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Abstract

Vesicles are locally-inextensible fluid membranes that can sustain bending. In this paper, we
extend “A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended
in viscous flows”, Veerapaneni et al. Journal of Computational Physics, 228(19), 2009 to
general non-axisymmetric vesicle flows in three dimensions.

Although the main components of the algorithm are similar in spirit to the axisymmetric case
(spectral approximation in space, semi-implicit time-stepping scheme), important new elements
need to be introduced for a full 3D method. In particular, spatial quantities are discretized using
spherical harmonics, and quadrature rules for singular surface integrals need to be adapted to
this case; an algorithm for surface reparameterization is neeed to ensure sufficient of the time-
stepping scheme, and spectral filtering is introduced to maintain reasonable accuracy while
minimizing computational costs. To characterize the stability of the scheme and to construct
preconditioners for the iterative linear system solvers used in the semi-implicit time-stepping
scheme, we perform a spectral analysis of the evolution operator on the unit sphere.

By introducing these algorithmic components, we obtain a time-stepping scheme that, in our
numerical experiments, is unconditionally stable. We present results to analyze the cost and
convergence rates of the overall scheme. To illustrate the applicability of the new method, we
consider a few vesicle-flow interaction problems: a single vesicle in relaxation, sedimentation,
shear flows, and many-vesicle flows.

1 Introduction

Vesicles (also known as fluid membranes) are closed phospholipid membranes suspended in a viscous
solution. They are found in biological systems, and play an important role in intracellular and
intercellular transport. Artificial vesicles are used in a variety of drug-delivery systems and in the
the study biomembrane mechanics. Vesicle-inspired mechanical models can be used to approximate
red blood cell mechanics. For example, at equilibrium (i.e., in a quiescent fluid), healthy red blood
cells have a biconcave shape that corresponds to a minimal membrane bending energy. Under
nonequilibrium conditions, as experienced in a simple shear flow, the best-studied features of red
cell dynamics, formation of tank-treading ellipsoids and tumbling motion, are shared with vesicles
[6, 33, 35].
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Figure 1: Snapshots of twenty vesicles suspended in a simple shear flow with χ = 18. Initially, each vesicle

has a non-equilibrium 2-1 ellipsoidal shape and they are arranged in a rectangular lattice. The number of

spatial discretization points is 338(p = 12) and the average wall-clock time is 110 seconds per time-step on

a 2.33 GHz Xeon workstation with 4GB of RAM.
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The vesicle evolution dynamics is characterized by a competition between membrane elastic
energy, surface inextensibility, vanishing in-plane shear resistance, and non-local hydrodynamic
interactions. Simulation of vesicles is a challenging nonlinear free boundary value problem, not
amenable to analytical solutions in all but a few simple cases; numerical simulations and experiments
are the only options for the quantitative characterization of vesicle flows.

In this paper, we present an algorithm for the simulation of general three-dimensional vesicle
flows, extending our recent work on 2D [62] and 3D axisymmetric vesicles [61]. (To demonstrate
the capabilities of our code, we depict a few time-snapshots from a twenty-vesicle simulation in
Figure 1.)

To establish notation, we start with the standard PDE formulation of the problem:

−∆v +∇p = 0 in R3\γ (conservation of momentum in bulk fluid),

div v = 0 in R3\γ (conservation of mass),

divγv = 0 on γ (surface inextensibility),

J−pn + (∇v +∇vT )nK = fb + fσ on γ (balance of momentum on the membrane),

v − v∞ → 0, if ||x|| → ∞ (far field condition),

∂x

∂t
= v on γ (membrane material point motion).

(1)

In the first equation, v is the fluid velocity, p is the pressure, and γ is the vesicle membrane. In
the third equation, divγ is the surface divergence operator. In the fourth equation, JqK denotes the
jump of a quantity q across the vesicle membrane, n is the normal to the vesicle membrane, fb is a
force due to bending resistance of the vesicle membrane, and fσ is a force (tension) that enforces the
surface inextensibility constraint. In the momentum balance equation, we assume that the mass
of the membrane is negligible. In the last equation, x is the position of a material point on the
membrane. In addition, the last equation encapsulates the fact that JvK = 0 due to conservation
of mass (normal direction) and the non-slip condition (tangent plane).

A mathematically-equivalent formulation is based on a an explicit form of the solution of Stokes
equation in the free space:

v = v∞ + S[fb + fσ] on γ,

divγ v = 0 on γ,

∂x

∂t
= v on γ.

(2)

where S is the single-layer Stokes operator, defined in Section 3. The first equation encapsulates five
equations of the PDE formulation: conservation of momentum in the bulk and on the membrane,
conservation of mass, and the far-field boundary conditions for the fluid.

1.1 Contributions

We extend the ideas presented in [62] to the general case of vesicles in three dimensions. The
main features of the method of [62] are an integral equation formulation, spectral discretization
in space, and a semi-implicit time-stepping scheme. In [61], we described an extension of [62]
to the axisymmetric case. There are several challenges specific to numerical simulation of non-
axisymmetric vesicles flows in 3D: (i) What should the spatial discretization scheme be to maximize
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accuracy, computational efficiency, and numerical stability? (ii) Unlike 2D, using a Lagrangian
frame of reference for spatial discretization of vesicle boundary results in extreme distortions,
leading to numerical instability; how can this instability be controlled? (iii) Bending and tension
forces in the 3D case have a more complex nonlinear form; can we design a time-stepping scheme
that addresses the severe stiffness while having similar per-time-step complexity to the explicit
scheme (similar to our schemes for 2D and axisymmetric flows [61, 62])?

We summarize our contributions below.

• We develop a high-order spatial discretization for inextensible vesicles based on spherical
harmonics (Section 4), combining and extending a number of previously proposed techniques
(see Section 2), including extending the quadrature scheme of [30] to the Stokes kernel (Section
4.1);

• We propose a particular linearization for a semi-implicit time-stepping scheme along with a
preconditioning scheme (Section 5.3);

• We analyze the stiffness of equation 2 (Section 5) and use it to precondition the linear solves
in the semi-implicit time scheme;

• We propose a reparametrization scheme for stabilization of time-stepping, and analyze its
accuracy and stability (Section 6);

• We verify the numerical scheme by comparing vesicle dynamics obtained with the proposed
method against shapes obtained using our axisymmetric solver (which is based on an entirely
different discretization scheme) (Section 7);

• We present results on computing the equilibrium shapes of dilute suspension under shear flow,
examine a two-vesicle interaction problem, study the sedimentation of a vesicle, and provide
an example of a simulation with multiple vesicles (Section 7).

Synopsis of our method. Our method is based on Lagrangian tracking of spectral collocation
points placed on the membrane of the vesicle combined with a surface reparametrization scheme.
We achieve spectral accuracy in space by discretizing using spherical harmonics, which we use for
the representation of the membrane and its spatial derivatives, for quadratures, and for antialising
(Section 4). For weakly-singular integrals, we use the scheme proposed in [30], which enables
high-accuracy simulations with a small (compared to low-order schemes) number of points per
vesicle. For the position update in time, we use two variants of a semi-implicit marching scheme
first derived for advection-diffusion equations [2] and then applied on integral-equation based fluid-
structure interaction problems in [58].

The time-marching scheme requires the solution a linear system of equations at each time step,
which we perform using a Krylov iterative method (GMRES [54]). The problem of poor conditioning
is addressed by a preconditioner based on the analytically obtained spectrum of the operators in (2)
for the special case of a unit sphere. Vesicle-vesicle interactions can be carried out using the kernel
independent fast multipole method [66]. In this paper, we focus on the mathematical formulation
and not on performance and parallelization. We report, preliminary results on a high-performance
parallel implementation of this method in [51].
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In all, we are able to achieve high accuracy while using a small number of unknowns per vesicle
for the spatial discretization and taking large time steps with a relatively low computational cost
per time step.

Pseudocode that summarizes the scheme can be found in Section 5.3.

1.2 Limitations

We restrict our attention to suspensions of vesicles in fluids with unbounded domains. We have
ignored inertial terms, so the overall method is restricted to low Reynolds numbers. We only
consider spherical-topology vesicles and we do not allow for topological changes, which are present
in many biophysical phenomena involving vesicles.

In our examples, we assume that the interior and exterior of the vesicles are filled with the same
liquid. The algorithm extends to the case of viscosity contrast with the introduction of double layer
potentials [14]. Additional convolution with a stresslet is required which can be computed using
the singular quadrature rule described in this paper. The detailed algorithm for two-dimensional
flow can be found in [52], in which in addition to viscosity contrast we introduce confined flows
with Dirichlet boundary conditions. The formulation for the three dimensional case is similar. We
will report the extension in future work.

An important limitation of our scheme is the lack of adaptivity (both in space and time). This
lack of adaptivity can cause vesicle-vesicle collisions, which are not possible in the mathematical
model we use. Indeed, one can easily construct simulations where without a significant increase of
the surface discretization size, our code fails to resolve inter-vesicle interactions accurately. This is
an open problem and we are currently working on addressing this issue.

We have also observed a dependence of the stable time step size on the shear rate.

1.3 Outline of the paper

In the next section, we review the related work on numerical methods for vesicle flows. In Section
3, we present the overall integral equation formulation. In Sections 4 and 5, we present the spatial
and temporal discretization schemes respectively. In Section 6, we discuss the reparametrization
scheme and we conclude in Section 7 with results from numerical experiments.

2 Related work

Several of the algorithmic components of the proposed method have appeared in the literature. A
few closely related papers are our work on 2D and 3D axisymmetric flows ([62] , [61]), Graham
and Sloan’s singular quadratures (for the scalar Helmholtz operator, but are directly applicable to
our case) [30], Zinchenko and Davis’ surface reparametrization schemes for drops and deformable
particles [72], and the very recent work of Zhao et al. [68] on boundary integral equation based
simulations of red blood cells in shear flow, presenting a spherical harmonic discretization of mem-
branes with bending and shear resistance and and explicit time discretization for particulate flows
of this type. We discuss these papers in more detail below. To our knowledge, there is no prior
work on implicit or semi-implicit schemes for locally inextensible vesicles in three dimensions.

We focus our discussion of related work on three-dimensional numerical methods; we do not
attempt to perform a comprehensive review of experimental and numerical studies of vesicle flows.
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Three-dimensional vesicle flows. Stokesian particulate flow problems are solved using a va-
riety of methods, including unstructured finite element methods and Cartesian grids (immersed
boundary/interface, fictitious domain, phase-field and level sets). For a brief review of these meth-
ods, in comparison with integral equation formulations, see [9]. Several groups have considered
stationary shapes of three-dimensional vesicles using semi-analytic [10, 15, 56], or numerical meth-
ods like the phase-field [8, 22, 23] and finite element methods [25, 43]. These approaches are based
on a constrained variational approach (i.e., minimizing the bending energy subject to area and
volume constraints) and have not been used for resolving fluid-structure interactions.

We restrict our discussion to integral equation formulations, which, for certain classes of prob-
lems, offer certain computational advantages compared to stencil-based methodologies (finite dif-
ferences or finite elements). Pozrikidis [48] reviews the work on boundary integral formulations for
particulate flows prior to 2000.

The main features of an integral-equation vesicle flow solver are the underlying formulation
(direct vs indirect), the discretization of the surface, the quadrature scheme, and the time-stepping
scheme. For Lagrangian vesicle surface discretization, a form of adapting the sampling of the
surface to the deformed shape (reparametrization) is needed. To our knowledge the majority
of particulate flow solvers in three dimensions use explicit schemes1 with the exception of the
work of Dimitrakopoulos et al. [20]. In that work, a Jacobian-free, finite-difference based Newton
method was used. Despite its good convergence, the cost per iteration is somewhat higher than our
approach as the method requires multiple evaluations for each matrix-vector multiplication and no
preconditioning was used. We discuss the related work for each of the other features in more detail
below.

Integral equation formulation. Several authors [6, 7, 16, 17, 35, 57] have used direct integral
equation formulation for simulating vesicle flows. This formulation results in a single-layer potential
for flows with no viscosity contrast and a combination of a single-layer and a double-layer for flows
with viscosity contrast [35, 48, 57, 69]. A particular feature of vesicle flows is the local surface
inextensibility constraint. In [35, 57] the constraint is treated by a penalty formulation. The penalty
parameter results in artificial stiffness and a loss in accuracy in enforcing the constraint. Imposing
the constraint using a Lagrange multiplier removes the stiffness and resolves the inextensibility
constraint with spectral accuracy [50, 62, 69].

Surface discretization. In particulate flows, the surface is typically represented by a triangu-
lation. Once such triangulation is available, either collocation or Galerkin schemes can be used to
discretize the integral equation [4]. Examples include [35, 49, 53, 57]. High-order B-spline methods
were used in [69]. Pozrikidis [14] proposes a boundary element scheme for deformable capsules
with bending and in-plane shear resistance based on six-node quadratically curved triangles and
a low-order accurate integration method. This discretization requires tracking of 1026 points per
surface to get 0.01% error in the total volume of the particle2. Spherical harmonics have been
used frequently in boundary integral equations [4]. It enables spectrally accurate integration and

1In two dimensions, there is a lot of work on semi-implicit schemes, see [62] for more details.
2Pozrikidis provides evidence on the significance of including bending even in the case of high-shear flows. He

concludes that bending resistance restricts the overall capsule deformations and prevents the development of highly
curved shapes, thus, having significant effect even on time scales that are much larger that the bending relaxation
time.
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differentiation. Zhao et al. [68] uses a spherical harmonic discretization for deformable capsules
with bending and shear resistance, but no inextensibility constraint.

Singular quadratures. Bruno and Kunyansky [13] proposed a spectral integration scheme for
weakly-singular integrals. Ying et al. [67] extended it to arbitrary-geometry smooth surfaces. Al-
though asymptotically optimal, this scheme is rather expensive as it requires the use of partition of
unity functions, for which derivative magnitudes rapidly increase with order and as a consequence,
a relatively large number of points is needed for good approximation. This scheme is used in [68].
To reduce the discretization size without compromising accuracy, we use the scheme proposed by
Graham and Sloan [30]. It is only applicable on smooth surfaces of genus zero but it is quite fast.
In [28], the schemes of [13] and [30] are compared and it is shown that the latter scheme is more
accurate for small numbers of discretization points.

Simulation of concentrated suspensions of vesicles requires evaluation of nearly-singular inte-
grals. Although we could use the integration scheme in [67], we have found that, for the problem
sizes we are targeting, it is cheaper to use a simple upsampling-based quadrature (see discussion in
Section 4.1).

Reparametrization. In the context of deformable surfaces, the need and methods for main-
taining grid quality is ubiquitous. All the resampling methods known to us in this context focus
on mesh-based surface representations (primarily piecewise-linear, but also higher-order, e.g., [36])
and we are not aware of any methods designed for spectral discretizations.

Many approaches are based on various types of tangential mesh smoothing, often combined with
connectivity adaptation. For simulation of multiple interacting drops, Loewenberg and Hinch [41]
proposed a heuristic formula for artificial tangential velocity reducing mesh distortion. Zinchenko
et al. [76] observed that the technique of [41] leads to instabilities in simulations with gravity in-
duced motions, and constructed a tangential velocity field by global minimization of the sum of
squares of the rates of change of the distances between adjacent vertices (tangency of the field is
enforced as a constraint), the first instance of the (passive stabilization) approach. This method was
further developed by introducing different objectives for minimization in [70, 77], which adapted
the sampling density to curvature and controlled triangle quality. More complex versions of passive
stabilization methods these methods are quite expensive as relatively complex nonlinear energies are
minimized using gradient descent. A simpler version of passive stabilization suitable for moderate
deformations was used in [71–73], including a distance-preserving term, and a triangle “compact-
ness” term penalizing elongated triangles. In [75] the same simplified energy is supplemented by
node redistribution, aiming to equalize mesh edge lengths. A modification of this method reducing
maximal deviation from average is described in [74]. In Cristini et al. [19] a damped relaxation
with the energy gradient projected to the surface is used. Additionally, nodes are added by triangle
quadrisection (also to minimize the energy) and removed by edge collapse.

An advancing-front method for remeshing of quadratic triangular elements (originally proposed
in [39]) adapting triangle size to local criteria such as curvature is described in [36] and is extended
in a number subsequent papers to surfaces, in particular in Lohner [42]. Tryggvason et al. [60]
briefly describe an algorithm for adapting a mesh to an evolving fluid interface, which uses edge
length as a criterion for bisection and edge collapses to remove small elements.

A set of algorithms for anisotropic mesh adaptation, including anisotropic smoothing, applicable
to the problem of approximating deforming surfaces, was presented in [32].
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Feng and Klug [26] use subdivision finite elements, and demonstrate that local inextensibility
combined with a sufficiently accurate Galerkin method makes it possible to simulate moderate
deformations with fluid membranes (without fluid interaction). Ma and Klug [43] mention that
local inextensibility combined with large deformations still leads to instability, and describe how
viscous stabilization of the mesh can be achieved by minimizing an energy measuring the deviation
of edge length from previous values. This approach is suitable for computing equilibrium shapes in
the absence of external forces, but not for dynamic simulations.

Aliasing errors. While various nonlinear quantities (e.g., surface mean curvature and its deriva-
tives used for forces) can be evaluated accurately pointwise, they may contain high frequencies
which cannot be resolved properly with a small number of sampling points, leading to aliasing
errors ([59], [5]), i.e., discretization errors that can be resolved by increasing the resolution. In our
previous work [62] , in two dimensions 64 points were sufficient to resolve the vesicle interactions
and aliasing was not an issue. In three dimensions, however, we need to consider aliasing errors for
two reasons: first, we would like to enable accurate simulations with very few spectral collocation
points (say 98 points) to allow simulations with very large number of vesicles. In this regime, fil-
tering is required to deal with unresolved frequencies. Second, unlike capsules endowed with strong
shear resistance, vesicles are fluid membranes and as a result they experience excessive deformations
that lead to significant amplification of aliasing errors. The latter cannot be addressed with simple
linear filtering. Nonlinear reparametrization schemes are required. We present one such scheme in
this paper tailored for spectral discretizations.

3 Formulation

In the rest of the paper we assume that the fluids in the interior and exterior of the vesicle have
the same dynamic viscosity µ.

Notation. Before we state the overall formulation of the problem, let us set the notation. We
consider a single vesicle first.

• With γ we denote the vesicle membrane (or vesicle boundary).

• For a vector field f(y), y ∈ γ, and an arbitrary point x ∈ R3 we define the single-layer Stokes
operator as

Sγ [f ](x) :=

∫
γ
G(x,y)f(y) dγ(y), G(x,y) :=

1

8πµ

(
1

||r||
I +

r⊗ r

||r||3

)
, r = x− y, (3)

where G is the free-space Green’s function for the Stokes equation, |||| is the Euclidean norm
in R3, and I is the 3× 3 identity operator.

• With divγ(x), ∇γ(x), and ∆γ(x) we denote the surface divergence, surface gradient, and
surface Laplacian (Laplace-Beltrami operator) respectively evaluated on x ∈ γ.

• With W (x),n(x), H(x) and K(x) we denote the area element, the unit normal to γ, the mean
curvature, and the Gaussian curvature defined on a point x ∈ γ. We give explicit formulas
in the Appendix D.
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• Finally, let us define the bending fb and tension fσ forces on a point x ∈ γ:

fb(x) = −κB
(

∆γ(x)H(x) + 2H(x)(H(x)2 −K(x))
)
n(x),

fσ(x, σ) = σ∆γ(x)x +∇γ(x)σ,
(4)

where κB is the surface’s bending modulus. These are obtained by taking the L2−gradient
of the surface energy E =

∫
γ

1
2κBH

2 + σ dγ. See [65] for the derivation.

In the rest of the paper, we will frequently suppress the dependence of divγ ,∇γ ,∆γ , H,K, fb, fσ,n
on the evaluation point, which should be clear from the context.

Following [62] , the evolution of a point x on the vesicle’s boundary γ is governed by

ẋ = v∞(x) + S[fb + fσ](x)

divγ (S[fσ]) = −divγ (v∞ + S[fb]) ,
(5)

where v∞ is a specified far-field velocity.

4 Spatial Scheme

We use spherical harmonic expansions to represent the surface and the interfacial forces. For
force evaluation we need to apply forward and inverse harmonic transforms, as well as differentiate
and integrate functions on the surface. In this section, we describe our surface representation,
spectral differentiation and quadratures used to integrate functions on the surface, both smooth
and singular, with singularity due to multiplication by the Stokes kernel. We conclude with a brief
discussion on quadratures for near-singular vesicle-vesicle interactions.

Spherical harmonics. Let γ be a smooth surface of spherical topology and let x : U → γ be a
parametrization of γ. The domain U is the rectangle {(u, v)|u ∈ [0, π], v ∈ [0, 2π)}; u parametrizes
the latitude and v parametrizes the longitude. A scalar spherical harmonic function of degree n
and order m is given by [12]

Y m
n (u, v) =

1√
2π
P̄mn (cosu)eimv, where P̄mn (t) :=

√(
n+

1

2

)
(n−m)!

(n+m)!
Pmn (t). (6)

Here, |m| ≤ n, Pmn denote the associated Legendre functions of degree n and order m, and P̄mn
denote the corresponding normalized associated Legendre functions. Spherical harmonics form an
orthonormal basis for square-integrable functions defined on the unit sphere: any scalar function
φ ∈ L2(S2) can be expanded as

φ(u, v) =

∞∑
n=0

n∑
m=−n

φ̂mn Y
m
n (u, v), (7)

where φ̂mn =

∫ 2π

0

∫ π

0
φ(u, v)Y m

n (u, v) sinu du dv. (8)

For φ ∈ C∞(S2), the finite-term approximation

φ(u, v) ≈
p∑

n=0

n∑
m=−n

φ̂mn Y
m
n (u, v) (9)

is spectrally convergent [47].
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Surface representation. The vesicle boundary γ is described by a set of spherical harmonic
coefficients {x̂mn |n = 0, . . . , p;m = −n, . . . , n} so that for all x ∈ γ we have:

x(u, v) =

p∑
n=0

n∑
m=−n

x̂mn Y
m
n (u, v), u ∈ [0, π], v ∈ [0, 2π). (10)

Each Cartesian component of the position vector x is expanded as a real-valued function. In total,
we need (p+ 1)2 coefficients for each Cartesian component.

Forward and inverse transforms. A standard choice for spectrally accurate integration of a
function represented by an order p spherical harmonic expansion is to use the trapezoidal rule
for v and Gaussian quadrature rule for u: we choose 2p + 2 equispaced nodes in the v-direction
{vk = πk

p }
2p+1
k=0 and p+ 1 nodes along the u-direction {uj}pj=0 given by

uj = cos−1(tj), where tj ∈ [−1, 1]. (11)

Here tj ’s are (p+ 1)-point Gauss-Legendre quadrature nodes. On this grid a standard convergence
estimate holds:

Theorem 4.1. (Quadrature rule for regular integrals) For any smooth function f defined on a C∞

surface γ of spherical topology, the quadrature rule

∫
γ
fdγ =

p∑
j=0

2p+1∑
k=0

wjkf(uj , vk)W (uj , vk), where wjk =
π

p

λj
sinuj

(12)

is superalgebraically convergent with p. Here, λj are the Gaussian quadrature weights and W (uj , vk)
is the infinitesimal area element of γ.

One can use fast transforms for both longitude (Fast Fourier Transform) and latitude (Fast Leg-
endre Transform [FLT]) so that the spherical harmonic coefficients can be computed inO(p2(log p)2+
p2 log p) (see [44])3. The pseudocode for the forward spherical harmonic transform is given in Ap-
pendix C. A similar algorithm can be used for the inverse transform.

Computing derivatives. We compute derivatives of functions defined by samples on γ by ap-
plying the forward spherical harmonic transform and using standard differentiation formulas in the
spectral domain:

xu =

p∑
n=0

n∑
m=−n

x̂mn (Y m
n )u , xv =

p∑
n=0

n∑
m=−n

x̂mn (Y m
n )v (13)

where the derivatives of spherical harmonics are:

3In our implementation, we use direct transforms since p is relatively small. As we will see, the main cost of the
computation is resolving the weakly singular Stokes single-layer potential.
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∂kY m
n

∂vk
= (im)kY m

n . (14)

(Y m
n )u =

√
(n−m)(n+m+ 1) e−iv Y m+1

n +m cotuY m
n , (15)

(Y m
n )uu = (n+m+ 1)

√
(n−m)(2 +m+ n)e−2ivY m+2

n +

(2m+ 1)
√

(n−m)(n+m+ 1)e−iv cotuY m+1
n −m2 Y m

n . (16)

For smooth x this numerical differentiation scheme is spectrally accurate because the only approx-
imation made is the pth -order spherical harmonic transform.

Computing differential quantities accurately requires filtering for antialiasing. For instance, the
mean curvature, H(x), of a smooth surface is a smooth function which can be computed at sample
locations from the derivatives of x (see Appendix D). However, even if x is bandlimited and exactly
representable with the expansion of order p, this could no longer be true for the mean curvature,
and its reconstruction from the values at sample points used for x suffers from aliasing. To reduce
these errors, we upsample x using spherical harmonics interpolation, perform differentiation, filter
out the high-frequency components and then restrict the result to the original grid. The required
upsampling order depends on the surface and also the differentiation order and p (for high-enough
p, both x and H are resolved and no filtering is necessary). In our numerical experiments, we found
that upsampling to a resolution two times higher than the original grid works well. We demonstrate
one such experiment in Figure 2.

ratio

1 1.28e−2 1.71e−1 1.09e−1 2.30e−1

2 2.40e−5 6.39e−3 2.70e−4 9.13e−3

4 6.29e−11 3.81e−5 3.56e−8 1.80e−5
5 10 15 20

10
−10

10
0

n

E
n

 

 

H
x

1

Figure 2: In the left table, we report the relative errors ||Hq/p −H∗||∞/||H∗||∞ in the computation of the
mean curvature. By Hq/p, we denote the mean curvature obtained by upsampling a pth order representation
of the x to qth order, computing the curvature and then restricting it to the original grid. The reference
function H∗ is computed analytically. Each row corresponds to a particular ratio q/p and for all shapes we

have set p = 6. In the right figure, we plot the spectrum En[f ] =
∑n
m=−n |f̂mn | of the functions x1(u, v) and

H(u, v) corresponding to the rightmost shape in the table. The bandwidth of the curvature, as expected, is
higher than that of the positions justifying the need for upsampling.

4.1 Singular Integration

For integrals involving the weakly singular Stokes kernel, we use a superalgebraically convergent in-
tegration scheme. There are many techniques that can be used to resolve the singularity accurately.
As discussed in the introduction, our main goal in choosing the quadrature scheme is to achieve
spectral accuracy while maintaining good computational efficiency for small values of p (p = 8−32).
For smooth surfaces that admit global parametrization, there are two main approaches to singular

11



integration: one proposed by Bruno and Kunyansky [13] based on partitions of unity and the other
proposed by Graham and Sloan [30] based on rotations and special quadratures. The former scheme
has better asymptotic complexity O(p3) as opposed to the O(p5) of the latter. However, for the
values of p that are of interest to us (p ≤ 48), the Graham-Sloan scheme performs much better [28]:
multiplication by the partition of unity used in the scheme of [13] results in substantial increase
in the integrand derivative magnitudes resulting in lower accuracy for a given number of samples.
Here, we summarize the Graham-Sloan scheme for convolutions with the Laplace kernel 1/||r|| and
then discuss its extension to the Stokes kernel.

Consider a smooth scalar function f(x(u, v)) : S2 → R. We compute the integral

A[f ](ut, vt) :=

∫ 2π

0

∫ π

0

f(u, v)W (u, v)

||r||
du dv where r = x(ut, vt)− x(u, v) (17)

and W (u, v) is the surface area term. First, we rotate the coordinate system (u, v) → (uR, vR)
so that fixed evaluation point (ut, vt) becomes (0, 0) (the north pole). The positions are modified
to x(uR, vR), the density to f(uR, vR) and the surface area term to W (uR, vR). In subsequent
expressions, we drop the the subscripts from (uR, vR) and the coordinate system should be clear
from the context. Applying the smooth quadrature rule (12), however, may still not be efficient.
As an illustration, consider the unit sphere. In this case, xS2(u, v) = (sinu cos v, sinu sin v, cosu),
W = sinu and

AS2 [1](0, 0) =

∫ 2π

0

∫ π

0

sinu√
2− 2 cosu

du dv =

∫ 2π

0

∫ π

0
cos

u

2
du dv =

∫ 2π

0
dv

∫ 1

−1
dt

1√
1− t2

, (18)

by change of variables t = cosu. The integral has a square-root singularity at t = ±1, and hence a
Gaussian quadrature rule in the t-domain (as applied in (12)), is not efficient.

The Graham-Sloan scheme makes use of three properties: (1) since γ is diffeomorphic to a
sphere, it reduces the problem of computing the harmonic potential on γ to a problem of computing
the harmonic potential on S2. Defining s(u, v) = (W/||r||)S2 = cos(u/2), we can write s (17) as

A[f ](0, 0) :=

∫ 2π

0

∫ π

0
s(u, v)

(
f(u, v)W (u, v)

s(u, v)||r||

)
du dv;

(2) Although the function fW
s||r|| can be discontinuous at the north pole, it has sufficiently well-behaved

spherical harmonic expansions; (3) The harmonic potential on S2 can be computed analytically for
spherical harmonics [45]:∫ 2π

0

∫ π

0
s(u, v)Y m

n (u, v) du dv =
4π

2n+ 1
Y m
n (0, 0). (19)

Based on these properties, we can construct modified quadrature weights to compute the har-
monic potentials. The result can be summarized as follows:

Theorem 4.2. (Quadrature rule for singular integrals at poles) [30] For any smooth boundary x
and for any smooth function f , the quadrature rule for computing the harmonic potential at the
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north-pole given by

A[f ](0, 0) =

p∑
j=0

2p+1∑
k=0

wsjk
||x(0, 0)− x(uj , vk)||

f(uj , vk)W (uj , vk), with

wsjk = wjk

p∑
n=0

4π√
2(2n+ 1)

Pn(cosuj)

cos(uj/2)

(20)

is superalgebraically convergent4 with p.

Remark 1. As has been observed by several authors [3, 13, 30], the function fW
||r|| in (17) is smooth

in the rectangular domain U because the vanishing surface area term W counteracts the singularity
due to 1/||r||. Therefore, applying the Gaussian quadrature along u-direction (as opposed to Theorem
4.1 which applies Gaussian quadrature in t-direction where t = cosu) and the trapezoidal rule along
v-direction yields spectral convergence. However, the errors for a specific p would be slightly higher
using this scheme compared to the scheme described in Theorem 4.2. The reason for this is the
clustering of the sampling points near the poles, which results in less accurate approximations for
a fixed p.

A significant part of the overall complexity of (20) is due to the rotation of the coordinate
system needed for every evaluation point on the vesicle surface. Since we use p2 evaluation points
on the surface, the overall cost of the rotation for just one evaluation point is O(p4) (mapping p2

points to p2 points). (The rotations must be applied for f and the three coordinates of the points.)
However, the O(p4) cost per point can be reduced to O(p3) per point by rotating in the spherical

harmonic representation. Invoking the addition theorem [12], one can show that the harmonic
coefficients of degree n in the rotated coordinate system depend only on the coefficients of degree
n in the original coordinate system.

More precisely, let F := {f(uj , vk)|j = 0, . . . , p; k = 0, . . . , 2p + 1}. The rotations can be
treated sequentially, i.e., we can first rotate the grid in the v-direction in the spherical harmonics
space (which corresponds to a simple shift requiring O(1) operations) and then use a precomputed
rotation in the u-direction. Given a target point (u, 0), ( (0,0) in the rotated system), and for each
degree n we use a n× n matrix Rn(u, 0) such that

F̂′n(u, 0) = Rn(u, 0)F̂n.

We represent the combined rotations in both u and v more compactly as

F̂′(u, v) = R(u, v)F̂.

Since F̂′n can be computed with O(p2) work, F̂′ can be computed in O(p3) work. The matrices
Rn are precomputed either using recurrences or directly by the recently proposed algorithm of
Gimbutas and Greengard [29]. Due to symmetry, we only need a p/2 set of rotation matrices.

Let P be the forward spherical harmonics transform and P ∗ the inverse spherical harmonics
transform. Algorithm 1 summarizes the computation of an integral with harmonic potential.

4The proofs outlined in [30] require that the functions need to be oversampled for spectral convergence. However,
here we have assumed no oversampling. Empirically we have found that spectral convergence can be observed even
without oversampling (eg., Table 3).
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Algorithm 1 Computing the harmonic potential.
Input: X := {x(uj , vk) | j = 0, . . . , p, k = 0, . . . , 2p + 1}, F := {f(uj , vk) | j = 0, . . . , p, k =
0, . . . , 2p+ 1}
Ouput: {A[f ](uj , vk) | j = 0, . . . , p, k = 0, . . . , 2p+ 1}

X̂ = PX and F̂ = PF // O(p2 log2 p)

for k = 0 to 2p+ 1 do
for j = 0 to p do

X̂′ = R(uj , vk)X̂ // R is applied to each component of every point in X

F̂′ = R(uj , vk)F̂ // O(p3)

evaluate the harmonic potential using (20)
Y(uj , vk) = P−1X̂′ and Q(uj , vk) = P−1F̂′ // Y,Q, used to simplify notation

A[f ](uj , vk) =
∑p

n=0

∑2p+1
m=0

ws
nm

||Y(un,vm)−X(uj ,vk)||Q(un, vm)W ′(un, vm) // O(p2)

end for
end for

Extension to Stokes kernel. Let us assume the evaluation point to be the north pole. The
Stokes kernel (3) has an additional factor

K(u, v) = I +
r⊗ r

||r||2
, r = x(0, 0)− x(u, v)

multiplying the Laplace kernel 1/||r||. At the north-pole, K is continuous but non-smooth. Hence,
it is not clear if we can use (20). It turns out that the following two properties of the Stokes kernel
suffice to extend the theoretical proofs of [30].

• K(u, v) is reflectionally symmetric, that is, K(u, v) = K(−u, v + π).

• K(u, v) is an infinitely differentiable function and all its derivatives are 2π-periodic in both
u and v.

For more formal descriptions, see Definitions 4.3 and 4.5 of [30]. We use the formula

S[f ](0, 0) =

p∑
j=0

2p+1∑
k=0

wsjkK(uj , vk) f(uj , vk)W (uj , vk)/||x(0, 0)− x(uj , vk)|| (21)

analogous to (20) for evaluating the single layer potential with spectral accuracy. At each evaluation
point, we rotate the coordinate system so that it is mapped to the north-pole and then use (21).
The overall complexity of the algorithm (for a single vesicle) is O(p5)-work and O(p3)-storage.

Nearly singular integrals. Vesicle-vesicle hydrodynamic interactions are not singular, so for-
mally the smooth integration rule (12) can be used. However, for close interactions the accuracy of
these rules deteriorates as the integrals become nearly singular. A robust, fourth-order accurate,
near-singular integration scheme for smooth surfaces is presented in [67]. However, the constant
in the complexity estimate of that scheme is rather high since it involves multiple evaluations and
interpolations, and requires finding nearest points on the surface.
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For this paper—motivated by our empirical observation that vesicles in the parameter ranges
that we have studied tend to be well-separated5 even in relatively concentrated suspensions, we
have opted for a simpler scheme that uses upsampling and anti-aliasing. We spectrally upsample 6

all vesicle surfaces by a factor of two (similar to the medium-distance part of the evaluation in [67]),
then we compute the interactions at this higher resolution and then downsample to the original
resolution using spectral cutoff. This computation can be done in a per-vesicle adaptive way, but
in our implementation we have used uniform upsampling across all vesicles. Let us emphasize that
in our simulations, oversampling and filtering are necessary: if they are not invoked one observes
numerical blow-up (Figure 8). For more concentrated suspensions, the more expensive scheme of
[67] is likely to be required for robustness.

5 Time Scheme

In this section, we discuss an explicit and a new semi-implicit scheme for the vesicle shape evolution.
With very few exceptions (e.g., [20]), explicit schemes have been the method of choice for three-
dimensional particle simulations.

Explicit schemes have low computational cost per time step but are known to suffer from
stability restrictions on size of the time step. This restriction arises due the numerical stiffness from
the high-order spatial derivatives in the bending force. Consequently, the overall computational
cost of the simulating in a fixed time horizon tends to be high, especially with increasing spatial
resolution. For vesicles, the inextensibility constraint is typically enforced with an explicit penalty
parameter [8, 23, 35] that introduces additional stiffness. In our explicit scheme, the inextensibility
constraint is enforced using the tension as a Lagrange multiplier.

Semi-implicit schemes offer a trade-off between the per-time step computational cost and sta-
bility requirement on the time-step size. However, they are more difficult to analyze, especially
for nonlinear systems. For further discussion on implicit schemes for vesicle simulations, see [62].
Another option is to use a fully implicit scheme. In our previous work on 3D axisymmetric vesicle
flows [61], we observed experimentally that a line-search, single-level, Newton scheme in which the
Jacobian is approximated using the semi-implicit scheme linearization scheme does not result in
computational savings.

An important part of both of our explicit and semi-implicit schemes is the need for reparam-
eterization of the surface to minimize aliasing errors. At every time step, an auxiliary evolution
equation

x̊ = F (x) (22)

is solved. The choice of the smoothing function F and the time-stepping scheme for (22) is discussed
in Section 6.

Before we describe the time-stepping schemes, we state three spectral properties of the Stokes,
bending, and surface inextensibility operators. We can use these results to (1) characterize the

5We consider vesicles well-separated if the minimum inter-vesicle distance is greater than the distance between
sample points on the sphere. For example, two spheres in shear flow can come arbitrarily close whereas for droplets
the distance tends to stay relatively large [40]. We observe a similar behavior for the case of vesicles; for example,
see Figure 9.

6Upsampling (or spherical harmonic interpolation) refers to mapping the function to a finer grid by computing the
spherical harmonic coefficients (using the given function values at the coarser grid) and then evaluating the spherical
harmonic expansion (9) at the finer grid points. Similarly, downsampling (or spherical harmonic filtering) refers to
mapping the function to a coarser grid.
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stiffness of the problem, (2) construct preconditioners for the constraint and evolution equations
(§5.4), and (3) derive analytical solutions for various external flows, see Appendix B.

5.1 Spectral analysis on the unit sphere

To characterize the stiffness of the equation (5), we consider the case of a spherical vesicle (γ ≡ S2)
and we derive the spectrum of S, divγS[fσ], and a simplified form of S[fb]. To analyze the spectral
properties, it is convenient to use vector spherical harmonics that form an orthogonal basis for all
vectorial functions f ∈ L2(S2). They are defined in terms of the scalar spherical harmonics and
their derivatives by

Vm
n (u, v) := ∇γY m

n (u, v)− (n+ 1)Y m
n (u, v)n(u, v) (23a)

Wm
n (u, v) := ∇γY m

n (u, v) + nY m
n (u, v)n(u, v) (23b)

Xm
n (u, v) := n(u, v)×∇γY m

n (u, v) (23c)

where n is the normal to the unit sphere.7

For notational convenience, we suppress the (u, v) dependence. Using these definitions, we now
derive the spectra of various operators.

Theorem 5.1. (Stokes operator) On the unit sphere, the vector spherical harmonic functions Vm
n

and Wm
n are the eigenfunctions of the Stokes single-layer operator S and

S[Vm
n ] =

n

(2n+ 1)(2n+ 3)
Vm
n , (24a)

S[Wm
n ] =

n+ 1

(2n− 1)(2n+ 1)
Wm

n . (24b)

Theorem 5.2. (Inextensibility operator) On the unit sphere, the spherical harmonic functions are
eigenfunctions of the inextensibility operator L defined as

Lσ = divγS[σ4γx +∇γσ]. (25)

and

LY m
n = − n(n+ 1)(2n2 + 2n− 1)

(2n− 1)(2n+ 1)(2n+ 3)
Y m
n . (26)

Theorem 5.3. (Bending operator) On the unit sphere, the vector spherical harmonic functions
Vm
n and Wm

n are eigenfunctions of the bending operator defined by B[f ] = S[∆2
γf ] and

B[Vm
n ] =

n3(n− 1)2

(2n+ 1)(2n+ 3)
Vm
n , B[Wm

n ] =
n(n+ 1)2(n+ 2)2

(2n+ 1)(2n+ 3)
Wm

n . (27)

7Various other sets of vector spherical harmonics are used in the literature, tailored for different kinds of problems
(e.g., [45, 64]), specifically, for Stokesian flows in [18, 63]. The ones we defined here are first proposed in Hill [31].
They are traces on S2 of a corresponding basis set in R3, usually termed as solid vector spherical harmonics, defined
as [24]

Vm
n (r, u, v) = r∇Y m

n (u, v)− (n+ 1)Y m
n (u, v)er,

Wm
n (r, u, v) = r∇Y m

n (u, v) + nY m
n (u, v)er,

Xm
n (r, u, v) = er × (r∇Y m

n (u, v)),

where (r, u, v) are the coordinates of a point in the spherical coordinate system with unit vectors (er, eu, ev).

16



Note that we have used a simplified expression (fb = 42
γx) that retains only the dominant term

in the bending force. The proofs follow directly from the antenna theorems of [55], we outline them
in Appendix A.

From Theorems 5.1, 5.2 and 5.3, we conclude that (i) S is a smoothing operator, (ii) L and B
are ill-conditioned operators, and (iii) the condition number of L grows as O(n) and the condition
number of B grows as O(n3). Therefore, we expect severe time-step restrictions for explicit schemes.
Next, we discuss such a scheme for the vesicle evolution equations.

5.2 Explicit Scheme

We begin our discussion by considering the time-stepping scheme for a single vesicle. Let 4t be a
fixed time-step size. Given the positions of the discrete points on the vesicle surface {xn(uj , vk) :
0 ≤ j ≤ p, 0 ≤ k ≤ 2p− 1} at time n4t, the goal is to solve (5) for the new positions at (n+ 1)4t.
A first-order, explicit time-stepping scheme for (5) reads

L(xn)σn+1 = −divγ (S [fnb ] (xn)) (28a)

1

4t
(
xn+1 − xn

)
= S

[
fnb + fn+1

σ

]
(xn), (28b)

where all the differentiation operators are evaluated at xn and fn+1
σ := σn+1∆γx

n +∇γσn+1. In
the first step, we solve a linear system defined by the discretization of (28a) for the tension σn+1,
given the positions at n4t. In the second step (28b), σn+1 is used for updating the positions.
To compute the bending force fnb , we compute the curvatures Hn and Kn of the surface xn and
substitute in (4). The explicit treatment of the single layer potential means that we evaluate it by
the following formula

S[fnb ](xn) =

∫ 2π

0

∫ π

0
G(xn(u, v),xn(u′, v′))fnb (u′, v′) du′ dv′, (29)

which is computed using the quadrature rule of Theorem 4.2. For the spatial discretization of
(28a) and (28b) we use a collocation method (Fourier-Legendre quadrature points). Finally, we
use a Krylov iterative solver (GMRES [54]) combined with a preconditioner to solve the constraint
equation.

This explicit scheme requires the solution of one linear system at each time step and resolves
the numerical instability due to tension. However, the bending term is treated explicitly. Based on
the spectral analysis of §5.1, we conjecture that 4t ∼ O(p−3), which is also corroborated by our
numerical tests.

The extension of the scheme (28) to multiple vesicle suspensions is done by treating the vesicle-
vesicle interactions explicitly. Given the individual vesicle positions {xnk}Kk=1 at time n4t, the up-
date of positions and tensions to (n+1)4t is done in three steps:

Step 1: Evaluate bending forces
for k = 1 to K do

Compute fk,nb , fk,nσ
end for

Step 2: Compute new tensions
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Compute {σn+1
j }Kj=1 by solving

L(xnk)σn+1
k = −divγ

 K∑
j=1
j 6=k

S[f j,nσ ](xk)

− divγ

v∞ +
K∑
j=1

S[f j,nb ](xk)

 , k = 1, . . . ,K

Step 3: Explicitly update positions
for k = 1 to K do

xkn+1 = xkn +4t
∑K

j=1 S[f j,nb + f j,n+1
σ ](xkn)

Surface Reparameterization and tension advection
Solve:

x̊n+1
k = F (xn+1

k ) // apply tangential smoothing

σ̊n+1
k + divγ

(
σn+1
k F (xn+1

k )
)

= 0 // advect the tension

end for

Notice that after the surface reparameterization we need to advect the tension to the new
positions so that it is available for the next time step. The advection velocity is defined by the
reparameterization of the surface.

Next, we propose a new semi-implicit scheme for which we have observed experimentally that
the time step for stability is nearly independent of the spatial discretization size p.

5.3 Semi-implicit Scheme

In a semi-implicit scheme, the linear parts of the stiffest terms are treated implicitly [1]. For example
if we have a linear dynamical system of the form ẋ = Ax + Bx, in which A is the stiff operator,
we can discretize it using an implicit scheme for A and an explicit scheme for B. Such schemes
have been analyzed in [2]. Our system however, is more complex: it is of the form ẋ = Q(x)x,
where Q is a nonlinear operator; to our knowledge, there is no analysis of semi-implicit schemes
for such dynamical systems. Our semi-implicit approach is, roughly speaking, to discretize it by
xn+1 − xn = 4tQ(xn)xn+1.

Because of its constituent fourth-order spatial derivatives, the bending force is the leading order
term that induces stiffness into the evolution equation. Therefore, we look for a linearization of the
bending force that results in a stable scheme:

L(xn)σn+1 = −divγS [fnb ] (xn), (30a)

1

4t
(
xn+1 − xn

)
= S

[
fn+1
b + fn+1

σ

]
(xn), (30b)

where all the differentiation operators are evaluated at xn and fn+1
σ := σn+1∆γx

n + ∇γσn+1.
Suppressing the superscripts on explicitly treated terms for notational convenience, the bending
force is defined as

fn+1
b = −(∆γH

n+1 + 2Hn+1(H2 −K))n, (31)

and Hn+1 =
1

2W 2

(
Exn+1

vv − 2Fxn+1
uv +Gxn+1

uu

)
· n. (32)
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In the time-stepping scheme (30), we first solve (30a) for the tension force starting from the positions
at time n4t and then we solve (30b) for the bending force using the linearization defined in (31)8.

The advantage of this scheme over the explicit scheme discussed in §5.2 is that the time-step re-
striction is overcome with only a modest increase in computational cost. Fully implicit schemes, on
the other hand, require solution of nonlinear equations at every time-step making them potentially
more expensive. We update {xkn, σkn}Kk=1 as follows:

Interfacial forces
for k = 1 to K do

Compute fk,nb and fk,nσ
end for

Interaction forces
for k = 1 to K do

F Ik = 0
for j ∈ {(1, . . . ,K) \ k} do

F Ik = F Ik + S[f j,nb + f j,nσ ](xk)
end for

end for

Update positions and tensions
for k = 1 to K do

Solve :

L(xnk)σn+1
k = −divγ(S[fk,nb ] + F Ik ) tension

xn+1
k −4tS[fk,n+1

b ] = xnk +4t
(
S[fk,nσ ] + F Ik

)
positions

Surface reparameterization and tension advection
Solve:

x̊n+1k = F (xn+1
k ) apply tangential smoothing

σ̊n+1
k + divγ

(
σn+1
k F (xn+1

k )
)

= 0 advect the tension

end for

High-order variants of the explicit (28) and the semi-implicit (30) schemes are readily obtained
using the backward difference formula [1].

Both the explicit and the semi-implicit schemes suffer from mesh distortion in longer time
simulations. In 2D, the local inextensibility constraint prevents the mesh distortion to a large
extent. Unfortunately, this is not the case in 3D. In §6, we propose a new reparameterization
scheme that preserves the quality of the mesh in a dynamic simulation. But first, let us discuss
how the spectral analysis of §5.1 can be used for preconditioning.

8Since the tension force is linear in σ we can easily treat both the tension and bending forces implicitly. In 2D [62]
such kind of schemes have superior stability properties at low shear rates. We have implemented this scheme in 3D
and noticed (via numerical experiments) no improvements over (30). Compared to (30), these schemes have higher
computational cost because of the need to solve coupled linear system of equations and hence are less desirable.
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5.4 Preconditioners

Tension solver. Given the configuration of the vesicle, the inextensibility operator L, defined in
equation (25), is solved to get the corresponding tension. Depending on the time marching scheme,
the right hand side would be some smooth function, denoted here by b. Therefore, the equation for
the tension is Lσ = b. A discrete analogue of this equation is ill-conditioned because by Theorem
5.2, the condition number of L on S2 grows as O(p). Following our method in [62], we propose
using P−1L−1(S2)P as a low cost preconditioner for the solving the inextensibility constraint on
general surfaces, where P is the projection operator that maps φ to φ̂ for any scalar function φ.
The action of L(S2) on spherical harmonics is given in equation (26). In Table 1 we list the number
of required GMRES iterations with and without using the preconditioner. We note that the gain
is significant only for large values of p.

p 8 16 24 32 48

Preconditioned 3.6 8.8 14 20 39

Non-preconditioned 3.5 6.8 10 14 20

Table 1: Average number of GMRES iterations for the tension solver. The average is taken over
five time steps. GMRES tolerance is 1e−8 for all cases.

Position solver. Combining equations (30), (31), and (32) one can see that the linear equation
which is solved for the new position xn+1 is in the form (I − ∆tB)xn+1 = b, where b is some
known vector and B is the bending operator. According to the spectral analysis in Section 5.1
and specifically equation set (27), the bending operator’s condition number grows cubically in
the spherical harmonics’ order. To subdue its ill-conditioning, we devise a diagonal operator in
the spherical harmonic space. The preconditioner is defiend as P−1ΛP where P the projection
operator, and Λ := diag{(1 − ∆tn3)−1}. In Table 2 we report the number of GMRES iterations
for the position solver with and without applying the preconditioner. We note that while the
performance of the preconditioner is extremely well for low shear rates, it deteriorates for higher
shear rates.

Preconditioned Non-preconditioned

p χ = 0 15 150 0 15 150

12 2.7 12 17 12 5 3

16 2.7 12 17 21 12 3.3

24 3.6 13 19 36 23 7.4

32 3.6 13 17 55 37 9.2

48 3.6 13 17 98 45 9.4

Table 2: The average number of GMRES iterations for the position solver in the semi-implicit
scheme. The step sizes are the largest stable time steps from Table 4 and the average is taken over
ten time steps. The GMRES tolerance is set to 10−6.
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6 Reparameterization

When membrane shear elasticity is present, as for example in Neo-Hookean constitutive laws (e.g.,
[68]), there is a built-in mechanism that prevents material points on the membrane from clustering
together. The local surface inextensibility of vesicles prevents the extreme deformations that can be
observed in drops. Nevertheless, the lack of in-plane shear resistance causes significant distortions of
the point distribution, which in turn introduces unresolvable high-frequency components, excessive
aliasing errors, and numerical instability (see Figure 4). To address these errors and enable long-
time accurate simulations using a small number of spherical harmonics coefficients, we reparametrize
the surface at each time step through a redistribution of points that seeks to minimize the high-
frequency component of the spherical harmonics expansion of the surface parametrization. Unlike
previous work, this antialiasing is nonlinear: it is not done by a linear spectral projection but by
solving a nonlinear variational problem.

We define the surface γ as the image of an embedding of the sphere x(q) : S2 → R3 where q
is a point on S2. We assume that x(q) ∈ X , a space of sufficiently smooth functions on S2. The
choice of space depends on the energy; for the energy we consider below any function in L2 can
be used. Many different embeddings correspond to the same surface, and our goal is to chose one
that minimizes a quality measure E(x) : X → R. To characterize all embeddings corresponding to
γ, we use its implicit representation, a smooth function F : R3 → R, such that F (γ) = 0 and ∇F
does not vanish at x on γ. Then for any parametrization x, F (x(q)) = 0, for all q ∈ S2. The unit
normal to γ can be compted as n = ∇F/||∇F ||. Using this notation our problem can be formulated
as a constrained optimization problem:

min
y∈X

E(y(q))

subject to

F (y(q)) = 0, ∀q ∈ S2,

(33)

that is, find a parametrization y(q) of γ minimizing the quality measure E.
In general, this may be a highly nonlinear problem requiring a computationally expensive

method. At the same time, it is generally unnecessary to obtain a precise solution. We present a
simple inexpensive method that yields a sufficiently accurate approximation at a low cost.

By introducing a Lagrangian E(y) +
∫
S2 µF (y) and taking variations with respect to y and the

Lagrange multiplier µ := µ(q), with µ restricted to a space of sufficiently smooth functions on S2,
we obtain the (strong form of the) first-order optimality conditions

∇yE(y(q)) + µ(q)∇yF (y(q)) = 0, ∀q ∈ S2 (34a)

and
F (y(q)) = 0, ∀q ∈ S2. (34b)

Due to the special form of these equations, it is possible to eliminate µ by taking the inner product
of (34a) with ∇F , so that

∇E · ∇F + µ||∇F ||2 = 0, or µ = −∇E · ∇F/||∇F ||2,

where we drop the subscript y to simplify the notation. Substituting µ into (34), we obtain

(I − n(y)⊗ n(y))∇E(y) = 0 and F (y) = 0. (35)
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We solve (35) using pseudo-transient continuation [34] by introducing a parameter τ . That is, we
solve

ẏ + (I − n(y)⊗ n(y))∇E(y) = 0, y(0) = x, and F (y) = 0, (36)

where ẏ := ∂y
∂τ . This evolution of y cannot increase the energy, since we are moving in the constraint

manifold-projected steepest descent direction.9 Our parametrization optimization can be viewed
as a discretization of this flow using an explicit scheme:

yk+1 = yk + ∆τ(I − nk ⊗ nk)∇E(yk). (37)

Notice that we do not explicitly impose the constraint F = 0. In the continuous case, it is satisfied
for all values of τ if the initial value x satisfies F (x) = 0. Indeed, by substituting (37) to F (yk+1)
one can show that the former is zero to first-order approximation and F → 0 ∀τ with ∆τ → 0. Of
course, one needs to control the size of ∆τ to avoid excessive discretization errors.

Choosing the surface parametrization quality metric E. Let Y m
n (n = 0, 1, . . . , |m| ≤ n)

be the spherical harmonics basis. We define a discrete filter by the attenuation factors an,m for
(n,m)-th harmonic. Let y =

∑
n,m 〈Y m

n , y〉Y m
n . Then we define the energy as

E(y) :=
∑
n,m

a2n,m 〈Y m
n , y〉2 . (38)

The variation of E with respect to y yields

∇E =
∑
n,m

a2n,m 〈Y m
n , y〉Y m

n .

Since we want E to penalize the high frequencies in order to minimize aliasing errors, an,m should
be small for low frequencies and should grow for high frequencies. In the special case of perfect
low-pass filter (an,m = 0 for n < ncutoff and an,m = 1 for high),

∇E =
∑

n>cutoff ,m

〈Y m
n , y〉Y m

n , (39)

We penalize the high frequency part of y.10

9This can be seen as follows. Let δy, be the change of y along the projected steepest-descent direction scaled by
some ζ > 0. That is,

δy = −ζ(I − n⊗ n)∇E = −ζ∇E + ζ(∇E · n)n, ζ > 0.

Then the change in the energy

δE = E(y + δy)− E(y) = −ζ(||∇E||22 − ||∇E · n||22).

Since ∇E = (∇E · n)n + ∇Etangent at every point and ∇Etangent · n = 0, it follows that δE = −ζ||∇Etangent||22 is
nonpositive. Therefore, we are guaranteed to reach a stationary point.

10We also experimented with filters associated with the inverse spectrum of the Laplace Beltrami operator on
the sphere. In the spectral domain, ai is proportional to the frequency, leading, as expected, to attenuation with
coefficients proportional to the frequency squared. There is no significant difference between the two reparametrization
schemes, but the antialiasing properties of the scheme that we use produced slightly better results.
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Integrating the solver with vesicle simulations. In the context of vesicle simulations at
the end of each time step, we perform reparametrization to improve the quality of the surface
representation, using the scheme (37) with the quality measure E given by (39). Since the objective
of reparametrization is to maximize the decay of spherical harmonic coefficients, we choose n0 in
Equation (39) to be p/3 where p is the order of truncated spherical harmonics series of the surface.

In Algorithm 2, we give the pseudocode for the reparametrization step. In the algorithm,

Algorithm 2 Explicit reparametrization

Require: x
choose ∆τ
y0 = x
g0 = −(I − n(y0)⊗ n(y0))∇E(y0)
while ‖y − y0‖ > ρy and ‖g‖ > ρg‖g0‖ do

g = −(I − n(y)⊗ n(y))∇E(y) projected gradient

y+ ← y + ∆τg
y← y+

end while

∇E is given by (39). Notice, that in our implementation we use upsampling (by a factor of two).
That is we first upsample x, then we pseudo-time march to obtain the new points y, and finally
we downsample to the original resolution of x. This upsampling significantly improves the quality
and effectiveness of the reparametrization.

Algorithm 2 corresponds to a sequence of steepest descent steps for the constrained minimization
problem (33). One could use a line search approach for nonlinear programming (e.g., with an `2
merit function [46]) but this requires access to F and is more complex to implement. Instead, in
our approach, the parameter ∆τ (which corresponds to the line search step-length) can be chosen
using curvature information. That is given x so that F (x) = 0 and a perturbation in the steepest
descent direction ∆τg, then

F (x + ∆τg) ≈ F (x) + ∆τ∇F (x) · g +
∆τ2

2
z · ∇∇F (x)z =

∆τ2

2
g · ∇∇F (x)g.

The Hessian ∇∇F (x) can be computed using the parametric form of the surface. Then we can
choose ∆τ so that F (x+∆τg) < ρF ‖x‖. (Notice that the trace of the Hessian is equal to the mean
curvature, so roughly-speaking the pseudo-time step is inversely proportional to mean curvature.)

One additional question is how to choose ρy and ρg. Parameter ρy ensures that if the change in
y becomes small the algorithm terminates. (We choose ρy = 10−2‖xn+1−xn‖, where xn+1 and xn

are the new and old positions of the vesicle evolution.) ρg ensures that if the gradient becomes too
small the algorithm terminates. We demonstrate the effect of reparametrization on the stability of
the time marching scheme in the the next section, along with numerical experiments that examine
different aspects of our method.

7 Results

In this section, we study the accuracy, stability and complexity of our computational scheme
through numerical experiments. In particular, we test (1) the accuracy of the high-order derivatives
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calculation (curvature) (§4), (2) the accuracy of the smooth, the weakly-singular, and the nearly-
singular quadratures (§4.1), (3) the need for and effects of reparametrization (§6), and (4) the
time-marching stability properties of the explicit and semi-implicit schemes (§5). In addition to
verifying our method, we also present results on the relaxation shapes of dilute suspension under
shear flow, examine a two-vesicle interaction problem, study the sedimentation of a vesicle, and
provide an example of a simulation with multiple vesicles.

First, we define the length and time scales for the different flow regimes we consider in our
experiments. For a vesicle of area A and volume V suspended in a linear shear flow v∞ = γ̇(x3, 0, 0),
the non-dimensional parameters are given by

length scale: R0 =
√

A
4π ,

time scale: τ =
µR3

0
κB

,

reduced volume: ν = 6
√
πV

A3/2 ,

shear rate: χ = γ̇τ .

Quiescent flows are characterized by the nondimensional parameter τ , and simple shear flows
are characterized by τ and χ.

Derivative accuracy. Consider a vesicle’s surface defined by

x(u, v) =

 ρ(u, v) sinu cos v
ρ(u, v) sinu sin v
ρ(u, v) cosu

 , ρ(u, v) = 1 + e−3Re(Y
2
3 (u,v)), u ∈ [0, π], v ∈ [0, 2π]. (40)

As we have discussed, we use equation (13) for differentiation; in Figure 3, we report the relative
errors in computing the Gaussian curvature K, and the mean curvature H of this surface.

M(p) H K

162(8) 2.44e−1 2.21e−1

578(16) 3.09e−3 1.68e−3

1250(24) 1.78e−6 1.36e−6

2178(32) 4.25e−10 2.94e−10

3362(40) 2.05e−11 8.40e−11

4802(48) 3.29e−11 1.27e−10

Figure 3: Relative errors in computing the principal curvatures H and K numerically on the shape shown.
Here M is the number of spatial discretization points and p is the order of corresponding spherical harmonic
approximation. The exact values of H and K are computed analytically.

The errors decay super-algebraically with p. However, for higher values of p, the round-off
errors dominate and the relative errors start to grow as O(p2ε) where ε is the machine precision.
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Smooth integrals Singular integrals

p Area Volume Harmonic Stokes

8 7.19e−3 1.67e−3 1.15e−2 9.90e−3

16 1.42e−6 7.53e−8 2.50e−4 2.96e−4

24 6.79e−7 2.65e−13 2.01e−5 2.00e−5

32 2.33e−8 3.21e−15 3.25e−7 2.42e−7

Table 3: Relative errors in computing (i) smooth integrals: the area, A =
∫
γ
dγ =

∫
U
W dudv, and the

volume, V = 1
3

∫
U

(x · n)W dudv, (ii) singular integrals: harmonic and Stokes potentials of unit function
defined on the shape shown in Figure 3. The reference values are computed using a finer discretization.

This behavior is typical for spectral methods11 [21]. In the axisymmetric case [61], we advocated
differentiating non-bandlimited functions as frugally as possible. This approach abates the round-
off error growth to some extent. Another promising approach is proposed recently in [11] based
on expressing high-order derivatives as Cauchy integrals over circular contours. We will investigate
the effectiveness of these schemes in the present context and report the results at a later date.

Accuracy of the numerical integration schemes. Our singular integral evaluation scheme
outlined in Section 4 is spectrally accurate. Other popular spectral method is the floating partition
of unity scheme [13]. Because of the steep gradients in the partition of unity functions, this scheme
loses a few digits of accuracy. Our scheme, on the other hand, computes singular integrals as
accurately as smooth integrals. See [28] for a comparison of those two schemes.

We report the convergence results for the smooth and singular integral computation schemes
in Table 3. We can observe that the singular integrals are computed with nearly the same order of
accuracy as the smooth integrals (compare, for instance, the harmonic potential and area computa-
tions). Consequently, using very few spatial discretization points, we are able capture the essential
vesicle dynamics. We show one such example in Figure 10.

Reparametrization. To verify the effectiveness of the reparametrization, let us consider a single
vesicle in a shear flow. Let the bending modulus of the vesicle κ = 1e−2, the shear rate χ = 15,
and the time horizon T = 0.6. In Figure 4(a) we show the configuration of the vesicle at different
time steps for two test cases. The top vesicle snapshots correspond to the case when we perform
reparametrization, and the bottom set of snapshots is without reparametrization. As we can see in
4(b), the energy of the surface remains bounded when we use reparametrization. In its absence, as
soon as the vesicle starts tank-treading, the energy blows up. Note that the need for maintaining
the grid quality is not limited to the case when the vesicle undergoes tank-treading motion. As
reported in [76], even in the case of axisymmetric gravity-induced motions of deformable drops, the
Lagrangian points cluster at the tail of a drop. Moreover, a simple elimination of the tangential
component of the velocity, that is, updating the positions using the normal velocity (u ·n)n, suffers
from similar mesh degradations [76].

11In the general case, the error grows as O(pkε) when computing a kth order derivative.
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(a) Vesicles configuration (b) l2 energy vs. time

Figure 4: (a) Here we demonstrate the significance of using reparametrization for the representation of the
surface. In the simulation depicted on the top row of subfigure (a), we perform surface reparametrization;
in the bottom simulation we do not reparametrize. In both cases, we have taken p = 12, shear rate χ =
15, ∆t = 3e−3, and we have used the semi-implicit time stepping scheme described in Section 5.3. We
observe that without reparametrization, at t ≈ 60∆t, the surface becomes highly distorted and the method
diverges. Experimentally, the blow-up starts as soon as the vesicle begins to tank-tread. When we do use
reparametrization, at the end of simulation, the relative error in area and volume of the vesicle are respectively
3.49e−2 and 3.86e−2. (b) Here we plot the l2 norm of the spherical harmonics coefficients of the surface
(for the case of p = 12) vs. time for different filtering frequencies, which are denoted by q.

Stability of the time-marching scheme. We compare the stability constraints of the explicit
and the semi-implicit schemes in simulating the motion of a vesicle suspended in simple shear flow
(Figure 5). The initial shape of the vesicle is given by equation (40) in which we take ρ(u, v) =

Figure 5: Relaxation shape of a vesicle suspended in simple shear flow. Due to the bending term the vesicle

quickly relaxes to a shape that has small curvature, but then it gets stretched due to the effect of the shear flow.

At the final equilibrium shape the vesicle tank treads. We have used this experiment to test the time-stepping

schemes. The results are reported in Table 4.

1 + Y 0
2 (u, v). We computed the stable time-step size 4t using the bisection method: starting from

an arbitrary large time step we reduce it by half until the simulation is stable within a predefined
time horizon. For this experiment, we have chosen the time horizon long enough so that the vesicle
reaches its equilibrium shape in shear flow. The stable time steps are summarized in Table 4 as a
function of the shear rate and the spatial resolution p. The explicit scheme has two shortcomings:
(i) for a fixed p, 4t decreases as χ is increased, (ii) for a fixed χ and low shear rates, 4t decreases
dramatically as p is increased. We can explain these constraints as follows. Embedding the tension
force and the constraint equation in a projection operator P, we can write the non-dimensionalised
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Explicit Semi-implicit

p χ = 0 15 150 0 15 150

12 1.04e−2 7.81e−3 9.76e−4 5.00e−1 1.02e−2 9.77e−4

16 4.67e−3 1.59e−3 3.98e−4 3.53e−1 1.02e−2 4.51e−4

24 1.27e−3 1.17e−3 1.99e−4 2.04e−1 1.02e−2 9.56e−4

32 2.05e−4 1.70e−4 1.25e−4 1.49e−1 8.15e−3 6.79e−4

48 1.00e−4 1.00e−4 5.00e−5 1.49e−1 8.15e−3 6.79e−4

Table 4: Here we report stable time-step sizes for the explicit and semi-implicit schemes for a vesicle in
simple shear flow. We observe that the implicit-scheme requires a time step whose size is almost independent
of the spatial resolution.

evolution equation as

ẋ = P

χ
 x3

0
0

+ S[−(4SH + 2H(H2 −K))n]

 , (41)

where P acts on a surface velocity field and eliminates the extensible component. We can easily
verify that P is a well-conditioned operator using the spectral analysis of Section 3. It does not
contribute to the stiffness. Only the second term within brackets in (41) induces high-order stiffness.
Now consider two extreme cases. When χ = 0, the evolution equation is stiff and for this reason
we observe a stringent restriction on the time-step. On the other hand, when χ is high, the first
term dominates and it attenuates the stiffness arising from the second term. For this reason, the
CFL appears to be milder for χ = 150.

The semi-implicit scheme suffers only from the first constraint and its stable time-step size is
inversely proportional to χ. But it does not suffer from CFL constraint. Hence, it allows much
larger time steps, particularly for low shear rates, compared to the explicit scheme. We have
performed additional simulations, reported in Figures 10, 9 and 1 in which we have observed the
spatial-resolution independence of the time step. In Figure 6 we summarize the equilibrium shapes
of vesicles in shear flow for different reduced volumes and shear rates.

Simulations in presence of gravity. When there is a difference in the enclosed fluid density
(ρin) and the ambient fluid density (ρout), the governing equations in the presence of gravity are
given by

ẋ = S[fb + fσ + fg], divγ (S[fσ]) = −divγ (S[fb + fg]) , (42)

where fg = (ρin − ρout)(g · x)n (43)

and g is the gravitational acceleration. The non-dimensional parameter ĝ =
(ρin−ρout)||g||R4

0
κB

char-
acterizes gravitational flows. When ĝ is less than a threshold value ĝ∗, the vesicle reaches its
equilibrium shape and translates as a rigid body with constant velocity. When ĝ > ĝ∗, the vesicle
reaches a constant average velocity after an initial transient period but the terminal shapes are
not unique: they depend in the initial shape. We show three examples in Figure 7. As a further
validation of our code, we compare the sedimentation shape that we computed using this code, with
the sedimentation shapes computed using our axisymmetric code [61]. We report area, volume, and
position errors in Table 5.
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Figure 6: Terminal shapes of vesicles in a simple shear flow for various shear rates. Contrary to the general

belief [35], we find that the terminal shapes depend on the shear rate, especially, for vesicles of low reduced

volumes. For low shear rates (equivalently, stiffer membranes), they resemble equilibrium shapes in quiescent

flows and consequently possesses lower surface energy compared to the ones at high shear rates.

M(p) |A−AT |
A

|V−VT |
V

max||x(T )−xaxi(T )||
max||x(T )||

162(8) 3.1e−2 1.1e−1 1.5e−1

338(12) 4.8e−4 2.4e−4 3.2e−2

578(16) 6.1e−5 1.0e−4 1.8e−3

Table 5: Relative errors in the surface area (A) and volume (V ) at the end of the simulation shown in
the first column of Figure 7. The first-order semi-implicit time marching presented in Section 5 is used for
this simulation. We also report the max-norm errors in positions x(T ) using the solution xaxi(T ) of the
axisymmetric solver [62] as reference. M is the number of spatial discretization points, p is the order of

spherical harmonic approximation, and the time-step size 4t is set to O
(
T
p

)
. The axisymmetric solution is

obtained using 64 spatial discretization points and a smaller time-step size.
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Figure 7: Snapshots of the sedimentation of ellipsoidal vesicles (x(u, v) = (sinu cos v, sinu sin v, 2 cosu)).

In all of the three cases, the initial vesicle shape is the same but their orientations (θ) with respect to the

axis of gravitational force vary. Unlike the equilibrium shapes in the absence of gravity, the terminal shapes

depend both on the reduced volume of the vesicle and on θ. In the right image, we plot the average height of

the vesicle at a specific instant t > 0, denoted by < x3(t) >, and also the bending energy at that instant with

respect to initial orientation θ. We can conclude from this plot that the vesicle with θ = 0 (gourd shape) is

the most efficient in sedimentation and the one with θ = π/2 (ellipsoidal-cap shape) is least efficient. The

bending energy, on the other hand, is least for the latter.
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Multiple vesicles. The main additional component required for simulating vesicle-vesicle in-
teractions is the near singular evaluation scheme presented in Section 4. Because we have not
incorporated collision detection, near singular integral evaluation not only effects the overall accu-
racy but also the stability of the time-stepping scheme. Although more sophisticated approaches for
nearly singular evaluations exist, we have used a simpler scheme based on upsampling. We estimate
the accuracy of using upsampling for nearly-singular integration (Figure 8). Let us emphasize that
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Figure 8: Relative errors ε in computing nearly-singular integrals at an evaluation point whose distance

from the vesicle is d using the scheme discussed in Section 4 with an oversampling ratio r. For distant

points, oversampling improves the accuracy by only a few digits and eventually as we move away from the

vesicle (eg., d > 0.6 in the rightmost figure) there is no advantage of oversampling. On the other hand, for

points closer to the vesicle, oversampling improves the accuracy significantly. Improving accuracy for close

interactions is important because it has a direct effect on the overall stability of the numerical simulation.

For instance, without any oversampling, the simulation in Figure 9 breaks down when t > 704t because of

numerical instabilities.

for a provably accurate scheme for nearly-singular integrals one needs to use the method discussed
in [67].

Next, we present two simulations with multiple vesicles. In the first (Figure 9), we consider
two vesicles suspended in a simple shear flow. Their initial vertical separation δ gets magnified to
∆. In dilute suspensions, this sort of pairwise interaction is a commonplace and exhibits similar
behavior. A detailed study of the influence of various parameters on the pairwise interaction will
presented in a separate article. In Figure 10, we show two simulations that were performed using
very few discretization points per vesicle.

A Proofs

Proof of Theorem 5.1. The single layer potential satisfies the homogeneous Stokes PDE

− µ4u +∇p = 0, ∇ · u = 0. (44)

inside and outside of S2, combined with velocity continuity and a jump in tractions across the
interface. We prove the theorem by first finding a solution to (44). We write the fluid velocity u
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Figure 9: (a) Snapshots of two vesicles suspended in a simple shear flow. (b) Evolution of the average

height (< x3(t) >), or equivalently the height of center of mass, of the two vesicles. To show convergence of

the numerical scheme, we plot the result obtained using two different discretizations: a finer discretization

(p = 20) marked by the solid line and a coarser discretization (p = 12) marked by “◦”. The dashed lines

represent the path each vesicle would have followed in the absence of the other. A consequence of this

pairwise interaction is that the initial vertical separation δ of the center of masses gets magnified to ∆. This

phenomenon is well studied for suspension of drops and elastic capsules [27, 37].
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 4 ∆t  100∆t  25 ∆t t = 0 

Figure 10: Top row: snapshots of a freely suspended vesicle relaxing to equilibrium. Bottom row: Multiple

vesicle suspension in shear flow. In this example, we used a modest 98 (p = 6) spatial discretization points

per vesicle. The change in volume and surface area due to numerical errors was less than 1%. Evidently,

while finer details are missed (see for example the simulation in Figure 1), our method captures the essential

dynamics with very few discretization points.

and the pressure p as

u = f(r)Vm
n + g(r)Wm

n (45)

p =
h(r)

r
Y m
n (46)

and substitute in (44). We get the following three ordinary differential equations for f, g and h:

r2frr + 2rfr −
r

2n+ 1
hr − (n+ 1)(n+ 2)f = 0 (47)

r2grr + 2rgr +
r

2n+ 1
hr − n(n− 1)g +

n

2n+ 1
h = 0 (48)

(n+ 1)rfr − nrgr + (n+ 1)(n+ 2)f + n(n− 1)g = 0 (49)

Solving these equations analytically, we obtain four sets of basic solutions,

(i) (ii) (iii) (iv)

f 1
rn+2

− n
(n+1)rn 0 2nrn+1

(2n+1)(2n+3)(n+1)

g 0 2
(2n−1)rn rn−1 rn+1

2n+1

h 0 − 2n(2n+1)
(n+1)rn

0 −2rn+1

In the exterior region (r > 1), only (i) and (ii) are admissible as the other two are unbounded
when r →∞. In the interior region, only (iii) and (iv) are admissible as the other two are singular
at r = 0. Therefore, the velocity field u can be expressed as a linear combination of two solutions in
the exterior and two in the interior, leading to four unkown constants. Two of these are determined
by enforcing the velocity continuity across S2 and the remaining two are determined by the jump
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in traction. Let us first consider S[Vm
n ], for which,[[

−µ(∇u +∇uT )n + pn
]]
S2 = Vm

n . (50)

We get two equations by taking inner products with Vm
n and Wm

n . Solving these equations, we get
a closed form expression for the velocity u which is same as the single-layer potential and is given
by

S[Vm
n ](r, u, v) =

{
n

(2n+1)(2n+3)rn+2 Vm
n for r ≥ 1

nrn+1

(2n+1)(2n+3)V
m
n + (n+1)(rn−1−rn+1)

2(2n+1) Wm
n for r ≤ 1.

(51)

The result (24a) is obtained by substituting r = 1 in the above equation. Similarly, equating the
traction jump to Wm

n , we get the following solution,

S[Wm
n ](r, u, v) =

{
n

2(2n+1)

(
1

rn+2 − 1
rn

)
Vm
n + n+1

(2n−1)(2n+1)rn Wm
n for r ≥ 1

(n+1)rn−1

(2n−1)(2n+1)W
m
n for r ≤ 1.

(52)

and (24b) is obtained by substituting r = 1.
�

Proof of Theorem 5.2. The proof follows directly from (24). First we write the integrand in terms
of the vector harmonics:

Y m
n 4γx +∇γY m

n =
(n+ 2)Vm

n + (n− 1)Wm
n

2n+ 1
. (53)

Then using Theorem 5.1, we have

S[Y m
n 4γx +∇γY m

n ] =
n(n+ 2)

(2n+ 1)2(2n+ 3)
Vm
n +

(n− 1)(n+ 1)

(2n− 1)(2n+ 1)2
Wm

n (54)

The result follows by substituting the identities

∇γ ·Vm
n = −(n+ 1)(n+ 2)Y m

n , and ∇γ ·Wm
n = −n(n+ 1)Y m

n (55)

in equation (54). �

Proof of Theorem 5.3. The proof follows from Theorem 5.1 and the identities 4γV
m
n = −n(n −

1)Vm
n and 4γW

m
n = (n+ 1)(n+ 2)Wm

n . �

B Analytical Solutions

If the initial vesicle shape is a sphere, the bending force is zero and the tension and the velocity
can be computed analytically using Theorems 5.1 and 5.2. The evolution equation reduces to

ẋ = Pv∞, σ = [[p]] + L−1Dv∞. (56)

Because of the local inextensibility and the constant enclosed volume, the vesicle behaves like a
rigid body in any type of external flow. In the absence of any external flow, the tension is isotropic
and is simply the difference in external and internal pressure ([[p]]). Now let us consider three
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different types of external flows. Assume the radius of the sphere is R0 and its center is located at
origin. The tension and the rotational velocity ω0 in each case are given by,

v∞ σ ω0

linear γ̇(x3, 0, 0)
µγ̇R0

35
22

√
2π
15 (Y 1

2 + Y −12 )
γ̇/2

parabolic γ̇(x23, 0, 0)
µγ̇R2

0

(√
2π
3 (Y 1

1 + Y −11 ) + 2
√
21π
23 (Y 1

3 + Y −13 )
) 0

extensional γ̇(x1,−x2, 0)
µγ̇R0

35
11

√
2π
15

(
Y 2
2 + Y −22

) 0

The translational velocity U0 is zero for the linear and extensional flows. In the case of parabolic
flow, the translational velocity attains a non-zero value that can derived using classical Faxen’s law
[38]. Additionally, we can compute the interior and exterior fluid velocity using (51) and (52).
These results are easily obtained using Theorems 5.1 - 5.3 and they can be used as a reference for
numerical simulations.

C Pseudocodes

Algorithm 3 Forward spherical harmonics transform

for j = 0 to p do
x̂m(uj) =

∫ 2π
0 x(uj , v) e−imvW (uj , v) dv, for |m| ≤ p

≈ π
p

∑2p
k=1 x(uj , vk) e

−imvk W (uj , vk) // trapezoidal rule and FFT

end for // Can be done in O(p2 log p)

for m = −p to p do
for n = |m| to p do

x̂mn =
∫ π
0 P̄

m
n (u) x̂m(u) du

≈
∑p

j=0(λj/ sinuj)P̄
m
n (uj) x̂m(uj) // Gaussian quadrature and FLT

end for
end for // Can be done in O(p2(log p)2)

D Formulas

Here, we summarize the formulas for the first fundamental form coefficients E,F and G, the sec-
ond fundamental form coefficients L,M and N , the unit normal to the surface n, the Gaussian
curvature H, mean curvature K, the Laplace-Beltrami operator 4γ , the surface gradient ∇γ of a
scalar φ, the surface divergence ∇γ · of a vector f , and the surface energy E :
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Symbol Definition Symbol Definition

E xu · xu N xvv · n

F xu · xv H
1

2

EN − 2FM +GL

W 2

G xv · xv K
LN −M2

W 2

W
√
EG− F 2 4γφ

1

W

(
Eφv − Fφu

W

)
v

+
1

W

(
Gφu − Fφv

W

)
u

n
xu × xv
W

4γx (4γx1, 4γx2, 4γx3)

L xuu · n ∇γ · f
Gfu − F fv

W 2
xu +

Efv − F fu
W 2

xv

M xuv · n ∇γφ
Gxu − Fxv

W 2
φu +

Exv − Fxu
W 2

φv

The bending and tension forces (4) are obtained by taking the L2−gradient of the surface energy,
that is, the total force fb + fσ = − δE

δx . See [65] for a detailed derivation.
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