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Abstract

We present a fast and accurate algorithm for evaluating singular integral operators on smooth
surfaces that are globally parametrized by spherical coordinates. Problems of this type arise,
for example, in simulating Stokes flows with particulate suspensions and in multi-particle scat-
tering calculations. For smooth surfaces, spherical harmonic expansions are commonly used for
geometry representation and the evaluation of the singular integrals is carried out with a spec-
trally accurate quadrature rule on a set of rotated spherical grids. We propose a new algorithm
that interpolates function values on the rotated spherical grids via hybrid nonuniform FFTs.
The algorithm has a small complexity constant, and the cost of applying the quadrature rule is
nearly-optimal O(p4 log p) for a spherical harmonic expansion of degree p.

Keywords: Spherical harmonics; boundary integral equations; singular quadrature; interpolation;
non-uniform FFT.

Mathematical Subject Classifications: 45B05, 65R20, 65T40.

1 Introduction

Evaluating layer potentials is a common task that arises while solving boundary value problems
via the classical potential theory. The single-layer potential, for instance, is given by

S[f ](x) =
∫

Γ
G(x,y)f(y) dΓ(y), (1)

where G is the Green’s function (or fundamental solution), f is the density and Γ is the boundary.
The Green’s functions are known in closed analytic form for linear partial differential equations
(PDEs) with constant coefficients, for example, G(x,y) = 1/4π||x− y|| for the Laplace equation.
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In this article, we are interested in fast and accurate algorithms for computing layer potentials
when the boundary Γ is smooth and topologically equivalent to a sphere. One particular application
of interest is the numerical simulation of interfacial flows involving bubbles, vesicles or capsules
[15]. For these problems, one needs to evaluate (1) on the surface of a deforming particle with
the Stokesian fundamental solution and a geometry-dependent interfacial force. For example, in
the case of bubble flows, f = Hn, where H is the mean curvature and n is the unit normal to Γ
[15]. In multiple particle simulations, when a suitable fast algorithm such as the Fast Multipole
Method (FMM) [9] is used to compute the nonlocal hydrodynamic interactions, evaluating (1) on
individual particles dominates the computational cost of interfacial flow simulations, [16]. Even a
modest acceleration in layer potential evaluation directly translates to faster simulations.

For a large class of interfacial problems, the deforming bodies are smooth. Spherical harmonic
representations are particularly well suited in this setting, both for representing geometry and func-
tion densities, and have been widely used in different applications [5, 23, 25]. Such representations
require relatively fewer degrees of freedom owing to their spectral accuracy. In collocation schemes,
it is also convenient to sample geometry information and function densities on the suitably chosen
set of discretization points. The standard discretization of the sphere is the “tensor product” of all
pairs (θj , φk) in the parametric domain, which are given by{

φk =
2πk

2p+ 2
, k = 0, . . . , 2p+ 1

}
and

{
θj = cos−1(tj), j = 0, . . . p

}
, (2)

where p is the approximation degree of the spherical harmonic expansion and tj ’s are the nodes
of the (p + 1)-point Gauss-Legendre quadrature on [−1, 1]. In this paper, we will refer to these
discretization nodes as the spherical Gaussian grid or simply as the spherical grid. The forward and
backward spherical harmonic transforms [18, 21] can be used to convert between the coefficients of
spherical harmonic representations and the values of function densities on the spherical grid with
O(p3) work.

If the target point x in (1) coincides with either the north or the south pole, the integrand is
non-singular in the parametric domain [1]. Using this fact, a quadrature rule has been developed in
[7] based on rotating the coordinate system so that the north pole of the rotated spherical harmonic
expansion is pointing to the target, then, an auxiliary spherical grid in the rotated coordinate system
is used for a quadrature rule to evaluate the singular integral. The process is then repeated for a
number of targets that are usually chosen to be the spherical grid points. The problem of finding
all such auxiliary grids can be summarized as follows:

Problem 1. Given the p-th order spherical harmonic representation of a function f and a spherical
grid of size O(p2), compute the values of f on O(p2) auxiliary rotated grids whose north pole
locations coincide with the original spherical grid points.

There are a number of numerical techniques for solving this problem. For small values of p,
a strategy is developed in [7] to rotate the spherical harmonic expansions with a computational
cost of O(p5). For a fixed geometry, the operators can be precomputed using O(p5) work and
O(p4) storage [6], and the cost of applying the operators is O(p4). For deforming geometries, the
precomputation step is required at every time step so the total computational cost remains O(p5).

For large values of p, a simple asymptotically optimal algorithm is to interpolate the input data
given at O(p2) points in the parametric domain to the O(p4) auxiliary points. The nonuniform
FFT (nuFFT) [3, 8, 11], can be used for this task which requires O((σp)2 log(σp) + | log 1/ε|2p4)
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work, where ε is the required precision, and σ is the oversampling parameter in the nuFFT algo-
rithm. While the asymptotic complexity of this scheme is optimal, the O(| log 1/ε|2) scaling of the
complexity constant limits its use in solving Problem 1 for practical problem sizes. For example,
following [8], if the dilated Gaussian window function is used with the oversampling parameter
σ = 2 and the spreading constant m set to 12 to achieve 12 digits of accuracy, then the com-
plexity constant is (2m + 1)2 = 625. This constant can further be reduced to 225 by using the
Kaiser-Bessel window, [11, 12, 13], for the same choice of oversampling and precision parameters,
but the scheme now requires expensive window function evaluations. In order to avoid that cost,
one can precompute all the necessary quantities and store them in a table at the expense of extra
storage. The storage costs scale like O(p4), if the full or tensor product precomputation is used.
As a workaround to potentially huge storage costs, a memory-efficient linear table lookup scheme
can be used [11, 14]. The storage cost for this scheme scales like O(2K), where K is a precision
dependent parameter, with only minor performance loss.

Regardless of the precomputation strategy, the generic interpolation process in two dimensions
requires O((2m+1)2) multiplications per evaluation point, where m is the spreading parameter that
depends on the precision required and the choice of window function. Even for modest precision
requirements of about 5 digits of accuracy, if the nearly optimal Kaiser-Bessel window function is
used with the reasonable choice of the oversampling parameter σ = 2 and the spreading constant
m set to 3, the corresponding complexity constant is 49. This is sometimes called the curse of
dimensionality [8]; without additional information about separability of interpolation directions in
two dimensions, the complexity constant is proportional to a square of the spreading parameter.

Key Idea. Our algorithm is based on a simple geometric observation, that for a collection of
regularly rotated tensor-product spherical grids, the O(p4) points to be interpolated are located on
O(p3) latitudes while uniformly spaced and shifted by latitude-dependent phases. The interpolation
is performed by applying the one dimensional nonuniform FFT along the meridians on a dense
intermediary O(p3)×O(p) tensor-product grid, which requires O(p(σp) log(σp)+ | log 1/ε|p4) work,
then, by shifting the dense grid data to the rotated grids via standard one dimensional FFTs with
O(p4 log p) work. It has a nearly optimal computational complexity of O(p4 log p) and, additionally,
the complexity constant is significantly smaller, compared to the two-dimensional interpolation
scheme, namely, we gain an extra factor ofO(| log 1/ε|). In particular, if the oversampling parameter
σ = 2 and 12 digits of accuracy is desired, the complexity constant is 25 for the Gaussian window,
and 15 for the Kaiser-Bessel window.

The paper is organized as follows. In Section 2, we first review spherical harmonic representa-
tions and spectral quadrature rules for singular integrals. Then, we present a standard numerical
algorithm for rotating spherical transforms and conclude the section with an acceleration technique
to improve its performance. In Section 3, a hybrid nuFFT based fast algorithm is developed for
applying the spectral quadrature rule, followed by numerical results and a brief discussion of future
work in Sections 4 and 5.

2 Mathematical Preliminaries

A spherical harmonic of degree n and order m is denoted by Y m
n and defined by

Y m
n (θ, φ) =

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ) eimφ, (3)
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where φ is the azimuthal angle of the target point with respect to the x-axis, θ is the polar angle
with respect to the z-axis, and Pmn are the associate Legendre functions, [2, 17]. Any scalar function
f on Γ can be expanded in terms of spherical harmonics as

f(θ, φ) =
∞∑
n=0

n∑
m=−n

fmn Y m
n (θ, φ), (4)

where the coefficients fmn are the moments of the expansion. For smooth functions, the finite-term
approximation of (4) given by

f(θ, φ) ≈
p∑

n=0

n∑
m=−n

fmn Y m
n (θ, φ) (5)

is superalgebraically convergent with p. Similarly, for a smooth geometry, the boundary Γ can be
conveniently described by a set of spherical harmonic coefficients xmn , so that for all x ∈ Γ, the
coordinate functions x(θ, φ) are approximated as

x(θ, φ) ≈
p∑

n=0

n∑
m=−n

xmn Y
m
n (θ, φ), (6)

θ ∈ [0, π], φ ∈ [0, 2π].

The area element W , needed for evaluation of surface integrals, can be computed from (6) as

xθ =
p∑

n=0

n∑
m=−n

xmn
∂

∂θ
Y m
n (θ, φ), xφ =

p∑
n=0

n∑
m=−n

xmn
∂

∂φ
Y m
n (θ, φ), (7)

W (θ, φ) = |xθ × xφ|. (8)

2.1 Spherical Grid Based Quadrature Rules

The moments fmn can be evaluated using the formula

fmn =
∫ π

0

∫ 2π

0
f(θ, φ)Y m

n (θ, φ) sin θ dθ dφ (9)

and a suitable numerical integration scheme. A standard choice is to use the trapezoidal rule along
φ-direction and Gauss-Legendre quadrature along θ-direction. For an approximation of degree p,
the spherical grid has 2p+2 equispaced nodes in the φ-direction and p+1 nodes along the θ-direction
given by (2). The numerical integration scheme for smooth functions is then given by∫

Γ
f(y) dΓ(y) ≈

p∑
j=0

2p+1∑
k=0

wjf(y(θj , φk))
W (θj , φk)

sin θj
, where wj =

2π
2p+ 2

λj (10)

and λj ’s are the Gauss-Legendre quadrature weights.
Now, we turn our attention back to the singular layer potential (1) which can be written in the

spherical coordinate basis as

S[f ](x) =
∫ π

0

∫ 2π

0
G(x,y(θ, φ)) f(y(θ, φ))W (θ, φ) dθ dφ. (11)
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If the target x lies on Γ, the rule (10) is inefficient for computing layer potentials because the
Green’s functions arising from linear constant-coefficient elliptic PDEs have 1/r type of singularity:

G(x,y) =


1

4π||x−y|| , Laplace,
1

4π||x−y||e
ik||x−y||, Helmholtz,

1
8π

[
1

||x−y||I + (x−y)⊗(x−y)
||x−y||3

]
, Stokes.

(12)

In the case of spherical grids, when x coincides with one of the poles where the area element
W is zero, however, the following theorem holds:

Theorem 1. (Quadrature rule for singular integrals at poles [6, 7, 23]). For any smooth function
f defined on a C∞ surface Γ globally parametrized by spherical coordinates (θ, φ), the quadrature
rule for computing the Laplace potential at the north-pole x(0, 0) given by

1
4π

∫
Γ

f(y)
||x(0, 0)− y||

dΓ(y) ≈ 1
4π

p∑
j=0

2p+1∑
k=0

wsj
||x(0, 0)− y(θj , φk)||

f(y(θj , φk))
W (θj , φk)

sin θj
, (13)

where

wsj = 8π wj
p∑

n=0

sin(θj/2)Pn(cos θj) , (14)

is superalgebraically convergent with p.

For an arbitrary target x ∈ Γ, we can simply rotate the coordinate system so that x becomes
a north pole and use Theorem 1 to evaluate S[f ](x). Both the function f and the coordinate
functions y need to be interpolated to the new spherical grid locations in the rotated coordinate
system. Since there are (p+1)(2p+2) = O(p2) points in the spherical grid (2), a näıve interpolation
would be O(p4). In practical applications, the layer potentials need to be evaluated at each of the
spherical grid points, giving rise to Problem 1 and requiring O(p6) work. This cost can be reduced
to O(p5) by using properties of spherical harmonic representations, which we discuss next.

2.2 Rotation of Spherical Harmonic Expansions

Suppose now that the pole of the spherical harmonic expansion needs to be rotated into the spherical
grid location (β, α). In the rotated system, the function f defined by (5) can be expressed as

f(θ′, φ′) =
p∑

n=0

n∑
m′=−n

fm
′

n (α, β, γ)Y m′
n (θ′, φ′), (15)

where (θ′, φ′) denote the coordinates of the point (θ, φ) in the rotated system,

fm
′

n (α, β, γ) =
n∑

m=−n
Dm′,m
n (α, β, γ) · fmn , (16)

and the standard Euler angles (α, β, γ) define the rotation using the z-y-z convention in a right-
handed frame [2, 17]. The coefficients of the transformation (due to Wigner [24]) are given by

Dm′,m
n (α, β, γ) = eimγ dm

′,m
n (β) eimα, (17)
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where

dm
′,m

n (β) = (−1)m
′−m[(n+m′)! (n−m′)! (n+m)! (n−m)!]1/2

∑
s

(−1)s

(
cos β2

)2(n−s)+m−m′ (
sin β

2

)2s−m+m′

(n+m− s)!s!(m′ −m+ s)!(n−m′ − s)!
, (18)

with the range of s determined by the condition that all factorials are non-negative.
In our context, we can fix γ = 0 without loss of generality because it does not affect the layer

potential evaluation. The Euler angles corresponding to spherical grid locations (θj , φk) defined in
(2) are then given by (φk, θj , 0), and the coefficients of the rotated spherical harmonic expansion
fm
′

n (φk, θj , 0) can be expressed as

fm
′

n (φk, θj , 0) =
n∑

m=−n
fmn · dm

′,m
n (θj) · eimφk . (19)

For a fixed location (θj , φk), the angle φk rotation about the z-axis in (17) is diagonal and requires
only O(p2) work. The angle θj rotation about the y-axis, however, requires O(p3) work even if
Wigner coefficients {dm

′,m
n (θj)} were known. Since there are O(p2) spherical grid locations, the

total work to evaluate the coefficients of the rotated spherical harmonic expansions is O(p5).
For a constant latitude θj , the spherical grids are sampled uniformly. The evaluation of sums

in (19) can be accelerated via the discrete FFT, since (19) becomes a discrete Fourier sum:

fm
′

n (φk, θj , 0) =
n∑

m=−n
fmn · dm

′,m
n (θj) · ei2πkm/(2p+2) for k = 0, . . . , 2p+ 1. (20)

The cost of evaluating sums (20) for one fixed latitude is O(p3 log p), and the total work for rotating
a spherical harmonic expansion to all new pole locations is O(p4 log p).

Once the coefficients of the rotated spherical harmonic expansions fm
′

n (φk, θj , 0) are constructed,
we can compute the function values on rotated grids via the Spherical Harmonic Transform (SHT)
[18]:

f(θj′k′;jk, φj′k′;jk) =
p∑

n=0

n∑
m′=−n

fm
′

n (φk, θj , 0)Pm
′

n (θj′) · eim
′φk′ (21)

=
p∑

m′=−p

 p∑
n=|m′|

fm
′

n (φk, θj , 0)Pm
′

n (θj′)

 · eim′φk′ , (22)

where (θj′k′;jk, φj′k′;jk) denotes the coordinates of the rotated spherical grid (θj′ , φk′) with the pole
location (θj , φk), where

θj′k′;jk = cos−1 zj′k′;jk, φj′k′;jk = tan−1 yj′k′;jk
xj′k′;jk

, (23)

and xj′k′;jk, yj′k′;jk, zj′k′;jk are the Cartesian coordinates of the rotated spherical grids: xj′k′;jk
yj′k′;jk
zj′k′;jk

 =

 cosφk − sinφk 0
sinφk cosφk 0

0 0 1

 cos θj 0 − sin θj
0 1 0

sin θj 0 cos θj

 cosφk′ sin θj′
sinφk′ sin θj′

cos θj′

 . (24)
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The evaluation of (22) can be decomposed into the associate Legendre transform

gm
′

jk (θj′) =
p∑

n=|m′|

fm
′

n (φk, θj , 0)Pm
′

n (θj′), (25)

and the Fourier transform

f(θj′k′;jk, φj′k′;jk) =
p∑

m′=−p
gm
′

jk (θj′) · eim
′φk′ . (26)

If the direct associate Legendre transform is used to evaluate (25), then the cost of evaluating
the spherical transform is O(p3) for one pole location and the total work of evaluating function
values at all the rotated grids is O(p5).

We introduce the following acronyms to facilitate further discussion:

• The direct rotation algorithm (19), followed by the direct SHT (22) will be referred to as the
direct spherical grid rotation (DSR) algorithm (see also [6], [7]).

• The FFT-accelerated rotation algorithm (20), followed by the direct SHT (22) will be referred
to as the FFT-accelerated spherical grid rotation (FSR) algorithm (see [20]).

The computational complexity of both algorithms is O(p5). The cost of DSR is dominated
by spherical harmonic expansion rotations, while the cost of FSR is dominated by the spherical
transforms. It is worth mentioning, that the fast spherical transform algorithms [18, 21, 22] would
lead to better asymptotic complexity of either O(p4 log2 p) by using the Driscoll-Healy type algo-
rithms [10, 13], or O(p4 log p) by using the Fast Multipole Method type schemes [19, 21, 22, 18]
to perform the associated Legendre transforms. Since the fast spherical transform algorithms as a
rule break-even with the direct SHT scheme only for very large values of p > 100 (see the review
paper [4] for details), we have not incorporated these accelerations into our codes.

3 Rotation of Spherical Grids via nonuniform FFTs

In this section, we introduce a new algorithm for spherical grid rotations that avoids performing
the spherical transforms and has a nearly optimal asymptotic complexity of O(p4 log p). We start
by observing that the problem of evaluating values of f on the rotated grids can be viewed as
an interpolation problem on the sphere. In order to perform interpolation efficiently, f can be
expanded into a Fourier series in the extended parametric domain θ ∈ [0, 2π], φ ∈ [0, 2π], and
evaluating values of the user-defined function on all grids (θj′k′;jk, φj′k′;jk) can then be done via the
nonuniform FFT, [3, 8, 11].

3.1 Hybrid nonuniform FFT (hnuFFT)

Suppose now that we have rotated the pole of the spherical grid into 2p+ 2 new constant latitude
locations (θj , φk), where θj is fixed and φk = 2πk/(2p + 2) for k = 0, . . . , 2p + 1. It is easy to see
from (23) and (24) that the k-th rotated grid can be obtained by rotating the grid corresponding
to the pole (θj , φ0) about the z-axis by angle φk, and that the coordinates are

θj′k′;jk = θj′k′;j0 and φj′k′;jk = φj′k′;j0 + φk. (27)
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Note, that the rotated grids can be aligned on great circles by setting the latitude dependent
phases φj′k′;j0 to zero (see Figure 1), effectively decoupling interpolation directions. This suggests
a hybrid interpolation algorithm which can be informally described by using a simple geometrical
interpretation. First, the function is interpolated on the great circles to a large number of points
located on constant latitudes θj′k′;j0 via one dimensional nonuniform FFTs, leading to a much
smaller associated complexity constant. Then, the interpolated points on great circles are shifted
by latitude dependent phases φj′k′;j0 back to the final rotated grid locations.

Figure 1: The two panels on the left depict the discrete points belonging to the union of 2p + 2
spherical grids for a fixed latitude (side and top view), p = 12. By setting the latitude dependent
phases φj′k′;j0 to zero, these seemingly random points can be aligned on the great circles, as depicted
on the right panels.

Algorithm: Rotation of spherical grids via hybrid nonuniform FFT (hnuFFT)

Given the p-th order spherical harmonic representation of a function f described by the spherical
harmonic expansion coefficients fmn

f(θ, φ) =
p∑

n=0

n∑
m=−n

fmn Y m
n (θ, φ), (28)

and a spherical grid (θj , φk), evaluate the values of f(θj′k′;jk, φj′k′;jk) on all auxiliary rotated grids
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whose north pole locations coincide with the original spherical grid points, where (θj′k′;jk, φj′k′;jk)
denotes the coordinates of the rotated spherical grid (θj′ , φk′) with the pole location (θj , φk).

1. Evaluate the Fourier coefficients:

(a) Form the auxiliary doubly periodic spherical Chebyshev grid (θDj , φ
D
k ) with 2p + 2 eq-

uispaced nodes in the φ-direction {φDk = 2πk
2p+2}

2p+1
k=0 and 2p+ 2 equispaced nodes in the

θ-direction {θDj = (2j+1)π
2p+2 }

2p+1
j=0 .

(b) Extend f into the doubly periodic parametric domain θ ∈ [0, 2π], φ ∈ [0, 2π] by using
the relation for smooth functions on great circles

fP (θ, φ) =

{
f(θ, φ), if 0 ≤ θ ≤ π,
f(2π − θ, φ+ π), if π ≤ θ ≤ 2π,

(29)

and evaluate the values fP (θDj , φ
D
k ) from the spherical harmonic expansion coefficients.

(c) Compute the Fourier coefficients f̂nm in the original coordinate system:

f̂nm =
2p+1∑
j=0

2p+1∑
k=0

fP (θDj , φ
D
k ) · e−inθ

D
j · e−imφD

k , (30)

for n = 0, . . . , 2p+ 1, m = 0, . . . , 2p+ 1.

2. Evaluate the sums:

f(θj′k′;jk, φj′k′;jk) =
1

(2p+ 2)2

2p+1∑
n=0

2p+1∑
m=0

f̂nm · einθj′k′;j0 · eimφj′k′;j0 · eimφk . (31)

(a) Apply the nonuniform adjoint FFT with respect to θ:

gm(θj′k′;j0) =
1

2p+ 2

2p+1∑
n=0

f̂nm · einθj′k′;j0 . (32)

(b) Apply the regular inverse FFT with respect to φ:

f(θj′k′;jk, φj′k′;jk) =
1

2p+ 2

2p+1∑
m=0

gm(θj′k′;j0) · eimφj′k′;j0 · eimφk . (33)

The arithmetic complexity of this algorithm is O(p2 log p+Mtotal + p4 log p), where the number
of points Mtotal = O(p4), therefore, the total work is O(p4 log p) for all rotated spherical grids. For
one fixed latitude θj , the computational cost is O(p3 log p) while using O(p3) intermediate storage.

In our implementation, we have also incorporated the following optimizations:

1. For real-valued functions, the Fourier coefficients have complex conjugate symmetries. There-
fore, only half of the coefficients gm(θj′k′;j0) need to be evaluated during Step 2a for each fixed
polar angle location θj′k′;j0, and the complex-valued FFT can be replaced with the real-valued
FFT during Step 2b.
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2. For better regular FFT performance, the number of angular discretization nodes on the
spherical grid can be set to the next nearest integer Np ≥ 2p+ 2 that is a multiple of either
2, 3, or 5. The second part of the algorithm can then be trivially adjusted to handle the
modified Gaussian spherical grids{

φk =
2πk
Np

, k = 0, . . . , Np − 1
}

and
{
θj = cos−1(tj), j = 0, . . . p

}
, (34)

where tj ’s are the (p + 1)-point Gauss-Legendre quadrature nodes, by applying the regular
inverse FFT with respect to φ to the oversampled angular grid

f(θj′k′;jk, φj′k′;jk) =
1
Np

Np−1∑
m=0

gm(θj′k′;j0) · eimφj′k′;j0 · eimφk . (35)

3. Finally, we note that nearly half of the following values (z-components of the rotated spherical
grid),

zj′k′;j0 = sin θj cosφk′ sin θj′ + cos θj cos θj′ , (36)

are duplicate because of the symmetry in cosφk′ when evaluated on the regular spherical
grid. Therefore, the sums gm(θj′k′;j0) in (32) need to be evaluated at half of the polar angle
locations only.

4 Numerical Results and Discussion

In this section, we analyze the performance of all the spherical grid rotation algorithms discussed
so far and an application of the quadrature rule (13) to a particular problem. All tests were
performed on a laptop with an Intel Core i7 2.2GHz processor and 32GB RAM using double
precision arithmetic.

Tables 1–2 report the results of applying the algorithms to real-valued functions f defined in
the parametric domain θ ∈ [0, π], φ ∈ [0, 2π] by the formula

f(θ, φ) =
p∑

n=0

n∑
m=−n

cn,m P
m
n (cos θ) · eimφ, (37)

where p is the degree of the spherical harmonic expansion, and cn,m are randomly generated complex
numbers such that their real and imaginary parts are in the interval [−1, 1], and cn,−m = cn,m, for
m > 0.

Comparing the performance of the rotation algorithms. In Table 1, we show the setup
parameters and precomputation times. The second and third columns contain the number of
angular discretization nodes and the total number of grid points used in the tests, respectively.

We used the nonuniform fast spherical transform scheme (available as a part of the publicly
available NFFT3 library [11], version 3.2.3) to test the nonuniform FFT interpolation in two dimen-
sions algorithm. The default library flags were used that correspond to the Kaiser-Bessel window
for the nonuniform FFT in two dimensions with the spreading constant set to 6 and the oversam-
pling parameter σ = 2, yielding approximately 10 digits of accuracy, with either tensor product
based precomputation (NFSFT1) or the memory-efficient linear table lookup scheme (NFSFT2).

10



The spreading window function values for all target grid locations on the sphere were precomputed
and stored in a tensor product lookup table to accelerate the subsequent calls to the NFSFT1
scheme. For the FSR and DSR schemes, we have precomputed and stored the elements of Wigner
rotation matrices for all latitudes of the original spherical grid. The fourth and fifth columns con-
tain the times to precompute the required quantities for the NFSFT1 and the DSR/FSR schemes,
respectively. No attempt has been made to accelerate the above precomputation steps. We do not
list the precomputation times for the NFSFT2 scheme, since the corresponding linear lookup table
depends only on a preset precision parameter and can be used for arbitrary grid configurations.

From this table, it is clear that the two-dimensional interpolation scheme NFSFT1 has large
precomputation and storage costs, proportional to O(p4). In fact, for values of p greater that 60,
the NFFT3 library failed to allocate memory required for the storage tables. For such cases, we
only list an estimate by calling the initialization routine for a set of grids corresponding to each
constant latitude separately. The precomputation and storage costs for the DSR and FSR schemes
are also proportional to O(p4) but with a much smaller constant.

In order to eliminate the precomputation and storage cost for the hnuFFT scheme, we used the
dilated Gaussian window with the spreading constant set to 12 with the oversampling parameter
σ = 2 to yield 12 digits of accuracy. The hnuFFT scheme was subsequently used without any
precomputation and, therefore, the initialization timings are omitted from Table 1.

In Table 2, we compare the performance of the new algorithm with the reference algorithms. In
the third and forth columns, we report the timings for rotations using the NFSFT1 and NFSFT2
schemes, respectively. The timings were performed using the precomputed tables. For values of
p greater that 60, the tensor product lookup table was not available for the NFSFT1 scheme due
to memory limitation reasons. For such values, we only give a timing estimate by calling the
routine for a set of grids corresponding constant latitudes separately and using partially precom-
puted lookup tables. The NFSFT2 scheme is slightly slower due to an additional cost during the
linear interpolation step. While the asymptotic behavior is nearly-optimal, the CPU timings for
both schemes are higher compared to other algorithms because of the relatively large complexity
constants.

Despite the higher asymptotic complexity, the DSR algorithm performs significantly better than
2D interpolation for all values p reported here. The FSR algorithm naturally is faster than the
DSR scheme since it accelerates one of the intermediate steps. In fact, it outperforms all the other
algorithms for small values of p. For p > 36, the hybrid nonuniform FFT (hnuFFT) scheme has
the lowest CPU timings.

For single precision calculations, it is possible to reduce the NFSFT scheme timings by approx-
imately a factor of 2 by setting the Kaiser-Bessel window spreading constant to 4 (for a 7 digit
accurate scheme), or by approximately a factor of 3 by setting the spreading constant to 3 (for a 5
digit accurate scheme). The savings are still not sufficient for the NFSFT to be competitive with
the new scheme.

Layer potential computation. Next, we investigate the performance of the new rotation
algorithm in computing the single layer Stokes potential and report the results in Figure 2. Consider
the surface Γ shown in Figure 2 whose coordinate functions x(θ, φ) are given by
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p Np M NFSFT1 DSR/FSR

12 30 390 0.35 0.0031
24 50 1250 3.58 0.040
36 80 2960 20.46 0.21
48 100 4900 56.08 0.73
60 128 7808 142.4 2.29
72 150 10950 (280.1) 4.05
84 180 15300 (547.0) 7.16
96 200 19400 (879.5) 11.94
108 240 26160 (1599) 25.03

Table 1: Precomputation times (in seconds) for the grid rotation algorithms as a function of the order of
spherical harmonic approximation p. Np is the number of discretization nodes in φ direction. M = (p+1)Np

is the total number of discretization points. The figures in parentheses are estimates used when the memory
required by the NFSFT1 scheme is excessive.

x(θ, φ) =


sin θ cosφ+ 3

10 sin
(

9π
4 cos θ

)
sin θ sinφ+ 1

2 cos
(

9π
4 cos θ

)
cos θ

 , θ ∈ [0, π], φ ∈ [0, 2π]. (38)

The single layer Stokes potential S[f ](x) gives the velocity field induced by an interfacial force
f(x) when the exterior and the interior of the interface Γ is filled by same Stokesian fluid [15]. Let H
be the mean curvature of Γ and n be its unit normal. We set f(x) = H(x)n(x) which corresponds
to the interfacial force on a bubble with unit surface tension. Our goal is to evaluate S[f ](x) on
the interface at all the M spherical grid locations (2). When the evaluation point is a north pole,
we can simply use the quadrature rule of Theorem 1 and write [23]:

S[f ](x(0, 0)) =
p∑
j=0

Np−1∑
k=0

wsjG(x(0, 0),y(θj , φk)))f(y(θj , φk))
W (θj , φk)

sin θj
, (39)

where

G(x,y) =
1

8π

[
1

||x− y||
I +

(x− y)⊗ (x− y)
||x− y||3

]
(40)

is the free space Green’s function for the Stokes equations. For other target locations, similar to the
Laplace potential, we evaluate S[f ] by rotating the coordinate system so that the target becomes
a north pole in the new coordinate system and then applying (39). A total of six functions need to
be rotated to the new coordinate system – the three components of y and the three components of
f(y)W/ sin θ. Therefore, a total of 6M rotations have to be calculated.

From Figure 2, it is clear that the spherical grid rotations dominate the total cost of the single
layer potential computation, and the CPU timings scale proportionally to the cost of the hnuFFT
rotation scheme, namely, as O(p4 log p). In Figure 3, we report the relative errors in computing
S[f ](x) corresponding to two geometries that arise in physical applications. The reference values
have been generated using finer discretizations.
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p M NFSFT1 NFSFT2 DSR FSR hnuFFT

O(p4) O(p4) O(p5) O(p5) O(p4 log p)

12 390 0.046 0.13 0.0025 0.0023 0.0043
24 1250 0.45 1.34 0.037 0.030 0.036
36 2960 2.69 7.41 0.27 0.20 0.20
48 4900 7.19 19.9 0.99 0.66 0.58
60 7808 17.8 44.8 3.08 2.04 1.80
72 10950 (35.5) 88.7 7.75 4.62 3.53
84 15300 (69.1) 207.1 21.45 9.88 6.03
96 19400 (115.9) 278.5 46.31 18.47 10.11
108 26160 (207.8) 513.5 100.03 42.01 19.95

Table 2: CPU times (in seconds) for the grid rotation algorithms as a function of the order of spherical
harmonic approximation p. M is the number of discretization points. The precision was set to yield 12 digits
for the hnuFFT scheme. The figures in parentheses are estimates used when the memory required by the
NFSFT1 scheme is excessive.

5 Conclusion

We introduced a new algorithm for accelerating the computation of singular integrals on surfaces
that are globally parametrized by spherical coordinates. The complexity of the new algorithm is
O(p4 log p), with a small complexity constant and O(p3) intermediate storage requirements. It is
worth mentioning, that while the FFT acceleration step in the FSR scheme has been widely used
in the context of molecular replacement simulations [20], we are not aware of its use in the context
of singular quadrature. For small values of p, the FSR scheme can be used as an alternative to our
hybrid algorithm. Currently, we are investigating extensions to the spherical grid based quadrature
rules to enable hyper-singular integral evaluations.
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p Trotation Tkernel Ttotal E2

12 0.0312 0.0015 0.0327 8.4× 10−3

24 0.238 0.014 0.252 6.2× 10−4

36 1.30 0.08 1.38 1.6× 10−5

48 3.54 0.27 3.81 4.0× 10−7

60 10.87 0.59 11.46 3.9× 10−8

72 21.31 1.19 22.50 3.2× 10−9

84 36.38 2.25 38.63 3.3× 10−10

96 60.88 3.81 64.69 4.5× 10−12

108 120.64 6.25 126.89 1.5× 10−12

Figure 2: CPU times (in seconds) for computing the Stokes single layer potential Ttotal, the time spent in
spherical grid rotations Trotation via the hnuFFT scheme, the time for the kernel evaluations Tkernel, and the
relative errors (E2). For every evaluation point on the boundary, six rotations are required corresponding to
three coordinate functions and three components of the interfacial force. Observe that, for every p, Trotation

makes up a significant fraction (more than 90%) of the total CPU time. Hence, even a modest acceleration
in performing spherical grid rotations will translate to faster Stokes flow simulations.
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