
THE FAST GENERALIZED GAUSS TRANSFORM ∗

MARINA SPIVAK, SHRAVAN K. VEERAPANENI, AND LESLIE GREENGARD

Abstract. The fast Gauss transform allows for the calculation of the sum of N Gaussians at M points in O(N + M) time.
Here, we extend the algorithm to a wider class of kernels, motivated by quadrature issues that arise in using integral equation
methods for solving the heat equation on moving domains. In particular, robust high-order product integration methods require
convolution with O(q) distinct Gaussian-type kernels in order to obtain qth order accuracy in time. The generalized Gauss
transform permits the computation of each of these kernels and, thus, the construction of fast solvers with optimal computational
complexity.

We also develop plane-wave representations of these Gaussian-type fields, permitting the “diagonal translation” version of
the Gauss transform to be applied. When the sources and targets lie on a uniform grid, or a hierarchy of uniform grids, we
show that the curse of dimensionality (the exponential growth of complexity constants with dimension) can be avoided. Under
these conditions, our implementation has a lower operation count than the fast Fourier transform (FFT).

Key words. Gauss transform, fast algorithms, heat potentials, high-order accuracy, tensor-product grids

AMS subject classifications. 35K05, 31A10, 65N38, 65Y20

1. Introduction. The fast Gauss transform (FGT) [9] computes discrete sums of the form

N∑
k=1

fke
−
‖xj−yk‖

2

δ at {xj | j = 1, ...,M} , (1.1)

where xj , yk ∈ Rd, using only O(N + M) operations. Since this is a common computational kernel, the
algorithm has been applied in a variety of fields (e.g., [3, 6, 12, 15]). In recent years, some effort has been
made to develop versions of the FGT when the ambient dimension d is large [17]. Here, we limit our attention
to d = 2, 3, with a focus on issues that arise in solving the diffusion equation

∂u

∂t
(x, t) = 4u(x, t) + f(x, t) in Ω(t), (1.2)

with prescribed Dirichlet, Neumann or Robin data on the boundary Γ(t) of the (possibly) moving domain
Ω(t). While there are many approaches to solving (1.2) numerically, we restrict our attention to integral
equation based approaches. For illustration, let us consider the Neumann problem with zero initial data.
Classical potential theory suggests seeking the solution in the form [11]

u(x, t) = V[f](x, t) + S[σ](x, t) (1.3)

where the volume potential V and single-layer potential S are defined in terms of the free-space Green’s
function for the heat equation G(x, t) = (4πt)−d/2e−

||x||
4t as follows:

V[f](x, t) =
∫ t

0

∫
Ω(t)

G(x−y, t−τ)f(y, τ) dydτ, S[σ](x, t) =
∫ t

0

∫
Γ(t)

G(x−y, t−τ)σ(y, τ) dΓ(y)dτ . (1.4)

Enforcing the boundary condition results in a second-kind integral equation that needs to be solved for the
surface density σ. Once we have solved for σ, we can use (1.3) to evaluate u at any desired target locations
in space and time.

Several algorithms [1, 7, 8, 14] have been developed for computing layer and volume heat potentials
efficiently. The essential idea (which we describe for layer potentials) is to split

S[σ](x, t) =
∫ t−δ

0

∫
Γ(t)

G(x− y, t− τ)σ(y, τ) dΓ(y)dτ +
∫ t

t−δ

∫
Γ(t)

G(x− y, t− τ)σ(y, τ) dΓ(y)dτ . (1.5)

∗Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (spivak@cs.nyu.edu, shra-
van@cims.nyu.edu, greengard@courant.nyu.edu). The work of M.S. and L.G. was supported by the Applied Mathematical
Sciences Program of the U.S. Department of Energy under grant DEFG0288ER25053. The work of S.V. was supported by the
National Science Foundation under grant OCI-0749162.

1

The first term (referred to as the history part) appears to dominate the computational cost, since it is
dependent on the the density σ all the way back to t = 0. The fast algorithms cited above overcome this
obstacle and yield optimal (or nearly optimal) schemes. The second term (referred to as the local part) is
nonsmooth as τ → t. While a variety of discretization methods can achieve high-order convergence, it was
shown in [13] that care must be taken in order to avoid the phenomenon of geometrically-induced stiffness -
a loss of resolution for large times steps. More precisely, it was shown that the formal order of accuracy of
many schemes was not evident until the time step ∆t was of the order ∆x2, where ∆x denotes the distance
between neighboring spatial grid points. To avoid this difficulty, robust methods were proposed in [13, 16],
based on full “product integration” in time. Following [13], a third-order accurate scheme can be obtained
by substituting the Taylor expansion of σ(y, t) in time

σ(y, t) = σ0(y) + (t− τ)σ1(y) +
1
2

(t− τ)2σ2(y) +O((t− τ)3), τ ∈ (t− δ, t) (1.6)

into the local part1

SL[σ, δ](x, t) =
∫

Γ

∫ t

t−δ
G(x− y, t− τ)σ(y, τ) dΓ(y)dτ . (1.7)

Time integration can then be computed analytically. In two spatial dimensions, the result is

SL[σ, δ](x, t) =
1

4π

∫
Γ

(
σ0(y)− r2

4
σ1(y) +

r4δ

64
σ2(y)

)
Ei
(
r2

4δ

)
dΓ(y) +

1
4π

∫
Γ

(
δσ1(y) +

δ2

4
σ2(y)− r2δ

16
σ2(y)

)
e−

r2
4δ dΓ(y) (1.8)

where r = ||x−y|| and Ei(x) is the exponential integral function, which is logarithmically singular. (The first
order version of this rule is commonly used in the boundary element literature [2, 4].) The main focus of
the present paper is the efficient computation of the convolutions in the second integral. For this particular
third-order scheme, we need to compute convolutions with the kernels e−

r2
4δ and r2e−

r2
4δ . For a scheme of

order q with q > 3, we need to compute all the convolutions

Gn[f](x) =
∫

Γ

r2ne−
r2
4δ f(y) dΓ(y), 0 ≤ n ≤ q − 2 . (1.9)

Here, we develop a O(q(N + M)) scheme to compute (1.9) for N sources (discretization points on Γ) and
M targets, using both the Hermite [9] and plane-wave [10] versions of the FGT2. We also make several
improvements to the algorithm, particularly in the extension of the plane-wave scheme to tensor-product
grids in dimensions greater than one.

The remainder of the paper is organized as follows. In Section 2, we derive plane-wave representations
for the kernels in (1.9) and discuss their approximation properties. While the discretization of volume and
surface potentials results in similar discrete sums, we can exploit the underlying structure of the volume
discretization if it makes use of a hierarchy of regular grids. (Boundary discretizations, in general, lead to
unstructured sets of “sources”.) Both cases are discussed in detail in Section 3. Finally, in Section 4, we
compare the performance of the new scheme to the older versions and present results on the computational
cost of the algorithm for the sequence of Gaussian-type kernels in (1.9). Some notation used throughout the
paper is summarized in Table 1.1.

1For the sake of simplicity, we assume the domain to be stationary. Moving domain problems result in similar kinds of
convolutions. See [13, 16] for more details.

2It was noted in [9] that such fast transforms are possible, but the extension was not carried out. It is even possible to
compute these convolutions using only the FGT, by expanding r2n and computing several Gauss transforms separately. For
example,

r2e−
r2
4δ f = (x · x)

Z
e−

r2
4δ f − 2x ·

Z
e−

r2
4δ yf +

Z
e−

r2
4δ (y · y)f.

However, this is inefficient because one would have to compute O(q2) distinct Gauss transforms.

2

Symbol Definition Symbol Definition

N number of sources δ bandwidth of the Gaussian

M number of targets s size of box in FGT grid

|B| number of FGT boxes h order of Hermite expansion

NB number of sources per FGT box Cn Fourier transform of kernel in (1.9)

K length of interaction list in each di-
mension

2p number of plane wave coefficients in
each dimension

Table 1.1: Frequently used symbols.

2. Mathematical Preliminaries. In this section, we derive the plane wave expansions of the kernels
in (1.9) and give estimates for their truncation errors. We begin by stating the well-known Fourier expansion
of the d-dimensional Gaussian:

e−||x||
2

=
(

1
2
√
π

)d ∫
Rd
e−

z2
4 eizx dz x ∈ Rd. (2.1)

It is straightforward to develop an analogous formula for the Gaussian-type kernels of interest in the
one-dimensional case.

Theorem 2.1. The Fourier expansion of the kernel x2n e−x
2

is given by

x2n e−x
2

=
(−1)n

22n+1
√
π

∫ ∞
−∞

h2n

(z
2

)
eizx dz n ∈ N (2.2)

where hn(x) are Hermite functions defined in terms of the Hermite polynomials Hn(x) by hn(x) = e−x
2
Hn(x).

Proof. The statement for n = 0 reduces to the Fourier transform formula (2.1). Let us assume now that
the statement is true for n and proceed by induction.

x2(n+1) e−x
2

= x2 (−1)n

22n+1
√
π

∫ ∞
−∞

h2n

(z
2

)
eizx dz

= x2 (−1)n

22n+1
√
π

∫ ∞
−∞
−1

2
h2n+1

(z
2

) eizx
ix

dz

(differentiating by parts and using the standard relation h′n = −hn+1)

= x2 (−1)n

22n+1
√
π

∫ ∞
−∞

(
−1

2

)2

h2n+2

(z
2

) eizx
−x2

dz

=
(−1)n+1

22(n+1)+1
√
π

∫ ∞
−∞

h2(n+1)

(z
2

)
eizx dz ,

completing the proof.
In order to derive the multi-dimensional expansion of the kernel, we make use of the following multi-index

notation (for k ∈ Rd and x ∈ Rd) :

k! = k1!k2! . . . kd!
|k| = max

i
|ki|

||k||1 = k1 + k2 + . . .+ kd

hk(x) = hk1(x1)hk2(x2) . . . hkd(xd)
dx = dx1dx2 . . . dxd

3

Theorem 2.2. (Multi-dimensional expansion) Let x ∈ Rd, then the Fourier expansion of ||x||2n e−||x||2

is given by

||x||2n e−||x||
2

=
∫

Rd
Cn(z)eiz·x dz (2.3)

(2.4)

where Cn(z) =
(−1)n

22n+d π
d
2

∑
||k||1=n

n!
k!
h2k

(z
2

)
(2.5)

Proof.

||x||2n e−||x||
2

=
(
x2

1 + x2
2 + . . .+ x2

d

)n
e−||x||

2

=

 ∑
||k||1=n

n!
k!
x2k1

1 x2k2
2 . . . x2kd

d

 e−||x||
2

=
∑
||k||1=n

n!
k!

(
x2k1

1 e−x
2
1

)(
x2k2

2 e−x
2
2

)
. . .
(
x2kd
d e−x

2
d

)

=
∑
||k||1=n

n!
k!

(−1)k1+...+kd

22(k1+...kd)+d(
√
π)d

∫ ∞
−∞

h2k1

(z1

2

)
eiz1x1 dz1 . . .

∫ ∞
−∞

h2kd

(zd
2

)
eizdxd dzd

(from Theorem 2.1)

=
(−1)n

22n+d π
d
2

∫
Rd

 ∑
||k||1=n

n!
k!
h2k

(z
2

) eiz·x dz

Theorem 2.3. (Truncation error) The domain of integration of the Fourier expansion in (2.3) can be
truncated to the hypercube [−L,L]d with the following error estimate

||x||2n e−||x||
2

=
∫

[−L,L]d
Cn(z)eiz·x dz + eT (L) (2.6)

where eT (L) ≤ (3.08)d√
2π

(
d

2

)n √
(2n)! erfc

(
L

2
√

2

)
. (2.7)

The proof is outlined in Appendix A. Finally, since the integrand in (2.6) is smooth and exponentially small
at the endpoints, the trapezoidal rule converges rapidly [5], yielding the discrete approximation

||x||2ne−||x||
2
≈
(
L

p

)d ∑
|k|≤p

Cn(zk)eizk·x + eD(p), zk =
Lk

p
. (2.8)

Rather than writing out a detailed error estimate for eD(p), we simply list the necessary values of p (the
number of quadrature nodes) for different kernels and precisions in Table 2.1. We refer to the discretized
approximation (2.8) as the plane-wave expansion of the kernel.

3. The Fast Algorithm. Assuming the layer potentials of (1.9) or the corresponding volume integrals
have been discretized by a suitable spatial quadrature formula (a Nyström discretization), the algorithmic
issue becomes one of computing discrete sums of the form:

Gn[f](xj) =
N∑
k=1

||xj − yk||2ne−
||xj−yk||

2

δ fk at {xj | j = 1, . . . , N} . (3.1)

4

ε n = 0 n = 1 n = 4
p h L K p h L K p h L K

10−3 6 4 5 7 8 4 6 7 12 10 8 11

10−6 10 8 7 9 12 10 8 11 16 12 10 11

10−9 16 12 10 11 19 13 10 13 20 14 11 13

10−12 20 14 11 13 24 16 12 13 24 16 12 13

Table 2.1: Parameter values for various precisions. As in Table (1.1), p is the number of plane-wave coef-
ficients needed per dimension to achieve the stated precision and h is the length of the Hermite expansion
needed. L dictates the truncation error defined in Theorem 2.3. K determines the size of the interaction list
in each dimension, discussed below in Section 3. n = 0 corresponds to the simple Gaussian. n = 1 is needed
in (1.9) for third order accuracy and n = 4 is needed for sixth order accuracy.

Without loss of generality, let us assume that all targets and sources lie within the unit cube Ω = [0, 1]d.
(This is easily accomplished by shifting the origin and rescaling δ as needed.) The fast Gauss transform
begins by partitioning Ω into uniform boxes whose linear dimension s is of the order O(

√
δ). For each box

B, the interaction list is defined as the set of neighboring boxes in which the Gaussian or Gaussian-type
kernel has a contribution greater than the desired precision ε. We will denote the interaction list for box B
by I[B]. Because of the choice of box dimension, and the exponential decay of the kernel, the size of the
interaction list is of the order Kd, where the value of K is rather modest (see Table 2.1). We refer the reader
to [9] for a more detailed discussion.

Lemma 3.1. Let B denote a box in the FGT data structure, centered at cB and containing NB sources
{yj} with strength fj. Then the Gauss-type field due to those sources is given by

Gn[f](x) =
∑
|k|≤p

Cn(zk)wkeizk·(x−c
B)/
√
δ (3.2)

for any point x lying within the interaction region for B, where

wk =
(
L

p

)3 ∑
yj∈B

fje
izk·(cB−yj)/

√
δ, with zk =

kL

p
. (3.3)

Lemma 3.2. Let the plane-wave expansion for box B centered at cB be given by

Gn[f](x) =
∑
|k|≤p

Cn(zk)wkeizk·(x−c
B)/
√
δ (3.4)

and let D denote a box in B’s interaction list centered at cD. Then Gn[f](x) can be expressed within box D
as

Gn[f](x) =
∑
|k|≤p

Cn(zk)vkeizk·(x−c
D)/
√
δ (3.5)

where

vk = wk e
izk·(cD−cB)/

√
δ, (3.6)

These lemmas follow immediately from (2.8).

Remark 1. A plane-wave expansion of the form (3.5), which contains information transmitted from
other boxes, will sometimes be referred to as a “local” plane-wave expansion. This has no particular physical
meaning, but makes the organization of the algorithm easier to follow.

The “new version” FGT [10] proceeds in three steps.
5

1. S2W: For each box B, form the plane-wave expansion induced by the sources it contains according
to Lemma 3.1, where p is determined by the desired precision.

2. W2L: For each box B, translate the computed plane-wave expansion to every boxD in its interaction
list using Lemma 3.2 and add it to the local expansion for D.

3. L2T: For each target xj , determine the box in which it is located, and evaluate the local expansion
at xj .

We discuss each of these steps and some acceleration techniques in more detail in the remainder of this
section.

3.1. Accelerating the computation of the plane-wave expansion. The naive cost of step 1 in
the plane-wave based FGT is O(N(2p)d) work, since each source contributes to each of (2p)d plane wave
coefficients. (A factor of two is easily saved using the fact that they appear in complex conjugate pairs from
the quadrature (2.8).) There are two more significant ways, however, to accelerate this step.

3.1.1. Tensor-product grids. If the source locations belong to a tensor-product grid, separation of
variables becomes a useful tool. For illustration, suppose that d = 3 and that the data is available in box B
on an n× n× n grid, so that NB = n3. Then we can form the wave expansions using O(pn3 + p2n2 + p3n)
operations. Assuming n > p, the net cost of forming the plane-wave expansion for B becomes O(dpNB). If
the global data structure defining the source distribution consists of a tensor-product grid, then the net cost
is reduced to O(dpN) operations.

To see this, suppose the center of box B is located at (xb1, x
b
2, x

b
3) and that the n3 sources lie on the

tensor product grid {(xj1 , xj2 , xj3)|j1, j2, j3 = 1, . . . , n}. Our goal is to compute the plane wave coefficients
{wk1k2k3 |k1, k2, k3 = −p, . . . , p} from the source strengths {fj1j2j3 |j1, j2, j3 = 1, . . . , n}. We can simply unroll
the expansion formation one dimension at a time.

Stage 1
for j2, j3 = 1 to n do

wk1(j2, j3) =
∑n
j1=1 fj1j2j3e

izk1 (xb1−xj1)/
√
δ for k1 = −p, . . . , p

end for O(pn3)

Stage 2
for j3 = 1 to n do

wk1k2(j3) =
∑n
j2=1 wk1(j2, j3)eizk2 (xb2−xj2)/

√
δ for k1, k2 = −p, . . . , p

end for O(p2n2)

Stage 3

wk1k2k3 =
(
L
p

)3∑n
j3=1 wk1k2(j3)eizk3 (xb3−xj3)/

√
δ for k1, k2, k3 = −p, . . . , p O(p3n)

In d dimensions, it is easy to see that the net cost is O(dpN), assuming again that the number of source
points per box is of the same order as the number of expansion coefficients (n > p). This is a standard
technique, of course, used in many other contexts including the multidimensional fast Fourier transform.

Remark 2. We have assumed above that the tensor product grid is uniform. The algorithm depends only
on separation of variables and works equally well for nonuniform and adaptive tensor product grids. The
only difference is that, within each FGT box, the three stages must be executed separately for each tensor
product subgrid.

3.1.2. Using Hermite expansions. In the general case, including layer potential discretizations, we
cannot use the preceding acceleration. From Table 2.1, however, it is clear that the Hermite expansion,
which requires O(hdN) work [9], is generally less expensive than forming a plane-wave expansion. We can
exploit this fact by first forming the Hermite expansion and then converting it to a plane wave expansion by
using the following facts.

6

Theorem 3.3. Let the Hermite expansion about the center of box B be given by

G0[f](x) ≈
∑
|n|≤h

Anhn

(
x− cB√

δ

)
. (3.7)

where

An =
1
n!

NB∑
j=1

fj

(
yj − cB√

δ

)n
(3.8)

Then

G0[f](x) ≈
∑
|k|≤p

wke
− |zk|

2

4 eizk·(c
B−x)/

√
δ , (3.9)

where

wk =
(
L

p

)3 ∑
|n|≤h

An(−i)|n|zn1
k1
zn2
k2
. . . zndkd . (3.10)

This result is easily obtained by substituting the Fourier expansion (2.2) in the definition of the Hermite
function hn(x) = (−1)n dn

dxn e
−x2

.
The naive cost of conversion from Hermite to plane-wave form using (3.10) is O

(
1
2 (2p)dhd

)
for every

FGT box. We can reduce this cost further by evaluating separately in each dimension:

1. wk1(n2, n3) =
∑h
n1=0An1n2n3(−izk1)n1 for n2, n3 = 0, . . . , h and k1 = 0, . . . , p O(h3p)

2. wk1k2(n3) =
∑h
n2=0 wk1(n2, n3)(−izk2)n2 for n3 = 0, . . . , h and k1, k2 = 0, . . . , p O(h2p2)

3. wk1k2k3 =
(
L
p

)3∑h
n1=0 wk1k2(n3)(−izk3)n3 for k1, k2, k3 = −p, . . . , p O(hp3)

Since p > h, the overall computational cost of forming the plane-wave coefficients at all the FGT boxes
is O(hdN + dpdh|B|). Compared to a direct scheme that evaluates (3.3), this algorithm leads to significant
computational savings when the number of sources per box is large. In practice, we found that it compares
favorably in almost all cases of interest (in 3D).

3.1.3. Computing the action of multiple kernels. An advantage of the plane wave representation
is that the plane wave expansion defined in (3.3) is independent of the kernel. The translation operator (3.6)
is also independent of the kernel. Because of the nature of the Fourier transform, the particular choice of
n that defines the kernel appears only in the local expansion (3.5). Therefore, if multiple Gaussian-type
transforms are being carried out on the same function f , all of them can be computed with just one S2W
step and one W2L step.

In the case of our quadrature formula for heat potentials, the second term of equation (1.8) can be
written as

G0

[
δσ1(y) +

δ2

2
σ2(y)

]
+G1

[
−δ

8
σ2(y)

]
(3.11)

which involves multiple kernels acting on distinct source distributions. In such cases, instead of computing
the action of each kernel separately, the effect of all sources can be represented using a single plane wave
expansion.

Lemma 3.4. Let kernels r2ne−
r2
4δ , 0 ≤ n ≤ q act on sources yj with strengths fnj , lying in a box B with

center cB. Then the Gauss-type field due to those sources is given by

∑
0≤n≤q

Gn[fn](x) =
∑
|k|≤p

 ∑
0≤n≤q

Cn(zk)wnk

 eizk·(x−c
B)/
√
δ (3.12)

7

for any point x within the interaction region of B, where

wnk =
∑
yj∈B

fnj e
izk·(cB−yj)/

√
δ and zk =

Lk

p
. (3.13)

The result is easily obtained using Lemma 3.1.
If the source expansions wnk are computed using the method in 3.1.2, the overall computational cost of

forming the expansions is O(q(hdNB + dpdh|B|)). It should be noted, however, that if the discretization
parameters (L, p,K) differ greatly for the various kernels, the cost will be dominated by the worst case
parameter set.

3.2. Accelerating the plane-wave translation step. Once the plane-wave expansions are formed
for each of the FGT boxes, step 2 involves translating the information to its interaction list to obtain the
local expansions. A direct scheme forms the local expansions by simply visiting all the boxes in I[B] for each
box B and translating the wave expansions according to Lemma 3.2. Since the size of the interaction list is
Kd, this algorithm requires O(Kdpd|B|) work to form all local expansions, where |B| is the total number of
boxes. In the “new version” FGT [10], it was observed that a sweeping algorithm could be used to accelerate
the translation step. The idea is straightforward and illustrated in Fig. 3.1.

(d)(a)

(b)

j
B

 j+1
B

(c)

Fig. 3.1: (a),(b): Accelerated translations in one dimension. Initialization: Compute the local expansion for the

leftmost box (B1) by directly translating the plane-wave expansion from each box in I[B1]. This requires O(K
2
p) work

since only the K
2

boxes to the right lie within the FGT grid. Sweeping: For j = 2, ..., |B|, the local expansion for box

Bj can be shifted to the center of Bj+1 at the cost of one translation. This is almost the local expansion for Bj. By

inspection of the full interaction lists I[Bj−1] and I[Bj], indicated in gray, it is clear that one must simply subtract

the unneeded contribution from the leftmost member of I[Bj−1] (marked by a −) and add the needed contribution

from the rightmost member of I[Bj] (marked by a +). Boxes that fall outside the FGT grid can obviously be ignored.

The overall cost of translating the wave expansions is reduced from O(Kp|B|) to O(3p|B|). It should be noted that

this procedure depends strongly on the diagonal form of the plane-wave basis. Sweeping based on Hermite expansions,

for example, would rapidly lose accuracy. (c), (d): In higher dimensions, one simply repeats the above procedure in

each coordinate direction. To understand how information is propagated, consider the gray “source” box in (c) and

the gray “target” box in (d). Information from the source box is transmitted to the dashed box in the first sweep. In

the second sweep, it is transmitted to the target.

Remark 3. Since the contributions from distant boxes are negligible, it may not be immediately obvious
why one needs to subtract the influence from the box marked with a ”−” in the procedure outlined in Fig. 3.1.
The answer has to do with the plane-wave representation itself. We are representing the smooth field induced
by Gaussian or Gaussian-like sources in terms of oscillatory complex exponentials. The quadrature formula
(2.8) is subject to aliasing errors if the translation distance exceeds the range covered by the interaction list,
resulting in O(1) errors.

The multidimensional version consists of a sequence of d one-dimensional sweeps, for which we introduce
some notation. We let the FGT boxes be numbered Bj where j = (j1, j2, . . . , jd) with {1 ≤ jk ≤ |B|1/d}dk=1,
and we let n = bK2 c. For a box Bj , the interaction list then consists of the d-dimensional cube centered

8

at Bj and extending from −n to n in each dimension. An informal description of the sweeping algorithm
follows:

Multi-dimensional sweeping algorithm
1) Sweep along first dimension
for j2, . . . , jd = 1 to |B|1/d do

for j1 = 2 to n do
Translate expansion from B(j1,j2,...,jd) to B(1,j2,...,jd) according to Lemma 3.2.

end for
for j1 = 1 to |B|1/d − 1 do

Translate local expansion from B(j1,j2,...,j3) to B(j1+1,j2,...,jd), subtract contribution from B(j1+1−n,j2,...,jd),

and add contribution from B(j1+1+n,j2,...,jd), all according to Lemma 3.2. (Ignore contributions if the range

of the index falls outside the FGT grid.)

end for
end for
2) Repeat analogous loop for each dimension 2, . . . , d.

It is straightforward to see why the multi-dimensional algorithm gathers the necessary local expansions for all
boxes. The first sweep collects information along one dimension; each box accumulates expansions from K
members of its interaction list. The second sweep propagates that information along the second dimension,
with each box accumulating expansions from K2 members of its interaction list. This continues until the
dth sweep, at which point all Kd expansions have been translated. In terms of operation count, the net cost
is reduced from O(Kdpd|B|) to O(3dpd|B|).

3.3. Accelerating the evaluation of local expansions. Once the local coefficients are formed at
all the FGT boxes, the convolution (1.9) can be computed at the target locations by a direct evaluation of
the local expansion:

Gn[f](xj) =
∑
|k|≤p

Cn(zk)vkeizk·(xj−c
B)/
√
δ ∀ xj ∈ B. (3.14)

The computational cost of this operation is O(pdN). As in the S2W step (Step 1), we can accelerate this
calculation in two ways: (i) if the targets belong to a tensor-product grid, then the cost can be reduced
to O(dpN) using separation of variables; (ii) in the general case, we can convert the local plane-wave
expansion into a Taylor expansion and evaluate the Taylor series at the targets, thereby, reducing the cost
to O(hdN + dpdh|B|)

Lemma 3.5. Let the local plane-wave expansion for box D centered at cD be given by

Gn[f](x) ≈
∑
|k|≤p

Cn(zk)vkeizk·(x−c
D)/
√
δ where zk =

Lk

p
. (3.15)

Then the Taylor expansion of Gn[f](x) about cD is

Gn[f](x) ≈
∑
|m|≤h

Tm(x− cD)m (3.16)

where

Tm =
1
m!

∑
|k|≤p

Cn(zk)wk

(
i
zk1√
δ

)m1
(
i
zk2√
δ

)m2

. . .

(
i
zkd√
δ

)md
(3.17)

and h is the order of Taylor approximation.
This result is obtained by substituting the Taylor expansion about cD

e
izk(x−cD)√

δ =
∑
|m|≤h

1
m!

(
i
zk√
δ

)m
(x− cD)m (3.18)

9

into 3.15. As in the conversion from Hermite expansions to the plane wave basis (Section 3.1.2), the cost
per box of converting a local plane wave expansion to a Taylor expansion can be reduced from O(pdhd) to
O(dpdh) by separation of variables.

3.4. Summary of Computational Costs. We summarize the computational costs of the various
schemes discussed here in Table 3.1.

Method Steps 1/3 (Formation/Evaluation) Step 2 (Translation)

(i) Hermite hdN dhd+1Kd|B|
(ii) PW 1

2
(2p)dN 3dpd|B|

(iii) H–PW hdN + dpdh|B| 3dpd|B|

Tensor-product grids

(iv) Hermite dhN dhd+1Kd|B|
(v) PW dpN 3dpd|B|
(vi) H–PW dhN + dpdh|B| 3dpd|B|

Table 3.1: Operation count for variants of FGT. Method (i) is the original FGT [9] and (ii) is the “new-version”

FGT [10]. Methods (iii) to (vi) incorporate accelerations introduced in this section. Methods (i) and (iv) translate

Hermite expansions while the rest translate plane wave expansions. H–PW indicates that a plane wave expansion is

computed by first forming the Hermite expansion and then using Theorem 3.3.

4. Results. In this section, we present some timing results for a Fortran implementation of the various
FGT algorithms in three dimensions, performed on a laptop with an Intel(R©) 1.3GHz processor and 3.9GB
RAM.

In all the test cases, we assume that the sources and targets lie in the unit cube. We set the FGT

box size to be
√
δ, so that |B| =

(
1√
δ

)3

. The parameters p, h, L and K are dictated by the user specified
accuracy ε according to Table 2.1. Thus, there are only three independent parameters in the algorithm,
namely, N , ε and δ. The Gaussian width, determined by δ sets the number of boxes in the FGT data
structure, as indicated above. Since we are primarily motivated by fast solvers for the heat equation, we
let δ = ∆t = O(∆x) = O(N1/3) for a regular three-dimensional grid with N points. This corresponds to a
large time step, for which finite difference and finite element discretizations would require implicit marching
schemes.

4.1. Gauss transform. Let us begin by analyzing the computational cost of the standard Gauss
transform for three test cases with different source distributions. In the first case, we consider the calculation
of

φ(x) =
∫

Ω

e−
|x−y|2
δ f(y) dy, Ω = [0, 1]3, (4.1)

discretized using a Nyström method based on tensor product Gaussian quadrature. In Table 4.1, we list the
CPU times for the current scheme (method vi of Table 3.1) and an accelerated version of the original FGT
(method iv). In the second case, we consider a random uniform distribution of sources, with results presented
in Table 4.2. From this data, it is clear that forming expansions is much faster on tensor-product grids and
that translating plane wave expansions is much faster than translating Hermite expansions, consistent with
the complexity analysis in the previous section. The extent of the acceleration depends, of course, on the
problem size, number of boxes, desired precision, etc. When the number of boxes is small (in the extreme
case, just one), the original FGT is faster because its expansion cost is lower. As soon as translation costs
dominate, the plane wave-based methods outperform the original FGT.

In our third test, we consider a typical computational task encountered in solving the inhomogeneous
heat equation via potential theory in a complicate domain. At every time-step, we need to evaluate the

10

function

uL(x, t) = SL[σ, δ](x, t) + VL[f, δ](x, t) , (4.2)

the sum of a volume and a layer potential:

uL(x, t) =
∫

Ω

e−
|x−y|2
δ f(y) dΩ(y) +

∫
Γ

e−
|x−y|2
δ σ(y) dΓ(y). (4.3)

The domain Ω is assume to be the unit cube while the surface Γ is shown in Figure 4.1. CPU times for
various volume grid and boundary discretizations are listed in Table 4.3.

Finally, in Figure 4.2, we compare the performance of the tensor-product FGT with the FFT as a
function of problem size for a variety of precision values.

δ N = M FGT (version vi) Original FGT (version iv) Direct

Total
Steps 1,3
(S2W,L2T)

Step 2
(W2L)

Total
Steps 1,3
(S2H,L2T)

Step 2
(H2L)

0.01 1000000 2.6 1.7 0.9 107 0.3 106 1.7e5

0.007 3375000 5.4 3.5 1.9 229 0.6 228 2.1e6

0.005 8000000 11 8 3 517 1.6 515 3.3e7

0.004 15625000 16 10 6 654 2.8 651 5.2e7

0.003 27000000 27 19 8 1207 5 1199 1.2e8

0.0025 64000000 39 30 9 1445 10 1432 7.7e8

Table 4.1: CPU times for the accelerated plane-wave FGT and an accelerated version of the original FGT, with
precision set to ε = 10−7. The sources and targets are the tensor product Gaussian quadrature nodes scaled to [0, 1]3.
For both schemes, note that the expansion costs increase linearly with N . The translation costs increase more slowly,
since |B| ∝

√
N (δ ∝ N−1/3).

δ N = M FGT (version iii) Original FGT (version i) Direct

Total
Steps 1,3
(S2W,L2T)

Step 2
(W2L)

Total
Steps 1,3
(S2H,L2T)

Step 2
(H2L)

0.01 1000000 15 13.6 1.2 124 12 112 1.7e5

0.007 3375000 49 45 1.7 275 44 275 2.5e6

0.005 8000000 113 108 4 640 106 534 3.0e7

0.004 15625000 232 224 6 882 207 675 4.8e7

0.003 27000000 395 383 8 1609 345 1247 1.3e8

Table 4.2: CPU times for new and original fast Gauss transforms with sources and targets randomly distributed.

4.2. Generalized Gauss transform. As a final example, we consider the computation of volume heat
potentials with high order accuracy in time. In three dimensions, this requires the evaluation of

φ(x) =
1

(
√

4π)3

∫
Ω

e−
r2
4δ

[
2 f1(y)

√
δ +

1
3
f2(y) δ3/2

(
1− 1

2
r2

δ

)]
dy (4.4)

for third order accuracy and

ψ(x) = φ(x) +
1

(
√

4π)3

∫
Ω

e−
r2
4δ

[
1
15
f3(y) δ5/2

(
1
12

r4

δ2
− 1

6
r2

δ
+ 1
)

+
1
84
f4(y) δ7/2

(
− 1

120
r6

δ3
+

1
60

r4

δ2
− 1

10
r2

δ
+ 1
)

+
1

540
f5(y) δ9/2

(
1

1680
r8

δ4
− 1

840
r6

δ3
+

1
140

r4

δ2
− 1

14
r2

δ
+ 1
)]

dy

(4.5)

11

Fig. 4.1: Test domain for Table 4.3. In our third test, we set the sources and targets to be the tensor product
Gaussian quadrature nodes in the cube [0, 1]3 (discretizing the volume potential), augmented by a set of discretization
nodes on the surface Γ.

δ N = M New FGT (versions iii, vi) Original FGT (version i) Direct

volume surface Total S2W+L2T W2L Total S2H+L2T H2L

0.01 1000000 80100 3.9 3 0.9 108 1 107 1.7e5

0.007 3375000 180600 8.4 6.5 1.9 225 3 222 2.1e6

0.005 8000000 320800 17 13 3.5 520 5 514 3.3e7

0.004 15625000 501000 25 20 5 660 9 650 5.0e7

0.003 27000000 721200 41 33 8 1215 17 1198 1.2e8

Table 4.3: CPU times for the new and original fast Gauss transforms, for precision ε = 10−7. In the new scheme,

version iii is used for the irregular boundary nodes, while version vi is used for the regular volume nodes. The source

distributions are described in Figure 4.1.

for sixth order accuracy, where

f(y, t) = f1(y) + (t− τ)f2(y) +
1
2

(t− τ)2f3(y) + · · ·+ 1
5!

(t− τ)5f5(y) +O((t− τ)6) . (4.6)

The sources and targets are assumed to be tensor product Gaussian nodes in the unit cube, and we report
CPU times in Table 4.4. Note that in each case, the distinct sources and source types can be combined
into a single plane wave expansion using Lemma 3.4. For the sake of simplicity, we have set the parameters
p, L,K so that the Gaussian is approximated with an error ε = 10−7 (n = 0 in Table 2.1). We use these
parameters for all kernels, leading to some loss in accuracy. In particular, we obtain six-digit accuracy for
the third order kernels and five-digit accuracy for the sixth order kernels. As indicated in Table 2.1, higher
values of p, L,K can be chosen to guarantee any desired ε.

5. Conclusions. We have presented several methods for accelerating the fast Gauss transform and
a framework for its generalization to convolution with Gaussian-type kernels. The translation costs are
dramatically reduced using plane-wave representations (as in [10]), and the expansion formation costs are
dramatically reduced for (locally) tensor product data structures. These techniques are of particular impor-
tance in evaluating volume potentials on hierarchies of adaptive grids. For pure layer potentials, where the
sources and targets lie on a lower dimensional manifold, the gain is more modest.

Finally, the algorithms described in this paper are applicable even when the kernel and/or its Fourier
12

0 10 20 30 40 50 60

x 10 6

0

2

4

6

8

10

12

N

CP
U

 ti
m

e
 (s

ec
)

1e-3

1e-5

1e-7

1e-9

fft

Fig. 4.2: CPU times for the accelerated FGT (version vi), with sources distributed on a tensor-product grid. The

timings for the three-dimensional FFT are shown (dashed curve) as a benchmark. We set δ = 4

N1/3 , modeling an

implicit time step in a marching scheme for the heat equation. The choice of δ has a significant effect on timing.

Smaller values of δ increase the cost (while still proportional to N). In the case of modeling heat flow, high order

discretization in time should allow for larger time steps and, therefore, lower cost Gauss transforms.

δ N = M First order Third order Sixth order

Total S2W+L2T Total S2W+L2T Total S2W+L2T

0.01 1000000 2.7 1.7 3.7 2.6 6 5

0.007 3375000 5.5 3.7 7.4 5.6 13 11

0.005 8000000 12 8 15 12 27 24

0.004 15625000 16 12 22 18 39 34

0.003 27000000 27 19 37 29 66 58

Table 4.4: CPU times for the fast Gauss transform, the convolutions in (4.4), and the convolutions in (4.5). These
correspond to first, third and sixth order accuracy. In each case, the influence of distinct source strengths is combined
into just one plane wave expansion using Lemma 3.4. Thus, the number of translations required in each case is the
same, resulting in extremely efficient high order schemes.

transform are not known analytically. The only requirement is that the kernel should be smooth, and
approximately space-limited and band-limited. Needed are the values of the Fourier transform of the kernel
at the plane-wave discretization points - the analog of the values Cn(zk) in (2.8). These can be precomputed
numerically by means of the discrete Fourier transform of the kernel sampled on a sufficiently fine mesh.
The remaining steps are kernel-independent.

13

Appendix A. Truncation error estimate.
Proof. Cramer’s inequality

|Hn(t)| ≤ 1.09 2n/2
√
n! et

2/2 (A.1)

implies that ∣∣∣h2n

(z
2

)∣∣∣ ≤ 1.09 2n
√

(2n)! e−
z2
8 . (A.2)

Consequently, we have the following estimates in 1D∣∣∣∣∣
∫ L

0

h2n

(z
2

)
eizxdz

∣∣∣∣∣ ≤ 1.09 2n
√

(2n)!
√

2π (using
∫ ∞

0

e−
z2
8 dz =

√
2π) (A.3)∣∣∣∣∫ ∞

L

h2n

(z
2

)
eizxdz

∣∣∣∣ ≤ 1.09 2n
√

(2n)! erfc
(

L

2
√

2

)
(A.4)

In the multi-dimensional case, we have

eT (L) =
1

22n+dπd/2

∣∣∣∣∣∣
∫

[−∞,∞]d\[−L,L]d

∑
||k||1=n

n!
k!
h2k

(z
2

)
dz

∣∣∣∣∣∣ (A.5)

= 2d
1

22n+dπd/2

∑
||k||1=n

n!
k!

∣∣∣∣∣
∫

[0,∞]d\[0,L]d
h2k

(z
2

)
dz

∣∣∣∣∣ . (A.6)

Since the integrand is a separable function, we can integrate in each dimension separately. The intervals of
integration are all possible combinations of [0, L] and [L,∞] except the case where all of them are [0, L]. Let
β =
√

2π and α = erfc
(

L
2
√

2

)
. Then, using (A.3) and (A.4), the truncation error can be derived as

eT (L) ≤
(

1
22nπd/2

)
1.09d 2n

 ∑
||k||1=n

n!
k!

√
(2k)!

(αd +
(
d

1

)
αd−1β + . . .+

(
d

d− 1

)
αβd−1

)
. (A.7)

Since erfc(·) ≤ 1, we have β > α. Using this and the identity
∑
||k||1=n

n!
k! = dn, we can simplify the estimate

further:

eT (L) ≤
(

1
22nπd/2

)
1.09d 2n dn

√
(2n)! 2dαβd−1 (A.8)

=
(3.08)d√

2π

(
d

2

)n √
(2n)! erfc

(
L

2
√

2

)
. (A.9)

REFERENCES

[1] K. Brattkus and D. I. Meiron. Numerical simulations of unsteady crystal-growth. SIAM Journal On Applied Mathematics,
52:1303–1320, 1992.

[2] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element Techniques. Springer, 1984.
[3] Mark Broadie and Yusaku Yamamoto. Application of the fast Gauss transform to option pricing. Management Science,

49(8):1071–1088, 2003.
[4] G. F. Dargush and P. K. Banerjee. Application of the boundary element method to transient heat conduction. International

Journal of Numerical Methods in Engineering, 31:1231–1247, 1991.
[5] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, San Diego, 1984.
[6] Ahmed Elgammal, Ramani Duraiswami, and Larry S. Davis. Efficient kernel density estimation using the fast Gauss

transform with applications to color modeling and tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(11):1499–1504, 2003.

14

[7] L. Greengard and P. Lin. Spectral approximation of the free–space heat kernel. Applied and Computational Harmonic
Analysis, 9:83–97, 2000.

[8] L. Greengard and J. Strain. A fast algorithm for the evaluation of heat potentials. Communications on Pure and Applied
Mathematics, XLIII:949–963, 1990.

[9] L. Greengard and J. Strain. The fast Gauss transform. SIAM Journal on Scientific and Statistical Computing, 12(1):79–94,
1991.

[10] Leslie Greengard and Xiaobai Sun. A new version of the fast Gauss transform. Documenta Mathematica, III:575–584,
1998.

[11] R. B. Guenther and J. W. Lee. Partial Differential Equations of Mathematical Physics and Integral Equations. Prentice-
Hall, 1988.

[12] Junmo Kim, III Fisher, J.W., A. Yezzi, M. Cetin, and A.S. Willsky. A nonparametric statistical method for image
segmentation using information theory and curve evolution. Image Processing, IEEE Transactions on, 14(10):1486
–1502, oct. 2005.

[13] Jing-Rebecca Li and Leslie Greengard. High order accurate methods for the evaluation of layer heat potentials. SIAM
Journal on Scientific Computing, 31(5):3847–3860, 2009.

[14] Johannes Tausch. A fast method for solving the heat equation by layer potentials. Journal of Computational Physics,
224(2):956–969, 2007.

[15] Shravan K. Veerapaneni and George Biros. The Chebyshev fast Gauss and nonuniform fast fourier transforms and their
application to the evaluation of distributed heat potentials. Journal of Computational Physics, 227:7768–7790, 2008.

[16] Shravan K. Veerapaneni and George Biros. Arbitrary-order accurate schemes for computing boundary heat potentials.
Xxxxx, preprint, 2009.

[17] Changjiang Yang, Ramani Duraiswami, Nail Gumerov, and Larry S. Davis. Improved fast Gauss transform and efficient
kernel density estimation. Proceedings of Ninth IEEE International Conference on Computer Vision, pages 664–671,
2003.

15

