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We consider the two-dimensional water wave problem in the case
where the free interface of the fluid meets a vertical wall at a pos-
sibly non-right angle and where the free interface can be non-C1

with angled crests. We assume that the air has density zero, the
fluid is inviscid, incompressible, irrotational, and subject to the
gravitational force, and the surface tension is zero. In this regime,
only a degenerate Taylor stability criterion −∂P

∂n � 0 holds, with
degeneracies at the singularities on the interface and at the point
where it meets the wall if the angle is non-right. We construct a
low-regularity energy functional and prove an a priori estimate.
Our estimate differs from existing work in that it doesn’t require
a positive lower bound for −∂P

∂n .
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1. Introduction

1.1. Water wave problems

A class of water wave problems concerns the dynamics of the free surface

separating an incompressible fluid, under the influence of gravity, from a

zero-density region (air).

Let Ω(t) be the fluid region, Σ(t) be the free surface between the fluid

and the air, and Υ, if it exists, be the fixed rigid boundary of Ω(t), for

time t � 0; thus ∂(Ω(t)) = Σ(t) ∪ Υ. We assume that the fluid is inviscid,

incompressible and irrotational, and we neglect surface tension. Assume that

the fluid density is 1. If the gravity field is −j, the governing equations of

motion are

vt + v · ∇v = −j−∇P on Ω(t),(1)

div v = 0, curl v = 0 on Ω(t),(2)

P = 0 on Σ(t),(3)

(1,v) is tangent to the free surface (t,Σ(t)),(4)

v is tangent to the fixed boundary Υ (if it exists),(5)

where v is the fluid velocity and P is the fluid pressure. There is an important

condition for these problems:

(6) − ∂P

∂n
� 0

pointwise on the interface, where n is the outward unit normal to the free

interface Σ(t) [32]; it is well known that when surface tension is neglected

and the Taylor sign condition (6) fails, the water wave motion can be subject

to the Taylor instability [32, 17, 6].

The study of water waves dates back centuries. Early mathematical

works include Stokes [31], Levi-Civita [26] and G.I. Taylor [32]. Nalimov [28],

Yosihara [39], and Craig [14] obtained local in time existence and uniqueness

of solutions for the 2-D water wave problem for small Sobolev data. In 1997

Wu [33] showed, for the infinite depth two-dimensional water wave problem

(1)-(4) with Υ = ∅, that the strong Taylor stability criterion

(7) − ∂P

∂n
� c0 > 0,
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always holds for C1+ε interfaces and that the problem is locally well-posed

in Sobolev spaces Hs, s � 4, for arbitrary data. In [34] Wu proved a similar

result in three dimensions. Since then, there have been numerous results on

local well-posedness in both two and three dimensions, under the assump-

tion (7), for the water wave equations with nonzero vorticity, with a fixed

bottom, and with nonzero surface tension, cf. [10, 20, 5, 25, 27, 13, 30, 41].

Alazard, Burq & Zuily [1, 3] proved local well-posedness of the problem in

low regularity Sobolev spaces where the interfaces are only in C3/2. Hunter,

Ifrim & Tataru [19] obtained a low-regularity result that improves on [1] for

2-D water waves. In addition, in the past several years Wu [35] [36], Germain,

Masmoudi & Shatah [18], Ionescu & Pusateri [21] and Alazard & Delort [4]

have proved results showing almost global or global well-posedness in two

and three dimensions for sufficiently small, smooth and localized initial data.

See [9] for other related developments.

All these works either prove or assume the strong Taylor condition (7),

and assume either no fixed boundary or else a fixed boundary a positive

distance away from the free interface. And the lowest regularity considered

are C3/2 interfaces.

Consider the water wave equation (1)-(5) in two space dimensions. In the

case where the fixed boundary Υ is a vertical wall, by Schwarz reflection,

the water wave problem (1)-(5) can be reduced to the one without fixed

boundary in the expanded symmetric domain. Assume for example that the

fluid is in a region in {x � 0}, bounded by the fixed boundary Υ : x = 0

and the free surface. We define, for v = (v1, v2) and x > 0, that

(8) v(−x, y, t) = (−v1(x, y, t), v2(x, y, t)), P (−x, y, t) = P (x, y, t).

Notice that (5) implies that v1(·, t) ≡ 0 on Υ. It is easy to check that

equations (1)-(4) continue to hold in the expanded domain. Assume that

the interface makes an angle ν with the vertical wall. When ν �= π
2 the

extended interface is non-C1, with an angled crest in the middle; see Figure

1. In [2] Alazard, Burq & Zuily studied the case where the strong Taylor

sign condition (7) holds and the angle ν = π
2 . We investigate in this paper

the question of whether the water wave problem (1)-(5) admits non-right

angles ν at the wall, and more generally, whether equations (1)-(5) admit

non-C1 interfaces.1

1The reflection/periodization procedure described here dates back to [7]. In [2]
it was shown that in order for the strong Taylor sign condition (7) to hold, it is
necessary that the angle ν = π

2 .
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Figure 1: Under a Schwarz reflection, a non-right angle at a vertical wall
corresponds to a symmetric angled crest in the middle of surface.

To set up our problem we consider a fixed rigid boundary consisting
of two vertical walls at x = 0, 1, with water of infinite depth in between
the walls. We assume that the fluid region Ω0(t) ⊂ [0, 1] × (−∞, c) for
some c < ∞. Using Schwarz reflection we expand Ω0(t) across the y-axis,
arriving at a symmetric fluid domain Ω(t) ⊂ [−1, 1] × (−∞, c). We shall
henceforth study the water wave equation (1)-(5) in Ω(t), with fixed walls
Υ at x = −1, 1. We denote the angle at x = 1 by ν, and refer to the corner
of the free surface at the wall x = ±1 as the corner. We assume that

(9) v(x, y, t) → 0 as y → −∞.

Figure 2: The fluid domain Ω0(t) has solid walls at x = 0, 1. The figure
shows the reflected domain Ω(t) under a Schwarz reflection across x = 0,
with a symmetric free surface Σ(t). We denote the angle at x = 1 by ν.

We note that the extended fluid satisfies the periodic boundary condition

(10) v(−1, y, t) = v(1, y, t), P (−1, y, t) = P (1, y, t).
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A serious challenge in allowing non-C1 interfaces with angled crests and
non-right angles at the wall is that in this case, only a degenerate Taylor
stability inequality −∂P

∂n � 0 holds, with a degeneracy −∂P
∂n = 0 occuring

at the singularity on the interface and at the wall when the interface meets
the wall with a non-right angle.2 From existing work (cf. [33, 34, 25, 27, 1]
etc.) we know the problem of solving the water wave equation (1)-(5) can
be reduced to solving a quasilinear equation of the interface z = z(α, t), of
type

(11) ∂2
t u+ a∇nu = f(u, ∂tu),

where a = −∂P
∂n , and ∇n is the Dirichlet-to-Neumann operator; when the

strong Taylor sign condition (7) holds, equation (11) is of the hyperbolic type
with the right hand side consisting of lower order terms, and the Cauchy
problem can be solved using classical tools. In our case, however, only the
degenerate Taylor sign condition (6) holds, with the second term on the left
hand side of (11) being degenerate at the singularities; it is not clear if the
right hand side of equation (11) is still of the lower order, and what the type
of the equation is. This is the main difficulty of the problem.

In this paper, we construct an energy functional and prove an a priori
estimate for solutions of the water wave equation. The novelty is that our a
priori estimate does not require a positive lower bound for −∂P

∂n . We follow
the general approach of Wu’s earlier work [33, 34] and [35], in reducing the
water wave problem to an equation on the free surface, and analyzing the
free surface equation in the Riemann mapping variable. As an immediate
consequence we obtain that, provided that the acceleration is finite, the
water wave equation (1)-(5) only allows for angles at the wall ν � π

2 and,
similarly, it only allows for interior angles at angled crests to be no more
than π. Using the Riemann mapping we obtain a precise characterization of
the singularities of the interface. Two elements played significant roles in the
construction of our energy: one is an interface-dependent weight function,
which is zero at the singularities; and the other is the convection-driven
self-similar solutions constructed in [37], which has an angled crest type
singularity. Our energy is finite for all interfaces and velocities in Sobolev
spaces Hs(R), s � 3; it is also finite for interfaces making non-right angles
at the wall, and for interfaces with angled crests. Most importantly, it is
finite for the self-similar solutions constructed in [37].

The a priori estimate obtained in this paper holds for general periodic
water wave equations (1)-(4)-(10). An analogous energy functional can be

2We assume the acceleration is finite.
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constructed and the a priori estimate can be proved for the whole line case

using a similar approach.

Our energy inequality is a crucial step towards proving local existence,

uniqueness and stability in this framework. This will be the content of an

upcoming paper.

Remark: This paper was first written and posted on arXiv in June 2014

[24]. Since then, Wu has proved the local existence in the energy class con-

structed in this paper and posted the work on arXiv in February 2015 [38].

Most recently, in December 2016, Thibault de Poyferré [16] obtained an a

priori estimate for the water wave equations (1)-(5) with an emerging bot-

tom that interacts with the free surface. One of the important assumptions

in [16] is that the strong Taylor sign condition (7) holds.

1.2. Outline of the paper

In the next subsection, §1.3, we present some of the notations and conven-

tions and introduce the function spaces and norms to be used in the paper.

Then, in §2 and §3, we derive the free surface equations of the water wave

problem (1)-(5) in Lagrangian and Riemann mapping coordinates, following

[33] and [35]. The derivation in §2 and §3 is carried out under the assumption

that the interface, velocity and acceleration are smooth. In §4, we define the
energy (in §4.1) and state our main result, the a priori inequality (in §4.2)
for solutions of the free surface equations. We begin the proof in §4.3, and
then in §4.4 we outline the remainder of the proof, which takes up sections

§5 through §10.
In §11 we give a characterization of the energy in terms of the velocity

and position of the free surface, and we discuss the types of singularities

allowed when our energy is finite.

The derivation of the free surface equations and the proof of the main

result rely on understanding the boundary behaviors, the holomorphicity,

and the means of various quantities; we leave these, as well as some basic

identities and inequalities used in the proof of the main result, to appendices

§A-§B. The reader may want to read these appendices before certain sections

in the main text. We have two additional appendices that might be useful to

the reader. In §C, we provide an overview of the notation used in the paper,

with cross references to where everything was initially defined. In §D, we

list various quantities controlled by the energy, again with cross references.
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1.3. Notations, conventions and function spaces

We will define most of our notations throughout the text, as we introduce our
various quantities. Here we only list some general conventions and notations.

Since we are in two dimensions, we will often work in complex coordi-
nates (x, y) = x+ iy. We will use �z := x and �z := y to represent the real
and imaginary parts, respectively, of z = x+ iy.

Compositions are always in terms of the spatial variable. For example,
for f = f(α, t), g = g(α, t), we define f ◦ g = f ◦ g(α, t) := f(g(α, t), t).
An expression fx(x, y) means ∂xf(x, y); we occasionally use the notation f ′,
which is always the spatial derivative in whatever coordinates we are using.

Once we have reduced the water wave equations to an equation on the
interface, we will primarily be working with the spatial domain I := [−1, 1].
We will often refer to the “boundary”; this refers to what happens at ±1.
We write f |∂ := f(1)− f(−1). We will use

(12) −
∫
I
f :=

1

|I|

∫
I
f(x)dx =

1

2

∫ 1

−1
f(x)dx

for the mean of a function f . Here, and elsewhere for other integrals, when
there is no risk of ambiguity, we will often drop the subscript I.

We define

(13) [A,B] := AB −BA.

We will use the following notation as an abbreviation for a type of higher-
order Calderon commutator:

(14) [f, g;h](α′) :=
π

4i

∫
f(α′)− f(β′)

sin(π2 (α
′ − β′))

g(α′)− g(β′)

sin(π2 (α
′ − β′))

h(β′)dβ′.

We will often deal with 1-d singular integrals of the type
∫
k(α′, β′) dβ′ where

|k(α′, β′)| = O(1)
|α′−β′| ; in this case, the integral

∫
k(α′, β′) dβ′ is defined to be

the principal value of the integral.
We will use C as a placeholder to refer to a universal constant, possibly

varying from line to line. We will also often use the notation f � g, which
means that there exists some universal constant C such that f � Cg.

We will at several points have long series of identities or inequalities.
When we say “on the RHS” of an equation block with a string of multiple
equalities or inequalities, we mean all the terms on the right hand side of
the last equality or inequality sign in the string. Similarly, when we say “on
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the LHS,” we mean all the terms to the left of the very first equality or
inequality sign in the string of equalities and inequalities. We have tried
to avoid saying “on the nth line” when any of the mathematical formulas
splits into more than one typographic line, but if we have, “line” refers to
the mathematical, not typographic, line.

We have tried to give extensive cross references for each time we use
a result or estimate. We tend to refer to equation numbers, rather than
propositions, since it seems that these will be easier to find as cross refer-
ences. When we refer to an equation number as part of a proposition, we
are of course referring to the whole proposition, including any conditions
assumed.

When we are deriving estimates, we sometimes use the cross references
within our equations, e.g.:

(15)
f � g

� h

and

(16)

h � j + f

� j + (15)

� j + h.

This means (15) is used to obtain (16). We hope this will help the reader
locate the previous estimate or estimates.

In several of our more complicated estimates, we will split terms up
f = I + II and then I = I1 + I2, I1 = I11 + I12, etc. Such notation will
be local to each section. There is an ambiguity between the use of I as a
placeholder, its use as the identity operator, and its use as I := [−1, 1]. It
should be clear from the context which one is being used.

We now introduce the function spaces and norms we will use. We will
work with functions f(·, t) defined on I = [−1, 1]. Except when neces-
sary to avoid ambiguity, we neglect to write the time variable; when it is
not specified, function spaces and norms are in terms of the spatial vari-
able.

We say f ∈ Ck(J), J = (−1, 1) or [−1, 1], if for every 0 � l � k, ∂l
xf is

a continuous function on the interval J . We say f ∈ Ck(S1) (i.e., periodic
Ck) if for every 0 � l � k, ∂l

xf ∈ C0[−1, 1] and ∂l
xf(1) = ∂l

xf(−1). (∂l
xf at

the endpoints 1 or −1 is the derivative from the left or right, respectively.)
Note in particular that saying f ∈ C0(S1) implies that f |∂ = 0.
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For 1 � p < ∞, we define our Lp spaces by the norms

(17) ‖f‖Lp := ‖f‖Lp(I) :=

(∫
I
|f |p

)1/p

,

and we define L∞ analogously. We will sometimes deal with weighted Lp

spaces. We write

(18) ‖f‖Lp(ω) = ‖f‖Lp(ωdx) :=

(∫
I
|f(x)|p ω(x)dx

)1/p

for weights ω � 0. Whenever we write Lp, we will be referring to Lp(I),

in the spatial variable. For weighted Lp spaces, we always write Lp(ω) or

Lp(ωdx), where ω is the weight function.

We now define the periodic Sobolev space Hk(S1). Let f ∈ L1(I), and

f̃ be the periodic extension of f to the whole line: f̃(x + 2) = f̃(x) for all

x ∈ R, and f̃(x) := f(x) for x ∈ I. We say f ∈ Hk(S1) if f̃ ∈ Hk ((−3, 3));

and we define

(19) ‖f‖Hk(S1) :=

⎛
⎝ k∑

j=0

∫
I

∣∣∂j
xf(x)

∣∣2 dx
⎞
⎠1/2

.

By Sobolev embedding, we know Hk+1(S1) ⊂ Ck(S1), for k � 0.

We define the homogeneous half-derivative space Ḣ1/2 by the norm

(20) ‖f‖Ḣ1/2 :=

(
π

8

∫∫
I×I

|f(α′)− f(β′)|2

sin2(π2 (α
′ − β′))

dα′dβ′
)1/2

.

Through the remainder of the paper, when we say the boundary value of

a function G defined on the fluid region Ω(t) (resp., on P− := I × (−∞, 0]),

we mean the value of G on the free surface (resp., on I × {0}); we do not

include the value on vertical boundaries x = ±1. Except when there’s a risk

of confusion, we will slightly abuse notation and say that a function f on

the free surface (resp., on I×{0}) is “holomorphic” (or “antiholomorphic”);

what we mean, precisely, is that it is the boundary value of a function that

is holomorphic (or antiholomorphic) in the fluid region Ω(t) (resp., on P−).
In the next two sections, §2 and §3, we assume the interface, velocity,

acceleration and their time derivatives are sufficiently smooth.
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2. The free surface equation in the Lagrangian coordinate

Let z(α, t) = x(α, t) + iy(α, t), α ∈ I = [−1, 1] be a parametrization of the
free surface Σ(t) in the Lagrangian variable α, i.e., zt(α, t) = v(z(α, t), t)
is the velocity and ztt is the acceleration of the particle occupying position
z(α, t) at time t. Along the free surface, the Euler equation (1) is ztt + i =
−∇P . By equation (3), we know ∇P is orthogonal to the free surface. Since
izα is normal to the free surface, we can rewrite our main equation as

(21) ztt + i = iazα,

where

(22) a = −∂P

∂n

1

|zα|
∈ R

for ∂P
∂n := n·∇P the outward-facing normal derivative. The incompressibility

and irrotationality condition (2) and the periodicity (10) imply that the
conjugate velocity v is periodic holomorphic; therefore zt is the boundary
value of a periodic holomorphic function in the fluid region.

2.1. The quasilinear equation

We henceforth focus on the equations on the free surface.3 As in [33] and fol-
lowing works, we differentiate (21) with respect to time and take conjugates,
turning it into the quasilinear equation4

(23) zttt + iaztα = −iatzα,

where we continue to have zt the boundary value of a periodic holomorphic
function. This is the basic equation we will work with throughout the paper.

3We may solve for the velocity on Ω(t) from its boundary values (including the
condition that it goes to zero as y → −∞), and then solve for the pressure from the
velocity. The free surface equations are equivalent to the water wave system (1)-(5)
in the smooth regime.

4We call it “quasilinear” because in the classical situation [33], this equation is
quasilinear with the RHS the lower-order term. However, in our setting, due to
the degeneracy of −∂P

∂n we do not know a priori that this is still the case; only by
our proof do we show that the RHS is, indeed, lower-order and that (23) is in fact
quasilinear. All references to (23) and related equations being “quasilinear” should
be interpreted with this in mind.
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The holomorphicity of zt implies that i 1
|zα|∂αzt = ∇nzt, where ∇n is the

Dirichlet-to-Neumann operator. We know ∇n is a positive operator.
In [34] and [35], coordinate-independent formulas for the RHS were de-

rived, using the holomorphicity of zt and the invertibility of the double-layer
potential. We will instead follow the original approach of [33], relying on the
Riemann mapping version of the equation to derive the RHS. We do so in
§3.3.3.

2.2. A special derivative

We introduce a special derivative

(24) Dα :=
1

zα
∂α.

If g(α, t) = G(z(α, t), t), and G is holomorphic, then ∂αg = (Gz ◦ z)zα, and

Dαg = (∂zG) ◦ z = −i(∂yG) ◦ z.

So Dk
αg is the boundary value of holomorphic function ∂k

zG, provided G is
holomorphic. Dk

αg is in addition periodic for any k � 1, so long as G is
periodic and holomorphic.

We may therefore conclude from the fact that zt is the boundary value
of the periodic holomorphic function v that Dk

αzt is the boundary value of
the periodic holomorphic function ∂k

zv in Ω(t).
We will use Dα as the spatial derivative in constructing higher-order

energies. In addition to preserving holomorphicity and periodic boundary
behavior, it transforms well under the Riemann mapping, to be discussed in
the next section.

3. The Riemann mapping version

We now analyze the water wave equations (21), (23) using the Riemann
mapping that flattens out the curved free interface.5 The Riemann map-
ping version of the equations offers a key advantage, because the Hilbert

5To the best of our knowledge, [33] was the first paper that used the Riemann
mapping to analyze the quantities A1,At and ht ◦h−1 in the water wave equations
and prove the wellposedness of 2-d water waves in Sobolev spaces. Using the Rie-
mann mapping, [19] later carried out a similar analysis as in [33, 35] and re-derived
the formulas for the quantities A1, ht ◦h−1. Here we follow the approach of [33, 35]
to analyze the quantities A1,At and ht ◦ h−1. The Riemann mapping is a common
tool in the study of 2d potential flows. In water waves, Ovsjannikov [29] used the
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transform associated to the periodic domain P− is

(25) Hf(α′) :=
1

2i

∫
I
cot(

π

2
(α′ − β′))f(β′)dβ′.

Since Hf ∈ iR for f real-valued, this allows us to invert the operator (I −
H) on purely real (resp., purely imaginary) functions by taking real (resp.,
imaginary) parts.

3.1. The Riemann mapping variables and notations

Let

(26) Φ : Ω(t) → P− := {(x, y) : x ∈ [−1, 1], y � 0} .

be the unique Riemann mapping that takes the two upper corners of the
interface at the walls x = −1, 1 to (−1, 0) and (1, 0), and ∞ to ∞. We know
Φ takes the free surface Σ(t) to I × {0} and the wall to the wall; Φz is
periodic: Φz(−1, y, t) = Φz(1, y, t), and

(27) lim
�z→−∞

Φz(z, t) = 1.

Let

(28) α′ = h(α, t) := Φ(z(α, t), t) : I → I

be the change of coordinates taking the Lagrangian variable α to the Rie-
mann mapping variable α′, and let h−1 be the spatial inverse of h, defined
by h(h−1(α′, t), t) = α′. We define

(29) Z(α′, t) := z ◦ h−1(α′, t) = z(h−1(α′, t), t).

Z = Z(α′, t) is a parametrization of the free surface Σ(t) in the Riemann
mapping variable α′. We write

(30)
Zt := zt ◦ h−1; Ztt := ztt ◦ h−1;

Z,α′ :=∂α′Z; Zt,α′ := ∂α′Zt; Ztt,α′ := ∂α′Ztt; etc.

Riemann mapping to justify the shallow water equation from equations (1)-(4) in
the analytic class; Zakharov et al. [40] used the Riemann mapping to carry out
efficient numerical computations for the water waves.
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and

(31) A := (ahα) ◦ h−1; At := (athα) ◦ h−1.

Observe that Z = z ◦ h−1 = Φ−1. Therefore

(32) Z,α′(α′, t) = ∂α′(Φ−1(α′, t)), and
1

Z,α′
= Φz ◦ Z,

so Z,α′(α′, t) and 1
Z,α′

(α′, t) are boundary values of the periodic holomorphic

functions
(
Φ−1

)
z
(·, t) and Φz(·, t).

Observe also that under the change of variables (Dαf)◦h−1 = 1
Z,α′

∂α′(f◦
h−1). We define

(33) Dα′ :=
1

Z,α′
∂α′ .

3.2. An assumption at the spatial infinity

For the derivation of the water wave equations in the Riemann mapping

variable, besides assuming all the quantities involved are sufficiently smooth,

we assume that the Riemann mapping Φ satisfies

(34) lim
�z→−∞

Φt ◦ Φ−1(z, t) = 0.

In [33] analogous assumptions were made to derive the quasilinear equa-

tion in the Riemann mapping variable for the whole line case; it was then

shown that the quasilinear equation is well-posed in Sobolev spaces and

the solutions of the quasilinear equation give rise to solutions of the water

wave equation (1)-(4). Similar results can be proved for the periodic case as

considered in this paper.

3.3. The water wave equations in the Riemann mapping

variable

We now derive the water wave equations in Riemann mapping variable. We

follow the approach of [33], although we work with the real and imaginary

parts together instead of separating Zt = Xt + iYt into real and imaginary

parts.
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Beginning with the conjugated form of our equation (21) and with (23),
we precompose both sides with h−1 to get the free surface equations in the
flattened Riemann mapping coordinate:

(35) Ztt − i = −iAZ ,α′ ;

(36) Zttt + iAZt,α′ = −iAtZ ,α′ ,

where Zt is the boundary value of the periodic holomorphic function v◦Φ−1.
By the chain rule, the quantities Ztt, Zttt are related to Zt by

Ztt = (∂t + b∂α′)Zt, Zttt = (∂t + b∂α′)2Zt,

where

(37) b := ht ◦ h−1.

The following proposition gives a characterization of the boundary value
of a periodic holomorphic function on P−.

Proposition 1. a. Let g ∈ L1(I). Then g is the boundary value of a holo-
morphic function G on P− satisfying G(−1 + iy) = G(1 + iy) for all y < 0
and G(x+ iy) → c0 as y → −∞ if and only if

(38) (I −H)g = c0.

Moreover, c0 = −
∫
I g.

b. Let f ∈ L1(I). Then PHf := 1
2(I + H)f is the boundary value of a

periodic holomorphic function F on P−, with F(x+iy) → 1
2
−
∫
I f as y → −∞.

Proposition 1 is a classical result, which can be proved by the Cauchy
integral formula; see [22]. As a consequence, Zt satisfies

(39) (I −H)Zt = 0,

and by (27), 1
Z,α′

satisfies

(40) (I −H)
1

Z,α′
= 1.

We define the following projection operators:

(41) PHf :=
(I +H)

2
f ; PAf :=

(I −H)

2
f.
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We will refer to PH as the “holomorphic projection” and PA as the “an-
tiholomorphic projection”. These operators are, indeed, proper projections
when interpreted modulo a constant.

We now seek formulas for A, At and b. For derivations here we will rely
on the technicalities given in appendix §A.

3.3.1. A and the quantity A1. We first derive a formula for A. Histori-
cally, in [33], this derivation showed that the strong Taylor stability criterion
would automatically hold. There is now [34] a direct proof of this via ba-
sic elliptic theory without using the Riemann mapping. For our purposes,
though, this original derivation here will be crucial because it introduces a
quantity, A1, that compares the degeneracy of −∂P

∂n directly with that of the
Riemann mapping and therefore the geometry of the free surface.

We begin with (35). The key observation is that Z,α′ is periodic holo-
morphic and that Ztt−i is in some sense close to periodic holomorphic, since
Zt is periodic holomorphic; therefore Z,α′(Ztt − i) is close to periodic holo-
morphic; and by (35), Z,α′(Ztt− i) is purely imaginary. Applying (I −H) to
this, using Proposition 1 and taking imaginary parts, we shall get a formula
for A.

Multiplying both sides of (35) by Z,α′ , we get

(42) Z,α′(Ztt − i) = −iA |Z,α′ |2 .

We now expand out Ztt. Let

(43) F (z(α, t), t) := zt(α, t),

where F = v, a periodic holomorphic function in Ω(t). We will use this
expansion several times in the sequel, always with this definition of F . By
the chain rule,

(44) ztt =
d

dt
F (z(α, t), t) = (Fz ◦ z)zt + (Ft ◦ z).

Recall from §2.2 that ∂z = Dα for holomorphic functions. Therefore, Fz◦z =
ztα

zα
, and thus ztt =

ztα

zα
zt + Ft ◦ z. We precompose with h−1:

(45) Ztt =

(
Zt,α′

Z,α′

)
Zt + Ft ◦ Z.

We can now write our equation (42) as

(46) Zt,α′Zt + Z,α′(Ft ◦ Z)− iZ,α′ = −iA |Z,α′ |2 .
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We apply (I − H) to both sides. By (304), (302) and (298), writing (I −
H)(ZtZt,α′) = [Zt,H]Zt,α′ , we get

(47) [Zt,H]Zt,α′ − i = (I −H)
(
−iA |Z,α′ |2

)
.

We now take imaginary parts of both sides. This gives us the new quantity

A1:

(48) A1 := A |Z,α′ |2 = �
(
−[Zt,H]Zt,α′

)
+ 1.

This is the same A1 as that in [33]. It’s easy to see that �
(
−[Zt,H]Zt,α′

)
is

non-negative, by integration by parts. Indeed, if Zt = Xt + iYt, then

2�
(
−[Zt,H]Zt,α′

)
= −�1

i

∫
(Zt(α

′)− Zt(β
′)) cot(

π

2
(α′ − β′))Zt,β′dβ′ =∫

1

2

{
−∂β′

[
(Xt(α

′)−Xt(β
′))2 + (Yt(α

′)− Yt(β
′))2

]}
cot(

π

2
(α′ − β′))dβ′

=
π

4

∫
(Xt(α

′)−Xt(β
′))2 + (Yt(α

′)− Yt(β
′))2

sin2(π2 (α
′ − β′))

dβ′

� 0.

Here, there is no boundary term in the integration by parts because Zt

∣∣
∂
=

0. Therefore

(49) A1 � 1.

Combining (42) and (48) we get

(50)
1

Z,α′
= i

Ztt − i

A1
.

3.3.2. Degenerate Taylor stability criterion and the singularity of

the free surface. We can draw a few important conclusions from the

derivations in §3.3.1. For the sake of exposition, we will in this section focus

on the angle ν at the wall, and we will move the corner from ±1 to 0; angled

crests and other singularities in the middle of the surface can be handled

similarly.

Let ν be the angle at the corner. By Christoffel-Schwarz Theorem, the

Riemann mapping Φ(z) ≈ zr at the corner, where rν = π
2 . By (32), Z,α′ =
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(Φ−1)z′ . Therefore,

(51) Z,α′ = ∂α′Φ−1 ≈ (α′)1/r−1

at the corner.
We observe from (49)-(50) that if the acceleration |Ztt| < ∞, then Z,α′ �=

0. This implies r � 1 and ν � π/2. Similarly, this implies that an angled
crest has interior angle � π.

In this paper we work in the regime where the acceleration |Ztt| < ∞.
Now, because

(52) A1 ◦ h =
a |zα|2

hα

and

(53) − ∂P

∂n
= |zα| a =

A1 ◦ h
|Z,α′ ◦ h| ,

−∂P
∂n � 0 always holds. In the regime where the free surface is C1,γ and

makes a right angle at the corner (ν = π/2), 0 < c0 �
∣∣(Φ−1)z′

∣∣ � C0 < ∞.
This together with the estimate A1 � 1 gave [33] a strictly positive lower
bound for the Taylor coefficient −∂P

∂n . In our situation, 1
Z,α′

→ 0 at the

corner if ν < π
2 ; similarly, 1

Z,α′
→ 0 at an angled crest if the interior angle is

< π. If A1 is in addition bounded from above—which will be true when our
energy is finite—we know that the degeneracy of −∂P

∂n corresponds precisely
to the degeneracy of 1

Z,α′
.

We note that our spatial derivative Dα′ = 1
Z,α′

∂α′ is less singular, in a

sense, than ∂α′ . We know 1
Z,α′

→ 0 at singularities, which indicates that

the weight function 1
Z,α′

has some “regularizing” effect. Indeed, we have

Dα′Zt, Dα′Ztt ∈ L∞, but ∂α′Zt, ∂α′Ztt are only in L2 in our energy space,
for example; see §5.1.

3.3.3. The quantities At and at

a
◦ h−1. Now we seek a formula for

the quantity on the RHS of (36), At. As in §3.3.1, we start by multiplying
both sides of (36) by Z,α′ to get a purely imaginary and almost holomorphic
quantity, then apply (I −H) to both sides and take imaginary parts to get
a formula for At. We have

(54) Z,α′(Zttt + iAZt,α′) = −iAt |Z,α′ |2 .
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We once again carefully expand the LHS. As before, let F (z(α, t), t) =
zt(α, t). Again, we have

(55) ztt = (Fz ◦ z)zt + Ft ◦ z,

so

(56) zttt = (Fzz ◦ z)z2t + 2(Ftz ◦ z)zt + (Fz ◦ z)ztt + Ftt ◦ z.

We now solve for Fz ◦ z, Fzz ◦ z and Ftz ◦ z. Since ∂z = Dα on holomorphic
functions,

(57) Fz ◦ z = Dαzt, Fzz ◦ z = D2
αzt.

We solve for Ftz ◦ z by applying ∂z = Dα to (55):

(58) Ftz ◦ z = Dα (ztt − (Dαzt)zt) .

Therefore, by substituting (57) and (58) into (56), we get

(59) zttt = (D2
αzt)z

2
t + 2ztDα (ztt − (Dαzt)zt) + (Dαzt)ztt + Ftt ◦ z.

Precomposing with h−1, we have

(60) Zttt = (D2
α′Zt)Z

2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt) + (Dα′Zt)Ztt + Ftt ◦ Z.

We now go back to (54), substituting in (60) to get

(61)
Z,α′

(
(D2

α′Zt)Z
2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt) + (Dα′Zt)Ztt + Ftt ◦ Z

)
+ Z,α′

(
iAZt,α′

)
= −iAt |Z,α′ |2 .

We simplify, distributing the Z,α′ and then using the identity Ztt+i = iAZ,α′

on the last term:

(62)
(∂α′Dα′Zt)Z

2
t + 2Zt∂α′(Ztt − (Dα′Zt)Zt) + 2Zt,α′Ztt + iZt,α′

+ Z,α′(Ftt ◦ Z) = −iAt |Z,α′ |2 .

We now apply (I−H) to both sides. Various terms will disappear on the LHS
and others will turn into commutators, due to holomorphicity; specifically,
we use (304), (305), and (303). We get

[Z2
t ,H]∂α′Dα′Zt + 2[Zt,H]∂α′(Ztt − (Dα′Zt)Zt) + 2[Ztt,H]Zt,α′

= (I −H)
{
−iAt |Z,α′ |2

}
.

(63)
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We could continue working with this equation, but two integrations by parts
will give us a nicer equation to work with. We take the first term and the
second part of the second term and integrate by parts both terms, noting
that we have no boundary terms. We get

(64)

[
Z2
t ,H

]
∂α′Dα′Zt−2[Zt,H]∂α′

(
(Dα′Zt)Zt

)
= − π

4i

∫
(Zt(α

′)− Zt(β
′))2

sin2(π2 (α
′ − β′))

Dβ′Zt(β
′)dβ′.

This is a type of higher-order Calderon commutator, which we write as
−[Zt, Zt;Dα′Zt] (see (14)). We therefore can rewrite (63) as

(65) −i(I−H)
{
At |Z,α′ |2

}
= 2[Zt,H]Ztt,α′+2[Ztt,H]Zt,α−[Zt, Zt;Dα′Zt].

Taking imaginary parts, we get

(66) At |Z,α′ |2 = −�
(
2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α − [Zt, Zt;Dα′Zt]

)
.

Observe that dividing (66) by (48) we have

(67)
at

a
◦h−1 =

At

A =
−�

(
2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α′ − [Zt, Zt;Dα′Zt]

)
A1

.

3.3.4. The quantity b := ht◦h−1. Here we derive a formula for b := ht◦
h−1, following [33]. We recall (28): h(α, t) = Φ(z(α, t), t) = Φ ◦ z. Therefore
hα = (Φz ◦ z)zα, and

(68) ht = (Φt ◦ z) + (Φz ◦ z)zt = (Φt ◦ z) +
hα
zα

zt.

We precompose with h−1:

(69) (ht ◦ h−1)(α′, t) = Φt ◦ Z +
1

Z,α′
Zt.

Apply (I −H) to both sides, then take the real parts. By (299), we get

(70) b := (ht ◦ h−1)(α′, t) = �(I −H)

(
1

Z,α′
Zt

)
.

In what follows we will also use the following evolution equation for 1
zα
,

or equivalently in the Riemann mapping variable, 1
Z,α′

. We have
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∂t
1

zα
= − 1

zα
Dαzt, and(71)

(
∂t
hα
zα

)
◦ h−1 = (∂t + b∂α′)

(
1

Z,α′

)
=

1

Z,α′
(∂α′b−Dα′Zt).(72)

4. The main result

Observe that the system of free surface equations (35)-(36)-(48)-(67)-(70)-

(39)-(40)-(72) is a closed system for the quantities Zt, Ztt and
1

Z,α′
. In what

follows we will focus on this system and construct an energy that allows for
1

Z,α′
= 0, i.e., singularities on the interface and at the corner, and prove an

a priori estimate.

4.1. Definition of the energy

We consider a general equation of the form

(73) (∂2
t + ia∂α)θ = Gθ

with the constraint that θ is the boundary value of a periodic holomorphic

function on Ω(t). Precomposing with h−1 and using (52), we obtain the

equation in the Riemann mapping variable

(74)
(
∂2
t θ
)
◦ h−1 + i

A1

|Z,α′ |2∂α
′
(
θ ◦ h−1

)
= Gθ ◦ h−1.

There are two mutually related basic energies. One is

(75)

Ea,θ(t) :=

∫
I

∣∣θt ◦ h−1
∣∣2

A1
dα′

+

∫
I
i ∂α′

(
1

Z,α′
(θ ◦ h−1)

)(
1

Z ,α′
(θ ◦ h−1)

)
dα′ +

∫
I

∣∣θ ◦ h−1
∣∣2

A1
dα′,

for (74) in the Riemann mapping variables, another is

(76) Eb,θ(t) :=

∫
I

1

a
|θt|2 dα+

∫
I
(i∂αθ)θdα+

∫
I

(A1 ◦ h)
a

|θ|2 dα
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for (73). A form of Eb,θ(t) has appeared in [35]. Upon changing to the Rie-

mann mapping coordinates, and by (52), we have

(77)
Eb,θ(t) =

∫
I

∣∣Z,α′θt ◦ h−1
∣∣2

A1
dα′ +

∫
I
i(∂α′θ ◦ h−1)(θ ◦ h−1)dα′

+

∫
I

∣∣Z,α′θ ◦ h−1
∣∣2 dα′.

In Ea,θ and Eb,θ, the first two terms are from the LHS of the equations, the

last terms are of lower order. Because θ ◦ h−1 and 1
Z,α′

are holomorphic, the

second terms in Ea,θ(t) and Eb,θ(t) are nonnegative and equal to ‖ 1
Z,α′

(θ ◦
h−1)‖2

Ḣ1/2
and ‖θ ◦ h−1‖2

Ḣ1/2
respectively; see §B.4.

Notice that the primary difference between the two basic energies Ea,θ

and Eb,θ is either to multiply or to divide by the weight function 1
Z,α′

. In

the classical case where |Z,α′ | is bounded away from 0 and ∞, there is no

real difference between the two energies. However it does make a difference

if we want to allow 1
Z,α′

→ 0.

We now construct our energy functional, by applying the two basic en-

ergies to our equations. We begin with equation (23) (equivalently (36), by

a change of the coordinates.):

(78) (∂2
t + ia∂α)zt = −iatzα.

Applying weighted derivatives Dk
α to (78) we get

(∂2
t + ia∂α)D

k
αzt = GDk

αzt

with

(79) GDk
αzt

= Dk
α(−iatzα) + [∂2

t + ia∂α, D
k
α]zt.

Our total energy consists primarily of Ea,D2
αzt

and Eb,Dαzt
. In addition, we

will include one other term in our total energy: |ztt(α0, t)− i| for some fixed

α0 ∈ I. Our total energy therefore is

(80) E = E(t) := Ea,D2
αzt

(t) + Eb,Dαzt
(t) + |ztt(α0, t)− i| .

We henceforth abbreviate notation and write Ea := Ea,D2
αzt

and Eb :=
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Eb,Dαzt
. We know

(81)

Ea := Ea,D2
αzt

=
∥∥(∂tD2

αzt) ◦ h−1
∥∥2
L2(1/A1)

+

∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥2
Ḣ1/2

+
∥∥D2

α′Zt

∥∥2
L2(1/A1)

and

(82) Eb := Eb,Dαzt
= ‖∂tDαzt‖2L2( 1

a
) +

∥∥Dα′Zt

∥∥2
Ḣ1/2 +

∥∥Zt,α′
∥∥2
L2 .

As we will see in §5.1, the first term in Eb, ‖∂tDαzt‖L2( 1

a
) ≈

∥∥Ztt,α′
∥∥
L2 ; this

together with the last term |ztt(α0, t)− i| in the energy E gives us control

of
∥∥Ztt(t)− i

∥∥
L∞ . The inclusion of the last term in Eb gives us an upper

bound for A1; see (103).

After developing all necessary tools, in §11 we will show that our energy

E is equivalent to the following

(83)

E(t) = ‖Zt,α′‖2L2 + ‖D2
α′Zt‖2L2 + ‖∂α′

1

Z,α′
‖2L2 + ‖D2

α′
1

Z,α′
‖2L2

+ ‖ 1

Z,α′
D2

α′Zt‖2Ḣ1/2 + ‖Dα′Zt‖2Ḣ1/2 + ‖ 1

Z,α′
‖2L∞ ;

that is, there are universal polynomials P1 and P2, such that E(t) � P1(E(t)),
and E(t) � P2(E(t)). One may now get a glimpse of this fact by (50).

Notice that there is no control of ‖Z,α′‖L∞ by our energy E or E . So in

the regime where E < ∞, we do allow 1
Z,α′

→ 0. We will discuss what

types of singularities are allowed by a finite energy E in §11.2. In particular

we will show that our energy class E(t) < ∞ allows for non-right angles

at the corner with angle < π
4 as well as angled crest type interfaces with

interior angles at the singularities < π
2 , which coincides with the angles of

the self-similar solutions constructed in [37]. The Stokes extreme waves have

interior angle = 2π
3 at the singularity, hence they are not in our energy class

E(t) < ∞.

The lack of control of ‖Z,α′‖L∞ in E, or equivalently the lack of a positive

lower bound for −∂P
∂n , is an obstacle we need to circumvent in the proof of

our a priori estimate, Theorem 2.

4.2. The main result

We now state our main result.
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Theorem 2. There exists a polynomial p = p(x) with universal coefficients,

such that for any solution of water wave equations (35)-(36)-(48)-(67)-(70)-

(39)-(40)-(72), with (Zt, Ztt) ∈ C l([0, T ], Hk−l(S1) ×Hk−l(S1)) for l = 0, 1

and k � 4,

(84)
d

dt
E(t) � p (E(t))

for all t ∈ [0, T ].

Observe that the quantities A, At and ht ◦ h−1 in equations (35)-(36)

are given by formulas (48), (67) and (70). By (318), (322) and (50), the

assumption in Theorem 2 implies, for l = 0, 1, k � 4,

(85)
1

Z,α′
, A1, ht ◦ h−1,

At

A ∈ C l([0, T ], Hk−l(S1)).

Remark: 1. Observe that in Theorem 2 no regularity assumptions are

made on Z. This is because by substituting (50), (48), (67) and (70) into

(36), we see that the quasilinear equation (36) is an equation of the velocity

Zt and acceleration Ztt; the quantity Z itself doesn’t appear explicitly. The

assumption of Theorem 2 is consistent with this fact.

2. It appears that there is an ∞ · 0 ambiguity in the definition of Eb if

we allow Zα′ → ∞. This can be resolved by expanding out (82),

(86) Eb =

∫
I

(∣∣Ztt,α′ − Zt,α′Dα′Zt

∣∣2
A1

+ i∂α′(Dα′Zt)Dα′Zt + |Zt,α′ |2
)

dα′,

using the RHS of (86) as the definition for Eb and directly taking derivative

to t to the RHS of (86). We opt for the current version (82) for the clarity of

the origin and the more intuitive proof associated with this definition. The

same remark applies to §5.1, §9, §10 and §11, where the ∞
∞ ambiguity can

be resolved by using some different algebraic identities.

3. The existence of solutions to the Cauchy problem in the class where

E(t) < ∞ is obtained by mollifying the initial data and taking the limit

of the sequence of approximating solutions. In the proof for the existence

theorem we will apply Theorem 2 only to the approximating sequence which

satisfies in addition that Z,α′ ∈ L∞; see [38]. What’s important is that the

inequality (84) doesn’t depend on any ‖Z,α′‖L∞ bound.
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4.3. The proof

In the proof we will switch freely between Lagrangian and Riemann mapping
variables: we will use Lagrangian coordinates when we need to take a time
derivative, but use Riemann mapping variables when we need to estimate
terms, since that gives us access to the easily invertible (I−H) operator. We
choose the initial parametrization of the interface such that h(α, 0) − α ∈
C1(S1).6 By basic ODE theorey and (85): ht ◦ h−1 ∈ C1([0, T ], H2(S1)), we
know h(α, t)− α ∈ C1([0, T ], C1(S1)).

We start with writing the energy Ea,θ in Lagrangian coordinates. We
use (52) to calculate

(87)

∫
I
i

(
∂α′

(
1

Z,α′
(θ ◦ h−1)

))(
1

Z ,α′
(θ ◦ h−1)

)
dα′

= �
∫
I
i

(
∂α

(
θ
hα
zα

))(
θ
hα
zα

)
dα

= �
∫
I
i
h2α

|zα|2
(∂αθ)θdα+ �

∫
I

(
i
1

zα
∂α

hα
zα

)
|θ|2 hαdα

= �
∫
I
(ia∂αθ)θ

hα
A1 ◦ h

dα+ �
∫
I

(
i
1

zα
∂α

hα
zα

)
|θ|2 hαdα,

so

(88)

Ea,θ(t) =

∫
I
|θt|2

hα
A1 ◦ h

dα+ �
∫
I
(ia∂αθ)θ

hα
A1 ◦ h

dα

+ �
∫
I

(
i
1

zα
∂α

hα
zα

)
|θ|2 hαdα+

∫
I
|θ|2 hα

A1 ◦ h
dα.

We prove (84) by differentiating each component of E(t) in time. For
the two main energies, Ea and Eb, we then integrate by parts to arrive at a
term ∂2

t θ + ia∂αθ and use the basic equation ∂2
t θ + ia∂αθ = Gθ to replace

it with Gθ. What remain to be estimated will be Gθ, along with several
ancillary terms. We control those quantities in §5 through §10 in terms of a
polynomial of the energy.

4.3.1. The estimate for Ea. We begin by differentiating Ea with respect
to t.

6Notice that the a priori estimate (84) is independent of the initial parametriza-
tion.



A Priori Estimates for Two-Dimensional Water Waves 119

We will work initially with general θ satisfying θ|∂ = 0, (I−H)(θ◦h−1) =
0, and the basic equation (73), and then we will specialize to the θ = D2

αzt
in our energies. The periodicity ensures that there is no boundary term in

the integration by parts.

We differentiate (88) with respect to t and use the fact that ahα

(A1◦h) =
h2
α

|zα|2 (by (52) or equivalently the definition for A and A1) in the following

calculation.

(89)

d

dt
Ea,θ(t) =

∫
(θttθt + θtθtt)

hα
A1 ◦ h

dα+

∫
|θt|2

htα
A1 ◦ h

dα

−
∫

|θt|2
hα

A1 ◦ h
(A1 ◦ h)t
A1 ◦ h

dα+ �
∫

i

(
h2α

|zα|2
)

t

θαθdα

+ �
∫

i
h2α

|zα|2
θtαθdα︸ ︷︷ ︸

−�
∫
i
(

h2
α

|zα|2

)
α
θtθdα+�

∫ h2
α

|zα|2 θtiθαdα

+�
∫

i
h2α

|zα|2
θαθtdα

+ �
∫

i

(
1

zα
∂α

hα
zα

)
t

|θ|2 hαdα+ �
∫

i

(
1

zα
∂α

hα
zα

)
(θtθ + θθt)hαdα

+ �
∫

i

(
1

zα
∂α

hα
zα

)
|θ|2 htαdα+

∫
(θtθ + θtθ)

hα
A1 ◦ h

+

∫
|θ|2 htα

A1 ◦ h
dα−

∫
|θ|2 hα

A1 ◦ h
(A1 ◦ h)t
A1 ◦ h

dα

=

∫
2�

(
(θtt + iaθα)θt

) hα
A1 ◦ h

dα

+

∫ (
|θt|2 + |θ|2

)(htα
hα

− (A1 ◦ h)t
A1 ◦ h

)
hα

A1 ◦ h
dα

+ �
∫

i

(
1

zα
∂α

hα
zα

)
t

|θ|2 hαdα+ �
∫

i

(
1

zα
∂α

hα
zα

)
(θtθ + θθt)hαdα

+ �
∫

i

(
1

zα
∂α

hα
zα

)
|θ|2 htα

hα
hαdα+ 2�

∫
θtθ

hα
A1 ◦ h

dα

−�
∫

i

(
h2α

|zα|2
)

α

θtθdα+ �
∫

i

(
h2α

|zα|2
)

t

θαθdα.

Now we show how we control each of these terms.

For the first, we replace θtt+iaθα with the RHS Gθ by the main equation
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(73) and then use the Cauchy-Schwarz inequality:

(90)

∫
2�

(
(θtt + iaθα)θt

) hα
A1 ◦ h

dα

�
(∫

|Gθ|2
hα

A1 ◦ h
dα

)1/2(∫ ∣∣θt∣∣2 hα
A1 ◦ h

dα

)1/2

.

The first factor, which involves the RHS of the basic equation, is the main
term to control. For θ = D2

αzt,

(91) Gθ = D2
α(−iatzα) + [∂2

t + ia∂α, D
2
α]zt.

We estimate these terms in §10.
In §6, we will control

(92)

∣∣∣∣�
∫

i

(
1

zα
∂α

hα
zα

)
t

|θ|2 hαdα
∣∣∣∣ � (164).

Because 1
zα
∂α

hα

zα
= Dα

hα

zα
=
(
Dα′

1
Z,α′

)
◦ h, we estimate

(93)

∣∣∣∣�
∫

i

(
1

zα
∂α

hα
zα

)
(θtθ + θθt)hαdα

∣∣∣∣ �
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

‖A1‖L∞ Ea,θ.

Similarly, we estimate∣∣∣∣�
∫

i

(
1

zα
∂α

hα
zα

)
|θ|2 htα

hα
hαdα

∣∣∣∣ �
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

∥∥∥∥htαhα
∥∥∥∥
L∞

‖A1‖L∞ Ea,θ.

We observe that

(94)

∥∥∥∥∥∥
(

h2
α

|zα|2
)
α

hα

∥∥∥∥∥∥
L∞

=

∥∥∥∥∥∂α′
1

|Z,α′ |2

∥∥∥∥∥
L∞

� 2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

,

so, using the Cauchy-Schwarz inequality, we have

(95)

∣∣∣∣∣−�
∫

i

(
h2α

|zα|2
)

α

θtθdα

∣∣∣∣∣ � ‖A1‖L∞

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

Ea,θ.

In §7 we control

(96) �
∫

i

(
h2α

|zα|2
)

t

θαθdα � (187).
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We estimate the remaining two terms of (89) by the Cauchy-Schwarz in-

equality and Hölder’s inequality.

We now combine these estimates and specialize to θ = D2
αzt. Each of

the remaining factors we will control in §5; we list the location of the final

estimate for each quantity of the following in the subscripts. We get

(97)

∣∣∣∣ ddtEa

∣∣∣∣ �
∥∥GD2

αzt

∥∥
L2( hα

A1◦h )︸ ︷︷ ︸
�(249)

E1/2
a +

∥∥∥∥htαhα
∥∥∥∥
L∞︸ ︷︷ ︸

�(136)

Ea +

∥∥∥∥(A1 ◦ h)t
A1 ◦ h

∥∥∥∥
L∞︸ ︷︷ ︸

�(138)

Ea

+

(
1 +

∥∥∥∥htαhα
∥∥∥∥
L∞

)
︸ ︷︷ ︸

�1+(136)

‖A1‖L∞

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞︸ ︷︷ ︸

�(148)

Ea + Ea

+ �
∫

i

(
1

zα
∂α

hα
zα

)
t

|θ|2 hαdα︸ ︷︷ ︸
�(164)

+�
∫

i

(
h2α

|zα|2
)

t

θαθdα︸ ︷︷ ︸
�(187)

.

4.3.2. The estimate for Eb. Now we consider our second term Eb. Once

again, we work first with general θ satisfying θ|∂ = 0, (I −H)(θ ◦ h−1) = 0,

and the main equation (73). Then we specialize to θ = Dαzt. The period-

icity ensures there is no boundary term when we integrate by parts. We

differentiate (76) with respect to t:

d

dt
Eb,θ(t)

=

∫
1

a
(θttθt + θtθtt)dα−

∫
at

a

1

a
|θt|2 dα+

∫
iθtαθdα︸ ︷︷ ︸

=
∫
iθαθtdα

+

∫
iθαθtdα

+

∫
(A1 ◦ h)

a
(θtθ + θθt)dα+

∫
(A1 ◦ h)t

a
|θ|2 dα−

∫
at

a

(A1 ◦ h)
a

|θ|2 dα

= 2�
∫

Gθ

a
θtdα−

∫
at

a

1

a
|θt|2 dα

+

∫
A1 ◦ h

a
(θtθ + θθt)dα+

∫ (
(A1 ◦ h)t
(A1 ◦ h)

− at

a

)
(A1 ◦ h)

a
|θ|2 dα.

By Hölder and the Cauchy-Schwarz inequalities, we conclude that

(98)

∣∣∣∣ ddtEb,θ(t)

∣∣∣∣
�

∥∥∥∥Gθ√
a

∥∥∥∥
L2

E
1/2
b,θ +

(
‖A1‖1/2L∞ +

∥∥∥at
a

∥∥∥
L∞

+

∥∥∥∥(A1 ◦ h)t
(A1 ◦ h)

∥∥∥∥
L∞

)
Eb,θ.
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For θ = Dαzt, we control
∥∥∥Gθ√

a

∥∥∥
L2

in §9, at (228). We control ‖A1‖L∞ at

(103),
∥∥at

a

∥∥
L∞ at (123) and

∥∥∥ (A1◦h)t
(A1◦h)

∥∥∥
L∞

at (138).

4.3.3. The estimate for |ztt(α0, t) − i|. Finally, we show that we can
control d

dt |ztt(α0, t)− i|. By differentiating with respect to t, we have, by
the basic equations (36)-(35),

(99)

d

dt
|ztt(α0)− i| � |zttt(α0)| =

∣∣∣∣At

A ◦ h(α0) +Dαzt(α0)

∣∣∣∣ |ztt(α0)− i|

�
(∥∥∥∥At

A

∥∥∥∥
L∞

+ ‖Dαzt‖L∞

)
|ztt(α0)− i| .

We control
∥∥At

A
∥∥
L∞ below at (123) and ‖Dαzt‖L∞ at (105).

4.4. Outline of the remainder of the proof

In sections §5 through §10, we complete the proof of the a priori inequality
(84).

In §5, we control various quantities that are necessary for our proof. In
§5.1, we carefully list the basic quantities controlled by our energy. In §5.2-
§5.6, we estimate various other quantities that are listed above in §4.3. In
appendix §D, we list and give references to all the quantities controlled in
§5, which we then use, sometimes without citation, in §6 through §10.

In §6 and §7 we estimate the terms from (92) and (96) in the estimate
of d

dtEa above. Finally, in §9 and §10 we conclude the estimates for d
dtEb

and d
dtEa, respectively, by controlling the Gθ terms, completing the proof of

Theorem 2.
The basic approach for many of the estimates is to try and use the fact

that certain quantities are purely real-valued and others are holomorphic to
express the terms in question as commutators involving the Hilbert trans-
form, and then use the commutator estimates from §B.3 to avoid loss of
derivatives. Because our estimates are very tight, we have to take care in
using different estimates for different terms, including treating certain terms
as commutators while keeping others in (I−H) form. Very often we have to
carefully expand the quantities, and then decompose the factors and regroup
the terms to make sure no further cancellations are possible and the desired
estimates can be obtained. We will give enough details to facilitate reading.

We use C(E) to indicate a universal polynomial of E, which may differ
from line to line.
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Throughout the remaining derivations, we will repeatedly rely on the
identity (52).

5. Quantities controlled by our energy

Here we collect together many quantities that are controlled by our energy.

5.1. Basic quantities controlled by the energy

In this section, we present a list of basic quantities controlled by our energy.
Because conjugations and commutations of ∂t with Dα add complexity, we
take care to list some of those estimates as well. We list all of the basic terms
controlled here at (121) below.

We start with (81) and (82). Ea and Eb directly control∥∥(∂t + b∂α′)D2
α′Zt

∥∥
L2 ,

∥∥D2
αzt

∥∥
L2( hα

A1◦hdα)
� E1/2

a ,(100)

∥∥D2
α′Zt

∥∥
L2( 1

A1
dα′)

,

∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

� E1/2
a ,(101)

(∫
|Dαzt|2

dα

a

)1/2

�
∥∥Zt,α′

∥∥
L2 � E

1/2
b ,(102)

where we used A1 � 1 (49) in (102). By (48), using the commutator estimate
(331), and then (102), we have

(103) ‖A1‖L∞ � ‖Zt,α′‖2L2 + 1 � Eb + 1.

Thanks to (103), we can now control
∥∥D2

αzt
∥∥
L2(hαdα)

=
∥∥D2

α′Zt

∥∥
L2 by a

polynomial of our energy E.
Now we control ‖Dαzt‖L∞ =

∥∥Dα′Zt

∥∥
L∞ . We work in Riemann mapping

variables and use the weighted Sobolev inequality (314) with weight ω =
1

|Z,α′ |2 (and ε = 1). Note that −
∫
(Dα′Zt)

2 = 0 by (312). This gives

(104)

∥∥Dα′Zt

∥∥
L∞

�
(∫ ∣∣Dα′Zt

∣∣2 |Z,α′ |2 dα′
)1/2

+

(∫ ∣∣∂α′Dα′Zt

∣∣2 1

|Z,α′ |2
dα′

)1/2

=
∥∥Zt,α′

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 � E

1/2
b + ‖A1‖1/2L∞ E1/2

a

� C(E).
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We conclude that

(105) ‖Dαzt‖L∞ = ‖Dα′Zt‖L∞ = ‖Dαzt‖L∞ =
∥∥Dα′Zt

∥∥
L∞ � C(E).

Now we use the commutator identity (337) to move the ∂t inside the
first term in Eb:

(106)

(∫
|Dαztt|2

dα

a

)1/2

�
(∫

|∂tDαzt|2
dα

a

)1/2

+

(∫
|[∂t, Dα]zt|2

dα

a

)1/2

� E
1/2
b + ‖Dαzt‖L∞

(∫
|Dαzt|2

dα

a

)1/2

� C(E)

by (105) and (102). By changing variables and by (52), we conclude from
(106) and (103) that

(107)

∥∥Ztt,α′
∥∥
L2 � ‖A1‖1/2L∞

(∫
|Dαztt|2

dα

a

)1/2

� C(E).

Note that
∣∣D2

αf
∣∣ �= ∣∣D2

αf
∣∣. Nevertheless, for generic f , we can control

D2
αf by D2

αf in L2(hαdα) norm, at the expense of some lower-order terms.
For notational convenience, we define here

(108) |Dα| :=
1

|zα|
∂α =

zα
|zα|

Dα.

We expand:

(109)

D2
αf =

(
|zα|
zα

)2

|Dα|2 f +
|zα|
zα

(
|Dα|

|zα|
zα

)
|Dα| f

D2
αf =

(
|zα|
zα

)2

|Dα|2 f +
|zα|
zα

(
|Dα|

|zα|
zα

)
|Dα| f.

Therefore,

(110)
∣∣D2

αf
∣∣ �

∣∣D2
αf

∣∣+ 2

∣∣∣∣|Dα|
|zα|
zα

∣∣∣∣ ∣∣Dαf
∣∣



A Priori Estimates for Two-Dimensional Water Waves 125

and so

(111)

(∫ ∣∣D2
αf

∣∣2 hαdα)1/2

�
(∫ ∣∣D2

αf
∣∣2 hαdα)1/2

+ 2
∥∥Dαf

∥∥
L∞

(∫ ∣∣∣∣Dα
|zα|
zα

∣∣∣∣2 hαdα
)1/2

.

By (316) and then (315), (21), (52), and the fact A1 � 1,

(112)

∣∣∣∣Dα
|zα|
zα

∣∣∣∣2 hα =

∣∣∣∣Dα
ztt − i

|ztt − i|

∣∣∣∣2 hα
� |Dαztt|2

hα

|ztt − i|2
= |Dαztt|2

hα

a2 |zα|2
� |Dαztt|2

1

a
.

Plugging this into (111), and using (106), we get

(113)

(∫ ∣∣D2
αf

∣∣2 hαdα)1/2

�
(∫ ∣∣D2

αf
∣∣2 hαdα)1/2

+
∥∥Dαf

∥∥
L∞ C(E).

We now apply (113) to f = zt, using (105) to control ‖Dαzt‖L∞ and

(101) and (103) to control
∥∥D2

α′Zt

∥∥
L2 :

(114)
∥∥D2

α′Zt

∥∥
L2 =

(∫ ∣∣D2
αzt

∣∣2 hαdα)1/2

� C(E).

We now control
∥∥D2

αztt
∥∥
L2(hαdα)

. We use the commutator identity (338)

to get

(115)

∥∥D2
α′Ztt

∥∥
L2 =

∥∥D2
αztt

∥∥
L2(hαdα)

�
∥∥∂tD2

αzt
∥∥
L2(hαdα)

+ 2
∥∥(Dαzt)D

2
αzt

∥∥
L2(hαdα)

+
∥∥(D2

αzt)Dαzt
∥∥
L2(hαdα)

� ‖A1‖1/2L∞ E1/2
a + 2 ‖Dαzt‖L∞

∥∥D2
αzt

∥∥
L2(hαdα)

+
∥∥D2

αzt
∥∥
L2(hαdα)

‖Dαzt‖L∞ � C(E).

We will also need to control D2
α′Ztt; we delay doing this until later, after we

control ‖Dαztt‖L∞ .
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We will also at one point need to control

‖Dα∂tDαzt‖L2(hαdα)
� ‖∂tDαDαzt‖L2(hαdα)

+ ‖[∂t, Dα]Dαzt‖L2(hαdα)

� ‖A1‖1/2L∞E1/2
a + ‖Dαzt‖L∞

∥∥D2
αzt

∥∥
L2(hαdα)

� C(E).

We now control ‖ztt − i‖L∞ =
∥∥Ztt − i

∥∥
L∞ . Recall from our definition

of the energy (80) that the energy includes |ztt(α0, t)− i| for some fixed

α0 ∈ I. Let α′
0 = h(α0, t). Then, by the fundamental theorem of calculus,

for arbitrary α′ ∈ I,

(116)

∣∣Ztt(α
′, t)− i

∣∣ �
∣∣Ztt(α

′
0, t)− i

∣∣+ ∥∥Ztt,α′
∥∥
L1(I)

�
∣∣Ztt(α

′
0, t)− i

∣∣+ (107).

We conclude that

(117)
‖ztt + i‖L∞ = ‖Ztt + i‖L∞ = ‖ztt − i‖L∞ =

∥∥Ztt − i
∥∥
L∞

� C(E).

Because of (50) and (49), we can also conclude that

(118)

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

� C(E).

We use this to control ‖Dαztt‖L∞ , using the weighted Sobolev inequality

(313) in Riemann mapping variables with weight ω = 1

|Z,α′ |2 (and ε = 1):7

(119)

‖Dαztt‖L∞ = ‖Dα′Ztt‖L∞ = ‖Dαztt‖L∞ =
∥∥Dα′Ztt

∥∥
L∞

�
∥∥Ztt,α′

∥∥
L2 +

∥∥D2
α′Ztt

∥∥
L2 +

(∫ ∣∣Dα′Ztt

∣∣2 dα′
)1/2

�
(
1 + ‖1/Z,α′‖L∞

) ∥∥Ztt,α′
∥∥
L2 +

∥∥D2
α′Ztt

∥∥
L2

� (1 + (118)) (107) + (115)

� C(E).

7Note that unlike our proof for
∥∥Dα′Zt

∥∥
L∞ at (104) above, we don’t necessarily

have that −
∫
(Dα′Ztt)

2 is zero, so we get a third term in the Sobolev inequality.
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Finally, we use (113), (115), and (119) to control D2
αztt and D2

α′Ztt:

(120)

∥∥D2
α′Ztt

∥∥
L2 =

∥∥D2
αztt

∥∥
L2(hαdα)

�
∥∥D2

αztt
∥∥
L2(hαdα)

+ ‖Dαztt‖L∞ C(E)

� (115) + (119)C(E) � C(E).

To sum up, we have the following quantities and their counterparts in
Lagrangian coordinates controlled by universal polynomials of the energy E:

(121)

∥∥D2
α′Ztt

∥∥
L2 ,

∥∥D2
α′Ztt

∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

‖Dα∂tDαzt‖L2(hαdα)
,

∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

,
∥∥Dα′Ztt

∥∥
L∞ , ‖Dα′Ztt‖L∞ ,

∥∥Dα′Zt

∥∥
L∞ , ‖Dα′Zt‖L∞ ,

∥∥Ztt,α′
∥∥
L2 ,

∥∥Zt,α′
∥∥
L2 ,

∫
|Dαzt|2

dα

a
,∫

|Dαztt|2
dα

a
,

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

, ‖Ztt + i‖L∞ , ‖A1‖L∞ � C(E).

5.2. Controlling
∥∥at

a

∥∥
L∞

We now show that we can control
∥∥at

a

∥∥
L∞ , using (67). Because A1 � 1 (49),

it suffices to control

(122)
∥∥2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α′ − [Zt, Zt;Dα′Zt]

∥∥
L∞ .

We control the first two terms by (331), and the last term by Hölder’s
inequality and then Hardy’s inequality (317). We have

(123)
∥∥∥at
a

∥∥∥
L∞

� ‖Zt,α′‖L2

∥∥Ztt,α′
∥∥
L2 + ‖Zt,α′‖2L2

∥∥Dα′Zt

∥∥
L∞ � C(E).

5.3. Controlling
∥∥∥∂α′

1
Z,α′

∥∥∥
L2

Recall from (50) that 1
Z,α′

= iZtt−i
A1

. Therefore,

(124) ∂α′
1

Z,α′
= i

Ztt,α′

A1
− i

Ztt − i

A2
1

∂α′A1.

Because A1 � 1 (49), we can control the first term by
∥∥Ztt,α′

∥∥
L2 . Now we

address the second term.
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We recall that A1 = �
(
−[Zt,H]Zt,α′

)
+ 1 (48). Therefore,

(125)

∂α′A1 = ∂α′�−1

2i

∫
(Zt(α

′)− Zt(β
′)) cot(

π

2
(α′ − β′))Zt,β′dβ′

= −�Zt,α′HZt,α′ + � 1

2i

∫
π

2

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

Zt,β′(β′)dβ′

= � 1

2i

∫
π

2

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

Zt,β′(β′)dβ′,

where the first term disappears because HZt,α′ = Zt,α′ and so Zt,α′HZt,α′ is
purely real. Therefore, multiplying (125) by

∣∣Ztt(α)− i
∣∣ and splitting into

two parts, we have

(126)

∣∣Ztt − i
∣∣ ∂α′A1 =

�
∫

π

4i

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

(
∣∣Ztt(α

′)− i
∣∣− ∣∣Ztt(β

′)− i
∣∣)Zt,β′(β′)dβ′

+ �
∫

π

4i

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

∣∣Ztt(β
′)− i

∣∣Zt,β′(β′)dβ′

= I + II.

We need to control ‖I‖L2 and ‖II‖L2 . By (328),

(127) ‖I‖L2 � ‖Zt,α′‖L2

∥∥Ztt,α′
∥∥
L2

∥∥Zt,α′
∥∥
L2 =

∥∥Zt,α′
∥∥2
L2

∥∥Ztt,α′
∥∥
L2 .

For II, we replace
∣∣Ztt(β

′)− i
∣∣ by ∣∣∣ (−iA1(β′))

Z,β′

∣∣∣ (50) and use estimate (321),

noticing that 1
Z,β′

Zt,β′ = Dβ′Zt:

(128) ‖II‖L2 � ‖Zt,α′‖L2

∥∥A1Dα′Zt

∥∥
L∞ � ‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞ ‖A1‖L∞ .

We conclude that

(129)

∥∥(Ztt − i
)
∂α′A1

∥∥
L2

�
∥∥Ztt,α′

∥∥
L2 ‖Zt,α′‖2L2 + ‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞ ‖A1‖L∞ � C(E)

and

(130)

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

�
∥∥Ztt,α′

∥∥
L2 +

∥∥(Ztt − i
)
∂α′A1

∥∥
L2

� C(E).
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5.4. Controlling
∥∥∥∂α′(I − H) Zt

Z,α′

∥∥∥
L∞

,
∥∥∥htα

hα

∥∥∥
L∞

and related

quantities

Observe that by the assumption of Theorem 2, the quantities Zt

Z,α′
, Zt and

1
Z,α′

are in C1([0, T ], C2(S1)). We begin with computing

(131)

∂α′(I −H)
Zt

Z,α′
= (I −H)Dα′Zt + (I −H)

{
Zt∂α′

1

Z,α′

}

= 2Dα′Zt − (I +H)Dα′Zt + (I −H)

{
Zt∂α′

1

Z,α′

}
.

Now we use (306), (308), and the fact that H is purely imaginary to rewrite

the second and third terms on the RHS above into commutators, and use

(331) to control

(132) ‖(I +H)Dα′Zt‖L∞ =

∥∥∥∥
[

1

Z,α′
,H

]
Zt,α′

∥∥∥∥
L∞

�
∥∥∥∥∂α′

1

Z,α′

∥∥∥∥
L2

‖Zt,α′‖L2 ,

(133)

∥∥∥∥(I −H)

{
Zt∂α′

1

Z,α′

}∥∥∥∥
L∞

=

∥∥∥∥[Zt,H] ∂α′
1

Z,α′

∥∥∥∥
L∞

� ‖Zt,α′‖L2

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

.

Therefore

(134)

∥∥∥∥∂α′(I −H)
Zt

Z,α′

∥∥∥∥
L∞

� ‖Dα′Zt‖L∞ +

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

‖Zt,α′‖L2 � C(E).

Observe that

(135)
htα
hα

◦ h−1 = ∂α′(ht ◦ h−1) = ∂α′b,

so by (70) and (134),

(136) ‖∂α′b‖L∞ =

∥∥∥∥htαhα
∥∥∥∥
L∞

� C(E).
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5.5. Controlling
∥∥∥ (A1◦h)t

(A1◦h)

∥∥∥
L∞

Recall that A1 ◦ h = a|zα|2
hα

(52). Therefore,

(137)
d
dt(A1 ◦ h)
A1 ◦ h

=
at

a
− htα

hα
+ 2�Dαzt.

We have controlled each of the terms on the RHS in L∞ in the previous
sections. We conclude that

(138)

∥∥∥∥∥
d
dt(A1 ◦ h)
A1 ◦ h

∥∥∥∥∥
L∞

�
∥∥∥at
a

∥∥∥
L∞

+

∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞ � C(E).

5.6. Controlling
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

and related quantities

Recall from (50) that 1
Z,α′

= iZtt−i
A1

. Therefore,

(139) Dα′
1

Z,α′
= i

Dα′Ztt

A1
− i

Ztt − i

A2
1

Dα′A1 = i
Dα′Ztt

A1
+

(Ztt − i)2

A3
1

∂α′A1.

Because we can control the first term on the RHS by ‖Dα′Ztt‖L∞ , it suffices
to focus on the second term. We start from (125), and then use a similar
idea to (126):

(140)

∣∣Ztt − i
∣∣2 ∂α′A1 =

�
∫

π

4i

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

(
∣∣Ztt(α

′)− i
∣∣2 − ∣∣Ztt(β

′)− i
∣∣2)Zt,β′(β′)dβ′

+ �
∫

π

4i

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

∣∣Ztt(β
′)− i

∣∣2 Zt,β′(β′)dβ′

= I + II.

To control ‖I‖L∞ , we use the mean value theorem and the periodicity of Ztt

to estimate

(141)

∣∣∣∣∣
∣∣Ztt(α

′)− i
∣∣2 − ∣∣Ztt(β

′)− i
∣∣2

sin(π2 (α
′ − β′))

∣∣∣∣∣
�

∥∥(Ztt − i)∂α′Ztt

∥∥
L∞ � ‖A1‖L∞

∥∥Dα′Ztt

∥∥
L∞ .
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From the Cauchy-Schwarz inequality and Hardy’s inequality (317), we get

(142) ‖I‖L∞ � ‖Zt,α′‖2L2 ‖A1‖L∞
∥∥Dα′Ztt

∥∥
L∞ .

For II, observe that
∣∣Ztt(α

′)− i
∣∣2 Zt,α′(α′) = A2

1

Z,α′
Dα′Zt and

A2
1

Z,α′
Dα′Zt

∣∣∣
∂
=

0. We integrate by parts as in (319):

II = � 1

2i

∫
π

2

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

∣∣Ztt(β
′)− i

∣∣2 Zt,β′(β′)dβ′

= �H
(
Zt,α′

A2
1

Z ,α′
Dα′Zt

)
−�[Zt,H]∂α′

(
A2

1

Z ,α′
Dα′Zt

)
.

(143)

We estimate the second term by (331):

(144)

∥∥∥∥[Zt,H]∂α′

(
A2

1

Z ,α′
Dα′Zt

)∥∥∥∥
L∞

� ‖Zt,α′‖L2

∥∥∥∥∂α′

(
A2

1

Z ,α′
Dα′Zt

)∥∥∥∥
L2

.

We expand the first term, using the conjugate of (308), noticing that

�
(
Zt,α′

A2
1

Z ,α′
Dα′Zt

)
= 0.

(145)

�H
(
Zt,α′

A2
1

Z ,α′
Dα′Zt

)

= −�
(
Zt,α′

A2
1

Z ,α′
Dα′Zt +

[
A2

1

Z ,α′
Dα′Zt,H

]
Zt,α′

)

= −�
[
A2

1

Z ,α′
Dα′Zt,H

]
Zt,α′ .

We estimate the RHS by (331):

(146)

∥∥∥∥
[
A2

1

Z ,α′
Dα′Zt,H

]
Zt,α′

∥∥∥∥
L∞

� ‖Zt,α′‖L2

∥∥∥∥∂α′

(
A2

1

Z ,α′
Dα′Zt

)∥∥∥∥
L2

.

Now,

(147)

∥∥∥∥∂α′

(
A2

1

Z ,α′
Dα′Zt

)∥∥∥∥
L2

� ‖A1‖2L∞

∥∥D2
α′Zt

∥∥
L2

+ ‖A1‖2L∞

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞ +

∥∥∥∥ A1

Z ,α′
∂α′A1

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞ .



132 Rafe H. Kinsey and Sijue Wu

Combining the above calculations and using (129), (130), the estimates

in §5.1, and the fact A1 � 1, we conclude

(148)

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

�
∥∥Dα′Ztt

∥∥
L∞ +

∥∥(Ztt − i)2∂α′A1

∥∥
L∞

�
∥∥Dα′Ztt

∥∥
L∞ + ‖Zt,α′‖2L2 ‖A1‖L∞

∥∥Dα′Ztt

∥∥
L∞

+ ‖Zt,α′‖L2

∥∥∥∥∂α′

(
A2

1

Z ,α′
Dα′Zt

)∥∥∥∥
L2

� C(E).

We record here the estimate for two related quantities, which we will use in

later sections:

(149)

∥∥∥∥(Ztt − i)∂α′
1

Z,α′

∥∥∥∥
L∞

� ‖A1‖L∞

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

� C(E);

and

(150)

∥∥∥∥∂α′
Ztt + i

Z,α′

∥∥∥∥
L∞

� ‖Dα′Ztt‖L∞ +

∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

� C(E).

6. Controlling �
∫
i
(

1
zα

∂α
hα

zα

)
t
|θ|2 hαdα

In this section, we control from (97) the term

(151)

�
∫

i

(
1

zα
∂α

hα
zα

)
t

|θ|2 hαdα = −�
∫

i
ztα
zα

(
1

zα
∂α

hα
zα

)
|θ|2 hαdα

+ �
∫

i

(
1

zα
∂α∂t

hα
zα

)
|θ|2 hαdα

for θ = D2
αzt. We can control the first of these terms by

(152)

∣∣∣∣−�
∫

i
ztα
zα

(
1

zα
∂α

hα
zα

)
|θ|2 hαdα

∣∣∣∣
� ‖Dαzt‖L∞

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2 .
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Therefore, it suffices to focus on the second term on the RHS of (151). We
expand it out:

(153)

�
∫

i

(
1

zα
∂α∂t

hα
zα

)
|θ|2 hαdα

= �
∫

i

(
1

zα
∂α

(
hα
zα

(
htα
hα

− ztα
zα

)))
|θ|2 hαdα

= �
∫

i

(
1

zα
∂α

hα
zα

)(
htα
hα

− ztα
zα

)
|θ|2 hαdα

+ �
∫

i

(
hα
|zα|2

∂α

(
htα
hα

− ztα
zα

))
|θ|2 hαdα.

We can estimate the first term on the RHS by

(154)

∣∣∣∣�
∫

i

(
1

zα
∂α

hα
zα

)(
htα
hα

− ztα
zα

)
|θ|2 hαdα

∣∣∣∣
�

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞

)∥∥D2
α′Zt

∥∥2
L2 .

Therefore, it suffices to focus on the second term on the RHS of (153).
Observe that because h is real-valued,

(155)

�
∫

i

(
hα
|zα|2

∂α

(
htα
hα

− ztα
zα

))
|θ|2 hαdα

= −�
∫

i

(
hα
|zα|2

∂α

(
ztα
zα

))
|θ|2 hαdα.

We now drop � and the i, write D2
αzt = θ, and switch to Riemann mapping

variables. For consistency with the quantities we’ve controlled elsewhere, we
will take a conjugate. We have

(156)

∫ (
1

|Z,α′ |2
∂α′

(
Zt,α′

Z ,α′

)) ∣∣D2
α′Zt

∣∣2 dα′.

We want to take advantage of the holomorphicity and antiholomorphicity
of various of these factors. To do this, we first use the identity

1

|Z,α′ |2
∂α′

(
Zt,α′

Z ,α′

)
=

1

Z
2
,α′

∂α′

(
Zt,α′

Z,α′

)
+Dα′Zt

(
Dα′

1

Z ,α′
−Dα′

1

Z,α′

)
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to replace the first factor to make it closer to holomorphic:

(157)

∫ (
1

|Z,α′ |2
∂α′

(
Zt,α′

Z ,α′

)) ∣∣D2
α′Zt

∣∣2 dα′

=

∫ (
1

Z
2
,α′

∂α′Dα′Zt

)∣∣D2
α′Zt

∣∣2 dα′

+

∫
Dα′Zt

(
Dα′

1

Z ,α′
−Dα′

1

Z,α′

) ∣∣D2
α′Zt

∣∣2 dα′.

We can estimate the second term by

(158)

∣∣∣∣
∫

Dα′Zt

(
Dα′

1

Z ,α′
−Dα′

1

Z,α′

) ∣∣D2
α′Zt

∣∣2 dα′
∣∣∣∣

� ‖Dα′Zt‖L∞

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2 � C(E).

It therefore remains only to control the first term on the RHS of (157). Now

we take advantage of holomorphicity. We rewrite this as

(159)

∫ (
1

Z
2
,α′

∂α′Dα′Zt

)∣∣D2
α′Zt

∣∣2 dα′

=

∫ (
(PA + PH)

(
1

Z ,α′
∂α′Dα′Zt

))(
1

Z,α′
D2

α′Zt

)
PHD2

α′Ztdα
′,

where we have used (307) to insert PH in front of the D2
α′Zt and decomposed

the first factor into the antiholomorphic and holomorphic projections. Now

we use the adjoint property (291) to turn the PH into a PA on the opposite

factors, and control using the Cauchy-Schwarz inequality:

(160)∣∣∣∣
∫ (

(PA + PH)

(
1

Z ,α′
∂α′Dα′Zt

))(
1

Z,α′
D2

α′Zt

)
PHD2

α′Ztdα
′
∣∣∣∣ �∥∥∥∥PA

{(
(PA + PH)

(
1

Z ,α′
∂α′Dα′Zt

))(
1

Z,α′
D2

α′Zt

)}∥∥∥∥
L2

∥∥D2
α′Zt

∥∥
L2 .

It now remains only to control this first factor.

First we consider the term with the PH . In this case, we can rewrite this
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as a commutator:

(161)

PA

{(
PH

(
1

Z ,α′
∂α′Dα′Zt

))(
1

Z,α′
D2

α′Zt

)}

=
1

2

[
1

Z,α′
D2

α′Zt,H

]
PH

(
1

Z ,α′
∂α′Dα′Zt

)

+
1

4

1

Z,α′
D2

α′Zt

(
−
∫

1

Z ,α′
∂α′Dα′Zt

)
.

Here, the mean term appears because of (290). We now use commutator
estimate (327) for the first term and Hölder’s inequality for the second term,
to conclude that∥∥∥∥PA

{(
PH

(
1

Z ,α′
∂α′Dα′Zt

))(
1

Z,α′
D2

α′Zt

)}∥∥∥∥
L2

�
∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

∥∥∥∥PH

(
1

Z ,α′
∂α′Dα′Zt

)∥∥∥∥
L2

+

∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
L2

∥∥∥∥ 1

Z ,α′
∂α′Dα′Zt

∥∥∥∥
L1

�
∥∥D2

α′Zt

∥∥
L2

(∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

+

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

)
.

(162)

Finally, we consider the PA term in the first factor on the RHS of (160).
By the L2 boundedness of PA, it suffices to control

(163)

∥∥∥∥ 1

Z,α′
D2

α′Zt(I −H)

(
1

Z ,α′
∂α′Dα′Zt

)∥∥∥∥
L2

�
∥∥∥∥D2

α′Zt

[
1

Z,α′
,H

]
1

Z ,α′
∂α′Dα′Zt

∥∥∥∥
L2

+

∥∥∥∥D2
α′Zt(I −H)

1

Z ,α′
D2

α′Zt

∥∥∥∥
L2

�
∥∥D2

α′Zt

∥∥
L2

∥∥∥∥
[

1

Z,α′
,H

]
1

Z ,α′
∂α′Dα′Zt

∥∥∥∥
L∞

+
∥∥D2

α′Zt

∥∥
L2

∥∥∥∥
[

1

Z ,α′
,H

]
D2

α′Zt

∥∥∥∥
L∞

�
∥∥D2

α′Zt

∥∥2
L2

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

,
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where we’ve used (307) to get the second commutator and used commutator

estimate (331).

We now combine our estimates, concluding that

(164)

�
∫

i

(
1

zα
∂α

hα
zα

)
t

|θ|2 hαdα � (152) + (153)

� (152) + (154) + (158) +
∥∥D2

α′Zt

∥∥
L2 · ((162) + (163))

� C(E).

7. Controlling �
∫
i
(

h2
α

|zα|2

)
t
θαθdα

We now show that we can control the following term from the RHS of (97):

(165) �
∫

i

(
h2α

|zα|2
)

t

θαθdα = �
∫

i

(
2
htα
hα

− 2�Dαzt

)
h2α

|zα|2
θαθdα.

Here, all results will be expressed in terms of general energy Ea,θ for θ

satisfying (I−H)(θ◦h−1) = 0 and θ|∂ = 0, rather than specifying θ = D2
αzt.

8

We begin by rewriting this as

(166)

�
∫

i

(
2
htα
hα

− 2�Dαzt

)
h2α

|zα|2
θαθdα

= �
∫

2i

(
htα
hα

−�Dαzt

)(
∂α

(
θ
hα
zα

))
θ
hα
zα

dα

−�
∫

2i

(
htα
hα

−�Dαzt

)(
hα
zα

∂α
hα
zα

)
θθdα

= I + II.

II is easy to control, via Hölder’s inequality and change of variables to

Riemann mapping variables:

(167) |II| �
(∥∥∥∥htαhα

∥∥∥∥
L∞

+ ‖Dαzt‖L∞

)∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

‖A1‖L∞ Ea,θ.

Therefore, we can focus on I from (166). We introduce the following nota-

8D2
αzt satisfies (I −H)D2

αzt ◦ h−1 = 0, D2
αzt

∣∣
∂
= 0; see (307).
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tions:

(168)

ψ :=

(
hα
zα

θ

)
◦ h−1; Θ := θ ◦ h−1;

B :=

(
htα
hα

−�Dαzt

)
◦ h−1 = (ht ◦ h−1)α′ −�Dα′Zt.

We know (I −H)Θ = 0, Θ|∂ = 0, and

B|∂ = 0, ψ|∂ = 0,(169)

(I −H)ψ = 0,(170)

‖ψ‖Ḣ1/2 + ‖A1‖−1/2
L∞ ‖Θ‖L2 � E

1/2
a,θ ,(171)

where (169) follows from the assumption of Theorem 2 and (85); (170) fol-

lows from (40), (I − H)Θ = 0 and principle no.2 in §A.2 (and for θ =

D2
αzt specifically from (309)); and (171) is immediate from the definition

of Ea,θ and change of variables. Upon changing variables, we can write

I = �
∫
2iB(∂α′ψ)ψdα′.

Step 1. Green’s identity. We now show that we can control I from

(166). The main idea is to use Green’s identity to move the derivative from

ψ :=
(
hα

zα
θ
)
◦ h−1 onto B. We note that i∂α′ψ = i∂α′Hψ by (170), and

that the operator i∂α′H = ∇n, here ∇n is the Dirichlet-Neumann operator.9

Letting ψ� and B� be the (periodic) harmonic extension of ψ and B to P−

respectively, we have

(172) I = �
∫

2iB(∂α′ψ)ψdα′ = �
∫

2B(∇nψ)ψdS =

∫
B∇n(

∣∣ψ�
∣∣2)dS.

By Green’s identity,10

(173)

∫
B∇n(

∣∣ψ�
∣∣2)dS =

∫
(∇nB) |ψ|2 dS +

∫
P−

B�Δ(
∣∣ψ�

∣∣2)dV
= I1 + I2.

9Recall that the Dirichlet-Neumann operator is defined by ∇nf := ∇nf
�, the

outward-facing normal derivative of f�, where f� is the extension of f that is
harmonic and periodic in P− and tending to a constant at infinity. For f real-
valued, we can derive this by noting that (I+H)f is holomorphic, so i∂α′(I+H)f =
∇n(I +H)f . Taking real parts gives the identity.

10Here, to justify Green’s identity, we can map (biholomorphically) the space P−

to the unit disk minus the slit, and then use the periodicity of all of the functions
involved to consider the harmonic extensions of these functions to the whole unit
disk.
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We control the second term, I2, by

(174)

|I2| =
∣∣∣∣
∫
P−

B�Δ(
∣∣ψ�

∣∣2)dV ∣∣∣∣ = 2

∣∣∣∣
∫
P−

B�
∣∣∇ψ�

∣∣2 dV ∣∣∣∣
� 2

∥∥B�
∥∥
L∞

∫
P−

∣∣∇ψ�
∣∣2 dV =

∥∥B�
∥∥
L∞

∫
P−

Δ(
∣∣ψ�

∣∣2)dV
= ‖B‖L∞

∫
∇n(

∣∣ψ�
∣∣2)dS = 2 ‖B‖L∞ �

∫
i(∂α′ψ)ψdα′,

= 2 ‖B‖L∞ ‖ψ‖2
Ḣ1/2 �

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞

)
‖ψ‖2

Ḣ1/2

by the maximum principle and another application of Green’s identity.

Step 2. Controlling I1. We are left from Step 1 with controlling

(175)

I1 =

∫
(∇nB) |ψ|2 dS = �

∫
(i∂α′HB) |ψ|2 dα′

= �
∫

(iH∂α′B) |ψ|2 dα′ = �
∫

1

Z,α′
(iH∂α′B)Θψdα′.

We commute the 1
Z,α′

factor inside the H, and then apply the adjoint

property (291):

(176)
I1 =

�
∫

i

([
1

Z,α′
,H

]
∂α′B

)
Θψdα′ + �

∫
i

(
H

(
1

Z,α′
∂α′B

))
Θψdα′

= �
∫

i

([
1

Z,α′
,H

]
∂α′B

)
Θψdα′ −�

∫
i

(
1

Z,α′
∂α′B

)
H
(
Θψ

)
dα′

= �
∫

i

([
1

Z,α′
,H

]
∂α′B

)
Θψdα′ + �

∫
i

(
1

Z,α′
∂α′B

)[
ψ,H

]
Θdα′

−�
∫

i

(
1

Z,α′
∂α′B

)
ψHΘdα′ = I11 + I12 + I13.

Observe that because HΘ = Θ,

(177) I13 = −�
∫

i

(
1

Z,α′
∂α′B

)
ψΘdα′ = −�

∫
i (∂α′B) |ψ|2 dα′ = 0,

since B ∈ R. It remains to control I11 and I12.
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We use the Cauchy-Schwarz inequality and then the Ḣ1/2 ×L2 commu-
tator estimate (327) to control I12:

(178) |I12| � ‖Dα′B‖L2

∥∥[ψ,H]Θ
∥∥
L2 � ‖Dα′B‖L2

∥∥ψ∥∥
Ḣ1/2 ‖Θ‖L2 .

We have controlled
∥∥ψ∥∥

Ḣ1/2 and ‖Θ‖L2 at (171), we will control ‖Dα′B‖L2

by (186) in Step 3 below.
It remains to control I11 from (176). Here we use Proposition 5, identity

(293). Because (I−H) 1
Z,α′

= 1 (40) and −
∫
∂α′B = 0 by (169), we can rewrite

(179)

[
1

Z,α′
,H

]
∂α′B = PH

([
1

Z,α′
,H

]
∂α′B

)
− 1

2
−
∫

Dα′B.

We plug (179) into I11, and then use adjoint property (291):

I11 =

�
∫

i

{
PH

([
1

Z,α′
,H

]
∂α′B

)}
Θψdα′ −�

{(
1

2
−
∫

Dα′B

)∫
iΘψdα′

}

= �
∫

i

([
1

Z,α′
,H

]
∂α′B

)
PA

(
Θψ

)
dα′ −�

{(
1

2
−
∫

Dα′B

)∫
iΘψdα′

}
.

To control the first term, we use the Cauchy-Schwarz inequality, and then
control the first factor with the L2 × L∞ estimate (318) and control the
second factor by rewriting it as a commutator by (170) and then using the
Ḣ1/2 × L2 estimate (327). We use (50) to rewrite 1

Z,α′
= −iZtt+i

A1
in the

second term.

(180)

|I11| �∥∥∥∥
[

1

Z,α′
,H

]
∂α′B

∥∥∥∥
L2

∥∥PA

(
Θψ

)∥∥
L2 +

∣∣∣∣
(
1

2
−
∫

Dα′B

)∫
iΘψdα′

∣∣∣∣
�

∥∥∥∥
[

1

Z,α′
,H

]
∂α′B

∥∥∥∥
L2

∥∥∥∥12 [ψ,H]Θ
∥∥∥∥
L2

+ ‖Dα′B‖L2

∫ ∣∣∣∣Ztt + i

A1
|Θ|2

∣∣∣∣ dα′

�
∥∥∥∥∂α′

1

Z,α′

∥∥∥∥
L2

‖B‖L∞

∥∥ψ∥∥
Ḣ1/2 ‖Θ‖L2

+ ‖Dα′B‖L2 ‖Ztt + i‖L∞ Ea,θ.

We have controlled all the quantities on the last line, except for ‖Dα′B‖L2 .
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Step 3. Controlling ‖Dα′B‖L2. We must control ‖Dα′B‖L2 , where B is
as defined by (168). By (70) and (131), rewriting the second and third terms
in (131) as commutators, we have

(181)

B = (ht ◦ h−1)α′ −�Dα′Zt

= �Dα′Zt + �
{[

1

Z,α′
,H

]
Zt,α′ + [Zt,H]∂α′

1

Z,α′

}
.

Therefore, noting that |∂α′�f | � |∂α′f | and so |Dα′�f | � |Dα′f |,

(182)

‖Dα′B‖L2 �
∥∥D2

α′Zt

∥∥
L2

+

∥∥∥∥Dα′

[
1

Z,α′
,H

]
Zt,α′

∥∥∥∥
L2

+

∥∥∥∥Dα′ [Zt,H]∂α′
1

Z,α′

∥∥∥∥
L2

.

We’ve controlled
∥∥D2

α′Zt

∥∥
L2 , so it suffices to focus on the second and third

terms. In what follows, we work on Dα′ [f,H]∂α′g for general functions f and
g satisfying f |∂ = g|∂ = 0. Once we have an appropriate estimate, we will
apply it to f = 1

Z,α′
, g = Zt for the second term, and f = Zt, g = 1

Z,α′
for

the third term.
We know

(183)

Dα′ [f,H]∂α′g

=
1

Z,α′
∂α′

1

2i

∫
(f(α′)− f(β′)) cot(

π

2
(α′ − β′))∂β′g(β′)dβ′

=
1

Z,α′
(∂α′f)H∂α′g − 1

Z,α′

1

2i

∫
π

2

f(α′)− f(β′)

sin2(π2 (α
′ − β′))

∂β′g(β′)dβ′.

Via the boundedness of the Hilbert transform, we control the first of these
terms by ‖Dα′f‖L∞ ‖∂α′g‖L2 . Therefore, it suffices to focus on the second
term. We commute the 1

Z,α′
inside, getting

− π

4i

∫
f(α′)− f(β′)

sin2(π2 (α
′ − β′))

Dβ′g(β′)dβ′

− π

4i

∫
(f(α′)− f(β′))

sin(π2 (α
′ − β′))

(
1

Z,α′
(α′)− 1

Z,β′
(β′)

)
sin(π2 (α

′ − β′))
∂β′g(β′)dβ′.

We control the first term by (321):

(184)

∥∥∥∥ π

4i

∫
f(α′)− f(β′)

sin2(π2 (α
′ − β′))

Dβ′g(β′)dβ′
∥∥∥∥
L2

� ‖∂α′f‖L2 ‖Dα′g‖L∞ .
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We control the second term by (328):∥∥∥∥∥∥ π

4i

∫
(f(α′)− f(β′))

sin(π2 (α
′ − β′))

(
1

Z,α′
(α′)− 1

Z,β′
(β′)

)
sin(π2 (α

′ − β′))
∂β′g(β′)dβ′

∥∥∥∥∥∥
L2

� ‖∂α′f‖L2

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

‖∂α′g‖L2 .

We conclude that

(185)

‖Dα′ [f,H]∂α′g‖L2 � ‖Dα′f‖L∞ ‖∂α′g‖L2 + ‖Dα′g‖L∞ ‖∂α′f‖L2

+ ‖∂α′f‖L2

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

‖∂α′g‖L2 .

We can conclude from (182) and (185) that

(186)

‖Dα′B‖L2 �
∥∥D2

α′Zt

∥∥
L2 +

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

‖Dα′Zt‖L∞

+ ‖Zt,α′‖L2

(∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

+

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥2
L2

)
.

Step 4. Conclusion. We now combine our various estimates. We have

(187)

∣∣∣∣∣�
∫

i

(
h2α

|zα|2
)

t

θαθdα

∣∣∣∣∣ � |I|+ |II| � |I1|+ |I2|+ (167)

� |I11|+ |I12|+ (174) + (167)

� (180) + (178) + (174) + (167),

where we use (186) to control ‖Dα′B‖L2 .
In particular, by specifying θ = D2

αzt, we have

(188)

∣∣∣∣∣�
∫

i

(
h2α

|zα|2
)

t

θαθdα

∣∣∣∣∣ � C(E).

8. Controlling (I − H)((∂t + b∂α′)2Θ + iA∂α′Θ)

We are left with controlling the Gθ terms in Ea and Eb. Before we do so,
we first study the quantity (I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ) for a general Θ
satisfying (I −H)Θ = 0. We have
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Lemma 3. Assume that Θ, (∂t + b∂α′)Θ ∈ C l([0, T ], Hk−l(S1)) for l = 0, 1,
k � 2, and (I−H)Θ = 0. Assume further that the assumptions of Theorem 2
hold. Then

(189) (I −H)((∂t + b∂α′)Θ− ZtDα′Θ) = 0;

(190)
(I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ) = [Z2

t ,H]D2
α′Θ

+ 2[Zt,H]Dα′((∂t + b∂α′)Θ− ZtDα′Θ) + 2[Ztt,H]Dα′Θ;

and

(191)

∥∥(I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ)
∥∥
L2

� C(E)

(
‖Θ‖L2 + ‖(∂t + b∂α′)Θ‖L2 +

∥∥∥∥ Θ

Z,α′

∥∥∥∥
Ḣ1/2

)
.

Proof. By (70),

(192) b = PA

(
Zt

Z,α′

)
+ PH

(
Zt

Z ,α′

)
=

Zt

Z,α′
+ PH

(
Zt

Z ,α′
− Zt

Z,α′

)
,

so

(∂t + b∂α′)Θ = ∂tΘ+ ZtDα′Θ+ PH

(
Zt

Z ,α′
− Zt

Z,α′

)
∂α′Θ;

as a consequence of the dominated convergence theorem and principles no.1
and no.2 in §A.2, we have

(193) (I −H)((∂t + b∂α′)Θ− ZtDα′Θ) = 0.

Now since Ψ := (∂t + b∂α′)Θ − ZtDα′Θ satisfies (I − H)Ψ = 0, applying
(193) yields

(194) (I −H)((∂t + b∂α′)Ψ− ZtDα′Ψ) = 0.

We compute

(195)

(∂t + b∂α′)Ψ− ZtDα′Ψ = (∂t + b∂α′)2Θ

− (∂t + b∂α′)(ZtDα′Θ)− ZtDα′(∂t + b∂α′)Θ + ZtDα′(ZtDα′Θ)

= (∂t + b∂α′)2Θ− ZttDα′Θ

− 2ZtDα′((∂t + b∂α′)Θ− ZtDα′Θ)− Z2
t D

2
α′Θ,
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and by (35),

(196) iA∂α′Θ = (Ztt + i)Dα′Θ;

and we know by principles no.1 and no.2 in §A.2 that (I − H)Dα′Θ = 0.

(194)-(196) then gives

(197)
(I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ) =

(I −H)(2ZttDα′Θ+ 2ZtDα′((∂t + b∂α′)Θ− ZtDα′Θ) + Z2
t D

2
α′Θ);

using the holomorphicity of the factors to rewrite the right hand side of

(197) as commutators yields (190).

While (190) is sufficient to give us control of the Gθ term in Eb, we need

(191), which is the result of some further analysis of (197), to control the

Gθ term in Ea.
11

We begin with (197), rewriting, using the product rule and the identity
Zt

Z,α′
= PA

(
Zt

Z,α′

)
+ PH

(
Zt

Z,α′

)
,

(198)

Z2
t D

2
α′Θ =(
PA

(
Zt

Z,α′

)
+ PH

(
Zt

Z,α′

))2

∂2
α′Θ+

Z2
t

Z,α′

(
∂α′

1

Z,α′

)
∂α′Θ,

and

(199)

ZtDα′((∂t + b∂α′)Θ− ZtDα′Θ)

=

(
PA

(
Zt

Z,α′

)
+ PH

(
Zt

Z,α′

))
∂α′((∂t + b∂α′)Θ− ZtDα′Θ)

= PA

(
Zt

Z,α′

)
∂α′

(
(∂t + b∂α′)Θ−

(
PA(

Zt

Z,α′
) + PH(

Zt

Z,α′
)

)
∂α′Θ

)

+ PH

(
Zt

Z,α′

)
∂α′((∂t + b∂α′)Θ− ZtDα′Θ).

Observe that, by (193) and principles no.1 and no.2 in §A.2, the last quantity

on the RHS of (199) is holomorphic with mean zero. Expanding further the

right hand sides of (198) and (199) and summing up, observe that certain

terms cancel out with others, and the quantity
(
PH

(
Zt

Z,α′

))2
∂2
α′Θ in (198)

11We can also use (191) to control the Gθ term in Eb.
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is holomorphic with mean zero, by principles no.1 and no.2 in §A.2. We have

(200)

(I −H)(2ZtDα′((∂t + b∂α′)Θ− ZtDα′Θ) + Z2
t D

2
α′Θ)

= (I −H)

(
2PA

(
Zt

Z,α′

)
∂α′

(
(∂t + b∂α′)Θ− PA

(
Zt

Z,α′

)
∂α′Θ

))

− (I −H)

(
2PA

(
Zt

Z,α′

)(
PH

(
Zt,α′

Z,α′

)
+ PH

(
Zt∂α′

1

Z,α′

))
∂α′Θ

)

+ (I −H)

((
PA

(
Zt

Z,α′

))2

∂2
α′Θ+

Z2
t

Z,α′

(
∂α′

1

Z,α′

)
∂α′Θ

)
.

We analyze further the RHS of (200). Observe that

(I −H)

(
2PH

(
Zt

Z,α′

)
PH

(
Zt∂α′

1

Z,α′

)
∂α′Θ

)
= 0

by principles no.1 and no.2 of §A.2; we add this to the second term on the

RHS of (200). Observe further that

(201) − 2
Zt

Z,α′
PH

(
Zt∂α′

1

Z,α′

)
+

Z2
t

Z,α′
∂α′

1

Z,α′
= − Zt

Z,α′
H

(
Zt∂α′

1

Z,α′

)
,

and

(202)

− Zt

Z,α′
H

(
Zt∂α′

1

Z,α′

)
∂α′Θ =

− ZtH

(
Zt∂α′

1

Z,α′

)
∂α′

(
Θ

Z,α′

)
+

(
Zt∂α′

1

Z,α′

)
H

(
Zt∂α′

1

Z,α′

)
Θ;

and by straightforward expansion,

(203) [Zt, [Zt,H]] ∂α′
1

Z,α′
= −2ZtH

(
Zt∂α′

1

Z,α′

)
+ (I +H)

(
Z2
t ∂α′

1

Z,α′

)
,

and

(204)

Zt∂α′
1

Z,α′
H

(
Zt∂α′

1

Z,α′

)
={

PH

(
Zt∂α′

1

Z,α′

)}2

−
{
PA

(
Zt∂α′

1

Z,α′

)}2

.
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Now beginning with (197), combining the calculations in (200)-(204) and

using principles no.1 and no.2 in §A.2, we get

(205)

(I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ) = (I −H)

(
2

(
Ztt + i

Z,α′

)
∂α′Θ

)

+ (I −H)

(
2PA

(
Zt

Z,α′

)
∂α′

(
(∂t + b∂α′)Θ− PA

(
Zt

Z,α′

)
∂α′Θ

))

− (I −H)

(
2PA

(
Zt

Z,α′

)
PH

(
Zt,α′

Z,α′

)
∂α′Θ

)

+ (I −H)

((
PA

(
Zt

Z,α′

))2

∂2
α′Θ−

{
PA

(
Zt∂α′

1

Z,α′

)}2

Θ

)

+ (I −H)

(
1

2

{
[Zt, [Zt,H]]∂α′

1

Z,α′

}
∂α′

(
Θ

Z,α′

))
.

Using the holomorphicity of the factors to rewrite all, except for two, terms

on the right hand side of (205) as commutators gives

(206)

(I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ) = 2

[
Ztt + i

Z,α′
,H

]
∂α′Θ

+ 2

[
PA

(
Zt

Z,α′

)
,H

]
∂α′

(
(∂t + b∂α′)Θ− PA

(
Zt

Z,α′

)
∂α′Θ

)

− (I −H)

(
2PH (Dα′Zt)PA

(
Zt

Z,α′

)
∂α′Θ

)

+

[(
PA

(
Zt

Z,α′

))2

,H

]
∂2
α′Θ− (I −H)

({
PA

(
Zt∂α′

1

Z,α′

)}2

Θ

)

+

[
1

2

{
[Zt, [Zt,H]]∂α′

1

Z,α′

}
,H

]
∂α′

(
Θ

Z,α′

)
.

By the identity12

(207) − 2[g1,H]∂α′(g1g2) + [g21,H]∂α′g2 = −[g1, g1; g2],

we combine part of the second term and the fourth term on the RHS of

(206):

12This identity is an easy consequence of integration by parts.



146 Rafe H. Kinsey and Sijue Wu

(208)

− 2

[
PA

(
Zt

Z,α′

)
,H

]
∂α′

(
PA

(
Zt

Z,α′

)
∂α′Θ

)
+[(

PA

(
Zt

Z,α′

))2

,H

]
∂2
α′Θ = −

[
PA

(
Zt

Z,α′

)
,PA

(
Zt

Z,α′

)
; ∂α′Θ

]
.

Observe that, using the identity PA+PH = I and the fact that (I−H)∂α′Θ =

0,

(209)

(I −H)

(
2PH (Dα′Zt)PA

(
Zt

Z,α′

)
∂α′Θ

)

= (I −H)

(
PH (Dα′Zt)

[
PA

(
Zt

Z,α′

)
,H

]
∂α′Θ

)

+ (I −H)

(
2PH (Dα′Zt)PH

{
PA

(
Zt

Z,α′

)
∂α′Θ

})
;

by (292) the second term equals the mean

(210)

(I −H)

(
2PH (Dα′Zt)PH

{
PA

(
Zt

Z,α′

)
∂α′Θ

})

=
1

2

(
−
∫

Dα′Zt dα
′
)(

−
∫

PA

(
Zt

Z,α′

)
∂α′Θ dα′

)

= −1

2

(
−
∫

Dα′Zt dα
′
)(

−
∫

∂α′PA

(
Zt

Z,α′

)
Θ dα′

)
.

We can now conclude, from (206)-(210) and using (322), (323) and (334),

that

∥∥(I −H)((∂t + b∂α′)2Θ+ iA∂α′Θ)
∥∥
L2 �

∥∥∥∥∂α′
Ztt + i

Z,α′

∥∥∥∥
L∞

‖Θ‖L2

+

∥∥∥∥∂α′PA

(
Zt

Z,α′

)∥∥∥∥
L∞

‖(∂t + b∂α′)Θ‖L2

+

∥∥∥∥∂α′

{
[Zt, [Zt,H]]∂α′

1

Z,α′

}∥∥∥∥
L2

∥∥∥∥ Θ

Z,α′

∥∥∥∥
Ḣ1/2

(211)

+

(∥∥∥∥∂α′PA

(
Zt

Z,α′

)∥∥∥∥2
L∞

+

∥∥∥∥PA

(
Zt∂α′

1

Z,α′

)∥∥∥∥2
L∞

)
‖Θ‖L2

+ (‖PHDα′Zt‖L∞ + ‖Dα′Zt‖L∞)

∥∥∥∥∂α′PA

(
Zt

Z,α′

)∥∥∥∥
L∞

‖Θ‖L2 .
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We have estimated all the factors on the RHS of (211), except for∥∥∥∥∂α′

{
[Zt, [Zt,H]]∂α′

1

Z,α′

}∥∥∥∥
L2

,

which can be controlled by (332):

(212)

∥∥∥∥∂α′

{
[Zt, [Zt,H]]∂α′

1

Z,α′

}∥∥∥∥
L2

� ‖Zt,α′‖2L2

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

� C(E).

This proves (191).

9. Controlling Gθ of Eb

By (98), we must control

(213)

(∫
1

a

∣∣Dα(−iatzα) + [∂2
t + ia∂α, Dα]zt

∣∣2 dα)1/2

.

We control the commutator via (341):

(214)

(∫
1

a

∣∣[∂2
t + ia∂α, Dα]zt

∣∣2 dα)1/2

� (‖Dαztt‖L∞ + ‖Dαzt‖2L∞) ‖Dαzt‖L2( 1

a
dα) ,

where we have controlled all the quantities on the RHS in §5.1. We are left

with the term
(∫

1
a
|Dα(−iatzα)|2 dα

)1/2
. Since a |zα|2 = (A1 ◦ h)hα (52),

A1 � 1 (49), and (atzα) ◦ h−1 = AtZ ,α′ we have

(215)

(∫
1

a
|Dα(−iatzα)|2 dα

)1/2

�
(∫

1

hα
|∂α(−iatzα)|2 dα

)1/2

=

(∫ ∣∣∂α′(−iAtZ ,α′)
∣∣2 dα′

)1/2

,

where in the second step we changed to Riemann mapping variables. We
write −iAtZ ,α′ as At

A (−iAZ ,α′) and apply ∂α′ . Since Ztt − i = −iAZ ,α′

(35), we have

(216) ∂α′
(
−iAtZ ,α′

)
= (−iAZ ,α′)∂α′

(
At

A

)
+

At

A Ztt,α′ .
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Therefore,

(217)

(∫ ∣∣∂α′(−iAtZ ,α′)
∣∣2 dα′

)1/2

�
(∫ ∣∣∣∣AZ ,α′∂α′

(
At

A

)∣∣∣∣2 dα′
)1/2

+

∥∥∥∥At

A

∥∥∥∥
L∞

∥∥Ztt,α′
∥∥
L2 .

We controlled the factors in the second term on the RHS in (107) and (123).
We can therefore concentrate on the first term.

We seek a way of writing AZ ,α′∂α′
(At

A
)
. The idea is to take advantage of

the fact that ∂α′
(At

A
)
is real, |f | � |(I−H)f | for f real, andAZ ,α′ = i(Ztt−i)

is controllable to bound the term AZ ,α′∂α′
(At

A
)
by a sum of controllable

terms and commutators.
Starting from (216), we replace the LHS by the derivative of the LHS of

our quasilinear equation (36), and then apply (I − H) to the equation. We
get

(218)

(I −H)

{
(−iAZ ,α′)∂α′

At

A

}

= (I −H)∂α′
(
Zttt + iAZt,α′

)
− (I −H)

{
At

A ∂α′Ztt

}
.

We next commute the factor −iAZ ,α′ outside of (I −H) on the LHS,

(219)

(−iAZ ,α′)(I −H)∂α′
At

A = (I −H)∂α′
(
Zttt + iAZt,α′

)
− (I −H)

{
At

A ∂α′Ztt

}
+ [iAZ ,α′ ,H]∂α′

At

A .

Now At

A is real and H is purely imaginary, so
∣∣∂α′

At

A
∣∣ �

∣∣(I −H)∂α′
At

A
∣∣.

Taking absolute value on both sides, we have

(220)

∣∣∣∣AZ ,α′∂α′
At

A

∣∣∣∣ �
∣∣(I −H)∂α′

(
Zttt + iAZt,α′

)∣∣
+

∣∣∣∣(I −H)

{
At

A ∂α′Ztt

}
− [iAZ ,α′ ,H]∂α′

At

A

∣∣∣∣ .
We can easily control the L2 norm of the second and third terms. By

the L2 boundedness of H and Hölder’s inequality for the second term and
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estimate (318) for the third term, and since iAZ ,α′ = −(Ztt − i),

(221)

∥∥∥∥(I −H)

{
At

A Ztt,α′

}
− [iAZ ,α′ ,H]∂α′

At

A

∥∥∥∥
L2

� ‖Ztt,α′‖L2

∥∥∥∥At

A

∥∥∥∥
L∞

.

We can now focus on controlling

(222)
∥∥(I −H)∂α′

(
Zttt + iAZt,α′

)∥∥
L2 =

∥∥∂α′(I −H)
(
Zttt + iAZt,α′

)∥∥
L2 ,

where we used
(
Zttt + iAZt,α′

)
∈ C2(S1), which follows from equations (36),

(35), (67) and the assumption of Theorem 2, to commute ∂α′ outside (I−H).

By (190), taking Θ = Zt, we have

(223)
(I −H)

(
Zttt + iAZt,α′

)
= [Z2

t ,H]D2
α′Zt + 2[Zt,H]Dα′(Ztt − (Dα′Zt)Zt) + 2[Ztt,H]Dα′Zt.

Therefore, by (222) and (223), we have to control the L2 norm of

(224)
∂α′ [Z2

t ,H]D2
α′Zt + 2∂α′ [Zt,H]Dα′(Ztt − (Dα′Zt)Zt)

+ 2∂α′ [Ztt,H]Dα′Zt.

We use the identity

(225) ∂α′ [f,H]g = f ′
Hg − 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π2 (α
′ − β′))

g(β′)dβ′

to expand out each term in (224), and use (307) and (311) to remove the

Hs from the RHS. We get

(224) = 2ZtZt,α′D2
α′Zt + 2Zt,α′Dα′(Ztt − (Dα′Zt)Zt) + 2Ztt,αDα′Zt

− π

4i

∫
Z2
t (α

′)− Z2
t (β

′)

sin2(π2 (α
′ − β′))

D2
β′Ztdβ

′ − π

2i

∫
Ztt(α

′)− Ztt(β
′)

sin2(π2 (α
′ − β′))

Dβ′Ztdβ
′

− π

2i

∫
Zt(α

′)− Zt(β
′)

sin2(π2 (α
′ − β′))

Dβ′(Ztt − (Dβ′Zt)Zt)dβ
′.

We expand out the RHS. We note that certain terms cancel out with others,
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and we further observe the following identity:∫
f2(α′)− f2(β′)

sin2(π2 (α
′ − β′))

g(β′)dβ′ − 2

∫
(f(α′)− f(β′))f(β′)

sin2(π2 (α
′ − β′))

g(β′)dβ′

=

∫
(f(α′)− f(β′))2

sin2(π2 (α
′ − β′))

g(β′)dβ′.

We have

(224) = 2Zt,α′(Dα′Ztt − (Dα′Zt)Dα′Zt) + 2Ztt,αDα′Zt

− π

4i

∫
(Zt(α

′)− Zt(β
′))2

sin2(π2 (α
′ − β′))

D2
β′Ztdβ

′ − π

2i

∫
Ztt(α

′)− Ztt(β
′)

sin2(π2 (α
′ − β′))

Dβ′Ztdβ
′

− π

2i

∫
Zt(α

′)− Zt(β
′)

sin2(π2 (α
′ − β′))

(Dβ′Ztt − (Dβ′Zt)Dβ′Zt)dβ
′.

We now apply Hölder’s inequality to the first two terms, (328) to the third
term, and (321) to the last two terms. We get

(226)

∥∥(I −H)∂α′
(
Zttt + iAZt,α′

)∥∥
L2 = ‖(224)‖L2

� ‖Zt,α′‖L2 (
∥∥Dα′Ztt

∥∥
L∞ +

∥∥Dα′Zt

∥∥2
L∞)

+ ‖Ztt,α′‖L2

∥∥Dα′Zt

∥∥
L∞ + ‖Zt,α′‖2L2

∥∥D2
α′Zt

∥∥
L2 .

We now combine our various estimates. We have

(227)

∥∥∥∥AZ ,α′∂α′
At

A

∥∥∥∥
L2

� (221) + (226) � C(E)

and

(228)

(∫
1

a

∣∣Dα(−iatzα) + [∂2
t + ia∂α, Dα]zt

∣∣2 dα)1/2

� (214) + (217)

� (214) + (227) +

∥∥∥∥At

A

∥∥∥∥
L∞

∥∥Ztt,α′
∥∥
L2 � C(E).

We can now conclude that d
dtEb is bounded by a polynomial of E.

We record here the estimate

(229)

∥∥∥∥Dα′
At

A

∥∥∥∥
L2

�
∥∥∥∥AZ ,α′∂α′

At

A

∥∥∥∥
L2

� C(E),

which holds because
∣∣AZ ,α′

∣∣ = A1

|Z,α′ | � 1

|Z,α′ | ; we will use this in §10.
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10. Controlling Gθ of Ea

From (97), we must control

(230)

(∫ ∣∣D2
α(−iatzα) + [∂2

t + ia∂α, D
2
α]zt

∣∣2 hα
A1 ◦ h

dα

)1/2

.

Recall that A1 � 1 (49). We control the commutator via (342) and

Hölder’s inequality:

(231)

∥∥[∂2
t + ia∂α, D

2
α]zt

∥∥
L2( hα

A1◦hdα)
�

∥∥[∂2
t + ia∂α, D

2
α]zt

∥∥
L2(hαdα)

� ‖Dαztt‖L∞

∥∥D2
αzt

∥∥
L2(hαdα)

+ ‖Dαzt‖2L∞

∥∥D2
αzt

∥∥
L2(hαdα)

+ ‖Dαzt‖L∞ ‖Dα∂tDαzt‖L2(hαdα)
+
∥∥D2

αztt
∥∥
L2(hαdα)

‖Dαzt‖L∞

+ ‖Dαzt‖2L∞

∥∥D2
αzt

∥∥
L2(hαdα)

+
∥∥D2

αzt
∥∥
L2(hαdα)

‖Dαztt‖L∞

+ ‖Dαzt‖L∞

∥∥D2
αztt

∥∥
L2(hαdα)

.

We have controlled all quantities on the RHS in §5.1. We are left with the

term
(∫ ∣∣D2

α (atzα)
∣∣2 hα

A1◦hdα
)1/2

.

We know

(232)

(∫ ∣∣D2
α (atzα)

∣∣2 hα
A1 ◦ h

dα

)1/2

�
(∫ ∣∣D2

α (atzα)
∣∣2 hαdα)1/2

=

(∫ ∣∣D2
α′

(
AtZ ,α′

)∣∣2 dα′
)1/2

,

where we changed to Riemann mapping coordinate in the second step. We

will now focus on estimating

(233)

(∫ ∣∣D2
α′

(
AtZ ,α′

)∣∣2 dα′
)1/2

.

Our plan is to first turn the task of controlling
∥∥D2

α′

(
AtZ ,α′

)∥∥
L2 to

controlling
∥∥(I −H)

(
D2

α′

(
AtZ ,α′

))∥∥
L2 . We will use the same idea as in the

previous section, §9, that is, to take advantage of the fact that At

A is real-

valued and �(I − H)f = f for real valued f . We will then use (191) to

control
∥∥(I −H)

(
D2

α′

(
AtZ ,α′

))∥∥
L2 .
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We begin by writing AtZ ,α′ =
(At

A
)
AZ ,α′ . By the product rule,

(234)

D2
α′

(
AtZ ,α′

)
=

(
D2

α′

(
At

A

))
AZ ,α′ + 2Dα′

(
At

A

)
Dα′(AZ ,α′) +

At

A D2
α′(AZ ,α′).

We can handle the second and third terms directly, using AZ ,α′ = i(Ztt− i)

(35):

(235)

∥∥∥∥2Dα′

(
At

A

)
Dα′(AZ ,α′) +

At

A D2
α(AZ ,α′)

∥∥∥∥
L2

� 2

∥∥∥∥Dα′

(
At

A

)∥∥∥∥
L2

∥∥DαZtt

∥∥
L∞ +

∥∥∥∥At

A

∥∥∥∥
L∞

∥∥D2
αZtt

∥∥
L2 ,

where we have controlled all the quantities on the RHS in §5.1 and in (123)

and (229). It therefore suffices to focus on the first term on the RHS of

(234),
(
D2

α′

(At

A
))

AZ ,α′ = i(Ztt − i)D2
α′

(At

A
)
.

We now rearrange this term so that we can apply (I − H) in a way so

that we will be able to invert the operator by taking real parts. Note that
At

A is purely real. However, our derivative Dα′ = 1
Z,α′

∂α′ is not purely real.

To get around this, we factor the derivative into a real derivative and a

complex modulus-one weight. Recall our notation |Dα′ | = 1

|Z,α′ |∂α′ . Since

Dα′ =

(
|Z,α′ |
Z,α′

)
|Dα′ |, we rewrite

(236) D2
α′ =

(
|Z,α′ |
Z,α′

)2

|Dα′ |2 +
(
|Z,α′ |
Z,α′

)(
|Dα′ |

(
|Z,α′ |
Z,α′

))
|Dα′ | .

Therefore,

(237)

i(Ztt − i)D2
α′
At

A = i(Ztt − i)

(
|Z,α′ |
Z,α′

)2

|Dα′ |2 At

A

+ i(Ztt − i)

(
|Z,α′ |
Z,α′

)(
|Dα′ |

(
|Z,α′ |
Z,α′

))
|Dα′ | At

A .

We use

(238) e := i(Ztt − i)

(
|Z,α′ |
Z,α′

)(
|Dα′ |

(
|Z,α′ |
Z,α′

))
|Dα′ | At

A
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to denote the second term, which we will control directly, below at (243).

We now apply (I −H) to both sides of (237):

(239)

(I −H)

{
i(Ztt − i)D2

α′
At

A

}

= (I −H)

{
i
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

∂α′

(
|Dα′ | At

A

)}
+ (I −H)e.

Observe that the first term on the RHS is purely real, except for the control-

lable factor i (Ztt−i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

. We commute that part outside the (I − H).

We get

(240)

(I −H)

{
i(Ztt − i)D2

α′
At

A

}

= i
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

(I −H)∂α′

(
|Dα′ | At

A

)

+

[
i
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′

(
|Dα′ | At

A

)
+ (I −H)e.

Because H is purely imaginary,
∣∣∂α′

(
|Dα′ | At

A
)∣∣ �

∣∣(I −H)∂α′
(
|Dα′ | At

A
)∣∣.

By taking absolute values, we have

(241)

∣∣∣∣i(Ztt − i)

|Z,α′ | ∂α′

(
|Dα′ | At

A

)∣∣∣∣ �
∣∣∣∣(I −H)

{
i(Ztt − i)D2

α′
At

A

}∣∣∣∣
+

∣∣∣∣∣
[
i
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′

(
|Dα′ | At

A

)
+ (I −H)e

∣∣∣∣∣ .
Now we may begin controlling these terms. Recall that what we needed

to control was the L2 norm of (237). We can estimate this by

(242)

∥∥∥∥−i(Ztt − i)D2
α′
At

A

∥∥∥∥
L2

�
∥∥∥∥i(Ztt − i)

|Z,α′ | ∂α′

(
|Dα′ | At

A

)∥∥∥∥
L2

+ ‖e‖L2

� ‖(241)‖L2 + ‖e‖L2

�
∥∥∥∥(I −H)

{
i(Ztt − i)D2

α′
At

A

}∥∥∥∥
L2

+

∥∥∥∥∥
[
i
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′

(
|Dα′ | At

A

)∥∥∥∥∥
L2

+ ‖e‖L2 .

Thus, it suffices to focus on these three terms.
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First we check the error term, e (238). We control

(243)

‖e‖L2 �
∥∥∥∥(Ztt − i)

(
|Dα′ | |Z,α′ |

Z,α′

)∥∥∥∥
L∞

∥∥∥∥Dα′
At

A

∥∥∥∥
L2

�
∥∥∥∥(Ztt − i)∂α′

1

Z,α′

∥∥∥∥
L∞

∥∥∥∥Dα′
At

A

∥∥∥∥
L2

,

where in the second step we used
∣∣∣∂α′

f
|f |

∣∣∣ �
∣∣∣ f ′

|f |

∣∣∣ (315). We have controlled

both factors on the RHS in (149) and (229).
Now we estimate the second term on the RHS of (242). We have, by

L∞ × L2 commutator estimate (322),

(244)

∥∥∥∥∥
[
i
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′ |Dα′ | At

A

∥∥∥∥∥
L2

�
∥∥∥∥∥∂α′

(
(Ztt − i)

|Z,α′ |

(
|Z,α′ |
Z,α′

)2
)∥∥∥∥∥

L∞

∥∥∥∥Dα′
At

A

∥∥∥∥
L2

�
(
‖Dα′Ztt‖L∞ +

∥∥∥∥(Ztt − i)∂α′
1

Z,α′

∥∥∥∥
L∞

)∥∥∥∥Dα′
At

A

∥∥∥∥
L2

,

where in the second step we used (315). We have controlled all factors on
the RHS in (119), (149) and (229).

We’re left with the first, main term of the RHS of (242). Observe that
by (234), our main equation Zttt + iAZt,α′ = −iAtZ ,α′ (36), and the L2

boundedness of H,

(245)

∥∥∥∥(I −H)

{
i(Ztt − i)D2

α′
At

A

}∥∥∥∥
L2

�
∥∥(I −H)

(
D2

α′(AtZ ,α′)
)∥∥

L2 + (235)

=
∥∥(I −H)D2

α′(Zttt + iAZt,α′)
∥∥
L2 + (235).

We have then reduced things to controlling
∥∥(I −H)D2

α′(Zttt + iAZt,α′)
∥∥
L2 .

Observe that

(246)
D2

α′(Zttt + iAZt,α′)

=
(
(∂t + b∂α′)2 + iA∂α′

)
D2

α′Zt + [D2
α′ , (∂t + b∂α′)2 + iA∂α′ ]Zt.

We have controlled the second term on the RHS in (231). Applying (I −H)
and using (191) on the first term then gives



A Priori Estimates for Two-Dimensional Water Waves 155

(247)
∥∥(I −H)D2

α′(Zttt + iAZt,α′)
∥∥
L2 � C(E).

We can now conclude that

(248)
∥∥D2

α′(AtZα′)
∥∥
L2 � C(E).

and therefore

(249)
∥∥GD2

αzt

∥∥
L2( hα

A1◦h )
� (231) + (232) � (231) + (248) � C(E).

We have now shown that d
dtEa is bounded by a polynomial of E. This

completes the proof of Theorem 2.

11. A characterization of the energy

Our energy is expressed in terms of not only the free surface Z, the velocity
Zt, and their spatial derivatives, but also time derivatives of these quantities.
In this section, we give a characterization of our energy in terms of the free
surface Z, the velocity Zt, and their spatial derivatives. In §11.2, we discuss
which crest angles are allowed by a finite energy E.

11.1. A characterization of the energy in terms of position and
velocity

In this section, we translate the terms of our energy involving time deriva-
tives into terms depending only on the free surface Z, the velocity Zt, and
their spatial derivatives. We do this using the basic equation (50), (48), (70)
and the holomorphicity of Zt and 1

Z,α′
. These basic equations allow us to

show that quantities involving Ztt can be controlled by analogous quantities
involving 1

Z,α′
, along with various lower-order terms.13

The estimate we prove is

(250) E(t) � C

(∥∥Zt,α′
∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

,∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

,
∥∥Dα′Zt

∥∥
Ḣ1/2 ,

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

)
,

13We remark that for these estimates we do not ever rely on (high order) Ḣ1/2

parts of the energies.
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where the constant depends polynomially on its terms. We remark that

this inequality can be reversed: each of the factors on the RHS of (250) is

controlled by the energy. That is,

(251)
∥∥Zt,α′

∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

,
∥∥Dα′Zt

∥∥
Ḣ1/2 ,

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

� C(E(t)).

Therefore, these quantities fully characterize our energy. In the proof of our

a priori estimate, we have shown (251) for every term except
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2
,

which we never had a need to control. One can adapt the argument in §11.1.3
below to show that

∥∥∥D2
α′

1
Z,α′

∥∥∥
L2

can be controlled by the energy.14

We remark because both Zt and
1

Z,α′
are the boundary values of peri-

odic holomorphic functions, the weighted derivative Dα′ corresponds to the

complex derivative ∂z, or the gradient of the corresponding quantities in the

spatial domain P−. We also note that Z,α′ = (Φ−1)z is a natural geometric

quantity well-suited to this problem: it captures the geometry of the free

surface directly through the Riemann mapping Φ−1 : P− → Ω(t).

14To do this, it comes down once again to estimating
∥∥∥ 1
Z,α′

D2
α′A1

∥∥∥
L2
, except

this time we need to do this without the dependence on
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2
. That de-

pendence comes from estimate (275). (It also comes from using
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

in

the Sobolev inequality for
∥∥∥Dα′ 1

Z,α′

∥∥∥
L∞

; this is not a problem, since
∥∥∥Dα′ 1

Z,α′

∥∥∥
L∞

is controlled by the energy.) To handle (275), we take advantage of the fact that

(I −H)
{
∂α′Dα′ 1

Z,α′

}
= 0 (this is due to (40) and the second principle in §A.2) to

rewrite the term in question as a commutator and then use commutator estimate

(318):

(252)

∥∥∥∥(I −H)

{
A1

Z,α′
∂α′Dα′

1

Z,α′

}∥∥∥∥
L2

=

∥∥∥∥[Ztt,H
]
∂α′Dα′

1

Z,α′

∥∥∥∥
L2

�
∥∥Ztt,α′

∥∥
L2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

,

both of which are controlled by the energy.
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11.1.1. The proof. Throughout the following proof we will rely on the
fact that A1 � 1 (49), the estimate (103)

(253) ‖A1‖L∞ � 1 +
∥∥Zt,α′

∥∥2
L2 ,

the Sobolev estimate (104)

(254)
∥∥Dα′Zt

∥∥
L∞ �

∥∥Zt,α′
∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 ,

and the estimate

(255)

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

�
∥∥∥∥D2

α′
1

Z,α′

∥∥∥∥
L2

+

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

,

which holds by Sobolev inequality (314).15

We begin by noting that it suffices to control only the first terms of Ea

and Eb, since the remaining terms of the energy are (up to a factor of A1)
already on the RHS of (250).

For the first term of Ea, by the commutator identity (338),

(256)

∫ ∣∣∂tD2
αzt

∣∣2 hα
A1 ◦ h

dα

�
∫ ∣∣D2

αztt
∣∣2 hα

A1 ◦ h
dα+

∫ ∣∣[∂t, D2
α]zt

∣∣2 hα
A1 ◦ h

dα

�
∥∥D2

α′Ztt

∥∥2
L2 +

∫ ∣∣2(Dαzt)D
2
αzt + (D2

αzt)Dαzt
∣∣2 hα

A1 ◦ h
dα

�
∥∥D2

α′Ztt

∥∥2
L2 + ‖Dαzt‖2L∞ (

∥∥D2
α′Zt

∥∥2
L2 +

∥∥D2
α′Zt

∥∥2
L2).

By (110) and (315),

(257)
∥∥D2

α′Zt

∥∥
L2 �

∥∥D2
α′Zt

∥∥
L2 +

∥∥Dα′Zt

∥∥
L∞

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

.

We conclude that

(258)

∫ ∣∣∂tD2
αzt

∣∣2 hα
A1 ◦ h

dα

� C

(∥∥D2
α′Ztt

∥∥
L2 ,

∥∥Zt,α′
∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

)
.

15Note that −
∫ (

Dα′ 1
Z,α′

)2

= 0 by the same argument that was used at (312) to

show −
∫
(Dα′Zt)

2 = 0.
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For the first term of Eb, we use the commutator identity (337) to get

(259)

∫
|∂tDαzt|2

1

a
dα �

∫
|Dαztt|2

1

a
dα+

∫
|[∂t, Dα]zt|2

1

a
dα

�
∫

|Dαztt|2
(A1 ◦ h)

a
dα+

∫
|(Dαzt)Dαzt|2

(A1 ◦ h)
a

dα

�
∥∥Ztt,α′

∥∥2
L2 + ‖Dαzt‖2L∞

∥∥Zt,α′
∥∥2
L2

� C(
∥∥Ztt,α′

∥∥
L2 ,

∥∥Zt,α′
∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2).

All that remains to do from (258) and (259) is to estimate
∥∥Ztt,α′

∥∥
L2

and
∥∥D2

α′Ztt

∥∥
L2 in terms of Zt and

1
Z,α′

, which we now do, in §11.1.2 and

§11.1.3.

11.1.2. Controlling
∥∥Ztt,α′

∥∥
L2. Using (50), we estimate

(260)
∥∥∂α′Ztt

∥∥
L2 � ‖A1‖L∞

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

+ ‖Dα′A1‖L2 .

To control ‖Dα′A1‖L2 , we follow a similar procedure to what we did in
(125)-(126), except instead of using Ztt − i, we use 1

Z,α′
and estimate things

in terms of 1
Z,α′

. We get

(261) ‖Dα′A1‖L2 �
∥∥Zt,α′

∥∥2
L2

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

+ ‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞ .

Combining (260) and (261) we conclude that

(262)
∥∥∂α′Ztt

∥∥
L2 � C

(∥∥Zt,α′
∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

,
∥∥D2

α′Zt

∥∥
L2

)
.

11.1.3. Controlling
∥∥D2

α′Ztt

∥∥
L2. From (50), we have

(263) iD2
α′Ztt = A1D

2
α′

1

Z,α′
+ 2(Dα′A1)Dα′

1

Z,α′︸ ︷︷ ︸
e1

+
1

Z,α′
D2

α′A1.

We estimate
∥∥D2

α′Ztt

∥∥
L2 through the following procedure. First we note that

the only challenging term to control on the RHS of (263) is the last one,
1

Z,α′
D2

α′A1. We observe that this is almost real, modulo factors of 1
Z,α′

and
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its derivatives. Therefore, we will be able to use the �(I − H) trick and,

through a series of commutators, reduce the estimate for 1
Z,α′

D2
α′A1 to an

estimate of (I − H)(D2
α′

A1

Z,α′
) = (I − H)(iD2

α′Ztt). Since Zt is holomorphic,

we will be able to rewrite (I − H)(iD2
α′Ztt) in terms of commutators and

obtain desirable estimates. We now give the details.

We first estimate the error term e1 in (263):

(264)

‖e1‖L2 � ‖A1‖L∞

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

+ ‖Dα′A1‖L2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

� (1 +
∥∥Zt,α′

∥∥2
L2)

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

+ (261)

(∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

+

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

)
.

It remains to control
∥∥∥ 1
Z,α′

D2
α′A1

∥∥∥
L2
. We want to use (I − H) to turn

our quantity into commutators, but to do so we need to factor Dα′ into a

real-weighted derivative |Dα′ | := 1

|Z,α′ |∂α′ so that we may invert (I − H).

From (236), we have

(265)

1

Z,α′
D2

α′A1 =
1

Z,α′

(
|Z,α′ |
Z,α′

)2

|Dα′ |2A1

+
1

Z,α′

|Z,α′ |
Z,α′

(
|Dα′ | |Z,α′ |

Z,α′

)
|Dα′ |A1︸ ︷︷ ︸

e2

.

We multiply both sides by

(
Z,α′

|Z,α′ |

)3

so that the first term on the RHS is

purely real:

(266)

(
Z,α′

|Z,α′ |

)3 1

Z,α′
D2

α′A1

=

(
Z,α′

|Z,α′ |

)3 1

Z,α′

(
|Z,α′ |
Z,α′

)2

|Dα′ |2A1 +

(
Z,α′

|Z,α′ |

)3

e2.

Now we apply �(I−H) to each side, and conclude from the fact that A1 ∈ R

that
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(267)

∣∣∣∣ 1

Z,α′
|Dα′ |2A1

∣∣∣∣ �
∣∣∣∣∣(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′
D2

α′A1

}∣∣∣∣∣
+

∣∣∣∣∣(I −H)

{(
Z,α′

|Z,α′ |

)3

e2

}∣∣∣∣∣ .
We conclude from (265) and (267) that

(268)

∥∥∥∥ 1

Z,α′
D2

α′A1

∥∥∥∥
L2

� ‖e2‖L2 +

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′
D2

α′A1

}∥∥∥∥∥
L2

.

By (315) and (261) we estimate

(269) ‖e2‖L2 �
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

‖Dα′A1‖L2 � (255)(261).

It remains to estimate

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′
D2

α′A1

}∥∥∥∥∥
L2

. To get the right

commutator estimate, we first rewrite this as

(270)

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′
D2

α′A1

}∥∥∥∥∥
L2

�
∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥∥
L2

+

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′

(
∂α′

1

Z,α′

)
Dα′A1

}∥∥∥∥∥
L2

.

We estimate the second term on the RHS of (270) directly:

(271)

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′

(
∂α′

1

Z,α′

)
Dα′A1

}∥∥∥∥∥
L2

�
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

‖Dα′A1‖L2 � (255)(261).

For the first term on the RHS of (270), we commute the factor

(
Z,α′

|Z,α′ |

)3

outside the (I − H), bringing along 1
Z,α′

to ensure that the commutator is

controllable, and then bringing the 1
Z,α′

back inside:
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(272)

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3 1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥∥
L2

�
∥∥∥∥∥
[(

Z,α′

|Z,α′ |

)3 1

Z,α′
,H

]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥∥
L2

+

∥∥∥∥
[

1

Z,α′
,H

]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥
L2

+

∥∥∥∥(I −H)

{
1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥
L2

.

We estimate the first two terms on the RHS of (272) using commutator

estimate (318):

(273)

∥∥∥∥∥
[(

Z,α′

|Z,α′ |

)3 1

Z,α′
,H

]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥∥
L2

+

∥∥∥∥
[

1

Z,α′
,H

]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥
L2

�
∥∥∥∥∂α′

1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
Dα′A1

∥∥∥∥
L∞

.

We will postpone estimating
∥∥∥ 1
Z,α′

Dα′A1

∥∥∥
L∞

until the end of this series of

calculations. For the moment, we take the last term from the RHS of (272):

(274)

∥∥∥∥(I −H)

{
1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥
L2

�∥∥∥∥(I −H)D2
α′

(
1

Z,α′
A1

)∥∥∥∥
L2

+

∥∥∥∥(I −H)

{
Dα′

(
A1Dα′

1

Z,α′

)}∥∥∥∥
L2

.

We estimate the second term by

(275)

∥∥∥∥(I −H)

{
Dα′

(
A1Dα′

1

Z,α′

)}∥∥∥∥
L2

�
∥∥∥∥D2

α′
1

Z,α′

∥∥∥∥
L2

‖A1‖L∞ +

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

‖Dα′A1‖L2

�
∥∥∥∥D2

α′
1

Z,α′

∥∥∥∥
L2

(1 +
∥∥Zt,α′

∥∥2
L2) + (255)(261).

Finally, for the first term on the RHS of (274), we use (50) to replace 1
Z,α′

A1

by i(Ztt− i), and apply (I−H)D2
α′ to this, and then use (189): (I−H)(Ztt−

ZtDα′Zt) = 0, (40) and principles no.1 and no.2 of §A.2. We get
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(276)

∥∥∥∥(I −H)D2
α′

(
1

Z,α′
A1

)∥∥∥∥
L2

=
∥∥(I −H)D2

α′(ZtDα′Zt)
∥∥
L2

�
∥∥(I −H)

{
(D2

α′Zt)Dα′Zt

}∥∥
L2 +

∥∥(I −H)
{
(Dα′Zt)(D

2
α′Zt)

}∥∥
L2

+

∥∥∥∥(I −H)

{
Zt

Z,α′
∂α′D2

α′Zt

}∥∥∥∥
L2

.

We estimate the first two terms directly by

(277)

∥∥(I −H)
{
(D2

α′Zt)Dα′Zt

}∥∥
L2 +

∥∥(I −H)
{
(Dα′Zt)(D

2
α′Zt)

}∥∥
L2

�
∥∥Dα′Zt

∥∥
L∞ (

∥∥D2
α′Zt

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2)

� (254)(
∥∥D2

α′Zt

∥∥
L2 + (257)).

We are left with the last term on the RHS of (276). We first decompose
Zt

Z,α′
into its holomorphic and antiholomorphic projections. The term with

the holomorphic projection disappears by (310). With what remains, we use
(308) to get a commutator, which we control by commutator estimate (322):

(278)

∥∥∥∥(I −H)

{
Zt

Z,α′
∂α′D2

α′Zt

}∥∥∥∥
L2

=

∥∥∥∥(I −H)

{(
PA

Zt

Z,α′

)
∂α′D2

α′Zt

}∥∥∥∥
L2

=

∥∥∥∥
[(

PA
Zt

Z,α′

)
,H

]
∂α′D2

α′Zt

∥∥∥∥
L2

�
∥∥∥∥∂α′PA

Zt

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

�
(∥∥D2

α′Zt

∥∥
L2 + ‖Zt,α′‖L2

(
1 +

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

))∥∥D2
α′Zt

∥∥
L2

by (134) and (254).

We now give the estimate for
∥∥∥ 1
Z,α′

Dα′A1

∥∥∥
L∞

=

∥∥∥∥ 1

|Z,α′ |2∂α′A1

∥∥∥∥
L∞

in

(273). We do so using (125). We have

(279)

1

|Z,α′ |2
∂α′A1

= � 1

2i

∫
π

2

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

(
1

|Z,α′ |2
− 1

|Z,β′ |2

)
Zt,β′(β′)dβ′

+ � 1

2i

∫
π

2

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

1

Z ,β′
Dβ′Zt(β

′)dβ′

= I + II.
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From Hölder’s inequality, Hardy’s inequality (317) and the mean value the-
orem,16 we have

(280) ‖I‖L∞ � ‖Zt,α′‖2L2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

� ‖Zt,α′‖2L2 (255).

We rewrite II using integration-by-parts identity (319):

(281)

1

2i

∫
π

2

(Zt(α
′)− Zt(β

′))

sin2(π2 (α
′ − β′))

1

Z ,β′
Dβ′Zt(β

′)dβ′

= −[Zt,H]∂α′

(
1

Z ,α′
Dα′Zt

)
+H

(
Zt,α′

1

Z ,α′
Dα′Zt

)

= −[Zt,H]∂α′

(
1

Z ,α′
Dα′Zt

)
−
[

1

Z,α′
Dα′Zt,H

]
Zt,α′ +

∣∣Dα′Zt

∣∣2 .
Using (331) on the first two terms on the RHS of (281), we get

(282)

‖II‖L∞ � ‖Zt,α′‖L2

∥∥∥∥∂α′

(
1

Z ,α′
Dα′Zt

)∥∥∥∥
L2

+
∥∥Dα′Zt

∥∥2
L∞

� ‖Zt,α′‖L2

(∥∥D2
α′Zt

∥∥
L2 +

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞

)
+
∥∥Dα′Zt

∥∥2
L∞ .

Combining (279), (280), (282), (255), and (254), we have

(283)

∥∥∥∥∥ 1

|Z,α′ |2
∂α′A1

∥∥∥∥∥
L∞

� ‖I‖L∞ + ‖II‖L∞

� C

(∥∥Zt,α′
∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

)
.

We now sum up these estimates. From (268), and using (283) to estimate∥∥∥ 1
Z,α′

Dα′A1

∥∥∥
L∞

, we have

(284)

∥∥∥∥ 1

Z,α′
D2

α′A1

∥∥∥∥
L2

� (269) + (271) + (273) + (275) + (277) + (278)

� C

(∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,
∥∥Zt,α′

∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

)
.

16Note that 1

|Z,α′ |2 is periodic.
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Combining (264) and (284) we conclude that

(285)

∥∥D2
α′Ztt

∥∥
L2

� C

(∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,
∥∥Zt,α′

∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,

∥∥∥∥∂α′
1

Z,α′

∥∥∥∥
L2

)
.

11.2. Singularities and the angle of the crest

In §11.1 at (250) and (251) we characterized our energy in terms of various

L2 and Ḣ1/2 norms of quantities in Riemann mapping variables (as well as

a single quantity, 1
Z,α′

, in L∞). When there is a non-right angle ν at the

corner, or when there is a singularity in the middle of the free surface, the

Riemann mapping will have a singularity. In this section, we discuss what

this suggests about the angle ν or the interior angle of an angled crest in

the middle of the free surface, continuing the discussion from §3.3.2.
As in §3.3.2, we will move the corner at the wall to 0, and phrase our

discussion in terms of a singularity at the corner, but it applies more broadly

to singularities in the middle of the free surface.17 We thus henceforth focus

on the angle ν at the corner.

We first observe that our energy is finite in the regime when the interface

and velocity are smooth and the angle ν = π
2 , so we can focus on the case

where ν < π
2 .

18

If ν is the angle the water wave makes with the wall, the Riemann

mapping Φ(z) should behave like zr at the corner, where rν = π
2 . For ν < π

2 ,

we have r > 1.

Recall from (250) and (251) that among the quantities that characterize

the energy,
∥∥∥∂α′

1
Z,α′

∥∥∥
L2
,
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

and
∥∥∥ 1
Z,α′

∥∥∥
L∞

are the terms purely

related to the surface. We will see through the following calculation what

non-right angles ν are allowed if
∥∥∥∂α′

1
Z,α′

∥∥∥
L2
,
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

and
∥∥∥ 1
Z,α′

∥∥∥
L∞

are

finite.

Note that Z(α′) = Φ−1(α′) ≈ (α′)1/r so Z,α′ = ∂α′(Φ−1) ≈ (α′)1/r−1,

and

(286)
1

Z,α′
≈ (α′)1−1/r, ∂α′

1

Z,α′
≈ (α′)−1/r (r �= 1).

17The angled crests in the middle of the free surface don’t have to be symmetric.
18Recall from the discussion in §3.3.2 that we cannot have ν > π

2 in our energy
regime.
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Therefore, assuming r > 1, ∂α′
1

Z,α′
∈ L2 if and only if r > 2 if and only if

ν < π
4 . Similarly, D2

α′
1

Z,α′
∈ L2 so long as r > 2.19

We conclude from this discussion that our energy will be finite only when
ν < π

4 (or when ν = π
2 ). This coincides precisely with the angles in the self-

similar solutions of [37].20 For singularities in the middle of the free surface,
this suggests that the interior angle must be less than π

2 .
21

Now let’s consider the behavior of the angle ν over time. This angle
is determined by � ln zα at the corner. Therefore, the behavior of Dαzt =
∂t (ln zα) at the corner should determine how the angle changes. Since Zt,α′ =
(Dαzt)◦h−1Z,α′ and Z,α′ ≈ (α′)1/r−1, we must have Dαzt → 0 at the corner
if Zt,α′ ∈ L2, as our energy assumes. This suggests that if initially ν < π

4 ,
the angle would not change while the energy remained finite. This holds true
also for interior angles at the angled crests.

Appendix A. Holomorphicity and mean

A.1. The Hilbert transform H

Recall that in §3 we introduced the Hilbert transform H associated to the
periodic domain P−:

(287) Hf(α′) :=
1

2i

∫
I
cot(

π

2
(α′ − β′))f(β′)dβ′, for α′ ∈ [−1, 1].

We know from Proposition 1 that a function g ∈ Lp is the boundary value
of a periodic holomorphic function on P− if and only if (I−H)g = −

∫
I g, and

that for any function f ∈ Lp, (I + H)f is the boundary value of a periodic
holomorphic function on P−, with (I−H)(I+H)f = −

∫
f . Recall also that we

defined at (41) the holomorphic and antiholomorphic projection operators

(288) PAf :=
(I −H)

2
f ; PHf :=

(I +H)

2
f.

19We remark that, even though Ea (which roughly includes
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2
) is

higher-order than Eb (which roughly includes
∥∥∥∂α′ 1

Z,α′

∥∥∥
L2
) in terms of the number

of derivatives, the two energies are comparable in the sense that they allow precisely
the same angles.

20We recall that our energy is finite for these solutions.
21We note that our energy does not apply to Stokes waves of maximum height

(interior angle = 2π
3 ).
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Here we gather some basic properties of the Hilbert transform H that will

be used in this paper:

Proposition 4. a. Let 1 < p < ∞. Then there exists Cp < ∞ such that for

all f ∈ Lp

(289) ‖Hf‖Lp � Cp ‖f‖Lp .

b. Let f ∈ Lp for some p > 1. Then

(290) H
2f = f −−

∫
f ; PAPHf = PHPAf =

1

4
−
∫

f.

c. Let f ∈ Lp, g ∈ Lq, where 1
p + 1

q = 1, 1 < p, q < ∞. Then

(291)

∫
f(Hg) = −

∫
(Hf)g;

∫
(PAf)g =

∫
f(PHg).

d. Let f ∈ Lp, g ∈ Lq for p > 1, q > 1, 1
p + 1

q < 1. Then

(292) PA {(PHf)(PHg)} =
1

8

(
−
∫

f

)(
−
∫

g

)
.

Parts a., b., and c. are classical results. We know the product of periodic

holomorphic functions is periodic holomorphic. Part d. is an easy conse-

quence of Proposition 1, parts b. and c., and the fact that (PHf)(PHg) is

the boundary value of a periodic holomorphic function on P−.

We will also need the following proposition.

Proposition 5. Let f ∈ L∞, g ∈ Lp for some p > 1. Suppose (I − H)f =
−
∫
f . Then

(293) [f,H]g =
1

2
(I +H) ([f,H]g)− 1

2
−
∫

(fg) +
1

2

(
−
∫

f

)(
−
∫

g

)
.

Proof. We begin by observing that

(294) [f,H] g = f(I +H)g − (I +H)(fg).

Because (I −H)f = −
∫
f , by Proposition 1, [f,H]g is the boundary value of
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a periodic holomorphic function on P−. Therefore,

(295)

(I −H)([f,H]g) = −
∫

[f,H]g = −
∫

f(I +H)g −−
∫

fg

= −
∫

((I −H)f)g −−
∫

(fg) =

(
−
∫

f

)(
−
∫

g

)
−−
∫

(fg)

by (291).

A.2. Periodic holomorphic functions

In this section, we note which of the functions we are dealing with are
the boundary values of periodic holomorphic functions—and which, further,
have mean zero. From Proposition 1 we know that, to show that (I −H) of
various functions disappears, assuming they are in Lp, p � 1, it suffices to
show that they are boundary values of periodic holomorphic functions and
that their means are zero.

We start with the following basic facts. Assume that the quantities in-
volved are sufficiently smooth, and that the assumption (34) holds.

First, we have that the complex conjugate velocity is periodic holomor-
phic, and goes to zero as y → −∞ by (9), so

(296) (I −H)Zt = 0.

Then we have three identities about the Riemann mapping. Recall that

(297) Z,α′ = ∂α′Φ−1(α′, t);
1

Z,α′
= Φz ◦ Z.

Both of these are clearly periodic holomorphic. Therefore by (27) we have

(298) (I −H)
1

Z,α′
= 1, (I −H)Z,α′ = 1.

The mean −
∫
Z,α′ = 1 can also be checked directly by the fundamental theo-

rem of calculus, since Z(1, t) = 1, Z(−1, t) = −1 for all time.
Finally, we have

(299) (I −H) {Φt ◦ Z} = 0

by (34). Here, we have Φt ◦ Φ−1 is holomorphic because it is the limit of
holomorphic functions, and we know that Φt is periodic by the periodicity
of our domain Ω(t).
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From these facts, we will be able to deduce everything else that we need
in the derivation of the free surface equations, from the following principles:

1. Assume that f ∈ C0(S1) with ∂α′f ∈ Lp, p � 1. If (I −H)f = c, then
(I −H)∂α′f = 0.

This is straightforward by taking derivatives. One may also use the corre-
spondence between periodic holomorphic functions on P− and holomorphic
functions on the unit disc, and take a derivative to conclude.

2. Assume that f ∈ Lp, g ∈ Lq and fg ∈ Lr with p, q, r � 1. If
(I −H)f = 0 and (I −H)g = c then (I −H)(fg) = 0.

This is because the product of periodic holomorphic functions is periodic
holomorphic. If one of the factors goes to 0 as y → −∞, then the product
goes to 0 as y → −∞.

3. Assume G(z, t) is a periodic holomorphic function on Ω(t) going to
zero as y → −∞, G is continuous differentiable with respective to t, and
Gt◦Z ∈ Lq, G◦Z ∈ C0(S1), ∂α′ (G ◦ Z) ∈ Lp, q, p � 1, so (I−H)(G◦Z) = 0.
Then (I −H)Gt ◦ Z = 0.22

It is clear that Gt ◦ Z is periodic holomorphic, since it is the limit of
periodic holomorphic functions. It remains to show that −

∫
Gt ◦ Z = 0. Note

that −
∫
G ◦ Z = 0 for all time. Also, since Φ(Φ−1(α′, t), t) = α′, we have

(Φz ◦ Z) · (Φ−1)t +Φt ◦ Z = 0, and therefore

(300) (Φ−1)t = (−Z,α′)Φt ◦ Z.

Therefore, using (300) and the fact Z = Φ−1, we have

(301)

0 =
d

dt
−
∫

G(Z(α′, t), t) = −
∫

Gt(Z(α′, t), t) +−
∫

Gz ◦ Z (Φ−1)t(α
′, t)

= −
∫

Gt ◦ Z −−
∫

(∂α′(G ◦ Z))Φt ◦ Φ−1.

The second integral is zero by principles no.1 and no.2 above.

Let F = v be the complex conjugate velocity. Note that Ft ◦ Z = Ztt −
(Dα′Zt)Zt as shown in §3.3.3. As immediate consequences of the basic facts
and the three principles above, we have the following statements:

(302) (I −H)
{
(Z,α′)j(Ft ◦ Z)

}
= 0, for j = 0, 1

(303) (I −H)
{
(Z,α′)j(Ftt ◦ Z)

}
= 0, for j = 0, 1

22Note that this argument does not apply to Φt ◦ Z itself, because Φ is not
periodic.



A Priori Estimates for Two-Dimensional Water Waves 169

(304) (I −H)(∂j
α′Dk

α′Zt) = 0, for j, k = 0, 1

(305) (I −H)∂α′(Ztt − (Dα′Zt)Zt) = 0.

A.2.1. Some identities used in the proof of Theorem 2. In this
and the following subsection §A.2.2, we assume only that the assumption in
Theorem 2 and its consequence (85) hold. From (39) and (40):

(I −H)Zt = 0, (I −H)
1

Z,α′
= 1,

and the above principles no.1 and no.2, we have

(I −H)∂α′
1

Z,α′
= 0(306)

(I −H)Dk
α′Zt = 0, for 0 � k � 3(307)

(I −H)∂α′Dk
α′Zt = 0, for 0 � k � 2(308)

(I −H)

{
1

Z,α′
Dk

α′Zt

}
= 0, for 0 � k � 2(309)

(310)
(I −H)

(
(∂j

α′D2
α′Zt)∂

l
α′

((
PH

Zt

Z,α′

)k
))

= 0,

for j = 1, 2, k = 1, 2, l = 0, 1.

By (189), (I −H)(Ztt−ZtDα′Zt) = 0. This then gives, by an application of
principles no.1 and no.2 above,

(311) (I −H)Dk
α′(Ztt − (Dα′Zt)Zt) = 0, for 0 � k � 3.

A.2.2. Mean conditions. We have implicitly in the preceding section
shown that various quantities are mean-zero, but we don’t use that fact
other than in those identities. We will at one point require an explicit mean-
zero condition, to use a variant of the Sobolev inequality. This is that

(312) −
∫

(Dα′Zt)
2dα′ = 0.

We note that because (I−H)Dα′Zt = 0 (307), Dα′Zt is the boundary value
of a periodic holomorphic function going to 0 as y → −∞, so its square will
also be the boundary value of a periodic holomorphic function going to 0 as
y → −∞.
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Appendix B. Useful inequalities and identities

We present here assorted inequalities and identities that we need in our

paper. None of the results here are original, so we omit the proofs in most

cases. We refer the reader to [23] for details of the proofs.

B.1. Sobolev inequalities

We present here the one-dimensional Sobolev inequality we use in our proof.

Proposition 6 (Weighted Sobolev Inequality with ε). Let ε > 0. Then for

all f ∈ C1(−1, 1) ∩ L2(−1, 1),

(313) ‖f‖L∞ � 1

ε
‖f‖L2( 1

ω
) + ε

∥∥f ′∥∥
L2(ω)

+ ‖f‖L2

for any weight ω � 0.

Furthermore

(314) −
∫

f2 = 0 ⇒ ‖f‖L∞ � 1

ε
‖f‖L2( 1

ω
) + ε

∥∥f ′∥∥
L2(ω)

.

We omit the proof since it is fairly standard.

B.2. Derivatives and complex-valued functions

Because our functions will be complex-valued, and we will often be looking

at derivatives of angular and modular parts of these functions, we note here

a few elementary facts about such functions.

Let f(α) = r(α)eiθ(α), where r, θ are real-valued functions. Then

(315) |∂α |f || �
∣∣f ′∣∣ ; ∣∣∣∣∂α f

|f |

∣∣∣∣ �
∣∣∣∣ f ′

|f |

∣∣∣∣ .
From −∂P

∂n � 0, we have a � 0 and

(316)
ztt + i

|ztt + i| = i
zα
|zα|

.

We will use this fact in this paper to replace the angular part of the spatial

derivative zα with the angular part of the time derivative ztt + i.
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B.3. Hardy’s inequality and commutator estimates

We present here the basic estimates we will rely on for this paper. Several of
these estimates control quantities of the form [f,H]g′ by something involving
f ′ and g; they thus reduce the amount of regularity required on g, at the
expense of further regularity on f .

For many of these estimates, we must pay close attention to the boundary
conditions. Recall that f ∈ C0(S1) implies that f |∂ = 0. Many of these
estimates do not hold if this periodic boundary condition is removed. To
save space, we have not always explicitly cited these boundary conditions
when we quote these estimates, but they are always met, by our assumption
of Theorem 2 and its consequence (85).

Proposition 7 (Hardy’s Inequality). Let f ∈ C0(S1) ∩ C1(−1, 1), with
f ′ ∈ L2. Then there exists C > 0 independent of f such that for any α′ ∈ I,

(317)

∣∣∣∣
∫
I

(f(α′)− f(β′))2

sin2(π2 (α
′ − β′))

dβ′
∣∣∣∣ � C

∥∥f ′∥∥2
L2 .

Proposition 8 (L2 × L∞ Estimate). There exists a constant C > 0 such
that for any f ∈ C0(S1)∩C1(−1, 1) with f ′ ∈ L2, g ∈ C0[−1, 1] with g′ ∈ Lp

for some p > 123 (so f |∂ = 0, though possibly g|∂ �= 0),

(318) ‖[f,H]∂α′g‖L2 � C
∥∥f ′∥∥

L2 ‖g‖L∞ .

Proof. This result is the periodic modification of a result from [35], which
in turn is a consequence of the T (b) theorem [15].

We begin by integrating by parts,

(319)

∂α′g = H(f ′g)− 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π2 (α
′ − β′))

g(β′)dβ

+
1

2i
(f(α′)− f(β′)) cot(

π

2
(α′ − β′))g(β′)

∣∣∣∣
∂

,

where we have a boundary term because we didn’t place periodic boundary
assumption on g. We control the first term by the L2 boundedness of H and
Hölder. We control the last term by Hardy’s inequality (317).

We handle the second term by using the identity

(320)
(π
2

)2 1

sin2(π2α
′)

=
∑
l∈Z

1

(α′ + 2l)2

23We require this only to ensure that [f,H]g′ is well-defined.
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and reducing it to the real line version, Proposition 3.2 in [35]. For details,

see [23].

Proposition 9 (L2×L∞ Estimate Variant). There exists a constant C > 0

such that for any f ∈ C0(S1) ∩ C1(−1, 1) with f ′ ∈ L2, g ∈ L∞[−1, 1] (and

so f |∂ = 0 but possibly g|∂ �= 0),

(321)

∥∥∥∥
∫

(f(α′)− f(β′))

sin2(π2 (α
′ − β′))

g(β′)dβ′
∥∥∥∥
L2

� C
∥∥f ′∥∥

L2 ‖g‖L∞ .

This is just the second term on the RHS of (319).

Proposition 10 (L∞ × L2 Estimate [8]). There exists a constant C > 0

such that for any f ∈ C1[−1, 1] ∩ C0(S1), g ∈ C0(S1) ∩ C1(−1, 1) with

g′ ∈ Lp for some p > 124,

(322) ‖[f,H]∂α′g‖L2 � C
∥∥f ′∥∥

L∞ ‖g‖L2 .

To prove Proposition 10, we begin with the integration-by-part formula

(319), noting that the third term, the boundary term, is zero since f |∂ =

g|∂ = 0. We handle the first term by the L2 boundedness of H and Hölder,

and the second term by identity (320), reducing it to the classical result on

R by [8].25

Proposition 11. There exists a constant C > 0 such that for any f, g ∈
C1(−1, 1) ∩ C0(S1) with f ′ ∈ L2 and g′ ∈ Lp for some p > 1,

(323) ‖[f,H]∂α′g‖L2 � C
∥∥f ′∥∥

L2 ‖g‖Ḣ1/2 .

Proof. We integrate by parts, first rewriting ∂β′g(β′) = ∂β′(g(β′)− g(α′)):

(324)

∂α′g =
1

2i

∫
fβ′(β′) cot(

π

2
(α′ − β′))(g(β′)− g(α′))dβ′

− 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π2 (α
′ − β′))

(g(β′)− g(α′))dβ′,

where there is no boundary term because of the periodic boundary condi-

tions.

24We assume g′ ∈ Lp only to ensure [f,H]g′ is well-defined.
25The result was later extended by [11].
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For the first term, we apply the Cauchy-Schwarz inequality:

(325)

∣∣∣∣
∫

f ′(β′) cot(
π

2
(α′ − β′))(g(β′)− g(α′))dβ′

∣∣∣∣
�

∥∥f ′∥∥
L2

(∫ ∣∣g(α′)− g(β′)
∣∣2 ∣∣∣cot2(π

2
(α′ − β′))

∣∣∣ dβ′
)1/2

.

Taking L2 of this in α′ and using the boundedness of cosine to replace cot2

with 1
sin2 , we get the desired estimate.

For the second term, we use the Cauchy-Schwarz inequality:

(326)

∥∥∥∥
∫

f(α′)− f(β′)

sin2(π2 (α
′ − β′))

(g(β′)− g(α′))dβ′
∥∥∥∥
L2

α′

�
(∫ ∫ |f(α′)− f(β′)|2

sin2(π2 (α
′ − β′))

dβ′
∫ |g(α′)− g(β′)|2

sin2(π2 (α
′ − β′))

dβ′dα′
)1/2

,

and then we use Hardy’s inequality (317) to f to get our inequality (323).

Proposition 12. There exists a constant C > 0 such that for any f ∈
Ḣ1/2, g ∈ L2,

(327) ‖[f,H]g‖L2 � C ‖f‖Ḣ1/2 ‖g‖L2 .

Proof. This is immediate by the Cauchy-Schwarz inequality and the bound-
edness of cosine.

Proposition 13. There exists a constant C > 0 such that for any f, g ∈
C1(−1, 1) ∩ C0(S1) with f ′, g′ ∈ L2 and h ∈ L2,

(328)
‖[f, g;h]‖L2 :=

∥∥∥∥ π

4i

∫
f(α′)− f(β′)

sin(π2 (α
′ − β′))

g(α′)− g(β′)

sin(π2 (α
′ − β′))

h(β′)dβ′
∥∥∥∥
L2

� C
∥∥f ′∥∥

L2

∥∥g′∥∥
L2 ‖h‖L2 .

Proof. By the Cauchy-Schwarz inequality,

(329)

∣∣∣∣
∫

f(α′)− f(β′)

sin(π2 (α
′ − β′))

g(α′)− g(β′)

sin(π2 (α
′ − β′))

h(β′)dβ′
∣∣∣∣

�
(∫ ∣∣∣∣ f(α′)− f(β′)

sin(π2 (α
′ − β′))

∣∣∣∣2 dβ′
)1/2(∫ ∣∣∣∣ g(α′)− g(β′)

sin(π2 (α
′ − β′))

h(β′)

∣∣∣∣2 dβ′
)1/2

.
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Now we take the L2 of this in the α′ variable. By Hardy’s inequality (317),
we control the f factor by ‖f ′‖L2 , and are left with

(330)

(∫ ∫ ∣∣∣∣ g(α′)− g(β′)

sin(π2 (α
′ − β′))

h(β′)

∣∣∣∣2 dβ′dα′
)1/2

.

Applying Fubini’s Theorem and then using Hardy’s inequality (317) once
more gives the result.

Proposition 14. There exists a constant C > 0 such that for any f ∈
C1(−1, 1) ∩ C0(S1) with f ′ ∈ L2, g ∈ L2,

(331) ‖[f,H]g‖L∞ � C
∥∥f ′∥∥

L2 ‖g‖L2 .

Proof. Estimate (331) holds by the Cauchy-Schwarz inequality and Hardy’s
inequality (317).

Proposition 15. There exists a constant C > 0 such that for any f, g ∈
C1(−1, 1) ∩ C0(S1) with f ′, g′ ∈ L2, and h ∈ L2,

(332) ‖∂α′ [f, [g,H]]h‖L2 � C
∥∥f ′∥∥

L2

∥∥g′∥∥
L2 ‖h‖L2 .

Proof. We differentiate:

(333) ∂α′
1

2i

∫
(f(α′)− f(β′))(g(α′)− g(β′)) cot(

π

2
(α′ − β′))h(β′)dβ′

= f ′[g,H]h+ g′[f,H]h− 1

2i

∫
π

2

(f(α′)− f(β′))(g(α′)− g(β′))

sin2(π2 (α
′ − β′))

h(β′)dβ′.

We control the first two terms by Hölder’s inequality and then (331). We
control the last term by (328).

Proposition 16 (Higher-Order Calderon Commutator [11]). There exists
a constant C > 0 such that for any f ∈ C1(−1, 1) ∩ C0(S1) with f ′ ∈ L∞,
h ∈ C0(S1) ∩ C1(−1, 1) with h′ ∈ Lp for some p > 1,

(334) ‖[f, f ; ∂α′h]‖L2 � C
∥∥f ′∥∥2

L∞ ‖h‖L2 .

Proof. The proof is entirely analogous to the proof of (322), and now follows
from the work of [11], which extends the original result of [8] used for (322)
to allow two difference quotient factors, instead of one. To move from R to
our compact domain, we do the same infinite summation argument, with
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the only difference being that instead of (320), we use (π2 )
2∂α′

1
sin2(π

2
α′)

=

−2
∑ 1

(α′+2l)3 .

B.4. The Ḣ1/2 norm

We present here the following proposition.

Proposition 17. Let f ∈ C1(−1, 1) ∩ C0(S1) with f ′ ∈ L2. Then

(335) (I −H)f = −
∫

f ⇒ ‖f‖2
Ḣ1/2 =

∫
i(∂α′f)fdα′.

(335) holds because for f satisfying the assumption of Proposition 17,

(336)

∫
i(∂α′f)fdα′ =

∫
i(∂α′Hf)fdα′,

and i ∂α′Hf = |D|f , where |D| is the positive operator satisfying |D|2 =
−∂2

α′ . It is easy to see that
∫
i(∂α′f)fdα′ is real-valued by integration by

parts.

B.5. Commutator identities

We include here for reference the various commutator identities that are
necessary.

[∂t, Dα] = −(Dαzt)Dα;(337) [
∂t, D

2
α

]
= [∂t, Dα]Dα +Dα[∂t, Dα] = −2(Dαzt)D

2
α − (D2

αzt)Dα;(338)

(339)

[
∂2
t , Dα

]
= ∂t [∂t, Dα] + [∂t, Dα] ∂t

= (−Dαztt)Dα + 2(Dαzt)
2Dα − 2(Dαzt)Dα∂t.

To calculate [ia∂α, Dα], we use iazα = ztt+i (21) to rewrite ia∂α = iazαDα =
(ztt + i)Dα. Therefore

(340) [ia∂α, Dα] = [(ztt + i)Dα, Dα] = −(Dαztt)Dα.

Adding (339) and (340), we conclude that

(341)
[
∂2
t + ia∂α, Dα

]
= (−2Dαztt)Dα + 2(Dαzt)

2Dα − 2(Dαzt)Dα∂t.
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Because [(∂2
t + ia∂α), D

2
α] = [(∂2

t + ia∂α), Dα]Dα +Dα[(∂
2
t + ia∂α), Dα],

we have

(342)

[
(∂2

t + ia∂α), D
2
α

]
= (−4Dαztt)D

2
α + 4(Dαzt)

2D2
α − 2(Dαzt)Dα∂tDα − (2D2

αztt)Dα

+ 4(Dαzt)(D
2
αzt)Dα − 2(D2

αzt)Dα∂t − 2(Dαzt)D
2
α∂t.

Appendix C. Summary of notation

We list here the various notations we’ve introduced in the paper. See also
§1.3 for a discussion of the conventions used.

• f |∂ := f(1, t)− f(−1, t).
• ν is the angle the water wave makes with the wall. See Figure 2.
• I := [−1, 1] (except when it’s used for the identity or as an abbreviation
for a quantity to be controlled).

• �z, �z are the real and imaginary parts of a complex number z.
• Function spaces Ck(−1, 1), Ck[−1, 1], Ck(S1), Hk(S1), Lp, and Ḣ1/2

are defined in §1.3. We define ‖f‖Ḣ1/2 :=
(
π
8

∫∫ |f(α′)−f(β′)|2
sin2(π

2
(α′−β′))

dα′dβ′
) 1

2

.

• −
∫
f = −

∫
I f := 1

2

∫
I f(β

′)dβ′.
• z(α, t) is the Lagrangian parametrization, and zt(α, t) = v(z(α, t), t)
is the velocity. ztt = ∂tzt, etc.

• a = |ztt−i|
|zα| = −∂P

∂n
1

|zα| . We refer to −∂P
∂n as the Taylor coefficient; n is

the outward-facing normal to Σ(t).
• h : α �→ α′ is defined by h(α) = Φ(z(α, t), t) and gives the Riemann
mapping variables, where Φ is the Riemann mapping defined in §3.1.
b := ht ◦h−1. ∂α′(f ◦h−1) = ∂αf

hα
◦h−1. dα′ = hαdα. Full details are in

§3.1 and §3.3.
• α and β are our variables in Lagrangian coordinates; α′ and β′ are our
variables in Riemann mapping coordinates.

• H is the Hilbert transform in Riemann mapping variables, defined by

(343) Hf(α′) :=
1

2i

∫
I
cot(

π

2
(α′ − β′))f(β′)dβ′.

• We define PA := (I−H)
2 and PH := (I+H)

2 as the antiholomorphic and
holomorphic projections.

• [f, g;h](α′) := π
4i

∫ (f(α′)−f(β′))(g(α′)−g(β′))
sin2(π

2
(α′−β′))

h(β′)dβ′, the higher order

Calderon commutator.
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• We use F (z(α, t), t) := zt(α, t) at several points (and do not use F for
any other purpose).

• Z := z ◦h−1, Zt := zt ◦h−1, Ztt := ztt ◦h−1, Z,α′ = ∂α′(z ◦h−1), Zt,α′ =
∂α′(zt ◦ h−1), etc.

• Compositions and inverses are always with respect to the spatial vari-
able.

• A := (ahα) ◦ h−1, At := (athα) ◦ h−1.
• Dα := 1

zα
∂α, |Dα| := 1

|zα|∂α, Dα′ := 1

|Z,α′ |∂α′ , |Dα′ | := 1

|Z,α′ |∂α′ and

Dα′ := 1
Zα′

∂α′ .

• A1 = A |Z,α′ |2 = iZ,α′(Ztt − i) ∈ R (48). On changing variables, we
have

(344) A1 ◦ h =
a |zα|2

hα
,

originally derived at (52); we use this repeatedly without citation. We

often use A1 � 1 (49), and also use 1
Z,α′

= iZtt−i
A1

(50).

• We define our energies in §4.1. We define generic energies Ea,θ and Eb,θ,
and then specialize to Ea := Ea,D2

αzt
and Eb := Eb,Dαzt

. We use Gθ to
describe the RHS of the equation (∂2

t + ia∂α)θ = Gθ. For θ = Dk
αzt,

Gθ = Dk
α(−iatzα) + [∂2

t + ia∂α, D
k
α]zt.

• Θ := θ ◦ h−1; B :=
(
htα

hα
−�Dα′zt

)
◦ h−1; ψ :=

(
hα

zα
θ
)
◦ h−1 (168).

• See §1.3 for a discussion of how broadly I, II, I1, I12, etc., are defined.
In short, they are unambiguous within each section, but ambiguous
between sections.

• We use C(E) to represent a polynomial of the energy E.

Appendix D. Main quantities controlled

We list here the various quantities that are controlled by our energy, for ease
of reference. We don’t list every single quantity we have controlled, but we
do include any quantities that we give at the end of a concluding inequality
without further explanation.

• In §5.1, we controlled∥∥(∂t + b∂α′)D2
α′Zt

∥∥
L2 ,

∥∥D2
α′Ztt

∥∥
L2 ,

∥∥D2
α′Ztt

∥∥
L2 ,

∥∥D2
α′Zt

∥∥
L2 ,∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥ 1

Z,α′
D2

α′Zt

∥∥∥∥
Ḣ1/2

, ‖Dα∂tDαzt‖L2(hαdα)
,
∥∥Dα′Ztt

∥∥
L∞ ,
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‖Dα′Ztt‖L∞ ,
∥∥Dα′Zt

∥∥
L∞ , ‖Dα′Zt‖L∞ ,

∥∥Ztt,α′
∥∥
L2 ,

∥∥Zt,α′
∥∥
L2 ,∫

|Dαzt|2
dα

a
,

∫
|Dαztt|2

dα

a
,

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

, ‖Ztt + i‖L∞ , ‖A1‖L∞ .

•
∥∥at

a

∥∥
L∞ =

∥∥At

A
∥∥
L∞ is controlled at (123) in §5.2.

•
∥∥∥∂α′

1
Z,α′

∥∥∥
L2

is controlled at (130) in §5.3.

•
∥∥∥htα

hα

∥∥∥
L∞

is controlled at (136), ‖(I +H)Dα′Zt‖L∞ is controlled at

(132) in §5.4.
•
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

is controlled at (148) in §5.6.
∥∥∥(Ztt + i)∂α′

1
Z,α′

∥∥∥
L∞

and∥∥∥∂α′
Ztt+i
Z,α′

∥∥∥
L∞

are also estimated there.

•
∥∥∥∂α′PA

Zt

Z,α′

∥∥∥
L∞

is controlled at (134) in §5.4. We estimated at (133)

the related term
∥∥∥PA

(
Zt∂α′

1
Z,α′

)∥∥∥
L∞

.

• ‖Dα′B‖L2 is controlled at (186).
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no. 3, 9–42.

[8] A. P. Calderón Commutators of singular integral operators, Proc. Nat.
Acad. Sci. U.S.A., Vol. 53, (1965), 1092–1099.
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Asterisque 57, Societé Math. de France, 1978.

[12] R. Coifman, A. McIntosh and Y. Meyer L’integrale de Cauchy definit
un operateur borne sur L2 pour les courbes lipschitziennes Annals of
Math, 116 (1982), 361–387.

[13] D. Coutand, S. Shkoller Wellposedness of the free-surface incompress-
ible Euler equations with or without surface tension J. AMS. 20 (2007),
no. 3, 829–930.

[14] W. Craig An existence theory for water waves and the Boussinesq and
Korteweg-devries scaling limits Comm. in P. D. E. 10(8), 1985 pp. 787–
1003.
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