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Abstract—We present a fast, petaflop-scalable algorithm for
Stokesian particulate flows. Our goal is the direct simulation
of blood, which we model as a mixture of a Stokesian fluid
(plasma) and red blood cells (RBCs). Directly simulating blood
is a challenging multiscale, multiphysics problem.

We report simulations with up to 260 million deformable RBCs.
The largest simulation amounts to 90 billion unknowns in space.
In terms of the number of cells, we improve the state-of-the art by
several orders of magnitude: the previous largest simulation, at the
same physical fidelity as ours, resolved the flow of O(1,000-10,000)
RBCs.

Our approach has three distinct characteristics: (1) we faithfully
represent the physics of RBCs by using nonlinear solid mechanics
to capture the deformations of each cell; (2) we accurately resolve
the long-range, N-body, hydrodynamic interactions between RBCs
(which are caused by the surrounding plasma); and (3) we allow
for highly non-uniform spatial distributions of RBCs.

The new method has been implemented in the software library
MOBO (for “Moving Boundaries”). We designed MOBO to support
parallelism at all levels, including inter-node distributed memory
parallelism, intra-node shared memory parallelism, data paral-
lelism (vectorization), and fine-grained multithreading for GPUs.
We have implemented and optimized the majority of the compu-
tation kernels on both Intel/AMD x86 and NVidia’s Tesla/Fermi
platforms for single and double floating point precision.

Overall, the code has scaled on 256 CPU-GPUs on the Teragrid’s
Lincoln cluster and on 200,000 AMD cores of the Oak Ridge
National Laboratory’s Jaguar PF system. In our largest simulation,
we have achieved 0.7 Petaflops/s of sustained performance on
Jaguar.

I. INTRODUCTION

Clinical needs in thrombosis risk assessment, anti-coagulation
therapy, and stroke research would significantly benefit from
an improved understanding of the microcirculation of blood.
Toward this end, we present a new computational infrastructure,
MOBO, that enables the direct numerical simulation of several
microliters of blood at new levels of physical fidelity (Figure 1).
MOBO consists of two key algorithmic components: (1) scalable
integral equation solvers for Stokesian flows with dynamic
interfaces; and (2) scalable fast multipole algorithms. In terms of

size alone, MOBO’s overall simulation capability represents an
advance that is orders of magnitude beyond what was achieved
in prior work in blood flow simulation.

We use an algorithmically optimal semi-implicit scheme.
Unlike explicit time-stepping schemes that require only near-
neighbor communication (but are algorithmically suboptimal
for our problem), our solver requires global communication
at every time step. Consequently, our solver is much more
challenging to scale than an explicit solver. Nevertheless, our
results demonstrate that it is possible to successfully scale
implicit solvers to hundreds of thousands of cores.

Challenges in direct numerical simulation of blood. Just
one microliter of blood of a healthy individual contains approx-
imately four million RBCs. The surrounding plasma, which is
a viscous fluid, mechanically couples every RBC to all other
RBCs. Furthermore, RBCs are highly deformable (it is the
deformability of RBCs which determines the rheological proper-
ties of blood). The large number of cells and their complex local
and global interactions pose significant challenges in designing
tools for high-fidelity scalable numerical simulations of blood.

Due to these difficulties, multiphase blood flow simulations
have been restricted to relatively small number of RBCs. For
example, the largest simulations today have scaled to 1,200
cells [40] (using boundary integral equations, like us) and
14,000 cells [8] (using lattice Boltzmann methods). The latter
work, which is based on an explicit time-stepping scheme,
scaled up to 64K cores but requires an excessive number of
time steps due to the non-physical stiffness introduced by the
numerical scheme. Other methods that model RBCs as rigid
bodies have scaled to an even large number of RBCs; but
these are crude approximations of the blood flow. Deformable
models of RBCs (Figure 1) are critical for accurate blood flow
simulations.1

1For example, a 65% volume-fraction suspension of rigid spheres cannot flow;
blood flows even when the volume-fraction of RBCs in the plasma reaches 95%
[2].
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(a)                              (b)                               (c)                                              (d)                                      (e)                                        (f )                        

Fig. 1: SUMMARY OF THE COMPUTATIONAL INFRASTRUCTURE FOR DIRECT NUMERICAL SIMULATION OF BLOOD FLOW. In the top row,
we depict a few snapshots from the flow of twenty RBCs that are immersed in plasma. At every time step, a Stokes problem must be solved
in the exterior and interior of the RBCs. We have developed computational tools for this problem. The main algorithmic components include:
(a) spectral RBC shape representations and quadratures for singular integrals on these shapes; (b) accurate modeling of the hydrodynamic
interactions between many-RBCs; (c) nonlinear solvers for the mechanics of RBC deformations; and (d,e) parallel, kernel-independent, tree-
based, fast summation methods. The advantage of boundary integral methods is that only the RBC boundary is discretized and no discretization
of the space between RBCs is necessary. This is crucial for reducing the number of degrees of freedom and eliminates the need for difficult-
to-parallelize 3D unstructured mesh generation. Our tools enable parallel and highly accurate simulations of microcirculation phenomena of
blood flow. We have achieved the direct numerical simulation of O(50) microliters of blood flow. ( (f) One can think of the volume of a single
blood drop as being roughly equivalent to one microliter.)

Our approach. We model RBCs as deformable viscous
sacs with an inextensible, massless membrane that can sustain
bending and tension forces. The surrounding plasma is modeled
as a Stokesian fluid (we neglect inertial terms). There are several
challenges in simulating such a system:

• The evolution of the RBCs requires solving the Stokes
equations in the plasma—a very complex geometric region
that changes at every time step.

• Computing the bending and tension forces requires ac-
curate geometric description of the shape of the RBCs.
Furthermore, these forces introduce significant numerical
stiffness.

To address these challenges, we use
• an integro-differential formulation in which we couple a

boundary integral formulation for the Stokes equations
(plasma) with the RBC’s membrane elasticity;

• a semi-implicit time-stepping scheme that removes the
stiffness due to interfacial forces;

• spherical harmonics representations for the shape and the
deformation of RBCs;

• the fast multipole method to accelerate the long-range
hydrodynamic interactions between cells and plasma; and

• distributed and shared memory parallelism, SIMD paral-
lelism (vectorization), and fine-grained multithreading via
GPGPU acceleration, to expose maximum concurrency.

MOBO employs Fourier and Legendre transforms, adaptive fast
multipole methods, Galerkin projections, multi-step time march-

ing, fast spherical harmonics rotations, spectral quadratures for
smooth and weakly singular integrals, preconditioned Krylov
linear solvers, and dense linear algebra.

Our overall formulation can be outlined as follows. We use
a spherical harmonics representation for the boundary of every
RBC. This choice is mathematically equivalent to tracking a
number of points on the surface of the RBC. In our simulations,
we typically track either 84 or 312 points. The motion of each
such point x is governed by

∂x

∂t
= v(x),

v(x) = vlocal(x) + vglobal(x) + vbackground(x).
(1)

Here, v is the velocity of the point, which we decompose
into three components: local, global, and background velocities.
Roughly speaking, the “local” velocity, vlocal , accounts for
the interactions between the specific point in the RBC under
consideration and all of the other points within the same RBC.
The “global” velocity, vglobal , accounts for all of the interactions
occurring across all of the RBCs in the simulation. The “back-
ground” velocity, vbackground , is the imposed flow field. This
work builds on our previous work on massively parallel tree-
data structures [30], [27], parallel and kernel independent fast
multipole methods [36], [17], [7], and fast solvers for particulate
flows [33], [25], [34].

Contributions. In [25], we presented the details of the
formulation and the numerical algorithms that are required to
compute vlocal and vglobal . Here, we focus on he parallelization
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and performance analysis for the computation of vlocal and
vglobal . vlocal requires nine different kernels. vglobal uses the
FMM, which in turn has five major computational phases (tree
construction, three tree-traversals, and the direct interactions).
Our key contributions are:

• We present a hybrid-parallel implementation of nine com-
putational kernels that MOBO uses for the computation
of vlocal and vglobal . The kernels are multithreaded and
work-partitioned between CPU and GPU, which execute
concurrently, thereby delivering excellent per-node perfor-
mance.

• The most intensive kernels in our computation have been
designed for locality, accuracy, and computational ef-
ficiency, capitalizing in particular on highly optimized
BLAS3 (GEMM) operations.

• We further improve the performance of our SC’09 FMM
algorithm [17]. These improvements include explicit SSE
vectorization and multithreading via OpenMP, as described
in prior work [7]. In this paper, we add simultaneous
asynchronous GPU acceleration.

• We present single-node analysis for computations of vlocal

and vglobal on AMD, Intel, and NVIDIA platforms.
• We present weak and strong scaling results on the Jaguar

PF system at Oak Ridge National Laboratory (ORNL).
Performance Highlights. We achieve 780 TFlop/s of sus-

tained performance on the 196,608 cores of the AMD Istanbul-
based Jaguar PF system (4 GFlop/s per core), with 160×
speedup on strong scaling when moving from 48 to 24,576
cores (512×); and 75% efficiency for the weak scaling. On
other platforms, we demonstrate up to 18 GFlop/s per core
of sustained performance on the Intel Nehalem-EP; and up to
350 GFlop/s per NVIDIA Fermi C2050 card (both in single
precision).

In our largest simulation, we solved a problem involving
8,000 RBCs per MPI process, on 32,768 MPI processes for
a total of 196,608 cores. We discretized using 84 points per
RBC. This set of parameters results in a total of 262,144,000
RBCs (50 drops of blood) and 90 billion unknowns per time
step. (We have four unknowns per point: the three coordinates
and a scalar tension.)

Limitations. Despite its capabilities, our method has several
limitations. First, MOBO is restricted to very low Reynolds
numbers and, therefore, cannot accurately be used to simulate
high-Reynolds blood flow (e.g., flow in large arteries). Second,
the discretization of the RBCs is not adaptive: all of the RBCs
are approximated using the same number of points. Third, the
current version of MOBO does not support confined boundaries.
The modifications of the method for the confined boundary case
has been presented in [25] but we have not yet parallelized the
method. Fourth, the memory requirements of the method grow
with the cube of the number of points per RBC.

Related work. In spite of advances in understanding the
complex behavior of particulate flows [24], only recently have
algorithmic advances allowed accurate 3D simulations of Stokes

flows with hundreds of deformable particles using boundary
integrals. Attempts to parallelize integral equation solvers have
been restricted to low-accuracy discretizations, spatially uniform
particle distributions, and have not scaled to large numbers of
cores. The main challenges are the parallelization of the hydro-
dynamic interactions, the stiffness of the RBC deformations, and
end-to-end scalability and performance for all of the algorithmic
components of a method.

Impressive simulations based on fictitious/immersed
boundary-like methods have been reported in [1], [2],
[11], [14], [18], [32]. However, there is limited work in
efficiently parallelizing these methods and no scalings on
thousand-core machines have been achieved [13], [19], [28],
[37]. In blood rheology simulations, there are at least two
examples of simulations with large numbers of particles: one
which models a 50µm2 × 500µm-capillary blood flow with
300 thousand rigid particles [22], and another in which a
dissipative particle dynamics method was used to model a
few thousand deformable RBCs [10]. Lattice-Boltzmann based
methods for particle simulations have been used for blood
flow but are limited to rigid RBCs [29]. An exception is the
lattice-Boltzmann approach in [8], that allows for deformability
of RBCs. However, lattice Boltzmann methods are low-order
accurate in space and require small time steps due to numerical
stiffness [20]. Lastly, another class of methods are based
on moving-mesh finite-element methods [31]. Such methods
are difficult to parallelize in particular, for the case of large
3D deformations due to the need for unstructured mesh
generation [5].

A different class of methods based on boundary integral
equation formulations is ideal for blood flow since it only re-
quires discretization of the RBC membrane, which is more scal-
able than discretizing the volume occupied by the plasma [24],
[4], [16], [24], [23], [39], [38]. The aforementioned successful
simulation of 1200 deformable drops [40] used a boundary
integral formulation. But, that implementation was sequential
and required 120 CPU hours to complete. Overall, limited
work exists in parallelizing such methods. One exception is the
parallel Stokes solver of Thien, et al. [21]; their calculations,
however, were performed using a suboptimal O(N2) algorithm
and not a fast multipole method.

II. FORMULATION AND ALGORITHMS FOR PARTICULATE

FLOWS

Notation. Before we proceed with describing the kernels of
MOBO, let us introduce some notation. (We use MATLAB’s
notation for linear algebra operations.) We use upper-case letters
for matrices and lower-case letters for vectors. We use upper-
case bold-face letters for discretizations integral and differential
operators, and lower-case bold-face letters to denote vectors and
points in R3.

Mathematical formulation. The equations governing the
dynamics of particulate flows in the free space R3 are the
Stokes equation for the plasma and a differential equation for
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Symbol Definition

m Number of points used to discretize the RBC
surface

q Spherical harmonics expansion order
n Total number of Red Blood Cells
p Number of processors
v Velocity
F Discrete Fourier Transform operator
Pk kth-order Discrete Legendre transform

S,S−1 Forward/inverse spherical harmonics transform

TABLE I: Index of frequently used symbols and operators.

the forces on the membrane of the RBCs. All of the RBCs are
assumed to be filled with a Stokesian fluid that is the same as
the surrounding fluid (henceforth “fluid”).2

Specifically, we have

−∆v +∇p = 0 in R3\ ∪ γk, (2)

where v is the velocity of the fluid, p is the pressure, and γk is
the interface between the kth RBC and the surrounding fluid.
This equation is subject to the constraints

JTnK = f on ∪k γk, div v = 0, JvK = 0 in R3, (3)

where J·K denotes a “jump”, a difference between the inside
and outside of the RBC membrane, Tn is the fluid force on
the membrane and f is the force related to the elasticity of the
cell membrane (i.e., the cell membrane’s resistance to bending
and stretching). The first equation states the balance of forces:
the bending and tension forces at the membrane must equal
the viscous forces exerted by the fluid. The second equation
states the incompressibility of the fluid. The third equation
merely implies that a point on the RBC’s membrane must
move with the same velocity as the surrounding fluid (non-slip
condition). Using the last equation, the evolution of a point on
the membrane of a RBC reads as

dx

dt
= v(x), for x ∈ γk, and all k, (4)

where x denotes a point on γk. As mentioned in the in-
troduction, the velocity v(x) can be decomposed into three
components:

v(x) = vlocal(x) + vglobal(x) + vbackground(x) (5)

The first term, vlocal , at a point x on γk (the membrane of the
kth RBC) depends only on the shape of γk. The second term
depends on the shapes of all of the RBCs in the simulation and
requires an N-body calculation. The third term, vbackground is
known analytically and depends on the numerical experiment
(e.g., imposed shear flow). The precise expressions for vglobal

are quite lengthy and due to space limitations, are omitted. See

2The more general (and accurate) case in which the inside and outside fluid
are different does not introduce any complications either mathematically or
algorithmically. See [25].

[34] for further details. The global velocity is easy to state:

Fig. 2: AN EXAMPLE OF GLOBAL AND LOCAL INTERACTIONS.
The interaction (vglobal ) between points on the surface of the blue
membrane and points on the surfaces of the other red membranes
is global (left figure). The interaction (vlocal ) between points on the
surface of the same (blue) membrane is an example of local interactions
(right figure).

vglobal(xk) =
∑
i

1

ρki

(
di +

(rki · di)rki
ρ2ki

)
, (6)

where rki = xk − xi, ρki = |rik|, di is the given density at
point xi, rki · di denotes the geometric dot product between
these two vectors, and | · | denotes the vector norm in R3.

Representation of the surface. Let U = {(θ, φ) : θ ∈
(0, π), φ ∈ (0, 2π)}. Then, we denote a parametrization of the
surface by x : U → R3. θ parametrizes the latitude and φ

parametrizes the longitude. In this way, x can be represented
in the spherical harmonics basis with spectral accuracy [34].
This spectral representation enables fast and accurate compu-
tation of high-order derivatives of x with respect to θ and
φ. Such derivatives are required for the calculation of vlocal .
(For example, vlocal depends on the surface Laplacian of the
mean curvature of the membrane, the normal vector, and other
geometric quantities.)

A. Overall algorithm and the main kernels

Due to space limitations, we describe a first-order explicit
Euler time-marching scheme. (That is explicit on the RBC
membrane mechanics. The Stokes equations for the plasma and
the interior of the cells are solved always implicitly.) The actual
time-stepping scheme used in these simulations is a multistep,
semi-implicit scheme and is described in detail in [34].3

Given n RBCs, each one being represented by its surface
γk a set of points on this surface x, the algorithm proceeds as
follows:

1) Compute vlocal(x, γk), for all x ∈ γk, k = 1, ..., n.
2) Compute vglobal using FMM;
3) Evaluate vbackground analytically;
4) Update the position using xnew = x + ∆t(vlocal(x) +

vglobal(x) + vbackground(x)),

where ∆t is the time-step size.

3The linear solves in the semi-implicit are done with a Krylov method, which
requires a matrix-vector operation. The latter has been implemented using the
computational kernels described in this section.
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For the semi-implicit scheme described in [34], the first step
is embarrassingly parallel across k (RBCs). For each cell, the
complexity of computing vlocal for all x on its surface is

(
q6).

The second step involves a communication-heavy, all-to-all, N-
body calculation with the Stokes kernel. The complexity of the
Stokes kernel was analyzed in [17]. We briefly summarize the
main components of FMM in the next subsection.

B. Global interactions: FMM kernel

The FMM consists of two main steps, the octree construction
phase and the evaluation phase. The evaluation phase consists of
the computation of the far-field approximated interactions and
the exact near-field direct interaction. Specifically, the evaluation
phase involves the following substeps:

1) a bottom-up (post-order) tree-traversal to compute the
multipole-moments approximation;

2) an arbitrary-order traversal to translate multipole-moments
to local approximations;

3) a top-down (pre-order) tree traversal to accumulate all far-
field interactions to the target points, the so-called “VXW-
list”-calculation in FMM jargon; and

4) a near-neighbor exchange at the leafs to compute the
near-range interactions, the so-called “U-list”-calculation
in FMM jargon.

In parallelizing FMM, the main challenges are the tree
construction, and the communication involved in step (2),
which in principle is local, but involves “fat” neighbors that
can cause communication imbalance for highly nonuniform
trees. One can prove, under assumptions on the distribution
of RBCs, that the complexity of the tree-construction phase
is O(np log n

p ) + O(p log2 p) and of the evaluation phase is
O(np ) +O(

√
p), where p is the number of MPI processes.

In [17], we proposed a novel tree-construction algorithm, a
novel hypercube-based reduction for the V-list calculation, and
a hybrid GPU-MPI implementation for the U-list and V-list
calculations. However, that approach left the multi-core CPUs
that were driving the GPU spinning idle. In , we introduced
a set of optimizations that can further accelerate the CPU
computations (OpenMP acceleration and SSE vectorization).

In section III, we report results from a different multithreading
strategy. We employ a hybrid OpenMP-MPI-CUDA scheme in
which we compute the dense interactions in parallel with the
far-field interactions. The CPU sockets are responsible for the
far-field computations (V-list) and the GPUs are responsible for
the direct interactions (U-list). In addition, we have introduced
several optimizations that are specific to our Kernel Independent
FMM [36].

We use Streaming SIMD Extensions (SSE) technology, avail-
able in a number of modern CPUs, to speed up the floating point
computations. In a nutshell, using SSE allows to perform basic
arithmetic operations on small vectors of floating point numbers.
Specifically, vectors can consist of either four single-precision
floating point numbers or two double-precision floating point
numbers (in any case vectors are 128 bit long). Arithmetic

operations on different vector entries are performed by the
CPU in parallel, thus speeding up the computation (in an ideal
scenario) by a factor of four or two, depending on the precision.
We use SSE to accelerate the particle-to-particle interactions
(specifically, the evaluation of the Stokes kernel). We replicate
the data associated with each target point (e.g., x-coordinate)
into four entries of an SSE vector, and load another SSE
vector with x-coordinates of four different source points. Then
we apply SSE vector subtraction to evaluate 4 differences in
parallel, then we square these four differences in parallel and
so forth. Eventually we obtain four potentials in an SSE register
and sum them up. We use this approach for the source-to upward
equivalent densities. This work is explained in further detail in
[7].

Finally, we use point-to-point interactions without precom-
putation in many parts of the algorithm for improve float-to-
memory access rations and improved overall performance.

a) Repartitioning of Red Blood Cells: Partitioning RBCs
among MPI processes is done using the FMM underlying data
structure. This is necessary because after a few time steps the
partitioning of RBCs does not match the optimal partitioning for
the FMM and this results to excessive communication. The par-
allel FMM code that we are using [35], requires particles to be
Morton-sorted not only locally on each MPI task but also across
MPI tasks. That is, in order to apply FMM for computations, we
first have to redistribute (“scatter”) the points between tasks so
that points become Morton-sorted, then evaluate the potentials
and finally scatter the potentials back to the original layout of
the points. When using multiple (say, tens of thousands) MPI
tasks, the cost of these two scatters can become prohibitive,
unless special measures are taken. We periodically re-distribute
the RBCs between MPI tasks, so that the overall distribution of
points is “close” to being Morton sorted, and thus, the scatters
are relatively inexpensive. Specifically, we use the partitioning
of the space between MPI tasks produced by the last call to
FMM. For each RBC, we determine preliminary “target MPI
task” for each point of the RBC. Then we decide the final MPI
task for the RBC by the voting procedure. For the actual data
transfer we employ an MPI_Alltoallv() call.

C. Local interactions: RBC physics kernels

The computation of vlocal consists of several kernels. In the
following, we discuss nine kernels in which the majority of the
computation takes place:

b) The spherical harmonics transform kernel: The spher-
ical harmonics transform may be expressed in terms of matrix
operations [6]. For a spherical harmonic expansion of order
q, there are 2q points in the east-west direction and q + 1

points on the north-south direction. Let X , Y , and Z denote
matrices, each of size 2q × (q + 1), that hold the x-, y-, and
z-coordinate components of the grid points, respectively. The
points are stored in a “latitude-major order”. Then, the kth order
spherical harmonic coefficients of X is given by

X̂k = PkW(FX)Tk , k = 0, . . . , 2q, (7)
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where F ∈ R2q×2q denotes the discrete Fourier transform,
W ∈ R(q+1)×(q+1) is a diagonal matrix holding the Gaussian
quadrature weights, Pk ∈ Rk×(q+1) is the kth order associated
Legendre transform and X̂k ∈ Rk×1 is the vector of spherical
harmonic coefficients of the kth order. The same formula is also
true for Y and Z. Considering the fact that q is rather small
compared to the number of RBCs, it is best to perform both
Fourier and Legendre transforms as matrix multiplications [9].
This also motivates the data structure for our implementation.

The inverse of spherical harmonics transform is given by

X = FT [PT1 X̂1 . . . P
T
2qX̂2q]

T . (8)

Hereinafter, we formally denote the forward and inverse spher-
ical transforms by S and S−1. When we have n surfaces,
the complexity of the forward and inverse spherical harmonics
transform is O(nq3) and the depth is log q.

In order to accelerate spherical harmonics transform, we
represent the transform as a sequence of multiplications of real
matrices, that is we use real DFT and not the complex one; we
use BLAS or CUDA-BLAS for all the matrix multiplications;
and we use column-wise (Fortran-style) storage for all the
matrices.

The input data corresponding to different RBCs is packed into
a 2q×(q+1)n matrix. Each row of this matrix corresponds to a
particular latitude across all RBC. Each column corresponds to a
particular longitude on a particular RBC. Columns correspond-
ing to the same RBC are grouped together (columns related to
the first RBC are followed by the columns related to the second
RBC, etc.)

We start the transform by multiplying the input matrix from
the left by the DFT matrix, thus applying DFT to each column
independently. Then we transpose the resulting matrix. Note
that now each column of the transposed matrix corresponds to
a particular frequency and one of the two possible functions
(sine or cosine). We then treat each column of the transposed
matrix as a (q + 1)× n matrix (stored column-wise). Rows of
this matrix correspond to different longitudes across all RBCs,
and columns correspond to different RBCs. We then multiply
this matrix from the left by an appropriate Legendre transform
matrix, as given in Equation (7).

Note that in case of GPU computations (CUDA-BLAS), we
perform both matrix multiplications and the transpose on GPU.

All the data is stored in a one dimensional array and de-
pending on the size parameter passed to the BLAS kernels, its
content can be interpreted as matrices of different sizes. Using
MATLAB’s notation, we store the coordinates array for the kth

RBC as Ck = [X(:)T Y (:)T Z(:)T ], and for all RBCs as
C = [C1 . . . Cn]. Using this structure, data can be streamed
to BLAS subroutines for the calculation of spherical harmonics
transforms.

c) Pole rotation kernel for weakly-singular quadratures:
Given the surface Ck (k = 1, . . . , n) and a target point (x, y, z)

on the same surface, there exists a linear transformation R ∈
Rm×m such that the pole for the surface C̄ = RC is located

at (x, y, z). Note that the transformation R depends on the
parametrization of the surface and the target point, but it is
independent of the geometry of the surface. An example of this
transformation is given in Figure 3. Let R1, . . . ,Rq+1 be the
transformations with the target point as the grid points on the
φ = 0 meridian, then the transformation for other points on the
θk latitude is a permutation of Rk [12].

Fig. 3: THE TYPICAL BICONCAVE SHAPE. The plot on the right is
the same surface as in the one in the left, but the pole is moved to the
point marked by the circle in the left figure.

In our simulation, we need to perform this rotation for all
of the points on the surface of a RBC. For our method, the
complexity of a single rotation of the pole is O(q4) and the
memory requirement is O(q5). There is another algorithm for
the rotation of the pole that is based on the spherical harmonics
expansion of the surface [12], and [34]. This algorithm reduces
the complexity to O(q5) and the memory requirements to
O(q4). That algorithm has more expensive logic and it is
preferable only for small number of RBCs. Table II summarizes
the result of our comparison between the two algorithms.

Direct (cublas) Rotation via spherical harmonics

n q = 6 12 6 12

8 21.25 169.17 0.84 29.15
64 23.48 258.38 6.15 225.85
512 57.75 1360.07 47.85 1795.29

1024 98.02 2597.93 96.20 3589.00

TABLE II: The execution time (ms) on a Tesla GPU to move the pole
to all points on the surface for different algorithms.

d) The kernel for the weakly-singular integrals: The com-
putation of vlocal(x), x ∈ γk can be written as

vlocal(x) =

∫
γk

K(x,y)f(y) dy,

where K is the Green’s function for the Stokes equations. This
integral has a weak-singularity for y = x for all x in γk except
the two poles. One method to evaluate the Stokes’ integral at a
point on the surface is to move the pole to that target point and
evaluate the integral for that particular point [34]. In Algorithm
1, we outline the evaluation of Stokes integral. For n surfaces,
the work is O(nq6) and the depth is O(log q).

After the multiplications by the rotation matrices R, the
most costly kernel in our simulation is the Stokes evaluation
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Algorithm 1 Evaluation of singular Stokes integral. O(q6)
D is the input density and U is the evaluated potential.

for k = 0 to q + 1 do
for l = 0 to 2q do
R← Permute Rk for the target φl
C̄ = RC, D̄ = RD,
Evaluate Ukl (by direct Stokes kernel)

end for
end for

kernel. For the CPU code, this kernel is accelerated using SSE
instructions.

e) The kernel for surface differentiation: The differen-
tiation with respect to the φ parameter is a straightforward
calculation using the DFT. But, differentiation with respect to θ
needs extra care. With an abuse of notation, let Hk = dPk/dθ

and Wk = d2Pk/dθ
2. Then, to differentiate a function G ∈

R2q×(q+1) on the surface with respect to the parameter θ we
have

(i) Ĝ = SG,
(ii) dG/dθ = FT [HT

1 Ĝ1 . . . H
T
2qĜ2q]

T ,
(iii) d2G/dθ2 = FT [WT

1 Ĝ1 . . . W
T
2qĜ2q]

T .
The complexity of these steps is the same as spherical

harmonics transform and is O(q3). With different matrices, the
same kernel is used to evaluate the inverse spherical harmonics
and all the derivatives.

f) Other computation kernels: We have implemented sev-
eral other kernels that are required for computations on the
surfaces, for instance, the computation of geometric properties
of the RBC. These kernels include the geometric cross (a×b),
and dot (a · b, a,b ∈ R3) products, matrix transpose, and
scaling of vectors. They have been implemented on top of our
specific data format for multiple RBCs and have been optimized
on both CPUs and GPUs.

g) The kernel for the FMM correction: The FMM algo-
rithm indiscriminately calculates all the pairwise interactions
between the source and target points. When we use FMM to
compute vglobal , we also compute the interaction between the
points that belong to the same RBC. But, these interactions
need to be evaluated as local interactions. Therefore, we need
calculate and subtract these erroneous terms form vglobal . The
direct Stokes kernel, is used to evaluate the correction.

h) The kernel for surface reparametrization: In a typical
simulation, the RBCs go thorough great distortion and the
quality of the grid on their surface diminishes very fast. In
Figure 4, we give an example of such distortion. In [34], we pro-
posed a tangential correction algorithm to compensate for the
distortions and maintain the grid quality. The reparametrization
of the surface, involves calculation of the normal vector to the
surface, mapping the surface to the spherical harmonics domain,
filtering the high frequencies, and restricting the correction to
the tangential direction on the surface (to keep the shape of the
RBC intact). The complexity of this kernel is O(nq3).

Fig. 4: REPARAMETERIZATION OF RBC. The comparison between
the quality of the grid for two simulation with and without the
reparametrization, i.e, the redistribution of points on surface of an
RBC in order to improve the numerical stability of the time-stepping
scheme. Without such reparametrization, the distribution of pints on
the surface becomes distorted as we march in time and the accuracy
of the simulation is quickly lost.

III. SCALABILITY RESULTS

In this section, we describe the results from numerical exper-
iments we conducted to investigate the performance characteris-
tics of MOBO and the parallel scalability of our implementation
across different architectures. Below, we summarize the differ-
ent aspects of our numerical tests.

Platforms and architectures: The large scale weak and
strong scalability results have been obtained on the Jaguar PF
platform at the National Center for Computational Sciences
(UT/ORNL). Jaguar is a Cray XT5 system with 224,256 cores
(2.6 GHz hex-core AMD Opteron, 2GB/core) and a 3D-torus
topology. Jaguar is ranked first in the top-500 list of supercom-
puters (www.top500.org) as of July of 2010. The GPU scalabil-
ity results have been obtained on TeraGrid’s Lincoln at the Na-
tional Center for Supercomputing Applications (UIUC/NSF), a
Dell cluster with NVIDIA Tesla S1070 accelerators, 1536 cores(
Intel Harpertown/2.33 Ghz dual-socket quad-core 2GB/core),
384 GPUs (4GB/GPU), and InfiniBand (SDR) interconnect. The
results on Fermi were obtained on a single node AMD machine
at ORNL. The Nehalem tests where performed in an in-house
8-node cluster, with 16 sockets and one NVIDIA T10P-based
GPU per socket. In all of the experiments on Jaguar, we use
one MPI process per socket and six threads per socket. Both
vlocal and vglobal calculations have been multithreaded using
OpenMP. Also, inn all of our GPU experiments, we use one
MPI process per socket.

Implementations and libraries: The code is written in C++
and the accelerator modules in CUDA. We use the PETSc
[3] for profiling and certain parts of communication, and the
DENDRO [26] package for the tree construction and repartition-
ing of the RBCs. The vglobal module was implemented using
our Kernel Independent Fast Multipole Method [17]. All of the
kernels required for the calculation of vlocal where implemented
from scratch. We used the native CRAY libsci and MKL
BLAS libraries on the Jaguar and the Intel boxes respectively.

Single node Experiments: To assess the performance of our
code on a single node, we performed various tests for the vlocal

and vglobal calculations. The results are reported in Figures
5 for the vlocal evaluation, and 6 for the vglobal evaluation.
Overall, we observe little difference between CPUs and GPUs
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Fig. 5: SINGLE NODE FOR LOCAL INTERACTIONS. The first figure
shows the sustained single and double precision FLOPS per second of
the local kernel, on a Nehalem with eight OpenMP threads, a Tesla, and
a Fermi. The second figure is the work share of the major components
of the local kernel. For this figure, we used 8 OpenMP threads on
Nehalem and 12 OpenMP threads on Istanbul.

Fig. 6: SINGLE NODE RESULTS FOR THE GLOBAL INTERACTIONS.
In this figure we present results for the FMM code for various hybrid
architecture setups: (a) One thread CPU only without SSE, (b) GPU
only for both direct and near evaluations , (c) Four threads on CPU
with SSE, (d) Four threads on the CPU with SSE for the V-list and
asynchronous evaluation of U-list on the GPU. On both Istanbul and
Nehalem architectures we observe 1.2 (m=6)–1.7(m=12) GFlops/s per
core, for the overall FMM evaluation phase.

although for higher resolutions, GPUs seem to outperform the

x86 architectures. Recall that vglobal and vlocal utilize both CPU
and GPUs. For example, the performance of vlocal on a dual
socket, dual GPU node exceeds 800 GFlops/s for m = 12. From
Figure 6, we observe that the GPU accelerated version of FMM
is roughly three times faster than the CPU-only thus, delivering
a combined 60–70 GFlops/s per node for vglobal . The only data
transfers between host and device is for the FMM evaluation in
which the host collects the information from all RBCs and then
invokes FMM. This is somewhat suboptimal. We are working
on having both GPU and CPU versions for all phases of the
FMM.

MPI, strong scalability tests on Jaguar: The results are
reported in Figure 7. The problem size is 300,000 RBCs with 84
points per RBC, which corresponds to 100,000,000 unknowns.
The strong scalability results demonstrate excellent speed up
resulting in an unprecedented five seconds per time-step on
24,576 cores.

A. Jaguar
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Fig. 7: STRONG SCALINGS ON JAGUAR PF. The strong scalability
result for 262,144 vesicles, and total number of 22M grid points. There
are 6 cores (and 6 OpenMP threads) per MPI process. The finest level
of the octree is nine and the coarsest is three.

We get excellent speed up and we require less than 10 seconds
per time step for 300,000 RBCs. The efficiency, of course, is
reduced for the largest processor count as the memory traffic
dominates the computations.

MPI, weak scalability tests on Jaguar: The results are
reported in Figure 8. The problem size (number of RBCs) per
core is kept fixed to 8000 RBCs, again with 84 points per
RBC for the line-distribution on the Poiseuille flow. We can
observe the the calculation of vlocal remains almost constant,
whereas the cost of the tree-setup and vglobal increase. This
is due to several reasons. As we increase the problem size,
the tree gets deeper and the cost per core increases. Also
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Fig. 8: WEAK SCALINGS ON JAGUAR PF. The weak scalability of
the simulation to 196,608 cores. We have chosen a line distribution of
8,000 RBCs with 84 points per RBC. We use one MPI process per socket
and all of the six OpenMP threads in each MPI process. The finest to
coarsest octree levels range form 24 to 4. In the largest, simulation,
there are 200 million red blood cells and 90 billion unknowns. These
results represent the average timings of four explicit Euler time steps.

for such non-uniform trees it is difficult to load balance for
all phases of FMM. The solution to these scaling problems
is to employ the hypercube-like tree-broadcast algorithm we
developed in [17] for all of the phases of FMM. (Currently
it is used only in the post-order communication phase of the
evaluation phase.) Finally, the setup is not multithreaded; we
are currently working on this, and we expect a factor of four on
more speed-ups in this calculation. Despite, the need for further
optimizations, we achieve good utilization of the resources:
the vlocal phase sustains over 18 GFlops/s per core (single
precision) and the vglobal phase sustains over1.2GFlops/per core
(double precision). Overall, the code exceeds 0.7 Petaflops of
sustained performance.

GPU weak scalability results for FMM on Lincoln. We
report these results in Figure 9. We only report results for
the uniform distribution using 1M points per GPU. We use
one socket per MPI process and one GPU per socket. In this
experiment we use one core per socket. The results on GPUs
are excellent on up to 256 processes/GPUs. We get over a
25X per core consistently and we were able to evaluate a 256-
million particle sum in 2.3 seconds for a total of approximately
8 TFlops/s.

Red Blood Cell distributions and background flow: We
test a line-like distribution of cells (Figure 10) on a Poiseuille
background flow.4 The results of having a line of cells exposed
to such a Poiseuille flow are easy to informally “verify” visually.
Also, such a flow results in a highly non-uniform distributions

4More precisely, this is a “pseudo-Poiseuille flow”, since we do not impose
confinement boundary conditions around the cells. Rather, we impose a free-
space velocity that corresponds to a Poiseuille flow. Roughly speaking, such
background flow corresponds to an unperturbed laminar flow in a blood vessel.

Fig. 9: GPU WEAK SCALING. Here we compare CPU-only with
GPU/CPU configuration on up to 256 processes. For the largest
run the total evaluation on 256 million points takes 2.2 secs.
Throughout the computation, we maintain a 25X speed-up
over the single-core CPU version with only one thread per
socket. When multithreading and vectorization is enabled, the
differences become less pronounced as we can see in Figure
6. For the GPU runs, we use a shallower tree by allowing a
higher number of points per box. In this way, we favor dense
interactions over far-field computations. The former has a favor-
able computation/memory communication ratio and performs
favorably on a GPU. In this examples, we used roughly 400
points per box for the GPU runs, and 100 points per box for
the CPU runs. Both numbers were optimized for their respective
architectures. We were able to maintain a 1.8-3 secs / evaluation
for the GPU-based implementation. (This figure is reproduced
from [17].)

of points as the simulation horizon increases.

IV. CONCLUSIONS

We have presented MOBO, a framework that enables large-
scale direct simulations of blood microcirculation. MOBO ex-
poses and exploits concurrency at all stages of a complex
multiphysics, multiscale problem and uses several parallel pro-
gramming paradigms. We showed that we can efficiently scale
the different parts of the method and we observe good scalability
across different architectures.

For the computation of vlocal , on a single node, we get
roughly near peak performance for GEMM on both CPUs and
GPUs. Our algorithmic choices were targeted to an extensive
use of GEMM routines–without compromising overall work
optimality. We are able to deliver spectral accuracy while using
only a small number of degrees of freedom per RBC (e.g.,
compare to the 1000s of degrees of freedom per RBC for
Lattice Boltzmann methods). For the global interaction, we have
achieved 1 GFlop/s per CPU core for the overall FMM, which
is quite remarkable given the complexity of the algorithm.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 10: SIMULATION RESULTS FOR 40,000 RBCS. In this figure, we present results from a 40,000-RBC simulation with 84 points per RBC
for a total 15,000,000 unknowns. In the top row (a–c), we can observe the alignment of the cells with the background Poiseuille flow as we
advance in time. We can verify the need for non-uniform solvers. Every time step of this simulation, requires a Stokes solve at the extraordinarily
complicated domain defined by the exterior and interior of the RBCs. In addition, the interfacial forces at each RBC are computed by inverting
an integro-differential operator that involves fourth order derivatives. In the bottom row, we zoom in on different regions of the flow snapshot
(c). We can observe the different deformations of the cells in different regions of the flow. For example, (f) and (g) depict cells from the upper
tip (c) in which the shear rate is higher and the cells experience larger deformations. Subfigures (h) and (i) depict cells from the bottom left of
(c), which is near the center of the Poiseuille flow and thus, the cells experience smaller deformations. The visualization was performed on a
single workstation using ParaView (www.paraview.org).

In our largest calculation on 196,608 cores, we achieved
0.7 petaflops for the multiphysics/multiscale problem of direct
numerical simulation of blood flow. Let us emphasize that
these results represent the worst case scenario with respect
performance, as we use a very small number of points per cell.
If we use an m = 12 spherical harmonics approximation for
the RBCs the percentage of time spent in the vlocal part of the
calculation will further increase.

Taken together, MOBO opens the way for blood flow sim-
ulations of unprecedented fidelity. It enables the simulation
of microfluidic and nanofluidic devices. For example, the 2D
version of MOBO, has already resulted in significant scientific
discoveries [15].
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