at integral equations that are well-
conditioned. Towards this end, we represent the solution to (4) as [54],

φ(x) = −E∞ · x + S[q](x)−D[Vm](x) (7)

where the membrane charge density, q = [[∂φ/∂n]]γ and the Laplace single and double layer integral
operators, S[·] and D[·] respectively, are defined by

S[f ](x) =

∫
γ
G(x− y)f(y) dγ(y), D[f ](x) =

∫
γ

∂G(x− y)

∂n(y)
f(y) dγ(y), (8)

where G(x− y) =
1

4π ||x− y||
and

∂G(x− y)

∂n(y)
=

1

4π

(x− y) · n
||x− y||3

. (9)

The representation (7) satisfies equations (4a, 4c, 4d) automatically due to the fact that G and its
derivatives are fundamental solutions of the Laplace equation and that the single-layer operator is
continuous across γ. Enforcing the remaining interfacial conditions (4b, 4e) will give us two BIEs
to solve for the two unknowns q and Vm. To derive these integral equations, we introduce the
derivatives of the single and double layer integral operators S ′[·] and D′[·] defined as,

S ′[f ](x) =
∂

∂n(x)

∫
γ
G(x− y)f(y) dγ(y), D′[f ](x) =

∂

∂n(x)

∫
γ

∂G(x− y)

∂n(y)
f(y) dγ(y). (10)

The interior and exterior limits of the electric potential evaluated at the membrane, denoted by
{φi, φe} respectively, and their normal derivatives, {∂φi/∂n, ∂φe/∂n}, can be derived using the
standard jump conditions for the layer potentials and their normal derivatives [25] as:

φi(x) = −E∞ · x + S[q](x) +
1

2
Vm(x)−D[Vm](x), (11a)

φe(x) = −E∞ · x + S[q](x)− 1

2
Vm(x)−D[Vm](x), (11b)

∂φi
∂n

(x) = −E∞ · n(x) +
1

2
q(x) + S ′[q](x)−D′[Vm](x), (11c)

∂φe
∂n

(x) = −E∞ · n(x)− 1

2
q(x) + S ′[q](x)−D′[Vm](x). (11d)

where η = (σi − σe)/(σi + σe). Substituting (11c, 11d) in the interfacial condition (4b), we obtain
the following boundary integral equation for the unknown q:(

1

2
+ η S ′

)
q = ηE∞ · n + ηD′[Vm]. (12)

The advantage of the representation (7) is now clear: (12) is a Fredholm integral equation of the
second-kind, which can be solved rapidly using iterative methods. To obtain one more equation for
the unknown Vm, we need to determine the normal derivative of the electric potential (from (4e)).
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We can express the normal derivative in terms of q by solving the linear equations [[∂φ/∂n]]γ = q
and [[σ∂φ/∂n]]γ = 0. The result is:

∂φi
∂n

=
σe

σe − σi
q,

∂φe
∂n

=
σi

σe − σi
q. (13)

Substituting this in (4e), we obtain the following integro-differential equation for Vm evolution:

CmV̇m +GmVm =
σiσe
σi + σe

(
1

2
+ η S ′

)−1
(E∞ · n +D′[Vm]). (14)

Therefore, given the vesicle shape, the transmembrane potential can be evaluated independently by
solving (14). Knowing q and Vm, we can evaluate the electric potential at any point in the interior
or exterior of γ using (7). Finally, we need to evaluate the jump in the Maxwell stress tensor (3)
to determine the electric force on the membrane. To do so, we first compute the electric potential
near the membrane and its normal derivatives using (11). Then, the interior electric field near the
membrane Ei (similarly, Ee) is determined using the expression,

Ei = −∇γφi −
∂φi
∂n

n. (15)

In summary, the PDE formulation governing the vesicle EHD (1, 4) has been reduced to a
BIE formulation in the form of coupled evolution equations for the membrane position (5) and the
transmembrane potential (14). The details of the numerical implementation are discussed next.

4 Numerical Method

In this section, we discuss methods for the numerical solution of the coupled integro-differential
equations governing the vesicle EHD. For the most part, we follow the general numerical framework
for three-dimensional vesicle flows introduced in our previous work [51].

4.1 Spatial discretization

We use spherical harmonic approximations to numerically represent the vesicle membrane and the
interfacial forces. The electric charge density on the surface, for instance, is approximated by its
truncated spherical harmonic expansion of degree p:

q(θ, φ) =

p∑
n=0

n∑
m=−n

qmn Y
m
n (θ, φ), (16)

θ ∈ [0, π], φ ∈ [0, 2π].

Here, θ is the polar angle, φ is the azimuthal angle, qmn are the spherical harmonic coefficients of
q, and Y m

n is a spherical harmonic of degree n and order m defined, in terms of the associated
Legendre functions Pmn [40], by

Y m
n (θ, φ) =

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ) eimφ. (17)
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The finite-term spherical harmonic approximation, such as (16), is superalgebraically convergent
with p for smooth functions. The forward and inverse spherical harmonic transforms can be used
to switch from physical to spectral domain, q → qmn , and vice-versa. A standard choice for the
numerical integration scheme required for computing these transforms is to use the trapezoidal rule
in the azimuthal direction and the Gauss-Legendre quadrature in the polar direction. The resulting
grid points in the parametric domain are given by{

θj = cos−1(tj), j = 0, . . . p
}
, and

{
φk =

2πk

2p+ 2
, k = 0, . . . , 2p+ 1

}
, (18)

where tj ’s are the nodes of the (p+ 1)-point Gauss-Legendre quadrature on [−1, 1].
The differential operators on γ are computed via spectral differentiation. For example, the

surface gradient of tension is defined in terms of the first fundamental forms by,

∇γσ =

(
Gxθ − Fxφ

W 2

)
σθ +

(
Exφ − Fxθ

W 2

)
σφ, (19)

where E = xθ · xθ, F = xθ · xφ, G = xφ · xφ, W =
√
EG− F 2. (20)

The θ and φ derivatives of σ (and similarly that of x) at a discrete point (θj , φk) are computed
using its spherical harmonic coefficients:

σθ(θj , φk) =

p∑
n=0

n∑
m=−n

σmn (Y m
n (θj , φk))θ, σφ(θj , φk) =

p∑
n=0

n∑
m=−n

σmn (Y m
n (θj , φk))φ. (21)

The main drawback of this spectrally-accurate differentiation scheme is that it leads to the
well-known aliasing phenomena. A standard practice to mitigate this problem is to upsample the
functions using spherical harmonic interpolation, compute the derivatives via (21) on the finer grid
and then restrict to the original grid [51, 56]. We follow the same procedure here and use an
upsampling factor of two.

Singular integration. The Stokes and the Laplace layer integral operators are weakly singular
with their kernels exhibiting a 1/r type of singularity. Therefore, the following spectrally-accurate
numerical integration rule for smooth functions on the sphere is not efficient in computing layer
potentials: ∫

γ
q(y) dγ(y) =

p∑
j=0

2p+1∑
k=0

wjkq(y(θj , φk))
W (θj , φk)

sin θj
, where wjk =

2π

2p+ 2
λj (22)

and λj ’s are the Gauss-Legendre quadrature weights. In [12], we introduced a fast algorithm for
computing the singular integrals which exploits the fact that at the north (or the south) pole of the
spherical grid, the area element W vanishes, thereby, making the integrand of the layer potentials
non-singular. To evaluate the layer potential at any arbitrary location x on the surface γ, the
coordinate system is rotated so that x coincides with the north pole. At the north pole x(0, 0), the
following quadrature rule for computing S[q] is spectrally-accurate [11, 12, 14, 51]:

1

4π

∫
γ

q(y)

||x(0, 0)− y||
dγ(y) =

p∑
j=0

(∑p
n=0 Pn(cos θj)

cos(θj/2)

) 2p+1∑
k=0

wjk q(y(θj , φk))W (θj , φk)

||x(0, 0)− y(θj , φk)||
(23)
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The same kind of quadrature rule can be applied in computing the Laplace double layer potential
and the Stokes single-layer potential [51], required for the vesicle EHD simulation. However, this
scheme is not efficient in computing the derivative of the double-layer potential since the kernel of
the integral operator D′[·] is hyper-singular. We discuss a modified scheme next.

4.2 Derivative of the double layer potential

Although specialized quadrature rules are required for hyper-singular integrals [22], an alternate
strategy can be applied in our setting since derivatives can be computed with spectral accuracy.
Lemma 2.2 of [15] (Page 59) transforms the two normal derivatives on the kernel of D′[·] into one
tangential derivative on the density and one on the potential using integration by parts, e.g.,

D′[Vm](x) =
∂

∂τ1(x)

∫
γ
G(x,y)

∂Vm(y)

∂τ1(y)
dγ(y) +

∂

∂τ2(x)

∫
γ
G(x,y)

∂Vm(y)

∂τ2(y)
dγ(y)

+
∂

∂τ3(x)

∫
γ
G(x,y)

∂Vm(y)

∂τ3(y)
dγ(y),

(24)

where the vectors τ1(x), τ2(x) and τ3(x) reside in the tangent plane at the point x on the surface
and are defined in terms of the components of normal vector as,

τ1(x) = (0, n3(x), −n2(x)), τ2(x) = (−n3(x), 0, n1(x)), τ3(x) = (n2(x), −n1(x), 0). (25)

The tangential derivatives of the scalar function Vm on the surface can simply be computed from
its surface gradient (defined in (19)), for example,

∂Vm(y)

∂τ1(y)
= τ1(y) · ∇γVm(y). (26)

Similarly the tangential derivative of the single-layer potential, ∂/∂τx S[·], can be computed from
its surface gradient.

4.3 Time-stepping

One of the main difficulties associated with simulating vesicle flows, compared to other particulate
flows, is that the interfacial forces are highly nonlinear and sustain fourth-order derivatives in the
interfacial position. Consequently, the evolution equation (5) is numerically stiff and the explicit
time-marching schemes tend to be prohibitively expensive because of the stringent stability restric-
tions on the time-step size. In [37, 49–51], we developed semi-implicit time-stepping schemes for
two- and three-dimensional vesicle flows that overcome the numerical stiffness with only a modest
increase in cost per time-step compared to fully explicit schemes. McConnell et al. [27] extended
these schemes to study vesicle EHD in two dimensions by treating the electric force explicitly. In
this work too, we treat the electric force on the membrane explicitly so as to decouple the time-
marching schemes for membrane position (5) and transmembrane potential (14) evolutions. Both
evolution equations are then solved using semi-implicit schemes.

Given the location of marker points {xn(θj , φk), j = 0, . . . p, k = 0, . . . , 2p+ 1} on the vesicle
membrane at time n4t and the electric force on it, denoted by fnE , we use the following first-order
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time-stepping scheme to discretize the evolution equation (5) and compute xn+1:

xn+1 − xn

4t
= v∞(xn) +

∫
γ
Gs(x

n − yn)
(
fn+1
b + fn+1

λ − fnE
)
dγ(yn), (27a)

∇γ ·
(
v∞(xn) +

∫
γ
Gs(x

n − yn)
(
fn+1
b + fn+1

λ − fnE
)
dγ(yn)

)
= 0. (27b)

In this semi-implicit scheme, a suitable linearization for the nonlinear membrane forces, fn+1
b and

fn+1
λ , must be found that potentially overcomes the numerical stiffness. A natural recipe is to treat

the terms with highest-order spatial derivatives implicitly and the rest explicitly. Suppressing the
superscripts on explicitly treated terms to simplify the notation, our choice for the membrane forces
at (n+ 1)4t is given by [51]:

fn+1
b = −(∆γH

n+1 + 2Hn+1(H2 −K))n, (28a)

where Hn+1 =
1

2W 2

(
Exn+1

vv − 2Fxn+1
uv +Gxn+1

uu

)
· n, (28b)

fn+1
λ = λn+1∆γx +∇γλn+1. (28c)

Plugging (28) into (27), we get two linear equations for the two unknowns xn+1 and σn+1. We
solve them using the GMRES method [41] combined with a preconditioner developed in [51] based
on analytically obtained spectrum of the integro-differential operators in (5) for the special case of
the unit sphere. The next step is to update the electric field fnE to fn+1

E . We introduce the operator
L defined by,

L =
σiσe
σi + σe

(
1

2
+ η S ′

)−1
, (29)

to simplify the description of the algorithm. The main steps involved in advancing fE from n4t to
(n+ 1)4t can now be summarized as follows.

1. Apply the backward Euler time-stepping scheme on (14) to obtain the following linear system
of equations for the unknowns

{
V n+1
m (θj , φk), j = 0, . . . p, k = 0, . . . , 2p+ 1

}
:(

Cm +4tGm −4tLD′
)
V n+1
m = CmV

n
m +4tL[E∞ · n]. (30)

Note that the superscripts are again dropped for explicitly treated terms. Use the formula
for the DLP derivative (24) and an iterative method (GMRES) to solve (30).

2. Compute the charge density on the membrane qn+1 by solving (12),

qn+1 =
σi − σe
σiσe

L
[
E∞ · n +D′[V n+1

m ]
]
. (31)

3. From V n+1
m and qn+1, evaluate the boundary data {φn+1

i , φn+1
e , ∂φn+1

i /∂n, ∂φn+1
e /∂n} using

(11a-b) and (13).

4. Evaluate the membrane electric fields in the interior and exterior

Ei = −∇γφn+1
i −

∂φn+1
i

∂n
n, Ee = −∇γφn+1

e − ∂φn+1
e

∂n
n. (32)
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5. Compute the Maxwell stress tensor (3) on both sides of the membrane and use it to compute
fn+1
E .

The electric force can then used to advance the membrane position using (27a) in the subsequent
time-step. Steps (i) through (v) are repeated for every time-step. This completes the description of
our first-order in time and spectrally-accurate in space numerical solver to simulate vesicle EHD.
The semi-implicit scheme can be generalized to achieve high-order accuracy in time via backward
difference formulas [2] or spectral-deferred correction methods [34]. Our implementation has two
additional components not discussed in this paper, namely, anti-aliasing and reparameterization
schemes. Both of these algorithms, essential to maintain the quality of numerical representations
and thereby to the overall stability of the solver, are described at length in [37] and [51].

5 Results

We implemented the numerical algorithm described in Section 4 and here we report its performance
on three examples. In the first example, we construct an analytical test case to verify the BIE
formulation and the accuracy of the spatial discretization scheme. In the second example, we
demonstrate that the experimentally-observed, transient cylindrical shapes strongly depend on the
bending modulus of the vesicle membrane. In the last example, we illustrate the tank-treading
phenomenon in applied shear flow and electric fields.

Example 1 (Spatial convergence test). First, we consider a test case to verify the integral equation
formulation for the electric potential as well as the accuracy of the spatial scheme. We solve the
Laplace equation in the exterior and interior of an interface, shown in Figure 1, whose position
vector x(u, v) is given by

x(u, v) =

 ρ(u, v) sinu cos v
ρ(u, v) sinu sin v
ρ(u, v) cosu

 , ρ(u, v) = 1 +
1

5
e−3Re(Y

2
3 (u,v)), u ∈ [0, π], v ∈ [0, 2π], (33)

and subject to the following jump conditions at the interface:

[[φ]]γ = Vm and [[σ ∂φ/∂n]]γ = Jm. (34)

As in Section 3, we assume that the potential is given by (7). The jump condition on the potential
in (34) is satisfied by definition and applying the second boundary condition results in the following
integral equation for the unknown function q,(

1

2
+ η S ′

)
q = ηD′[Vm] +

1

σi + σe
Jm. (35)

An analytic solution to this problem is constructed as follows: (i) place sources with arbitrary
strengths randomly in the exterior and interior to γ, (ii) evaluate the jumps Vm and Jm corre-
sponding to this source distribution, (iii) similarly, evaluate q = [[∂φ/∂n]]γ and use it as an analytic
solution to compare with the numerical solution of (35).

In Figure 1 (a) and (b), we sketch the jump conditions corresponding to our choice of source
distribution and the table lists the errors in computing q and fE for increasing values of the spherical
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(a) (b)

p M ||q − q∗||∞ ||fE − f∗E ||∞ Niter

12 312 2.5e− 03 2.7e− 02 9

16 544 3.0e− 04 9.7e− 03 9

24 1200 3.7e− 05 8.7e− 04 9

32 2112 2.3e− 06 2.2e− 04 9

40 3280 3.7e− 07 1.5e− 05 9

Figure 1: Relative errors in computing the jump in normal derivative q and the electric force on the
membrane fE for the test case in Example 1 with σi = 2 and σe = 1. Here, p is the spherical harmonic
order and M is the corresponding number of spatial discretization points. The boundary conditions (34)
and corresponding analytic solution (q∗, f∗E) are evaluated using the electric potential generated by randomly
placed point sources away from the membrane. The corresponding jump conditions Vm and Jm in (34) are
color mapped onto the given membrane shape in (a) and (b) respectively. The observable spectral convergence
in the relative errors validates the integral equation formulation (35), the singular-integral evaluation S ′[q],
and the hyper-singular integral evaluation D′[Vm]. The number of GMRES iterations in solving (35) are
listed in the last column.

harmonic order, which validates the super-algebraic convergence rate of our method. The advantage
of our indirect BIE formulation is that the integral operator

(
1
2 + η S ′

)
, which needs to be inverted,

has a bounded condition number. From the number of GMRES required to solve (35) listed in
Figure 1, it is clear that we get mesh-independent convergence1. Note that similar results are
obtained for any other values of σi and σe since |η| < 1.

Example 2 (Imposed electric field). Consider a vesicle subjected to an uniform electric field,
E∞ = (0, 0, 1), and in the absence any imposed flow. Suppose the permittivity and the viscosity
ratios are unity, the conductivity ratio σi

σe
is less than one and the membrane conductance is non-

zero. Under such conditions, the vesicle is known, through experiments, to reach an equilibrium
with its shape transitioning through a “tube-like” phase [8, 9, 53]. In Figure 2, we show snapshots

1While this is the case for cases we have tested, it is conceivable that preconditioning will be necessary to achieve
mesh-independent convergence for more complicated, close to self-touching geometries [35].
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from our three-dimensional simulation of this setting that illustrates similar transitionary behavior2.
The initial shape is set to an 2-1 ellipsoid, x(u, v) = (sinu cos v, sinu sin v, 2 cosu).

Figure 2: Snapshots from the EHD simulation of a single vesicle subjected to an external electric field
E∞ = (0, 0, 1) at time-steps 0, 164t, 244t, 324t, 404t and 1604t respectively (from left to right) with
4t = 1

2 . The parameters for this example are given by σi = 1, σe = 2, Gm = 5, Cm = 1, κB = 0.1 and no
contrast in viscosity and permittivity of the exterior and interior fluids. The vesicle experiences compressional
force due to the imposed electric field and undergoes prolate to oblate shape transformation transitioning
through a tube-like phase that was observed experimentally [8, 9, 53]. The viscous, elastic and electric forces
balance at the equilibrium oblate shape.

We found that, even though the final equilibrium shapes are the same, the intermediary shapes
of the vesicle strongly depend on the electric capillary number, defined as the ratio of electric and
elastic time scales [45],

Ca =
tel
tκ

=
εE2
∞

κB

3V

4π
, (36)

where V is the volume enclosed by the vesicle. In Figure 3, we demonstrate the evolution of a
vesicle with higher capillary number. Unlike the previous test case, tube-like phase is not observed
in this simulation. The tension is uniformly higher for high Ca case as shown in Figure 4. Finally,
note that if the conductivity of the interior fluid is higher compared to the exterior, the equilibrium
shapes are in form of prolates as supported by previous theoretical predictions [33].

Example 3 (Imposed electric and flow fields). When a vesicle is subjected to linear shear flow,
it undergoes tank-treading if there is no viscosity contrast. The angle of inclination at which the
vesicle tank-treads dictates the effective viscosity of a dilute suspension at the macro-scale. For
example, if it aligns with the background velocity profile, the vesicle presents less resistance to
shear, thereby, the effective viscosity would be lower. In Figure 5, we consider three cases and
compare the inclination angles. Clearly, applying the electric field alters the angle of inclination,
consequently, the effective viscosity.

2Note that in experiments, generally, an AC field or a DC pulse is applied as opposed to the uniform electric field
considered here. Therefore, the current results can be viewed as representative only for a short duration between
pulses. In experiments, the vesicle goes through a prolate-oblate-prolate cycle.
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Figure 3: Snapshots from a similar EHD simulation as in Figure 3 with all parameters the same except the
bending modulus is lower, κB = 0.01. While the final equilibrium shape is the same, the transient shapes
differ significantly (more contrasting details in Figure 4). The experimentally observed tube-like shapes can
be replicated in numerical simulations only for lower values of Ca (e.g., Figure 2), that is, when the restoring
bending time-scale is higher than the distorting electric time-scale.

6 Conclusions

We derived a set of integro-differential equations in this work that describe the coupled electro and
hydrodynamics of a vesicle based on the leaky-dielectric model. The main advantage of the new
formulation is that the linear systems arising from the BIEs are well-conditioned, allowing rapid
solution via iterative methods. Derivatives, singular and hypersingular integrals are all computed
with spectral accuracy via spherical harmonic representations. A semi-implicit time-stepping for
evolving the membrane position allowed us to simulate vesicle EHD with modest number of time-
steps (compared to explicit methods). Numerical experiments demonstrated the accuracy of our
model and results from simulations of a vesicle in applied uniform electric field are consistent with
previous theoretical predications.

There are a number of interesting questions in biomembrane mechanics one can answer with the
code developed here – can vesicles/cells undergo self-locomotion by modulating their transmem-
brane potential [31]? What effect does reduced volume have on the morphological phase diagram
[1]? These or other questions of practical importance will be the subject of future investigation.
Furthermore, a more detailed analysis of electrorheology, the effect of viscosity and permittivity
contrasts, time-varying imposed electric fields (DC pulses and AC fields) will be carried out in
a future article. Another direction of interest is applying more general nonlinear models such as
the Poisson-Boltzmann equation for the electric potential, essentially replacing the leaky dielectric
fluids with solvent electrolytes.
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Figure 4: (a) Evolution of the scaled bending energy 1
κB
E (blue curves) and the averaged tension

∫
γ
σ dγ

(green curves). Solid curves correspond to κB = 0.01 and dashed curves correspond to κB = 0.1. The rest
of the parameters are the same as in Figure 2. We make the following two observations for the lower Ca
case compared to the higher: the membrane tension is uniformly higher; the intermediary shapes have lower
bending energy although the final equilibrium shapes are the same. (b) Evolution of the transmembrane
potential Vm (blue curves) and the membrane charge density q (green curves) measured at the north pole.
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