
A HIGH-ORDER SOLVER FOR THE HEAT EQUATION IN 1D DOMAINS WITH
MOVING BOUNDARIES∗

SHRAVAN K. VEERAPANENI † AND GEORGE BIROS‡

Abstract. We describe a fast high-order accurate method for the solution of the heat equation in domains with
moving Dirichlet or Neumann boundaries and distributed forces. We assume that the motion of the boundary is
prescribed. Our method extends the work of L. Greengard and J. Strain, “A fast algorithm for the evaluation of heat
potentials”, Comm. Pure & Applied Math. 1990. Our scheme is based on a time-space Chebyshev pseudo-spectral
collocation discretization, which is combined with a recursive product quadrature rule to accurately and efficiently
approximate convolutions with the Green’s function for the heat equation. We present numerical results that exhibit
up to eighth-order convergence rates. Assuming N time steps and M spatial discretization points, the evaluation of
the solution of the heat equation at the same number of points in space-time requires O(NM log M) work. Thus,
our scheme can be characterized as “fast”, that is, it is work-optimal up to a logarithmic factor.

Key words. Integral equations, spectral methods, Chebyshev polynomials, moving boundaries, heat equation,
quadratures, Nyström’s method, collocation methods, potential theory.

1. Introduction. We present a fast and high-order method for the solution of one di-
mensional heat equation in domains with moving boundaries. We assume that the boundary
motion is prescribed. Given smooth functions f , g, and w we seek to compute u(x, t) such
that

∂u

∂t
= 4u(x, t) + f(x, t) in ω(t), t > 0,

u(x, 0) = w(x) in ω(0), u(x, t) = g(x, t) on γ(t).
(1.1)

All our algorithmic choices can be extended to 2D and 3D. The details, however, become
quite involved and additional algorithmic components are necessary. For clarity and due to
space limitations, we present the core ideas of our method for the one-dimensional case. We
will report the extensions to higher dimensions at a future article.

Formulation. The proposed algorithm is based on potential theory [13]. Without loss of
generality, let ω(t) be contained in the unit box Ω = [0, 1]. Let Γ denote the boundary of the
unit box. By linearity, we decompose the problem (1.1) into the initial condition component
ui, the distributed force component uf , and the boundary contribution ub:

∂ui

∂t
= 4ui in Ω, ui(x, 0) = w(x), ui(Γ, t) = 0, t > 0, (1.2)

∂uf

∂t
= 4uf + f in Ω, uf (x, 0) = 0, uf (Γ, t) = 0, t > 0, (1.3)

∂ub

∂t
= 4ub in ω(t), ub(x, 0) = 0, ub(γ(t), t) = g − ui − uf , t > 0. (1.4)

∗ This work is partially supported by the U.S. Department of Energy under grant DE-FG02-04ER25646, the U.S.
National Science Foundation grants CCF-0427985, and DMS-0612578.

†Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA
19104, USA (shravan@seas.upenn.edu)

‡Departments of Mechanical Engineering and Applied Mechanics, and Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, USA (biros@seas.upenn.edu)

1



2 S. K. VEERAPANENI AND G. BIROS

We solve (1.2), (1.3), and (1.4) using an integral equation formulation; we compute ui and
uf by

ui(x, t) = V0[w](x, t) =

∫

Ω

G(x, t; y)w(y)dy,

uf (x, t) = V [f ](x, t) =

∫ t

0

∫

Ω

G(x, t; y, τ)f(y, τ)dy dτ,

(1.5)

where G(x, t; y, τ) is the Green’s function for the unit box Ω with periodic boundary con-
ditions.1 The solution of (1.4) is obtained by the solution of a double layer indirect integral
equation formulation, which is given by

ub(x, t) = D[φ](x, t) =

∫ t

0

∫

γ(τ)

∂G(x, t; y, τ)

∂n(y, τ)
φ(y, τ)ds(y)dτ, x ∈ ω × (0, T ]. (1.6)

Here n is the outward normal to γ. The double layer potential denoted by D[φ] is the solution
for problem (1.4) provided the boundary density φ solves the following Fredholm second-
kind integral equation for t > 0,

−1

2
φ(x, t) + D[φ](x, t) = ub(x, t), ∀x ∈ γ(t). (1.7)

Computational complexity. The solution of (1.1) through potential theory requires eval-
uation of double layer and volume potentials. A direct evaluation of V [f ] using M × N
quadrature points at M ×N locations in space and time, requires O(M 2N2) work. The his-
tory dependence of this convolution can be overcome by using the fast algorithm of Green-
gard and Strain [6]. The key idea is to use two equivalent expansions for the kernel G(x, t),
one that converges fast at distant times and the other converges fast locally. The volume po-
tential V is split into a local or near part VL and a far part VF . For the evaluation of the
local part, a method-of-images expansion of G is used; for the far part, a Fourier expansion
is used. A recurrence relation to update the Fourier coefficients in the far part eliminates
the need to integrate over the entire history. As pointed out in [22], discrete sums of the
form

∑p
n=1 Cn sin(nπx) and

∑M
k=1 sin(nπyk)fk that arise in the computation of VF , can be

computed in optimal time by using the nonuniform FFT [4]. The local part can be computed
optimally using the fast Gauss transform [7]. Using these methods the overall complexity
of computing the volume potential can be reduced to O(MN logM); the overall scheme is
second-order accurate.

Synopsis of the new method. Here we extend the Greengard & Strain algorithm to a high-
order accurate scheme. We develop special product integration rules to compute the local and
far parts of the heat potentials. The basic idea is to approximate the boundary density using
Chebyshev polynomials and then compute the resulting moments exactly. To achieve optimal
complexity, we propose a scheme that makes use of fast summation methods [4, 6, 7]. We
then build a solver for (1.1) based on a fast and high-order accurate evaluation of volume and
layer potentials.

Following Greengard and Strain, this is the outline of our method:
• We use a double layer integral equation formulation for (1.1), which results in a

well-conditioned linear system;
• We discretize using a pseudo-spectral collocation method using Chebyshev polyno-

mials;

1Here we described the decomposition into three subproblems for the case of a Dirichlet boundary condition.
The extension to the Neumann case is analogous.



Heat equation in domains with moving boundaries 3

• We develop high-order quadratures for the heat (and other sharply peaked) kernels
using recurrences;

• We derive a high-order scheme for the heat equation in domains with moving bound-
aries (with prescribed motion) and distributed forces.

The main contributions of this work are the high-order time-marching scheme, and the exten-
sion to problems with moving boundaries and distributed sources.

Related work. Much of the research on solving the heat equation on moving boundaries
has been concentrated on the Stefan’s problem for which the motion of the boundary is un-
known. In this paper, we consider only problems in which the motion of the boundary is
prescribed.2 Fast algorithms introduced recently dramatically improved the computational
complexity of solving integral equation formulations for parabolic PDEs. The fast Gauss
transform [7] can be used to accelerate the solution of the free-space initial value problem
for the heat equation. The Greengard & Strain algorithm [6] can be used for the efficient
evaluation of single and double layer heat potentials in bounded domains. Fast algorithms for
unbounded domains are discussed in [5, 14]. The work of [2, 20] is one of the first attempts
to design fast methods for the heat equation. A direct formulation was used in [8, 28] for
the 1D Stefan problem. In the case of prescribed Dirichlet data, a direct integral equation
formulation leads to a Volterra system of equations that is ill-conditioned3. Ill-conditioning
can be avoided by using an indirect double layer formulation, which we describe in detail in
Section 5. Recently, epitaxial step flow growth in 1D was simulated in [10] using layer po-
tentials. Despite these remarkable advances, however, none of the existing methods achieves
both high-accuracy and optimal complexity.

Indeed, fast summation algorithms and high-order schemes are necessary to build work-
efficient solvers for (1.1). The time integrals in all variants of the heat potentials have kernels
that are sharply peaked. A generic quadrature rule can be used but it will not achieve its
order of convergence for reasonable discretization sizes. Uniform second-order convergence
in computing the single layer was achieved in [6, 20] using asymptotic expansions. To obtain
high-order convergence through asymptotic expansions, one needs high-order derivatives of
the boundary density φ, something that can be computationally expensive. In [22, 23] a
uniform second-order convergence was achieved by using a piecewise linear approximation
for the boundary density and computing the convolution with the heat kernel exactly.

An alternative is the design of special quadrature rules: given I(α) =
∫ 1

−1K(α, θ)φ(θ)dθ,
withK being a singular, sharply-peaked, or oscillatory kernel, the goal is to design high-order
accurate integration schemes. There exists a substantial body of work on quadrature rules for
such problems. The main challenge is to ensure optimal algorithmic complexity and compati-
bility with fast summation methods. In Kapur and Rokhlin [12] and Rokhlin [19], corrections
to trapezoidal rule have been suggested for integrating singular functions. In Ma et al. [11]
and in Yarvin and Rokhlin [26], numerical tools to obtain generalized Gaussian quadratures
have been devised. In Alpert [1] hybrid Gauss-trapezoidal rules for regular functions and sin-
gular kernels were developed. These approaches, however, are not directly applicable to the
heat kernel due to the spatial and temporal components of the kernel. Although it may be the
case that they can be extended to the heat kernel, we have opted for an alternative approach
based on recurrence relationships.

Such recurrences have been established by Piessens [16] for a wide variety of kernels.
In Hasegawa and Torii [9], Cauchy principal value integrals were evaluated using quadrature

2There is a large (and significant) body of work regarding local stencil-based discretizations of (1.1); we do
not attempt to review this literature. We believe that, for certain problems, there are significant advantages in using
integral equations. Since this work is in 1D, we postpone the discussion to a future paper.

3In 1D ill-conditioning has little impact in practical computations. The argument is important for problems in
higher dimensions.



4 S. K. VEERAPANENI AND G. BIROS

rules combined with Chebyshev-polynomial approximations. Here we concentrate on heat
potentials but this strategy can be applied to solving other PDEs via integral equations. For
example, in Piessens [15] integral equations like the Abel integral equation were solved. The
main difference between this method and quadrature rules is that we discretize the density
but not the integral operator. Given a density φ(θ) and a kernel K(α, θ) we write:

φ(θ) =

q−1
∑

k=0

φ(k)Tk(θ) ⇒ I(α) =

q
∑

k=0

φ(k)Ik(α), where Ik(α) =

∫ 1

−1

K(α, θ)Tk(θ)dθ,

(1.8)
based on the Chebyshev-polynomial expansion of φ. The integrals Ik(α) are computed to
machine accuracy using recurrence relations (Section 2). Using FFT, the Chebyshev coeffi-
cients {φ(n)}q

n=0 can be computed in O(q log q) work and all Ik(α) can be computed using
recurrence relations in O(q) work. Hence the overall complexity of computing the integral
I(α) is O(q log q). Using this method we compute heat potentials by approximating the po-
tential density function using piecewise (q − 1)th order Chebyshev polynomials, and thus,
obtain a qth-order accurate method.

Contents. In Section 2, we discuss algorithms for the fast evaluation of heat potentials.
In Section 3, we derive recurrence relations for computing the moments Ik(α) defined in
(1.8) for heat kernels. The details of implementing the boundary integral solver for (1.1) with
static boundaries, are given in Section 4. The case of boundaries with prescribed motion is
discussed in Section 5. We report numerical results that verify the efficiency and accuracy of
our scheme in Section 6.

2. Fast summation. The direct evaluation of ub by the formula (1.6) at M spatial lo-
cations and N time levels requires O(N 2M) work in 1D. The Greengard-Strain algorithm
reduces this work to O(NM). The key idea is to use two different representations of the
Green’s function (for a square box with periodic boundary conditions) in different time inter-
vals: one for the history part that represents the influence of the sources located temporally
away from the current evaluation time; and one for the local part that represents the influence
of the sources located at times closer to the current evaluation time.

The Green’s function for the unit box is the solution to the adjoint problem with homo-
geneous boundary conditions:

∂G

∂τ
+ 4yG = δ(x− y, t− τ) in Ω s.t. G(Γ, t) = 0. (2.1)

The solution of this problem by Fourier series and by Kelvin’s method of images give us two
equivalent expansions:

G(x, y; t, τ) =

∞
∑

n=1

e−n2π2(t−τ)2 sin(nπx) sin(nπy) (2.2)

=

∞
∑

n=−∞

(

e−(x−y−2n)2/4(t−τ)

√

4π(t− τ)
− e−(x+y−2n)2/4(t−τ)

√

4π(t− τ)

)

(2.3)

These expansions converge with different rates in different time intervals. The Fourier rep-
resentation converges faster at distant times (from the current evaluation time), whereas the
method of images representation converges faster at closer times. This motivates splitting of
heat potentials into two parts,

V [f ] = VF [f ] + VL[f ] =

∫ t−δ

0

∫

Ω

Gf +

∫ t

t−δ

∫

Ω

Gf. (2.4)



Heat equation in domains with moving boundaries 5

Here δ is a parameter that determines the error in truncating both the series in equation (2.3).
The operator VF will be termed as the far part; and VL will be termed as the local part. The
exact same decomposition is also valid for single and double-layer potentials, with f being
replaced by the boundary density φ.

2.1. Truncating the series. In 1D the boundary γ of the domain ω corresponds to two
points b1 and b2. Then the far part of the double layer potential simplifies to

DF [φ] =
∞
∑

n=1

2
∑

k=1

(−1)k 2nπ sin(nπx)

∫ t−δ

0

cos(nπbk)e−n2π2(t−τ)φ(bk, τ)dτ. (2.5)

The error in truncating the series (2.5) after p terms can be bounded from above as fol-
lows,

EF (p) =

∣

∣

∣

∣

∣

DF [φ] −
p
∑

n=1

2
∑

k=1

(−1)k 2nπ sin(nπx)

∫ t−δ

0

cos(nπbk)e−n2π2(t−τ)φ(bk, τ)dτ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=p+1

2
∑

k=1

(−1)k 2nπ sin(nπx)

∫ t−δ

0

cos(nπbk)e−n2π2(t−τ)φ(bk, τ)dτ

∣

∣

∣

∣

∣

≤ 4|φ|∞
∞
∑

n=p+1

∣

∣

∣

∣

∣

∫ t−δ

0

nπe−n2π2(t−τ)dτ

∣

∣

∣

∣

∣

= 4|φ|∞
∞
∑

n=p+1

∣

∣

∣

∣

∣

e−n2π2δ − e−n2π2t

nπ

∣

∣

∣

∣

∣

≤ 4|φ|∞
π(p+ 1)

∞
∑

n=p+1

e−n2π2δ ≤ 4|φ|∞
π(p+ 1)

e−(p+1)2π2δ

∫ ∞

0

e−π2x2δdx

=
2|φ|∞

π
√
πδ(p+ 1)

e−(p+1)2π2δ.

The local part expansion represents the influence of Gaussian pulses initiated at t = 0
and located at {x− 2n, 2n− x}∞n=−∞. The value of a Gaussian pulse evaluated at a distance
2r
√
t from its center would be of the order e−r2

√
t

. Hence, if the boundary γ is a distance
d away from the boundary of the unit box Γ, then the error in approximating the Green’s
function by just the first term (n = 0) is of the order e−d2/δ

√
δ

. Then, the local part of the
double layer is

DL[φ] =

∫ t

t−δ

∫

γ(τ)

x− y

4[π(t− τ)]3/2
e−

(x−y)2

4(t−τ) φ(y, τ)dτ + O
(

e−d2/δ

δ3/2

)

. (2.6)

2.2. Fast evaluation of the far part. A direct evaluation of DF [φ] at M × N points
in space and time requires O(N 2Mp) computations. Optimal complexity of O((M + p)N)
can be achieved by using the fast algorithms in [4] and [6]. We briefly summarize these
algorithms here. Let

φ̂n(τ) =

∫

γ(τ)

∂ sin(nπy)

∂n(y)
φ(y, τ)ds(y) = nπ (cos(nπb2)φ(b2, τ) − cos(nπb1)φ(b1, τ)) ,

(2.7)

Cn(t, δ) = 2

∫ t−δ

0

e−n2π2(t−τ)φ̂n(τ) dτ. (2.8)



6 S. K. VEERAPANENI AND G. BIROS

Then,

DF [φ](x, t) =

p
∑

n=1

Cn(t, δ) sin(nπx). (2.9)

The Fourier coefficients can be updated with constant work per time–step using the following
recurrence,

Cn(t+ 4t, δ) = e−n2π24tCn(t, δ) + 2

∫ t+4t−δ

t−δ

e−n2π2(t+4t−τ)φ̂n(τ)dτ. (2.10)

This recurrence is the key step that eliminates the history dependence of the far part. Once
we have computed the Cn coefficients, we can evaluate (2.9) using the inverse NUFFT.

2.3. Optimal splitting of the heat potentials. In this section we briefly comment on
the selection4 of the parameters associated with the splitting of the heat potentials to a far and
local part. If we retain p terms in the far part expansion and if δ = l4t, the overall complexity
of computing D[φ] is W = O(N(M + p) log p+MNl). For each target point, the local part
computation involves integrating over l time steps, hence the local part evaluation contributes
O(MNl) to W . For fixed constants (c1, c2), we set p = c1

√
M and l =

⌈

c2 log M
N4t

⌉

to obtain
W = O(MN logM), which is off from being optimal only by a logarithmic factor. For
this choice of parameters (assuming exact evaluation of the far and near integrals) the error
estimates due to the splitting are given by

EF (M,N) = O
(

(

N

M logM

)1/2

e−
π2c2

1
c2M log M

N

)

EL(M,N) = O
(

(

N

logM

)3/2

e−
d2N

c2 log M

)

.

(2.11)

Therefore, both errors are exponentially converging as M and N are increased. For instance
if N = M = 256, by choosing c1 = 2.5, c2 = 0.1, both EF , EL are less than 10−15 and for
this choice we get p = 40, δ ≈ 0.0022 .

Next we describe our construction of recursive product integration rules for the local and
far parts.

3. Quadratures. In this section, we compute the moments Ik(α) as defined by ‘(1.8)
for the kernels: e−αθ, e−

α
θ√
θ
, e−

α
θ√

θ3
and then show how they can be used to compute the time

integrals in DL and DF . First, we review some basic properties of Chebyshev polynomials.
For x ∈ [−1, 1] , the closed–form expression for the nth-order Chebyshev polynomial Tn(x)
is given by:

Tn(x) = cos(n cos−1 x). (3.1)

The Chebyshev polynomials Tn(x) are orthogonal w.r.t the inner–product defined by:

〈f(x), g(x)〉 =

∫ 1

−1

f(x)g(x)√
1 − x2

dx. (3.2)

4The discussion here is important only in the asymptotic limit i.e., when the size of the time step is small. But
for significantly large time-step discretizations, we can just fix the parameters p, δ such that δ < 4t and such that
the truncation errors are within the required accuracy. This would suffice to obtain optimal complexity.



Heat equation in domains with moving boundaries 7

The nth-order Chebyshev coefficient of f(x) denoted by f(n) can be computed by taking
inner–product with Tn(x).

f(n) =

∫ 1

−1

f(x)Tn(x)√
1 − x2

dx =
cn
π

∫ π

0

f(cos θ) cosnθ dθ =
cn
2π

∫ 2π

0

f(cos θ) cosnθ dθ,

(3.3)

where c0 = 1 and ck = 2 for k ≥ 1. (3.4)

Now as the function f(cos θ) is 2π–periodic, we can use FFT or the fast cosine transform
to compute {f(n)}q−1

n=0 in O(q log q) time. Also, we will use the following properties of
Chebyshev polynomials:

Tn(x) = 2xTn−1(x) − Tn−2(x), and
∫

Tn =
1

2

(

Tn+1

n+ 1
− Tn−1

n− 1

)

+ C.

For more details on the properties of Chebyshev polynomials, we refer to [18]; a review on
spectral methods for solving PDEs using the Chebyshev polynomials can be found in [24].

3.1. Recurrence relations. The idea of computing the integrals through the approxima-
tion of the integrand by Chebyshev polynomials and then computing the moments of smooth
functions by recurrences was first used by Clenshaw and Curtis [3]. Consider integrating a
smooth function f(x) in the interval (0, 1),

I =

∫ 1

0

f(x)dx =

q−1
∑

n=0

f(n)

∫ 1

0

Tn(2x− 1)dx =

q−1
∑

n=0

f(n)In,

where In =

∫ 1

0

Tn(2x− 1)dx =

[

Tn+1(2x− 1)

n+ 1
− Tn−1(2x− 1)

n− 1

]1

0

.

One can easily show that evaluation of this will yield:

In =

{

0 n is odd,
− 1

n2−1 otherwise. (3.5)

Similarly we can derive the recurrences for computing the moments Ik(α) =
∫ 1

0
K(α, θ)Tk(θ)

for a variety of kernels K. In the Appendix we give recurrences for the singular kernels θ−γ

for γ ∈ (−∞, 1) and log θ. As the approximation of f(θ) by Chebyshev polynomials is
super-algebraically convergent, the error in the computation of the integral I(α) is approach-
ing zero exponentially (numerical examples can be found in Section 6). Now we discuss the
computation of integral operators that will arise while evaluating the heat potentials. Let us
consider

I(α) =

∫ 1

0

√
α√
θ3
e−

α
θ f(θ) dθ, and J(α) =

∫ 1

0

1√
θ
e−

α
θ f(θ) dθ. (3.6)

In the limit any generic quadrature rule will converge to the correct value of I and J with its
optimal convergence rate . The quality of the approximation, however, will be nonuniform
in the value of α. In fact, the constants deteriorate dramatically with small α. As a result, I
and J become very difficult to compute accurately; a generic rule will require thousands of
points—even for a few digits of accuracy. This is because the kernel becomes sharply peaked
for smaller values of α, see Figure 3.1.



8 S. K. VEERAPANENI AND G. BIROS

0 0.2 0.4 0.6 0.8 1
x 10−3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

θ

K(
α,

θ)

α 

α = 2x10−4 

α = 10−4 

α = 1.5x 10−3 

FIG. 3.1. Kernel K(α, θ) =
√

α√
θ3

e−
α
θ for different values of α. The kernel becomes sharply peaked

as α decreases, so an accurate evaluation of (3.6) by generic quadratures requires an excessive number
of points.

This poses a challenge for Nyström-type methods as one would need to develop special-
ized quadratures for different values of α. Instead, we are using a Chebyshev approximation
of f and derive recurrence relations to compute the moments In. In this way, given α, we can
compute all In with O(q) work.

First we compute the base condition for the recurrence.

I0(α) =

∫ 1

0

√
α√
θ3
e−

α
θ dθ = 2

∫ ∞

√
α

e−z2

dz =
√
πerfc(

√
α).

Then, we compute higher moments by

In(α) =

∫ 1

0

√
α√
θ3
e−

α
θ Tn dθ =

∫ 1

0

√
α√
θ3
e−

α
θ [2(λθ + η)Tn−1 − Tn−2] dθ,

⇒ In(α) = 2λ
√
αJn−1 + ηIn−1 − In−2, (3.7)

where Jn−1(α) =

∫ 1

0

1√
θ
e−

α
θ Tn−1 dθ = 2λ

∫ 1

0

√
θe−

α
θ Tn−2 dθ + 2ηJn−2 − Jn−3.

Integrating by parts, we get:

2λ

∫ 1

0

√
θe−

α
θ Tn−2 dθ = Cn −

∫ 1

0

(

1

2
√
θ

+
α√
θ3

)

e−
α
θ

(

Tn−1

n− 1
− Tn−3

n− 3

)

dθ.

Substituting this back in the expression for Jn−1, we obtain the following recurrence:

Jn−1(α) =
2n− 2

2n− 1

(

Cn − 2n− 7

2n− 6
Jn−3 + 2ηJn−2 −

√
α

(

In−1

n− 1
− In−3

n− 3

))

, (3.8)



Heat equation in domains with moving boundaries 9

where Cn = e−α

(

Tn−1(λ+ η)

n− 1
− Tn−3(λ+ η)

n− 3

)

. (3.9)

Using (3.8) we can compute Jn−1(α), from which In(α) can be computed using equation
(3.7). Now we establish the recurrences for the kernel e−αθ.

In =

∫ 1

0

e−αxTn(λx + η) dx,

=

[

e−αx

2λ

(

Tn+1

n+ 1
− Tn−1

n− 1

)]1

0

+

∫ 1

0

[

e−αx

2λ

(

Tn+1

n+ 1
− Tn−1

n− 1

)]

,

⇒ In+1 = cn+1 + (n+ 1)

(

2λ

α
In +

In−1

n− 1

)

where cn+1 =
n+ 1

α

[

e−αx

(

Tn+1

n+ 1
− Tn−1

n− 1

)]1

0

.

(3.10)

The recurrences (3.8) and (3.10) are numerically unstable5 in the forward direction. More
specifically, we get a dominant solution rather than a minimal 6 solution for these recurrences,
which prohibits us from computing higher-order moments (see [17] for more details). Since
we use a qth-order piecewise polynomial approximation of µ(θ) we need to ensure that the
recurrences are stable up to n = q.

Remark. The more sharply peaked the integration kernel is the more stable the recur-
rences are and thus, the higher the order of moments that we can compute accurately. For
example, the kernel e−αθ is sharply peaked for higher values of α.

For α � 1, instead of using the recurrence (3.10), we use e−αx =
∑p

k=0(−1)k (αx)k

k!
and the recurrences given in the Appendix (8.1) to compute

In =

∫ 1

0

e−αxTn dx =

p
∑

k=0

(−α)k

k!
Mnk, where Mnk =

∫ 1

0

xkTn dx; (3.11)

here p is chosen such that αp

p! < ε, the required accuracy.
The numerical instability is a property of the recurrence relation; different recurrences

like (3.5) and the ones given in the Appendix for the kernels 1
θγ for γ ∈ (−∞, 1) and log θ

are unconditionally stable.

3.2. Heat kernels. Using the recurrences derived here, we now develop product inte-
gration rules for the time integrals of far and near parts of the double layer.

a) Far part. To compute Cn(t+4t, δ) using the recurrence (2.10), we have to compute

Un[φ̂] =

∫ t+4t−δ

t−δ

e−n2π2(t+4t−τ)φ̂n(τ) dτ. (3.12)

5There are algorithms that can be used for stabilizing these recurrences, see for example [25]. The length of
the domain ω (which is less than 1) sets an upper bound on the parameter α in the recurrences (3.7, 3.8). Based on
this upper bound, we have obtained a global eighth-order accurate method without resorting to any such recurrence–
stabilizing algorithms. In general, it is possible to get arbitrary order of accuracy by stabilizing the recurrences.

6If we take two linearly independent solutions fn and gn of a three term recurrence yn+1 +anyn +bnyn−1 =
0, then fn is called a minimal solution if fn/gn → 0 as n → ∞; gn is then termed as the dominant solution.
Adding any multiple of fn to gn would give us another dominant solution, but the minimal solution is always
unique.



10 S. K. VEERAPANENI AND G. BIROS

As n increases, the kernel becomes sharply peaked, prohibiting the use of smooth quadra-
ture rules to compute (3.12). Instead, we use the recurrences. We compute the Cheby-
shev coefficients of φ̂n(τ) in the interval7 (t − δ, t + 4t − δ), then we have φ̂n(τ) =
∑q−1

k=0 φ̂n(k)Tk

(

2
4t (τ − t+ δ) − 1

)

. By setting τ = t+ 4t− θ4t− δ we obtain

Un[φ̂] = 4te−n2π2δ

q−1
∑

k=0

φ̂n(k)

∫ 1

0

e−(n2π24t)θTk(−2θ + 1) dθ =

q−1
∑

k=0

φ̂n(k)Enk . (3.13)

For a fixed step size 4t we can precompute

Enk = 4te−n2π2δ

∫ 1

0

e−(n2π24t)θTk(−2θ + 1), n = 1, .., p, k = 1, .., q. (3.14)

This precomputation is done in an optimal O(pq) time using the recurrence (3.10) with α =
n2π24t and the scaling parameters λ = −2, η = 1.

b) Local part. The local part approximation of the double layer potential is given by

DL[φ] =
2
∑

k=1

(−1)k

∫ t

t−δ

x− bk
4[π(t− τ)]3/2

e−
(x−bk)2

4(t−τ) φ(bk, τ)dτ. (3.15)

Let

DLbk
[φ] = (−1)k

∫ t

t−δ

x− bk
4[π(t− τ)]3/2

e−
(x−bk)2

4(t−τ) φ(bk, τ)dτ. (3.16)

Then,

dblL[φ] = DLb1
[φ] + DLb2

[φ]. (3.17)

Setting θ = t−τ
δ and substituting α = (x−bk)2

4δ we get

DLbk
[φ] =

1

2
√
π

∫ 1

0

√
α√
θ3
e−

α
θ φ(bk, t− δθ) dθ. (3.18)

Similarly to the far part case, we compute the Chebyshev coefficients8 of φ(bk, τ) for τ ∈
(t− δ, t). Then we use the recurrence relations (3.7) together with (3.8) to compute (3.18).

4. The overall algorithm for a stationary boundary. So far we have presented 1) an
integral equation formulation for (1.1); 2) a near-far decomposition in time of the volume
and layer potentials; and 3) quadratures for convolutions of functions (defined in terms of
Chebyshev polynomials) for singular or nearly singular kernels, and in particular heat kernels.
Next we describe how we can combine these techniques to efficiently solve (1.1) on stationary
boundaries. In a nutshell, we compute the volume potentials ui(x, t) and uf (x, t) using the
formulas (1.5), solve the integral equation (1.7) for the double-layer density φ(γ, t), and use
(1.6) to compute ub(x, t).

7Here we assume δ = l4t. We have the Chebyshev coefficients of φ̂n(τ) at each time interval ∆t (see Section
4). If δ < 4t, we use the recurrence (3.10) with modified scaling factors (λ, η) instead of computing the Chebyshev
coefficients in the interval (t − δ, t + 4t − δ).

8If δ = l4t, we need to loop through the l time intervals, each of which has a Chebyshev polynomial represen-
tation of φ(bk, τ). On the other hand, if δ < 4t, we compute (3.18) from the polynomial representation of φ(bk, τ)
in the interval (t −4t, t).



Heat equation in domains with moving boundaries 11

4.1. Evaluation of the volume potentials. We will need two additional algorithms.
Computing Fourier coefficients for the far part. We need a fast algorithm for computing

the sine transforms ŵ, and f̂(τ) used in V0,F [w] and VF [f ]:

ŵn =

∫

Ω

w(y) sin(nπy) dy; f̂n(τ) =

∫

Ω

f(y, τ) sin(nπy) dy, n = 1, . . . , p. (4.1)

We assume that both f and w are given in regular grid points in space time. If f and w are
periodic then (4.1) can be computed using FFTs. Otherwise, we use the high-order hybrid
Gauss trapezoidal rules developed in [1]. The advantage of using those rules is that, except
for a few Gaussian nodes, all the other quadrature nodes are on regular grid. Then if ng is
the number of Gaussian nodes and M is the number of trapezoidal nodes, the complexity
of computing the discretization of (4.1) can be reduced from O((M + ng)p) to O((M +
p) logM + png) using FFT.

Fast Gauss Transform. We need an accurate and fast evaluation of the Gauss transform
defined by,

Gσ [µ](x) =
1√
πσ

∫

Ω

e−
(x−y)2

σ µ(y) dy. (4.2)

Using quadrature rules to discretize (4.2) and applying fast Gauss transform [7] on the result-
ing discrete sum, the complexity of computing Gσ at M points in space using M quadrature
points is reduced from O(M 2) to O(M). But through this approach, uniform high-order con-
vergence would not be possible for smaller values of σ, since the Gaussian becomes sharply
peaked. So, to get the expected convergence with optimal complexity, we proceed as follows:

• We divide Ω into M/qs uniform cells, each of size lC ; qs is defined below.
• In each cell we use a fixed number of quadrature nodes qs. One way to chose qs is

to ensure that a Gaussian of support equal to the size of cell can be resolved using
qs points.

• An approximate support of a Gaussian is given by 2r
√
σ, where r is such that

e−r2

< ε and ε is desired accuracy. If 2r
√
σ > lC , we use FGT to compute Gσ

at the M target points. Since there are M sources the complexity is O(M).
• If 2r

√
σ < lC we compute Gσ directly: we truncate the domain of integration from

Ω to the support (x− r
√
σ, x+ r

√
σ) and use qs quadrature points to discretize the

integral. The forcing term at these points is computed using an appropriate high-
order interpolation. The complexity is O(M).

4.1.1. Initial condition volume potential. The kernelG(x, y, t) is approximated by the
truncated Fourier series expansion if t > δ, and the Kelvin expansion otherwise. Hence,

ui(x, t) =

{

G2t[w](x), if t ≤ δ,
∑p

n=1(2e
−n2π2tŵn) sin(nπx), otherwise. (4.3)

The transform G2t[w] is evaluated using the aforementioned strategy with a quadrature rule
of order q. The inverse NUFFT is used to compute the discrete sum in (4.3) for t > δ.

4.1.2. Distributed forcing volume potential. The evaluation of (1.5), is split into a far
part (0, t− δ) and a local part (t− δ, t). At time interval (t, t+ 4t) the evaluation of the far
part VF [f ] involves the following steps:

• Computation of the Chebyshev coefficients for each of {f̂n(τ)}p
n=1 by evaluating

(4.1) (using quadrature rules in space) at the Chebyshev nodes belonging to (t −
δ, t+ 4t− δ).



12 S. K. VEERAPANENI AND G. BIROS

• For n = 1, . . . , p, computation of the updateUn[f̂ ] as defined in (3.12) using Cheby-
shev recurrences developed in section (3).

• Update of {Cn}p
n=1 using Cn(t+ 4t, δ) = Cn(t, δ) + 2Un[f̂ ].

• Evaluation of the discrete sum VF [f ](x, t+ 4t) =
∑p

n=1 Cn(t+ 4t, δ) sin(nπx)
at the target points using the inverse NUFFT.

The local part of uf (x, t) denoted by VL[f ], is given by

VL[f ](x, t) =

∫ t

t−δ

∫

Ω

e−
(x−y)2

4(t−τ)

√

4π(t− τ)
f(y, τ)dy dτ. (4.4)

Setting σ2 = t − τ and noting that outside the interval (x − 2rσ, x + 2rσ), the Gaussian
decays exponentially fast to zero, we obtain

VL[f ](x, t) ≈
∫

√
δ

0

g(σ) dσ, where g(σ) =
1√
π

∫ x+2rσ

x−2rσ

e−
(x−y)2

4σ2 f(y, t− σ2)dy. (4.5)

By substituting y = x+2ξσ, we get g(σ) = 2σ√
π

∫ r

−r
e−ξ2

f(x+2ξσ, t−σ2)dξ; the integrand
is smooth and hence, g(σ) is a smooth function in σ. Then, we use a high-order quadrature
rule of order q to integrate g(σ) i.e., VL[f ](x, t)] =

∑q
k=1 wkg(σk), where wk , σk are the

quadrature weights and nodes respectively. Notice that g(σk) = 2σkG2σk
[f ](t− σ2

k) at each
σk. Hence, the optimal strategy for computing the Gauss transform discussed previously can
be used for the accurate computation of g(σk).

4.2. Computation and Evaluation of the boundary double layer potential. To eval-
uate ub(x, t), we first need to compute the density φ(γ, t) by solving (1.7). At each time
step, we incrementally solve (1.7) for the Chebyshev coefficients of φ(b1, t) and φ(b2, t). Let
φ(b1, n), φ(b2, n) denote the corresponding nth-order Chebyshev coefficients. Then, for any
τ ∈ [t, t+ 4t], we have:

φ(bk, τ) =

q−1
∑

n=0

φ(bk, n)Tn

(

2

4t (τ − t) − 1

)

, k = 1, 2.

Since we require q Chebyshev coefficients at each point on the boundary, we need to solve
(1.7) at q collocation nodes {t + ti}q

i=1. The natural choice of the collocation nodes are
the zeros of qth-order Chebyshev polynomial defined in the interval [t, t + 4t]. Then the
transformation between physical and spectral space can be performed using FFT. In addition,
interpolation at the Chebyshev nodes gives rise to a stable approximation of the interpolated
function.

The Chebyshev nodes are given by

ti =
4t
2

(

1 + cos
π(i− 1)

q

)

, i = 1, . . . , q. (4.6)

Integral equation (1.7) can be rewritten as

−1

2
φ(x, t + ti) +

∫ t+ti

t

∫

γ

∂G(x, t+ ti; y, τ)

∂n(y)
φ(y, τ)ds(y)dτ =

ub(x, t+ ti) −
∫ t

0

∫

γ

∂G(x, t+ ti; y, τ)

∂n(y)
φ(y, τ)ds(y) dτ, ∀x ∈ γ.

(4.7)



Heat equation in domains with moving boundaries 13

The resulting finite-dimensional linear equation is Kφh = r, where

φh = [φ(b1, 0), . . . , φ(b1, q − 1), φ(b2, 0), . . . , φ(b2, q − 1)]
T
. (4.8)

Assuming δ ≥ 4t, the entries of K are given by K =

[

A B
B A

]

,

where Aij = −1

2
Tj−1

(

2

4t ti − 1

)

, i, j = 1, . . . , q, (4.9)

Bij =

∫ t+ti

t

b2 − b1
4[π(t− τ)]3/2

e−
(b2−b1)2

4(t−τ) Tj−1

(

2

4t (τ − t) − 1

)

dτ. (4.10)

The entries of B can be computed using recurrences on In(α) =
∫ 1

0

√
α√
θ3
e−

α
θ Tn(λθ + η)dθ.

The operatorK is well-conditioned and can by “inverted” using a matrix-free GMRES.9 The
integration of the history part of double layer on the right-hand side of (4.7), denoted by Dh,
is split into (0, t+ ti − δ) and (t+ ti − δ, t). The first interval integral is

p
∑

n=1

(

e−n2π2tiCn(t, δ) + 2

∫ t+ti−δ

t−δ

e−n2π2(t+ti−τ)φ̂(τ) dτ

)

sin(nπx). (4.11)

We use the local part expansion of the kernel for the second interval. The time integration in
both intervals is performed using the product integration rules discussed in Section 3. Since,
the coefficients Cn are updated at each time-step, r can be computed with constant work per
time-step. Then ub(x, t) can be evaluated at the target M spatial locations using the formula
(1.6) and the fast summation method for the double layer described in Section 2.

4.3. Summary of the overall scheme for stationary boundaries. The overall algo-
rithm is summarized in Algorithm 1. The output of the algorithm is u(x, t) at the target
points. The input is

• parameters: A fixed time-step ∆t, and an error tolerance ε.
• boundary conditions: In each time interval (t, t + 4t), the boundary data at the

collocation nodes g(bk, t+ ti), i = 1, .., q.
• distributed force: The forcing f at points belonging to a regular grid of sizeM×N

imposed on Ω × [0, T ].
• initial condition: w at M regular points on Ω.

Since we use special quadrature points to compute the volume integrals (4.1), f and w are
evaluated using high-order interpolation schemes; for example, FFT combined with B-splines
can be used [27].

The overall complexity of the algorithm is O(MN logM). Below we discuss the differ-
ent sources for errors in the final solution.

• Truncating the series expansion for the Green’s function in the near and far parts.
These have been shown to be exponentially convergent with increasing M,N .

• The order of the Chebyshev polynomials used for approximating the density φ in
each time interval.

• The quadrature rule used for the computing the spatial integrals (4.1) and time inte-
gral (4.5).

By approximating φ with (q − 1)th-order Chebyshev polynomials and picking a quadrature
rule of order q to perform the space and time integration for the volume potentials, we get an
qth order method. In Section 6, we present results that validate our scheme.

9Given a fixed time step 4t, we can precompute the inverse K−1 once, and subsequently solve for φh by just
one matrix vector multiplication, K−1r. This is can be done efficiently only in 1D and for static boundaries.



14 S. K. VEERAPANENI AND G. BIROS

Algorithm 1 Overall algorithm for stationary boundaries
INITIALIZATION
Choose p and l using (2.11)
Compute E (3.14) using (3.10)
Compute ŵn and set Cn = 2e−n2π2(l−1)4tŵn, n = 1 . . . p O((M + p) logM)
Compute ti using (4.6)
Compute K−1 O(q3)

TIME MARCHING
for j = 1 : N do
If j < l, l = j first l time steps: δ = j4t

SOLVE FOR THE BOUNDARY DENSITY
loop over boundary nodes
for k = 1 : 2 do

Loop over time-collocation nodes
for i = 1 : q do
tc = (j − 1)4t+ ti
rk(i) = g(bk, tc) − V [f ](bk, tc) − V0[w](bk, tc) O(M), using FGT
rk(i) = rk(i) −Dh[φ](bk , tc)

end for
end for
φh = K−1r

EVALUATION AND UPDATE
Local part
u(xk, j4t) = VL[f ](xk , j4t), k = 1 . . .M O(M)
u(xk, j4t) = u(xk, j4t) + DL[φ](xk , j4t), k = 1 . . .M O(Mq)
if j < l then

Initial Condition
u(xk, j4t) = u(xk, j4t) +Gj4t[w](xk), k = 1 . . .M O(M)

else
Far part
for n = 1:p do
Compute Un[φ̂+ f̂ ]((j − 1)4t) using (3.12)
Cn = e−n2π24tCn + 2Un[f̂ + φ̂]

end for O(pq + p)
u(xk, j4t)+ =

∑p
n=1 Cn sin(nπxk), k = 1 . . .M O((M + p) logM)

end if
end for

5. Moving boundary. Now we will describe the methodology for solving (1.1) for
boundaries with a prescribed motion. By linearity, we decompose the solution into three
parts: u = ui + uf + ub. The three parts correspond to the solutions of an initial-value
problem (1.2), a inhomogeneous problem with homogeneous boundary conditions (1.3), and
a homogeneous problem with inhomogeneous boundary conditions (1.4). The motion of the
boundary ω(t) is assumed to be contained within the unit box Ω, hence the solutions ui(x, t)
and uf (x, t) are given by (1.5). At any point x inside the domain ω(t) we assume that
ub(x, t) = D[φ](x, t). As G(x, t; y, τ) satisfies the adjoint equation (2.1) and the potential



Heat equation in domains with moving boundaries 15

ub satisfies the heat equation, the initial condition ub(x, 0) = 0 is satisfied by construction.
To satisfy the prescribed boundary conditions on γ(t), we need to compute the jumps in the
double layer as x → γ(t). The conditions have been derived before, for example, see [21]
and [10]. We have included their derivation for completeness. We first discuss the computa-
tion of double-layer potential at a point away from the boundary and then we give the jump
conditions.

To evaluate the double layer, we split it into a local and a far part: D[φ] = DL[φ]+DF [φ].
We first discuss the local part computation. We rewrite the local part as DL[φ] = DLb1

[φ] +
DLb2

[φ], with each term being defined as in (3.16) but using the time-dependent boundaries.
Let’s look at computingDLb2

[φ](x, t) defined by

DLb2
[φ] =

∫ t

t−δ

x− b2(τ)

4[π(t− τ)]3/2
e−

(x−b2(τ))2

4(t−τ) φ(b2(τ), τ)dτ (5.1)

Setting τ = t− δθ , x−b2(τ)

2
√

δ
= β(θ) , and φ(b2, t− δθ) = ψ(θ) we get

DLb2
[φ] =

1

2
√
π

∫ 1

0

β(θ)√
θ3
e−

β2(θ)
θ ψ(θ) dθ. (5.2)

Unlike the static boundary case, we cannot directly use the recurrences (3.7, 3.8) to compute
(5.2) as β is not a constant. Instead, we rewrite (5.2) as

DLb2 =
1

2
√
π

∫ 1

0

e−
β2
0

θ

√
θ3

{β(θ)Eβ(θ)ψ(θ)} dθ, where Eβ(θ) = e−
β2

−β2
0

θ , (5.3)

and β0 = β(0). The kernel in this expression is similar to the static boundaries case (3.18).
Therefore, we first compute the Chebyshev coefficients of the function βEβψ and then use
the recurrences (3.7, 3.8) with α = β2

0 to compute (5.3).
Remark. Assuming β(θ) is sufficiently smooth, it is easy to see that Eβ is also smooth:

by expanding β(θ) about θ = 0 using Taylor’s series as β(θ) =
∑∞

k=0 βkθ
k, we can see that

Eβ(θ) is of the form e−
P

∞

k=0 ckθk .
Similarly, the single layer potential is calculated by rewriting it as

SLb2
[φ] =

1

2
√
π

∫ 1

0

e−
β2(θ)

θ

√
θ

ψ(θ) dθ =
1

2
√
π

∫ 1

0

e−
β2
0

θ

√
θ

{Eβψ(θ)} dθ, (5.4)

and using the recurrence (3.8). Now let us examine the limit as the evaluation point x ap-
proaches the boundary. As x → b2(t), the constant term in the Taylor’s expansion of β(θ)

given by β0 = x−b2(t)

2
√

δ
approaches zero.

Proposition 5.1: We define the single layer potential as SL[f ](β0) =
∫ 1

0
e−

β2
0

θ√
θ
f(θ) dθ

and the double layer potential as DL[f ](β0) =
∫ 1

0 β0
e−

β2
0

θ√
θ3
f(θ) dθ. Then, SL[f ] is continu-

ous as β0 → 0, whereas DL[f ] sustains a jump equal to f(0).

lim
β0→0−

SL[f ] = lim
β0→0+

SL[f ] =

∫ 1

0

f(θ)√
θ
dθ, (5.5)

lim
β0→0−

DL[f ] = −1

2
f(0), lim

β0→0+
DL[f ] =

1

2
f(0). (5.6)



16 S. K. VEERAPANENI AND G. BIROS

We give a proof of this proposition in appendix B. In the case of static boundaries, using
this proposition, we arrived at the Volterra system (1.7). For moving boundaries, clearly the
proposition cannot be applied directly, since β is not constant. Here, we write the double
layer potential defined in (5.2) as follows,

DLb2
=

1

2
√
π

∫ 1

0

e−
β2
0

θ

√
θ

{(

β(θ) − β0

θ

)

Eβψ(θ)

}

dθ +
1

2
√
π

∫ 1

0

β0e
− β2

0
θ

√
θ3

{Eβψ(θ)} dθ.
(5.7)

Let us define Fβ(θ) = β(θ)−β0

θ . Using Taylor’s series (and assuming sufficient smooth-
ness), we have Fβ(θ) =

∑∞
k=1 βkθ

k−1. Therefore, Fβ(θ) is smooth, independent of β0 and
limθ→0 Fβ(θ) = β1, where β1 = − ḃ(t)

2
√

δ
. We denote the first integral in (5.7) by S̃Lb1

; it
is a single layer potential with constant β0 and hence it is continuous as β0 → 0. By the
proposition 5.1, the second integral approaches − 1

2Eβ(0)ψ(0) as β → 0−. We can show that
limθ→0β0→0

Eβ(θ) = 1. The Volterra system that we obtain for moving boundaries is given
by,

−1

2
φ(x, t) +

∫ t

0

∫

γ(τ)

∂G(x, t; y, τ)

∂n(y)
φ(y, τ) ds(y) dτ = ub(x, t), ∀x ∈ γ(τ). (5.8)

In the case of static boundaries, the Volterra equation (1.7) at the boundary point b1 at time t
can be written as

(

−1

2
I + DFb1

+ Db2

)

[φ](b1, t) = ub(b1, t), (5.9)

since the local part of the double layer, DLb1
[φ](b1, t) → − 1

2φ(b1, t). The far part does not
contribute to the jump in the double layer. From (5.7), we can show that the Volterra equation
in the case of moving boundaries at (b1(t), t) is given by,

(

−1

2
I + DFb1

+ S̃Lb1
+ Db2

)

[φ](b1(t), t) = ub(b1(t), t), (5.10)

We can verify that as the boundary motion becomes negligible, (5.10) leads to (5.9): β(θ) →
β0 and limβ(θ)→β0

S̃Lb
[φ](b(t), t) = 0 as the function Fβ(θ) → 0 since βk → 0 for all

{βk}∞k=1.
We now summarize the changes in the algorithm described in Section 4, which are nec-

essary for moving boundary problems. At each time step, we solve (5.8) for the Chebyshev
coefficients of φ(b1(t), t) and φ(b2(t), t) using GMRES. Assuming φ(b2, t) is given, our aim
is to solve the resulting algebraic system after discretizing the operator equation (5.10) by col-
location at nodes ti. Starting with an initial guess {φn(b1)}q−1

n=0, we first compute φ0(b1, ti)
at the collocation nodes in time ti by inverse FFT. Computing the left hand side of (5.10) in-
volves computing three operators at (b1, ti) : the far part DFb1

[φ], the local part of the single
layer S̃Lb1

[φ] and the double layer Db2 [φ].
• As with the static case, the far part DFb1

[φ](b1, t) is computed by storing and updat-
ing {Cn(t, δ)}p

n=1 and evaluating (2.9). The only difference is that the boundaries
are time dependent in the definition of φ̂n(τ).

• To compute S̃Lb1
[φ](b1, ti), we need to evaluate the function Fβ(θ)Eβ(θ)ψ(θ) in

(5.7). Let

φS̃(t, τ) =
b1(t) − b1(τ)

2(t− τ)
e−

(b1(t)−b1(τ))2

4(t−τ) φ(b1(τ), τ), (5.11)



Heat equation in domains with moving boundaries 17

then

S̃Lb1
[φ](b1(ti), ti), =

∫ ti

ti−δ

G (b1(ti), b1(ti); ti, τ)φS̃(ti, τ) dτ

=

∫ ti

ti−δ

φS̃(ti, τ)
√

4π(ti − τ)
dτ.

To compute the Chebyshev coefficients {φS̃(ti, n)}q−1
n=0, we evaluate φS̃(ti, τ) at the

collocation nodes {tj}q
j=1 (which also are the Chebyshev nodes). Note that when

τ → t, we have limτ→t φS̃(t, τ) = −ḃ1(t). Then, we evaluate S̃Lb1
[φ](b1(ti), ti)

using the recurrence (3.8) with appropriate scaling factors and α = 0.
• To compute Db2 [φ], we split it into a far and a local part. The local part is computed

by rewriting it as in (5.3) with β0 = b1(ti)−b2(ti)

2
√

δ
.

Once we solve for the Chebyshev coefficients of φ(b1, t) and φ(b2, t) the potential ub is
evaluated at all target locations using (1.6). The asymptotic complexity and accuracy of the
algorithm is the same with the stationary case.

6. Numerical results. In this section we illustrate the accuracy of the quadrature scheme
described in Section 3 for different kernels. Then, we present numerical results for solving
the heat equation (1.1).

6.1. Quadratures. We compare the hybrid quadratures of Alpert [1] with the Cheby-
shev spectral method. First we compute the following integral:

∫ 1

0

cos(200x)s(x) + cos(200x+ 0.5) dx (6.1)

for the functions s(x) = 0, s(x) = 1√
x
, s(x) = log x. The recurrence relations for computing

the moments Ik =
∫ 1

0
s(x)Tk(2x−1)dx are given in the Appendix. We report relative errors

for both Chebyshev method and for the quadrature methods in [1] for convergence orders 4,
8, and 16.

p 4 8 16 Chebyshev
64 2.66e-01 7.85e-02 1.01e-03 4.21e-03
96 5.83e-02 2.03e-03 3.04e-06 6.39e-03

128 1.75e-02 4.18e-05 2.16e-08 1.11e-09
160 6.72e-03 7.87e-06 1.48e-11 5.66e-14
192 3.05e-03 2.50e-06 2.37e-11 8.32e-14
224 1.56e-03 6.50e-07 3.28e-12 2.33e-13
256 8.75e-04 1.74e-07 5.00e-13 3.88e-14
288 5.25e-04 4.95e-08 6.00e-13 2.04e-13

TABLE 6.1
In this table we report a numerical comparison between our method and the quadrature rules

proposed in [1] for convergence orders 4, 8, and 16. Relative errors in computing the integral (6.1) for
the case s(x) = 0, p indicates the number of Chebyshev coefficients or the total number of points used
in the quadrature rule.

We now present numerical results for evaluating the following integral for two different
functions f(x),

J(α) =

∫ 1

0

e−
α
x

√
x
f(x) dx. (6.2)



18 S. K. VEERAPANENI AND G. BIROS

p 4 8 16 Chebyshev
64 6.42e-02 1.98e-03 7.17e-06 3.87e-04
96 5.53e-03 2.19e-05 2.14e-09 5.73e-04

128 4.74e-04 1.02e-06 2.06e-12 1.00e-10
160 5.27e-05 1.92e-09 1.18e-13 2.50e-14
192 8.35e-05 1.40e-08 2.44e-15 2.01e-14
224 6.09e-05 4.78e-09 2.57e-14 2.53e-14
256 4.04e-05 1.50e-09 1.74e-15 6.99e-15
288 2.66e-05 4.94e-10 2.62e-14 2.88e-14

TABLE 6.2
Relative errors in computing the integral (6.1) for the case s(x) = 1√

x
.

p 4 8 16 Chebyshev
64 4.46e-02 2.52e-02 4.96e-05 4.31e-03
96 7.84e-03 8.83e-04 2.03e-07 8.07e-03

128 3.97e-03 1.09e-05 9.53e-10 1.53e-09
160 1.79e-03 4.25e-06 6.93e-12 5.88e-14
192 8.76e-04 1.20e-06 4.04e-13 3.16e-14
224 4.66e-04 2.99e-07 1.01e-14 8.93e-14
256 2.67e-04 7.82e-08 6.79e-16 1.76e-14
288 1.62e-04 2.16e-08 3.65e-14 3.68e-14

TABLE 6.3
Relative errors in computing the integral (6.1) with s(x) = log x.

The relative errors in computing (6.2) using two different methods are presented in tables
(6.4) and (6.5). One is to use the Nyström’s method with the quadrature nodes and weights of
the singular kernel x−1/2 and the other is to approximate the function f(x) using Chebyshev
polynomials and then using the recurrence relations (3.8). In table (6.4), we can see that
the relative error is high in the case of Nyström’s method even if we take as many as 512
points. This can be expected as the behavior of the heat kernels is different from x−1/2. So
we need to develop separate quadrature rules. Developing such quadratures for each value
α is not practical. Instead, we can compute {In(α)}p

n=1 for each α in O(p) work using the
recurrence relations (3.8). For the same functions f1(x) and f2(x), we evaluate the integrals

N 4 8 12 16 20 512
q = 4 1.87e-01 1.09e-02 8.31e-03 6.36e-03 4.78e-03 3.64e-04

Chebyshev 1.38e-03 8.59e-06 2.17e-16 2.17e-16 2.17e-16 2.17e-16
TABLE 6.4

Relative errors in computing the double-layer heat potential with density f1(x) = 1 + x10 and
α = 2×10−4. Here N indicates the number of quadrature nodes or the order of Chebyshev polynomials
used to approximate the function f(x); q denotes the order of singular quadrature rule used. Observe
that the error in the case of quadrature doesn’t reduce as O(N−q) whereas in the second case the error
reaches machine precision for N > 10. Recall that the smaller the α the more difficult the computation
of the heat kernel becomes.

I(α) =

∫ 1

0

√
αe−

α
x

√
x3

f(x) dx. (6.3)



Heat equation in domains with moving boundaries 19

0 100 200 300
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 s(x) = 0

N

Re
la

tiv
e 

Er
ro

r

0 100 200 300
10−15

10−10

10−5

100 s(x) = x−1/2

N
0 100 200 300

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 s(x) = log x

N

4th

8th

16th

C

FIG. 6.1. Plot of the relative errors given in Tables 6.1, 6.2 and 6.3 w.r.t p, the number of the
Chebyshev modes used. As the number of quadrature points is increased, we observe that the quadrature
error gets reduced by a constant multiple, whereas in the case of Chebyshev approximation, the error
decays exponentially.

N 16 20 24 28 32 36
q = 16 2.94e-01 7.75e-02 7.64e-02 7.53e-02 7.46e-02 7.39e-02

Chebyshev 3.34e-04 2.16e-06 5.75e-09 7.51e-12 4.00e-15 1.20e-15
TABLE 6.5

Relative errors in computing (6.2) with the function f2(x) = cos(20x) and α = 2 × 10−4. The
16th-order singular quadrature rule from [1] is used.

6.2. The heat equation: stationary boundaries. In this section we report results for
the diffusion problems in domains with static boundaries. In all the examples, the domain ω
is taken to be [0.4, 0.6], δ = 10−3, and the total time T = 0.1; N indicates the number of
time steps and q the number of Chebyshev polynomials used to approximate the functions in
the boundary integrals at each time step. We report the l∞ error evaluated at M spatial points
and N time levels in Tables (6.7) and (6.8) for two different analytic solutions.

6.3. The heat equation on domains with moving boundaries. Here, we present nu-
merical results for the solution of the heat equation on domains with prescribed boundary
motion. The boundary position, as a function of time, is given by b1(t) = 0.4 + s1(t) and
b2(t) = 0.6 + s2(t). We present results for three different motions of the boundary for
which the functions s1(t) and s2(t) are defined in Table 6.10. The motion of the boundary is
depicted in Figure 6.3.



20 S. K. VEERAPANENI AND G. BIROS

N 4 8 16 32 64
f1(x) 7.38e-02 3.61e-04 3.75e-16 1.25e-16 1.25e-16
f2(x) 2.62e-01 5.32e-01 2.61e-03 6.84e-14 2.50e-16

TABLE 6.6
Relative errors in computing I(α) defined by (6.3) using recurrences for the functions f1(x) =

1 + x10 and f2(x) = cos(20x), for α = 2 × 10−8.

60 80 100 120 140 160 180 200 220 240
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

N

Re
la

tiv
e 

Er
ro

r

1
x−1/2

log x
KI(α,θ)
KJ(α,θ)

FIG. 6.2. Relative error plot (logarithmic scale) versus the number of Chebyshev modes N used for
approximating the function f(x) = cos(200x) in computing the integral I(α) =

R

1

0
K(α, x)f(x) dx

for the kernels 1, x−1/2, log x and for the heat kernels
√

α√
x3

e−
α
x , e

−
α
x√
x

with α = 2 × 10−4. The
integration errors follow the approximation error of the function f(x). We can observe that once f(x)
is resolved, the integration is accurate to machine precision—independently of the kernel in which we
used in the integration.

Example 1: Prescribed Neumann conditions. We solve the homogeneous heat equation
with Neumann boundary conditions given by ∂u

∂x (bk, t) = 2e−4t cos(2bk(t)), and an ini-
tial condition given by u(x, 0) = sin(2x). For this problem the exact solution is given by
u(x, t) = e−4t sin(2x). We report l∞-norm errors of our numerical approximation scheme
in Tables 6.11, 6.13, and 6.14. We have used a direct formulation that results in a well-
conditioned integral equation. We solve this problem for the three cases of boundary motion.
At each time step, we sample the numerical and exact solution at a uniformly spaced spatial
grid. We report the maximum of the absolute error values over all time steps and spatial
points. We observe optimal convergence rates for all three cases.

Example 2: Prescribed Dirichlet data. In this second example we solve a heat equation
problem with distributed forces and prescribed Dirichlet boundary conditions:

∂u

∂t
= 4u+ 4 cos(2x) cos(100t)− 100 cos(2x) sin(100t) in ω(t), (6.4)

and u(x, 0) = cos(2x), u(bk(t), t) = cos(2bk(t)) cos(100t). (6.5)



Heat equation in domains with moving boundaries 21

N = M 2 4 8 16 32 64
q = 4 4.62e-02 1.01e-03 5.34e-05 3.03e-06 2.66e-07 2.11e-08
q = 6 1.72e-03 7.09e-05 4.15e-06 1.62e-07 1.39e-09 4.94e-11
q = 8 4.36e-04 7.86e-06 3.33e-07 1.05e-08 1.71e-11 5.36e-13

TABLE 6.7
We report l∞–norm errors for the solution of the heat equation with an exact solution given by

u(x, t) = e−10
2t sin(10x). In this example we solve a problem with Neumann boundary conditions and

zero distributed forces. We compute the numerical solution using a direct integral equation formulation
that results in a well-conditioned Volterra equation.

N 2 4 8 16 32 64
q = 4 7.16e-01 1.28e-04 3.54e-05 2.41e-06 1.51e-07 1.17e-08
q = 6 8.27e-01 8.10e-06 7.80e-07 6.72e-08 1.08e-09 2.92e-11
q = 8 7.75e-01 3.74e-07 8.38e-08 3.40e-09 2.46e-11 3.34e-13

TABLE 6.8
In this table we report l∞-norm errors for the heat equation (1.1) problem with an analytic solution

given by u(x, t) = cos(100x) cos(200t) and a corresponding non-zero distributed force. We consider
Dirichlet boundary conditions and an indirect double-layer formulation. We use eight quadrature points
in computing the volume integrals in (4.1).

N 2 4 8 16 32 64
q = 4 0.8 1.3 2.6 5.3 10.3 21.1
q = 6 1.0 1.7 3.3 6.0 12.9 26.3
q = 8 1.3 2.3 4.0 8.0 16.0 32.6

TABLE 6.9
Representative running times for the example in Table 6.8. Notice that only the relative increase

is important here, as the code is implemented in MATLAB and has not been optimized. The following
observations can be made: first, the computation time grows linearly with N; second, for a fixed N, the
computation time increases by a constant factor as the order q is increased.

case s1(t) s2(t)
i 0.01 sin(100πt) 0.01 sin(100πt)
ii 0.005 sin(150πt) 0.02 sin(150πt)
iii 0.02 sin[10π sin(2πt)] 0.02 sin[10π cos(2πt)]

TABLE 6.10
Test cases for the boundary motion.

0   0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x

b2(τ) 

b1(τ) 

τ 

(a) case (i)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

τ

x

b2(τ) 

b1(τ) 

(b) case (ii)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

τ

x

b2(τ) 

b1(τ) 

(c) case (iii)

FIG. 6.3. Plot of test cases for the boundary motion.



22 S. K. VEERAPANENI AND G. BIROS

N = M 2 4 8 16 32 64
q = 4 1.85e-01 1.00e-01 8.59e-03 3.28e-04 1.72e-05 9.42e-07
q = 6 1.37e-01 9.85e-03 2.08e-04 4.90e-06 3.80e-08 1.47e-09
q = 8 6.36e-02 6.13e-04 9.96e-06 3.39e-08 2.62e-10 9.01e-13

TABLE 6.11
l∞–norm errors for the solution of example 1 with the ω(t) varying in time as given in case (i).

N = M 2 4 8 16 32 64
q = 4 0.80 1.27 2.60 4.94 10.34 21.47
q = 6 1.19 2.32 4.49 8.83 17.84 36.86
q = 8 1.92 3.58 7.14 13.71 27.81 56.25

TABLE 6.12
CPU times for the example in (6.11)

.

The exact solution for this problem is given by u(x, t) = cos(2x) cos(100t). We report l∞
errors, computed as in the case of the other examples, in Tables 6.15, 6.16, and 6.17. Again,
we observe optimal convergence rates.

7. Conclusions. We have presented an extension of the Greengard & Strain algorithm
[6] for the fast solution of the heat equation with moving boundaries. Our main contribution is
the introduction of the product integration quadrature and a scheme for moving boundaries.
Our approach results in a high-order scheme in both space and time. We presented results
for the Neumann and Dirichlet problems with distributed forces. In all cases the accuracy
and efficiency of the proposed scheme is verified— even in the case of highly oscillatory
boundary motions. Optimal complexity has been achieved by using the fast Gauss transform
and nonuniform FFT. Also, our method can be extended to variable-coefficient and nonlinear
problems by introducing a volume density for which we have to solve.

A shortcoming of our method is that it has a complex implementation. A second, more
important drawback is that high-order accuracy can be achieved for sufficiently smooth data
only (forces, boundary conditions, and boundary motion). For certain applications, in partic-
ular industrial ones, this can be a quite restrictive assumption. For general non-smooth data
the high-order properties of our scheme will be lost.

We are currently working on extending this work to higher dimensions. As we mentioned
in the introduction, all algorithmic choices extend to higher dimensions: the product quadra-
ture rules, the Chebyshev approximation (using adaptive, tensor products), the kernel splitting
for the local and far part, and the approximations in the case of prescribed boundaries. The
most significant complication is the fact that the boundary of the target domain becomes an
infinite dimensional manifold. Boundary convolution with the heat kernel requires additional
algorithmic machinery. Although one can outline the extensions of the method in higher
dimensions, such a task is difficult when one wants to preserve work optimality and high
accuracy. Finally, the assumption that f and w are defined everywhere is restrictive; in most
practical applications the data will be only defined on a regular grid, or at random points.
Smooth extensions and design of special quadrature rules for such data is not trivial. We are
currently working on addressing some of these issues and we will report our work in a future
paper.

8. Appendix A. Here, we give recurrence relations to compute Ik =
∫ 1

0
σ(θ)Tk(2θ −

1)dθ for the singular kernels σ1(θ) = θ−γ for any γ ∈ (−∞, 1) and σ2(θ) = log(θ). These



Heat equation in domains with moving boundaries 23

N = M 2 4 8 16 32 64
q = 4 1.31e+00 1.00e+00 9.83e-02 4.81e-03 2.50e-04 1.35e-05
q = 6 3.00e+00 1.42e-01 7.39e-03 2.13e-04 2.37e-06 9.67e-08
q = 8 6.23e-01 3.11e-02 7.22e-04 7.20e-06 7.37e-08 2.06e-10

TABLE 6.13
l∞–norm errors for the solution of example 1 with the ω(t) varying in time as given in case (ii).

N = M 16 32 64 128 256 512
q = 4 1.49e+000 4.09e-02 7.65e-03 2.44e-04 1.42e-05 5.98e-07
q = 6 6.93e-02 3.71e-03 2.02e-04 2.21e-06 1.64e-08 6.48e-10
q = 8 8.73e-03 8.07e-04 2.70e-06 5.76e-08 2.79e-10 5.51e-13

TABLE 6.14
l∞–norm errors for the solution of example 1 with the ω(t) varying in time as given in case (iii),

with T = 1.

recurrences are unconditionally stable.

In = − n

n+ 1 − γ

(

2

n(n− 2)
+ 2In−1 +

n− 3 + γ

n− 2
In−2

)

n > 2, for σ1(θ). (8.1)

In =
n

n+ 1

(

Cn − 2In−1 −
n− 3

n− 2
In−2

)

n > 2, for σ2(θ), (8.2)

where Cn =

{

0 n is odd,
− 6

n4−4n3+n2+6n otherwise.

9. Appendix B. Proof of the direct formulation: The Leibniz rule for differentiating
the volume integral, also called the Reynold’s transport theorem states that for any function
q(x, t) defined in Ω(t),

d

dt

∫

Ω(t)

qdΩ =

∫

Ω(t)

∂q

∂t
dΩ +

∫

γ(t)

q(v.n)dγ,

where v is the velocity of the boundary. Substituting q = Gu, we get

d

dt

∫

Ω(t)

GudΩ =

∫

Ω(t)

∂G

∂t
u+G

∂u

∂t
+

∫

γ(t)

Gu(v · n)dγ

=

∫

Ω(t)

∂G

∂t
u+G(4u+ b) +

∫

γ(t)

Gu(v · n)

=

∫

Ω(t)

(

∂G

∂t
+ 4G

)

u+Gb+

∫

γ(t)

(

G
∂u

∂n
− u

∂G

∂n

)

+Gu(v · n).

Integrating both sides from 0 to t and using G(x, y, t, t) = 0 for any t, we get,

−
∫

Ω0

Gw =

∫ t

0

∫

Ω(τ)

[−δ(x, t)u+Gb] +

∫ t

0

∫

γ(τ)

(

G
∂u

∂n
− u

∂G

∂n

)

+Gu(v · n),



24 S. K. VEERAPANENI AND G. BIROS

N 2 4 8 16 32 64
q = 4 2.19e-02 5.24e-03 2.20e-03 5.55e-05 4.54e-06 4.15e-07
q = 6 2.29e-03 1.54e-03 1.05e-04 2.50e-06 5.39e-08 4.33e-10
q = 8 3.27e-03 5.04e-04 8.82e-06 9.07e-08 1.28e-10 7.83e-13

TABLE 6.15
l∞–norm errors for the solution of example 2 with the ω(t) varying in time as given in case (i).

N 4 8 16 32 64 128
q = 4 2.04e-02 1.58e-02 4.94e-04 3.47e-05 2.71e-06 8.48e-08
q = 6 1.29e-02 3.36e-03 2.56e-05 8.92e-07 1.00e-08 1.64e-10
q = 8 2.30e-03 4.54e-04 2.49e-06 6.40e-09 3.85e-11 2.54e-13

TABLE 6.16
l∞–norm errors for the solution of example 2 with the ω(t) varying in time as given in case (ii).

⇒ u(x, t) =

∫

Ω0

Gw +

∫ t

0

∫

Ω(τ)

Gb +

∫ t

0

∫

γ(τ)

(

G
∂u

∂n
− u

∂G

∂n

)

+Gu(v · n). (9.1)

Jump conditions:a) Defining I(β0) =
∫ 1

0
e−

β2
0

θ√
θ
f(θ) dθ, we have to prove:

lim
β0→0−

I(β0) = lim
β0→0+

I(β0) =

∫ 1

0

1√
θ
f(θ) dθ. (9.2)

Proof: Consider the sequence of functions gn defined as gn = e−
β2

n
θ with the sequence

βn chosen such that limn→∞ βn = 0. Clearly |gn| ≤ 1 and gn → 1 pointwise almost
everywhere. The result follows by Lebesgue’s dominated convergence theorem. b) Assuming
that f(θ) is uniformly continuous in θ ∈ (0, 1), we need to prove:

lim
β0→0+

I(β0) =
1

2
f(0); lim

β0→0−

I(β0) = −1

2
f(0) where I(β0) =

β0

2
√
π

∫ 1

0

e−
β2
0

θ

√
θ3
f(θ) dθ.

(9.3)
Proof: We split the integral into two parts: I(β0) = I1(β0) + I2(β0). The integrals I1 and I2
are defined as follows.

I1 =
β0f(0)

2
√
π

∫ 1

0

e−
β2
0

θ

√
θ3

dθ =
β0

2 |β0|
Erfc(β0)f(0). (9.4)

∴ lim
β0→0−

I1(β0) = −1

2
f(0) and lim

β0→0+
I(β0) =

1

2
f(0). (9.5)

I2 =
1

2
√
π

∫ 1

0

e−
β2
0

θ

√
θ3

(f(θ) − f(0)) dθ =
1√
π

∫ ∞

β0

e−σ2

(

f

(

β2
0

σ2

)

− f(0)

)

, (9.6)

by the change of variables σ = β0√
θ

. Now breaking the interval of integration into two parts
(

β0,
√
β0

)

and
(√
β0,∞

)

, we see that as β0 → 0 the integral of the first interval vanishes.



Heat equation in domains with moving boundaries 25

N 32 64 128 256 512 1024
q = 4 2.54e-01 4.85e-03 5.52e-04 6.69e-05 6.41e-06 4.21e-07
q = 6 1.01e-01 7.57e-04 3.54e-05 7.14e-07 1.23e-08 2.10e-10
q = 8 2.07e-02 3.67e-05 1.85e-06 2.09e-09 1.24e-11 4.28e-14

TABLE 6.17
l∞–norm errors for the solution of example 2 with the ω(t) varying in time as given in case (iii),

the total time here is T = 1.

The integral of the second interval, σ ≥
√
β0 ⇒

∣

∣

∣

β2
0

σ2

∣

∣

∣
≤ |β0|. Since f(θ) is uniformly

continuous, we can choose δ such that
∣

∣

∣
f(

β2
0

σ2 ) − f(0)
∣

∣

∣
< ε whenever |β0| < δ. Thus,

lim
β0→0

|I2(β0)| < lim
ε→0

ε

2
√
π

∫ ∞

√
β0

e−σ2

dσ = 0. (9.7)

REFERENCES

[1] B. K. ALPERT, Hybrid Gauss-trapezoidal quadrature rules, SIAM Journal on Scientific Computing, 20
(1999), pp. 1551–1584.

[2] K. BRATTKUS AND D. I. MEIRON, Numerical simulations of unsteady crystal-growth, Siam Journal On
Applied Mathematics, 52 (1992), pp. 1303–1320.

[3] C. W. CLENSHAW AND A. R. CURTIS, A method for numerical integration on an automatic computer,
Numerische Mathematik, 2 (1960), pp. 197–205.

[4] A. DUTT AND V. ROKHLIN, Fast fourier transforms for nonequispaced data, SIAM Journal on Scientific
computing, 14 (1993), pp. 1368–1393.

[5] LESLIE GREENGARD AND PATRICK LIN, Spectral approximation of the free–space heat kernel, Applied and
Computational Harmonic Analysis, 9 (2000), pp. 83–97.

[6] L. GREENGARD AND J. STRAIN, A fast algorithm for the evaluation of heat potentials, Communications on
Pure and Applied Mathematics, XLIII (1990), pp. 949–963.

[7] , The fast Gauss transform, SIAM Journal on Scientific and Statistical Computing, 12 (1991), pp. 79–
94.

[8] IBANEZ M.T.AND POWER H., An efficient direct bem numerical scheme for phase change problems using
fourier series, Computer Methods in Applied Mechanics and Engineering, 191 (2002), pp. 2371–2402.

[9] T. HASEGAWA AND T. TORII, An automatic quadrature for cauchy principal value integrals, Mathematics
of Computation, 194 (1991), pp. 741–754.

[10] JINGFANG HUANG, MING-CHIH LAI, AND YANG XIANG, An integral equation method for epitaxial step-
flow growth simulations, Journal of Computational Physics, 216 (2006), pp. 724–743.

[11] V. ROKHLIN J. MA AND S. WANDZURA, Generalized Gaussian quadrature rules for systems of arbitrary
functions, SIAM Journal on Numerical Analysis, 34 (1996), pp. 971–996.

[12] S. KAPUR AND V. ROKHLIN, High-order corrected trapezoidal rules for singular functions, SIAM Journal
on Numerical Analysis, 34 (1997), pp. 1331–1356.

[13] RAINER KRESS, Linear Integral Equations, Applied Mathematical Sciences, Springer, 1999.
[14] PATRICK PO-YEN LIN, On the numerical solution of the heat equation in unbounded domains, PhD thesis,

New York, NY, USA, 1993.
[15] R. PIESSENS, Computing integral transforms and solving integral equations using chebyshev polynomial

approximations, Journal of Computational and Applied Mathematics, 121 (2000), pp. 113–124.
[16] R. PIESSENS AND M. BRANDERS, Numerical-solution of integral-equations of mathematical physics, using

Tschebyscheff polynomials, Journal of Computational Physics, 21 (1976), pp. 178–196.
[17] WILLIAM H. PRESS, SAUL A. TEUKOLSKY, WILLIAM T. VETTERLING, AND BRIAN P. FLANNERY, Nu-

merical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, NY,
USA, 1992.

[18] T. J. RIVLIN, Chebyshev Polynomials, Wiley–Interscience, 1990.
[19] V. ROKHLIN, End-point corrected trapezoidal quadrature rules for singular functions, Computers and Math-

ematics with Applications, 20 (1990), pp. 51–62.
[20] J. A. SETHIAN AND J. STRAIN, Crystal-growth and dendritic solidification, Journal of Computational

Physics, 98 (1992), pp. 231–253.
[21] J. STRAIN, Linear-stability of planar solidification fronts, Physica D, 30 (1988), pp. 297–320.



26 S. K. VEERAPANENI AND G. BIROS

[22] , Fast potential theory. II. Layer potentials and discrete sums, Journal of Computational Physics, 99
(1992), pp. 251–270.

[23] , Fast adaptive methods for the free–space heat equation, SIAM Journal on Scientific Computing, 15
(1994), pp. 185–206.

[24] L. N. TREFETHEN, Spectral Methods in Matlab, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[25] JET WIMP, Computation with Recurrence Relations, Pitman Advanced Pub. Program, 1984.
[26] N. YARVIN AND V. ROKHLIN, Generalized Gaussian quadratures and singular value decompositions of

integral operators, SIAM Journal on Scientific Computing, 20 (1998), pp. 699–718.
[27] YING, LEXING AND BIROS, GEORGE AND ZORIN, DENIS, A high-order 3D boundary integral equation

solver for elliptic PDEs in smooth domains, Journal of Computational Physics, 219 (2006), pp. 247–275.
[28] M. ZERROUKAT AND L. C. WROBEL, A boundary element method for multiple moving boundary problems,

Journal of Computational Physics, 138 (1997), pp. 501–519.


