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Abstract We consider the two dimensional gravity water wave equation in
a regime where the free interface is allowed to be non-C'. In this regime,
only a degenerate Taylor inequality —%—ﬁ > 0 holds, with degeneracy at the
singularities. In Kinsey and Wu (Camb J Math 6(2):93-181, 2018) an energy
functional £(¢) was constructed and an a-priori estimate was proved. The
energy functional £(¢) is not only finite for interfaces and velocities in Sobolev
spaces, but also finite for a class of non-C! interfaces with angled crests. In
this paper we prove the existence, uniqueness and stability of the solution of
the 2d gravity water wave equation in the class where £(¢) < oo, locally in

time, for any given data satisfying £(0) < oo.

1 Introduction

A class of water wave problems concerns the motion of the interface separating
an inviscid, incompressible, irrotational fluid, under the influence of gravity,
from a region of zero density (i.e. air) in n-dimensional space. It is assumed
that the fluid region is below the air region. Assume that the density of the
fluid is 1, the gravitational field is —k, where K is the unit vector pointing in
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the upward vertical direction, and at time ¢ > 0, the free interface is X (¢), and
the fluid occupies region €2 (7). When surface tension is zero, the motion of
the fluid is described by

Vi+(v-V)v=—-Kk—VP onQ((), t >0,
divv =0, curlv =0, on (), t >0,
P =0, on X(1)

(1, v) is tangent to the free surface (¢, X(¢)),

(1.1)

where v is the fluid velocity, P is the fluid pressure. There is an important
condition for these problems:

apP

——=>0 (1.2)

on
pointwise on the interface, where n is the outward unit normal to the fluid
interface X (¢) [35]; it is well known that when surface tension is neglected
and the Taylor sign condition (1.2) fails, the water wave motion can be subject
to the Taylor instability [7,9,17,35].

The study on water waves dates back centuries. Early mathematical works
include Newton [31], Stokes [34], Levi-Civita [26], and Taylor [35]. Nalimov
[28], Yosihara [45] and Craig [15] proved local in time existence and unique-
ness of solutions for the 2d water wave equation (1.1) for small and smooth
initial data. In [38,39], we showed that for dimensions n > 2, the strong Taylor
sign condition

aoP
——>¢y >0 (1.3)

on
always holds for the infinite depth water wave problem (1.1), as long as the
interface is in C'7¢, ¢ > 0; and the initial value problem of Eq. (1.1) is locally
well-posed in Sobolev spaces H*, s > 4 for arbitrary given data. Since then,
local wellposedness for water waves with additional effects such as the surface
tension, bottom and non-zero vorticity, under the assumption (1.3),1 were
obtained, c.f. [6,11,12,21,25,27,29,33,46]. Alazard et al.[3,4] proved local
wellposedness of (1.1) in low regularity Sobolev spaces where the interfaces
are only in C3/2. Hunter, Ifrim and Tararu [19] obtained a low regularity result
for the 2d water waves that improves on [3]. The author [40,41], Germain et
al.[18], Ionescu and Pusateri [22] and Alazard and Delort [5] obtained almost
global and global existence for two and three dimensional water wave equation

I When there is surface tension, or bottom, or vorticity, (1.3) does not always hold, it needs to
be assumed.
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Wellposedness of the 2D full water wave equation 243

(1.1) for small, smooth and localized data; see [8,16,19,20,36,37] for some
additional developments. Furthermore in [10], Castro, Cérdoba, Fefferman,
Gancedo and Goémez-Serrano proved that for the 2d water wave equation
(1.1), there exist initially non-self-intersecting interfaces that become self-
intersecting at a later time; and as was shown in [13], the same result holds in
3d.

All these work either prove or assume the strong Taylor sign condition (1.3),
and the lowest regularity considered are C3/? interfaces.

A common phenomena we observe in the ocean are waves with angled
crests, with the interface possibly non-C'. A natural question is: is the water
wave equation (1.1) well-posed in any class that includes non-C! interfaces?

We focus on the two dimensional case in this paper.

As was explained in [24], the main difficulty in allowing for non-C! inter-
faces with angled crests is that in this case, both the quantity —%—ﬁ and the
Dirichlet-to-Neumann operator Vy, degenerate, with degeneracy at the singu-
larities on the interface”; and only a weak Taylor inequality — %—ﬁ > 0 holds.
From earlier work [3,6,25,33,38,39], we know the problem of solving the
water wave equation (1.1) can be reduced to solving a quasilinear equation of
the interface z = z(a, 1), of type

32U+ aVpu = f(u, du) (1.4)

where a = —%. When the strong Taylor sign condition (1.3) holds and V,
is non-degenerate, Eq. (1.4) is of the hyperbolic type with the right hand side
consisting of lower order terms, and the Cauchy problem can be solved using
classical tools. In the case where the solution dependent quantity a = — % and
the operator Vy, degenerate, Eq.(1.4) losses its hyperbolicity, classical tools
do not apply. New ideas are required to solve the problem.

In [24], R. Kinsey and the author constructed an energy functional £(¢) and
proved an a-priori estimate, which states that for solutions of the water wave
equation (1.1), if £(0) < oo, then £(¢) remains finite for a time period that
depends only on £(0). The energy functional £(¢) is finite for interfaces and
velocities in Sobolev classes, and most importantly, it is also finite for a class
of non-C' interfaces with angled crests.? In this paper, we show that for any
given data satisfying £(0) < oo, thereis a T > 0, depending only on £(0),
such that the 2d water wave equation (1.1) has a unique solution in the class

2 We assume the acceleration is finite.

3In particular, the class where £(f) < oo allows for angled crest type interfaces with interior
angle at the crest < Z, which coincides with the range of the angles of the self-similar solutions
in [42], see §11.2 of [24]. See [1] for some further discussions of the type of singularities
allowed by the class £(f) < oo and the properties of the singularities. Stokes extreme waves is

not in the class where £(r) < oo.
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244 S. Wu

where £(t) < oo fortime 0 < ¢ < T, and the solution is stable. We will work
on the free surface equations that were derived in [38,39]. The novelty of this
paper is that we study the degenerate case, and solve the equation in a class*
that includes non-C! interfaces.’

1.1 Outline of the paper

In Sect. 1.2 we introduce some basic notations and conventions; further nota-
tions will be introduced throughout the paper. In Sect. 2 we recall the results
in [38,39], and derive the free surface equation and its quasi-linearization,
from system (1.1), in both the Lagrangian and Riemann mapping variables,
for interfaces and velocities in Sobolev spaces. We derived the quasilinear
equation in terms of the horizontal component in the Riemann mapping vari-
able in [38], and in terms of full components in the Lagrangian coordinates in
[39]. Here we re-derive the equations for the sake of coherence. In Sect. 2.5 we
will recover the water wave equation (1.1) from the interface equation (2.9)—
(2.11)—(2.15)—(2.14), showing the equivalence of the two systems for smooth
and non-self-intersecting interfaces. In Sect. 3.1, we present the energy func-
tional £(¢) constructed and the a-priori estimate proved in [24]. In Sect. 3.2, we
give a blow-up criteria in terms of the energy functional £(¢) and a stability
inequality for solutions of the interface equation (2.9)—(2.11)—(2.15)—(2.14)
with a bound depending only on £(¢). In Sect. 3.3 we present the main result,
that is, the local in time wellposedness of the Cauchy problem for the water
wave equation (1.1) in the class where £(f) < oco. In Sect. 4, we give the proof
for the blow-up criteria, Theorem 3.6 and in Sect. 5, the stability inequality,
Theorem 3.7. For the sake of completeness, we will also provide a proof for
the a-priori estimate of [24] in the current setting in Sect. 4. In Sect. 6, we will
prove the main result, Theorem 3.9.

4 The class where (1) < oo allows for interfaces that is piecewise H 3 with angled crest type
singularities. In this work and in [24], we do not intend to optimize the number of derivatives
required in the energy functional £(¢). For example in [2], an energy functional that involves
1/2 less spatial derivatives than that of £(¢) and allows for non-C Uinterfaces is constructed and
an a-priori estimate is proved.

5Tn § 11.2 of [24] and in [1], it is shown that the angles of the crests at the interface will not
change as long as the solution remains in the class £(¢) < co. A natural question is then how
does the angle form in the first place? One possibility for the formation of the angles in the first
place is the presence of the wind. It is well-known that once a wave forms it can travel long
distances. Observe that in our model (1.1), the wind is not present since the air is assumed to
have density 0. So one possible explanation is that once the angle form (due to the wind), it will
not change as long as there is no wind. Of course this is a speculation that requires further work
to clarify. One should also keep in mind that in our Eq. (1.1), besides the wind, the effect of the
surface tension, viscosity, bottom and coast are all been neglected.
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Wellposedness of the 2D full water wave equation 245

Some basic preparatory results are given in Appendix A; various identities
that are useful for the paper are derived in Appendix B. And in Appendix C,
we list the quantities that are controlled by £. A majority of these are already
shown in [24].

Remark The blow-up criteria and the proof for the existence part of Theo-
rem 3.9 are from the unpublished manuscript of the author [44], with some
small modifications.

1.2 Notation and convention

We consider solutions of the water wave equation (1.1) in the setting where the
fluid domain €2 (¢) is simply connected, with the free interface X (¢) := 92 (¢)
being a Jordan curve,®

v(z,t) = 0, as |z|] — oo

and the interface X (¢) tending to horizontal lines at infinity.’

We use the following notations and conventions: [A, B] := AB — BA is
the commutator of operators A and B. H®* = H*®(R) is the Sobolev space
with norm || fllgs = (f(1 + [EP 1/ @ d&)'?, B = H(R) is the
Sobolev space with norm || f | s := ([ €121 f(&)12d&)V?, LP = LP(R)
is the L” space with || fllr = ([ |f(x)|?dx)"/P for 1 < p < oo, and
f e L® if | fllre = sup|f(x)] < oo. When not specified, all the
norms || fllgs, | fllgs, IfllLp, 1 < p < o0 are in terms of the spatial
variable only, and || fllzs@w), 1/l gs@y> 1 fllLr@, 1 = p < oo are in
terms of the spatial variables. We say f e C/([0, T], H®) if the mapping
f = f@ = f(,t) : t € [0,T] — H® is j-times continues differen-
tiable, with SUP[0. 71, 0<k<j ||8tkf(t)||Hs < oo;wesay f € L*®([0, T], HY) if
suppo.71 I f Ollas < oo. C/(X) is the space of j-times continuously differ-

entiable functions on the set X Cé (R) is the space of j-times continuously
differentiable functions that decays at the infinity.

Compositions are always in terms of the spatial variables and we write for
f=rC10,8=8C10, f(g(,1),1):= fog(,1):=Ugf(,1). Weidentify
(x, y) with the complex number x + iy; Re z, Im z are the real and imaginary
parts of z; 7 = Rez — i Im z is the complex conjugate of z. Q is the closure
of the domain €2, 9€2 is the boundary of Q, &_ .= {z € C : Imz < 0} is the
lower half plane. We write

6 Thatis, & () is homeomorphic to the line R.

7 The problem with velocity v(z,t) — (c,0) as |z] — oo can be reduced to the one with
v — 0 at infinity by studying the solutions in a moving frame. X (¢) may tend to two different
lines at +o00 and —oo.
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246 S. Wu

Lf g h] = i / (f(x) f(y))(g(;c) g(y))h(y) dy. (1.5)
i (x =)

We use ¢, C to denote universal constants. c¢(ay, ...),C(ay,...),M(ay,...)
are constants depending on ay, .. .; constants appearing in different contexts
need not be the same. We write f < g if there is a universal constant ¢, such
that f < cg.

2 Preliminaries

Equation (1.1) is a nonlinear equation defined on moving domains, it is difficult
to study it directly. A classical approach is to reduce from (1.1) to an equation
on the interface, and study solutions of the interface equation. Then use the
incompressibility and irrotationality of the velocity field to recover the velocity
in the fluid domain by solving a boundary value problem for the Laplace
equation.

In what follows we derive the interface equations from (1.1), and vice versa;
we assume that the interface, velocity and acceleration are in Sobolev spaces.

2.1 The equation for the free surface in Lagrangian variable

Let the free interface X(¢) : z = z(a,t), « € R be given by Lagrangian
parameter o, so z; (e, t) = v(z(«, t); t) is the velocity of the fluid particles on
the interface, z;; (o, 1) = v¢ + (v- V)v(z(e, t); t) is the acceleration. Notice
that P = O on X (¢) implies that V P is normal to X (#), therefore VP = —iazg,
where

L ap, 2.1
|Ze| m° '
and the first and third equation of (1.1) gives
21t + I = iClZa. (22)

The second equation of (1.1): div v = curl v = 0 implies that v is holomorphic
in the fluid domain €2(¢), hence Z; is the boundary value of a holomorphic
function in (7).

Let @ C C be a domain with boundary ¥ : z = z(«), @ € I, oriented
clockwise. Let $) be the Hilbert transform associated to 2:

2(P) /(B)ap 2.3)

1
Hfla) = — V- 2@ —2(8)
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Wellposedness of the 2D full water wave equation 247

We have the following characterization of the trace of a holomorphic function
on 2.

Proposition 2.1 [23] a. Let g € L? for some 1 < p < oo. Then g is the
boundary value of a holomorphic function G on Q with G(z) — 0 at infinity
if and only if

(I—-%5)g=0. (2.4)

b. Let f € L? for some 1 < p < oo. Then %(1 + 9) f is the boundary
value of a holomorphic function & on Q, with &(z) — 0 at infinity.
c. H1=0.

By Proposition 2.1 the second equation of (1.1) is equivalent to z; = Hz;.
So the motion of the fluid interface X (¢) : z = z(«, t) is given by

Tt +l = iaZO(

2.5
Zt = ﬁzz- ( )

(2.5) is a fully nonlinear equation. In [38], Riemann mapping was introduced
to analyze Eq.(2.5) and to derive the quasilinear equation.

2.2 The free surface equation in Riemann mapping variable

Let ®(-, 1) : Q(t) — Z_ be the Riemann mapping taking €2(¢) to the lower
half plane &2_, satisfying ®(z(0, t), r) = 0 and lim,_, oo ®,(z,1) = 1. Let

h(a,t) = O(z(a, 1), 1), (2.6)
so h(0,7) =0and i : R — R is a homeomorphism. Let 2! be defined by
hh o', 0), 1) =/, o €R;
and

Z@' 1) :=z0h 1), Zi( 1) :=zo0h N, 1),
Zu(ad 1) ==z oh™l (@, 1) (2.7)

be the reparametrization of the position, velocity and acceleration of the inter-
face in the Riemann mapping variable «’. Let

Zoy(d 1) =0y Z@ 1), Z;o(ad 1) :=0yZ/(a, 1),
Z”,af(o/, 1) =03y Zy(d', 1), etc. (2.8)
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248 S. Wu

Notice that Vo ®~! : #_ — C is holomorphic in the lower half plane &7_
with Vo ®~(a/, 1) = Z,(c/, t). Precomposing (2.2) with 2~ and applying
Proposition 2.1 to V o & in 2_, we have the free surface equation in the
Riemann mapping variable:

[zn ti=iAZy 09

7; - H?t

where A o h = ah, and H is the Hilbert transform associated with the lower
half plane &7_:

1
Ot/—,B'

1
Hf (@) = EPV-[ fBHdp'. (2.10)

Observe that ®~!(a/, 1) = Z(a', 1) and (®~ ) (o', 1) = Z (o', 1). S0 Z 4,

1
are boundary values of the holomorphic functions (®~!)./ and —
Zo ()
tending to 1 at the spatial infinity. By Proposition 2.1,%

1 1
—1=H —1). (2.11)
Z,oc’ Z,a’

By the chain rule, we know for any function f, Uh_1 oUnf = (0 + bdy) f,
where

bi=hoh™'
So Z;; = (0; + bdy)Z;, and Z; = (0; + boy) Z.
2.2.1 Some additional notations
We will often use the fact that H is purely imaginary, and decompose a function
into the sum of its holomorphic and antiholomorphic parts. We define the

projections to the space of holomorphic functions in the lower, and respectively,
upper half planes by

1 1
Pyo=5(+H)., and Pai= (- H. (2.12)

8 We work in the regime where %/ —le LZ(]R).
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Wellposedness of the 2D full water wave equation 249

We also define

1 1
D, =—09,, and Dy, = Z Oy - (2.13)

Za o

We know by the chain rule that (Dy f) o h~! = Dy (f o h_l); and for any
holomorphic function G on €2 (¢) with boundary value g(«, t) := G(z(«, 1), 1),
Dyg = G, o0z, and Dy (g oh™') = G, o Z. Hence D, D, preserves the
holomorphicity of g, g o A~

2.2.2 The formulas for A1 and b

Let Aj := AlZ’a/lz. Notice that A o h = ahy = —2L e 50 A} is related to

0N [z’

the important quantity —%—ﬁ by

Using Riemann mapping we analyzed the quantities A; and b in [38] and we
gave a re-derivation of the formulas in [43]. We mention that in [19], using
the formulation of Ovsjannikov [30], the authors also re-derived the formulas
(2.14) and (2.15). Here we record the results in [38] and [43].

Proposition 2.2 (Lemma 3.1 and (4.7) of [38], or Proposition 2.2 and (2.18)
of [43]) We have

Z
lu:hﬂﬁf1=Rdl—ED<Zt>; (2.14)
- 1 [1Z( 1) = Z,(B D ,
Ay =1—1m(Z, HIZ, 4 :”E/ g =
(2.15)
dP A
_o : (2.16)

onlz=z¢.0 | Z o]

In particular, if the interface $(t) € C'¢ for some € > 0, then the strong
Taylor sign condition (1.3) holds.

By the definition of A; we have

Zow(Zy—i)=—iA|Zy|* = —iAj. (2.17)
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250 S. Wu

2.3 The quasilinear equation
In [38,39] we showed that the quasi-linearization of the free surface equation

(2.5) can be accomplished by just taking one time derivative to Eq. (2.2).
Taking derivative to ¢ to (2.2) we get

_ . .- ar _ .
Zir H10Ztg = =10 Zg = Et(Ztt —1i). (2.18)

Precomposing with #~! on both sides of (2.18), we have the equation in the
Riemann mapping variable

_ _ a _
Zi +iAZ, oy = Et oh Y (Zy —1) (2.19)
ar . " Al
We compute — by the identities ahy, = Ao h,and Ao h = ‘ 5oh =
a Z o
h2
Ajo h—“Z, SO
|Za
ha
a=Ajoh—s; (2.20)
|Za
and we obtain, by taking derivative to ¢ to (2.20),
9 (A1oh h
G _dldioh) M gl
a Ajoh he Za
Notice that 4= o h=" = (h; 0 h™")ys 1= by. So
0r +bdy)A
& oon ! = (’JFA—"‘)]era, —2Re Dy Zy; 2.21)
a 1

where we calculate from (2.14) that

Zt,oc’
bat =Re ( (I = )2 + (I — H)  Zidoy

/
o

1
Zy
Z

L (-1 ( Zdy !
Z7a/ tYa Z’a/

1
s H:| Zt,oz’ + [Zz, H] aa’ > ’
Zy

=2Re Dy, Z; +Re ((—I — H)

/

1
=2Re D, Z; +Re ([Z

, o

(2.22)
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Wellposedness of the 2D full water wave equation 251

here in the last step we used the fact that (/ +H) Z; ,» = Oand (/ —H) 0 % =

0° to rewrite the terms as commutators; and we compute, by (2.15) and (B.19),

O + bd)AL = —Im ((Z; H Z; o + [ Z, H] 0 Zis — [ Z4, b Zy 00]) -
(2.23)

We now sum up the above calculations and write the quasilinear system in
the Riemann mapping variable. We have

Ay at = .
(8[+b8/) Zt+l a/Zt——O/’l (Zt[—l)

L Zal a (2.24)
Z, =HZ,
where
Z
b:=hoh™! =Re(1—H)( ! )
Zy
zZ 1)—Z N2
A= 1= In(Z, HIZ, 0 = 1 4 - [ 12@D = ZBL DI g
2 2
‘ : g (@ =5 (2.25)
1 .Ztt —1
=1
Z,Ol/ Al
0y + boy)A
& oh—l = M +b(x’ _ 2ReDa/Zt
a Al

Here the third equation in (2. 25) is obtained by rearranging the terms of the

Z” i

Eq.(2.17). Using it to replace Z - by i =4—, we get a system for the complex

conjugate velocity and acceleratlon (Z;, Z t)- The initial data for the system
(2.24)—(2.25) is set up as follows.

2.3.1 The initial data

Without loss of generality, we choose the parametrization of the initial interface
% (0) : Z(-,0) := Z(0) by the Riemann mapping variable, so h(«, 0) = « for
o € R; we take the initial velocity Z;(0), such that it satisfies Z:(0) = HZ,(0).
And we take the initial acceleration Z;;(0) so that it solves the Eq.(2.17) or
the third equation in (2.25).

9 These follows from (I —H)Z; = 0 and (2.11).
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252 S. Wu

2.4 Local wellposedness in Sobolev spaces

By (2.16) and (2.15), if Z o» € L°°, then the strong Taylor stability criterion
(1.3) holds. In this case, the system (2.24)—(2.25) is quasilinear of the hyper-
bolic type, with the left hand side of the first equation in (2.24) consisting of the
higher order terms.'% In [38] we showed that the Cauchy problem of (2.24)—
(2.25), and equivalently of (2.9)—(2.11)—(2.14)—(2.15), is uniquely solvable in
Sobolev spaces H®, s > 4.

Let the initial data be given as in Sect. 2.3.1.

Theorem 2.3 (Local wellposedness in Sobolev spaces, cf. Theorem 5.11, §6
of [38]) Let s > 4. Assume that Z;(0) € H**1/2(R), Z,;,(0) € H*(R) and
Z o(0) € L°°(R). Then there is T > 0O, such that on [0, T], the initial value
problem of (2.24)—(2.25), or equivalently of (2.9)—(2.11)-(2.14)—(2.15), has a
unique solution Z = Z (-, t), satisfying (Z;, Zy) € cl(o, T1, HS V2 1(R) x
H*'(R)), and Z o — 1 € C'([0, T1, H*~'(R)), for | = 0, 1.

Moreover if T* is the supremum over all such times T, then either T* = oo,
orT* < oo, but

sup (1Z.o/(DllLoe + 1 Zee (D g3 + 1 Ze O g3+172) = 00, (2.26)
[0,7%)

Remark 2.4 1. Let h = h(a, t) be the solution of the ODE

he = b(h, 1), (2.27)
h(a,0) =«
where b is as given by (2.14). Then z = Z o h satisfies Eq. (2.2), cf. §6 of [38].
2.(2.24)—(2.25) is a system for the complex conjugate velocity and acceler-
ation (Z;, Z;;), the interface doesn’t appear explicitly, so a solution can exist
even if Z = Z(-,t) becomes self-intersecting. Similarly, Egs.(2.9)—(2.11)-
(2.14)—(2.15) makes sense even if Z = Z(-, t) self-intersects. To obtain the
solution of the water wave equation (1.1) from the solution of the quasilin-
ear equation (2.24)—(2.25) as given in Theorem 2.3 above, in §6 of [38], an
additional chord—arc condition is assumed for the initial interface, and it was
shown that the solution Z = Z(-, t) remains non-self-intersecting for a time
period depending only on the initial chord—arc constant and the initial Sobolev
norms.

10 0y’ = |0y| when acting on holomorphic functions. The Dirichlet-to-Neumann operator

1
Vn = W|3a’|~

1 (2.9)—(2.11)-(2.14)—(2.15) is equivalent to the water wave equation (1.1) only when the
interface is non-self-intersecting, see Sect. 2.5.
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Wellposedness of the 2D full water wave equation 253

3. Observe that we arrived at (2.24)—(2.25) from (1.1) using only the fol-
lowing properties of the domain: 1. there is a conformal mapping taking the
fluid region Q(¢) to Z_; 2. P = 0 on (). We note that z — z'/%2 is a
conformal map that takes the region C\{z = x 4+ i0, x > 0} to the upper
half plane; so a domain with its boundary self-intersecting at the positive real
axis can be mapped conformally onto the lower half plane &7_. Taking such
a domain as the initial fluid domain, assuming P = 0 on X(¢) even when
Y (1) self-intersects,'? one can still solve Egs. (2.24)—(2.25) for a short time,
by Theorem 2.3. Indeed this is one of the main ideas in the work of [10]. Using
this idea and the time reversibility of the water wave equation, by choosing
an appropriate initial velocity field that pulls the initial domain apart, Castro,
Cordoba et. al. [10] proved the existence of “splash” and “splat” singularities
starting from a smooth non-self-intersecting fluid interface.

2.5 Recovering the water wave equation (1.1) from the interface
equations

In this section, we derive the equivalent system in the lower half plane &7_ for
the interface equations (2.9)—(2.11)—(2.15)—(2.14), and show how to recover
from here the water wave equation (1.1). Although the derivation is quite
straight-forward, to the best knowledge of the author, it has not been done
before.

Let Z = Z(-, t) be a solution of (2.9)—(2.11)—(2.15)—(2.14), satisfying the
regularity properties of Theorem 2.3;let U (-, t) : #_ — C, ¥ (-,t) : ¥_ —

C be the holomorphic functions, continuous on & _, such that

U, t)=Z,a 1), W@, 1)=2Z@, 1), V(o 1t)=Zy, 1),
(2.28)

and lim,_, o Uz, 1) = 0, limy oo W (', 1) = 1.1 From Z; = (8, +
by)Z = W (o', t) + bW, (o, 1), we have

-1, ooz, (2.29)

12 We note that when S (r) self-intersects, the condition P = 0 on (¢) is unphysical.
13 Weknow U (7, 1) = Ky *Z;, Wy = Ky*Z o and by the Maximum principle, % =Ky x*

%, here K is the Poisson kernel defined by (3.12). By (2.17), % —1eC(0,T], H(R))
fors > 4,50, #0 on Z_.
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and substituting in we get

Zy= 0, +bd,)Z, = U + U
tt — 1 o t — Ut ‘-IIZ/ \IJZ/

) Uy, ondZ_;

s0 Z; is the trace of the function U, — % U+ % UyondZ_;and Z (Z—
Z Z

i) is then the trace of the function W, U, — W, U, + UU, — iV, on d7_.
This gives, from (2.17) that

VU — WU, +UUy — iV, =—iA;, ondP_. (2.30)

Observe that on the left hand side of (2.30), W, U; — W, U, — iW is holo-
morphic on &_, while UU, = d,(UU). So there is a real valued function
B : Z_ — R, such that

VU — WUy +UUy —iVy = =20,B = -0y —idy)P, onP_;
(2.31)
and by (2.30), because i A is purely imaginary,
L =c, ondF_. (2.32)
where ¢ € R is a constant. Applying 0,/ + idy := 20 to (2.31) yields
AP = —2|Us)*>  on P_. (2.33)
It is easy to check that for y’ < Oand ¢ € [0, T], (U, U, Uy, W, —1, % -1,
wt)(- +iy', 1) € L2®R) N L®(R), and (U, ¥, g—,P) € CH(Z_ x [0, T)).
It is clear that the above process is reversible. From a solution (U, W, B) €
CY(Z_ x [0,T]) of the system (2.31)~(2.33)—(2.32)~(2.29), with
(U, Up Uy W — 1, = — 1, \pt) (+iy,1) e LXR) N L¥R) for y <
0, r € [0,T], U(, tS, W (-, t) holomorphic in e@_,_and b real valued,
the boundary value (Z(«’, 1), Z;(a’, 1)) := (V(d, 1), U(, t)) satisfies the
interface equation (2.9)—(2.11)—(2.14)—(2.15). Therefore the systems (2.9)—
(2.11)—(2.14)—(2.15) and (2.31)—(2.33)—(2.32)—(2.29), with U(-, 1), V(- 1)
holomorphic in &Z_, and W, (-, 1) # 0, b real valued, are equivalent in the
smooth regime.

Assume (U, W) € C(ﬁ_ x [0, T NC'(ZP_ x (0, T)) is a solution of the
system (2.31)—(2.33)—(2.32), with U (-, ), W (-, ¢) holomorphic in &_, assume
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Wellposedness of the 2D full water wave equation 255

in addition that () = {Z = Z(a/, 1) := ¥ (', 1) | @’ € R} is a Jordan curve
with
lim Z @ 1) =1.

|o/|—00

Let Q(¢) be the domain bounded by Z = Z(-, t) from the above, then Z =
Z(a',1), &’ € R winds the boundary of 2 (z) exactly once. By the argument
principle, V¥ : P_ — Q(1) is one-to-one and onto, ¥ 1 : Q (1) — Z_ exists
and is a holomorphic function; and by Eq.(2.31) and the chain rule,

Uo¥™ N 4+UoWw  (UoW™), +@ —idy)(Po¥ H=i, onQ().
(2.34)

Letv=UoW¥ !l p= Lo w1, Observe that vV, = (v- V)V. So (v, P)
satisfies the water wave equation (1.1) in the domain €2 ().

2.6 Non-C! interfaces

Assume that the interface Z = Z(-, t) has an angled crest at o’ with interior
angle v, we know from the discussion in §3.3.2 of [24] that if the acceleration
is finite, then it is necessary that v < mr; and if v < & then ZL,(O/O, t) =0.

We henceforth call those points at which —— = 0 the singularities.

If the interface is allowed tobe non-C'! w1th interior angles at the crests < 7,
then the coefficient |Z |2 of the second term on the left hand side of the first
Ol/

equation in (2.24) can be degenerate, and in this case it is not clear if Eq. (2.24)
is still hyperbolic. In order to handle this situation, we need to understand how
the smgularltles propagate. In what follows we derive the evolution equation
for Z_ We will also give the evolution equations for the basic quantities Z;

and th.

2.7 Some basic evolution equations

We begin with

14 In Lagrangian coordinates, the first equation in (2.24) is of the form (82 + aVn)Et =f,

where a = —% = ZAI o h, and the Dirichilet-Neumann operator Vy o h™ I = dy’- So
O(

, IZ e
at the singularities both a and Vy, are degenerate.
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taking derivative to ¢ yields,

1 1 h
a,( oh>= oh(ﬂ—z’—“);
Zy Zw hy Za

precomposing with 1! gives

1
(0 + bdyr) (Z

, o

1
) = —— (be = DurZy). (2.35)

The evolution equations for Z,; and Z,; can be obtained from (2.17) and (2.18).
We have, by (2.17),

L4 (2.36)

’
o

(O + b0y)Z; := Zy = —i

Zn i

Using (2.2) to replace ia by — in equation (2.18) yields

e = (T — 1) ( a2t T+ )
precomposing with 2~! gives
a
O + b)) Z1 = (Zy — i) ( 7, + Et o h—l) . (2.37)

Equations (2.35), (2.36) and (2.37) describe the time evolution of the basic
quantities Zl Z, and Z,. In fact, Egs. (2.35)—(2.36) together with (2.14),
(2.15) and (2 22) give a complete evolutionary system for the holomorphic
quantities Zl and Z,, which characterize the fluid domain €2(7) and the com-
plex con]ugate velocity V. We will explore this evolution system in our future
work. These equations give a first indication that it is natural to study the water
wave problem in a setting where bounds are only imposed on Z , Zy and their

derivatives.

2.8 An important equation

Here we record an important equation, which is obtained by rearranging the
terms of (2.17).

1 Zy—i
= , (2.38)
Z,a’ Ay
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Wellposedness of the 2D full water wave equation 257

3 Well-posedness in a broader class that includes non-C! interfaces

We are now ready to study the Cauchy problem for the water wave equation
(1.1) in a regime that allows for non-C'! interfaces. We begin with an a-priori
estimate.

3.1 A-priori estimate for water waves with angled crests

Motivated by the question of the interaction of the free interface with a fixed
vertical boundary, in [24], Kinsey and the author studied the water wave equa-
tion (1.1) in a regime that includes non-C' interfaces with angled crests in a
periodic setting, constructed an energy functional and proved an a-priori esti-
mate which does not require a positive lower bound for A similar result

1ZoT

holds for the whole line case. While a similar proof as that in [24] applies to
the whole line, for the sake of completeness, we will provide a slightly dif-
ferent argument in Sect. 4.1. In the first proof in [24], we expanded and then
re-organized the terms to ensure that there is no further cancelations and the
estimates can be closed. Here instead we will rely on the estimates for the
quantities b,/, A1 and their derivatives. !

Let

1 = = 2
E, (1) = / A—1|Z,a/<at+baa/)Da/zt|2da’+ | D Zi ) | 1. BD)

and
2 1 2
E,(t)= / ‘Z 1(0;+b0y /)< Z> do/+'
Zy g1/2
3.2)
Let
2
&(t) = E,(t) + Ex(t) + || Z, a/(t)”Lz + D% Z Zt(t)lle + (t) i
1 2 - ’
+ ‘Z(O, t) (3.3)

Theorem 3.1 (cf. Theorem 2 of [24] for the periodic version) Let Z = Z (-, t),
t € [0, T] be a solution of the system (2.9)—(2.11)—(2.14)—(2.15), satisfying

15 These estimates become available in the work [44]. The same results in the current paper
hold in the periodic setting.
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(Z;, Ziy) € CH([O, T1, HTV27L(R) x H*L(R)), | = 0, 1 for some s > 4.
There is a polynomial C with universal nonnegative coefficients, such that

%Q‘E(I) < C(&()), fortel0,T]. 3.4)

For the sake of completeness we will give a proof of Theorem 3.1 in Sect. 4.

Remark 3.2 It appears that there is an oo - 0 ambiguity in the definition of E,
and E,. This can be resolved by replacing the ambiguous quantities by the
right hand sides of (3.5) and (3.6). The same remark applies to Lemmas 4.1,
4.5, 5.1. We opt for the current version for the clarity of the origins of the
definitions and the more intuitive proofs.'6

By (2.35) and product rules,

Z,a/(at + baa’)Da’ft = (bot’ - Doz’Zl)ft,a/ + (at + baa/)ft,a’
= Ztt,a’ - (Da/zt)Zt,a/» (3.5)

and

1 _ _ _
Z. o (8; + bdy) < Dg,z,> = (by — Dy Z{) D% Z; + (3 + bdy) D2 Z,.

Z
(3.6)
Let
_ 5 —_ y = 2 1 o ,— |
e0) = |Zina @ |2 + | P Ze @) | 12 + \ DLZu®)| , + | 5—DaZ:i()
L Zy e
. . 1 2 1 2
HIZ1w Ol +1DGZiONG + 0w — O+ ’7(0’ n| . (3.7)
o L2 o
It is easy to check that the argument in Sect. 4.1.1 gives
€E@) Scile(r), and  e(r) S c2(€(1)). (3.8)

for some universal polynomials ¢ = ¢y (x) and ¢; = c2(x).

In fact, as was shown in §10 in [24], we have the following characterization,
which is essentially a consequence of (3.8) and Eq. (2.38), of the energy func-

16 The assumptions in Theorems 3.1, 3.4, 3.7 and Proposition 3.3 is consistent with the
completeness of the evolutionary equations (2.35)—(2.36). We mention that to obtain the
wellposed-ness result, Theorem 3.9, we only apply Theorems 3.1, 3.4, 3.7 and Proposition 3.3
to solutions that satisfy in addition that Z ,» € L™,
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tional € in terms of the holomorphic quantities Z— and Z;. Since the proof in
[24] applies to the current setting, we omit the proof

Let
2
E(t) = 1Z1w 12 + IDLZ 012 + ol + H D?
,oz L2 L2
1 2 _ 1 2
+‘ Z . H1/2+ ||Da’Zt(t)||H1/2+ ‘Z(O, 1) 3.9

Proposition 3.3 (A characterization of & via &, cf. §10 of [24]) There are
polynomials C; = C1(x) and Cy = Ca(x), with nonnegative universal coef-
ficients, such that for any solution Z of (2.9)—(2.11)—(2.14)—(2.15), satisfying
the assumption of Theorem 3.1,

E() = C1(&(r)), and €(t) = C2(E(Q)). (3.10)

A corollary of Theorem 3.1 and Proposition 3.3 is the following

Theorem 3.4 (A-priori estimate [24]) Let Z = Z(-,t), t € [0, T'] be a solu-
tion of the system (2.9)—(2.11)—(2.14)—(2.15), satisfying the assumption of
Theorem 3.1. There are constants T = T(£(0)) > 0, C = C(E(0)) > O that
depend only on £(0), and with —T (e), C(e) increasing with respect to e, such
that

sup E@) < C&0) < 0. (3.11)
[0,min{T,T'}]

Remark 3.5 1. Let t be fixed, s > 2, and assume Z;(t) € H® (R). By Proposi-
tion A.7 and Sobolev embeddings, A1(t) — 1 = —Im[Z;, H]Z; v € H*(R);
and by (2.38), Z,(t) € H*(R) is equivalent to 7 — 1€ H'R).

2. Assume that (Zt(t) 70 - 1) e (H‘“/Q(]R) H'(R)), s > 2, or

equivalently (Z,(1), Z; (1)) € (H*TV/2(R), H*(R)). It is easy to check that
E(t) < o0. So in the class where £(f) < oo, it allows for interfaces and
velocities in Sobolev classes; it is clear that in the class where £(f) < oo it
also allows for Z%u = 0, that is, singularities on the interface.

3.1.1 A description of the class £ < oo in &_

We give here an equivalent description of the class £ < oo in the lower half
plane &_.
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Letl < p < o0, and

-y

0=y

y<0 (3.12)

be the Poisson kernel. We know for any holomorphic function G on P_,

sup [|G(x +iy)llLr(R,dx) < 0O
y<0

if and only if there exists g € LP(R) such that G(x +iy) = K, * g(x).
In this case, sup, o [|G(x +iy)|lLr(R.ax) = gllLr. Moreover, if g € L”(R),
1 < p < oo,thenlimy_,o— Ky*g(x) = g(x)in L”(R) andif g € L~NC(R),
then limy .o Ky x g(x) = g(x) forall x € R.

Let Z = Z(-, t) be a solution of (2.9)—(2.11)—(2.15)—(2.14), satisfying the
assumption of Theorem 3.1; let W, U be the holomorphic functions as given
in Sect. 2.5, so

UG'+iy 1) =Ky« Z,(x', 1),

1 / ./ 1 / /
\p—(x +ly,t):Ky/*Z—(x,t), for y' < 0.
/ 7(x/

4

Let 7/ = x’ +iy’. We have

2
1
5(t)=51(t)+‘ 0,0 , (3.13)
Zy
where
N 1 1 NG
E1(0) = sup Uy (- +iy' )| oy + sup | o= [ o= Uz ) ¢ +iy'. 1)
V<0 y<o |l ¥ vy L2(R)
+ 18<1U>(+"z)2
Sup | —=0y | — Uy . iy,
y'<0 {\IJZ/}2 ¢ \IJZ/ < HI/Z(]R)
1 2
+ sup \ITUZ'(‘-H)/J) ) (3.14)
y'<0 z H/2(R)
o[ (s (o)) e
Sl,lp — 0y — 0y _ . 1y,
V<0 Il Wz ) L 2% ) L 2% L2(R)
1 2
+ sup az’( )(-+iy’, 1) :
y'<0 Wy L2(R)
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3.2 A blow-up criteria and a stability inequality

The main objective of this paper is to show the unique solvability of the Cauchy
problem for the water wave equation (1.1) in the class where £ < co. We
will build on the existing result, Theorem 2.3, by mollifying the initial data,
constructing an approximating sequence and passing to the limit. However
the existence time of the solution as given in Theorem 2.3 depends on the
Sobolev norm of the initial data. In order to have an approximating sequence
defined on a time interval that has a uniform positive lower bound, we need a
blow-up criteria; a uniqueness and stability theorem will allow us to prove the
convergence of the sequence, and the uniqueness and stability of the solutions
obtained by this process.
Let the initial data be as given in Sect. 2.3.1.

Theorem 3.6 (A blow-upcriteriavia&) Lets > 4. Assume Z o(0) € L (R),
Z,(0) € HP2R) and Z,,(0) € H*(R). Then there is T > 0, such
that on [0, T, the initial value problem of (2.9)-(2.11)—(2.14)—(2.15) has a
unique solution Z = Z (-, t), satisfying (Z;, Z;;) € cl(o, T1, HTV/27I(R) x
HL(R)) forl =0, 1, and Zy—1e€C(0,T], H*(R)).

Moreover if T* is the supremum over all such times T, then either T* = o0,
or T* < oo, but

sup E(t) = o0 (3.15)
[0,7*)

The proof for Theorem 3.6 will be given in Sect. 4. We now give the unique-
ness and stability theorem.

Let Z = Z(a',1), 3 = 3(c/, t) be solutions of the system (2.9)—(2.11)-
(2.14)—(2.15), with z = z(«, t), 3 = 3(«, t) being their re-parametrizations in
Lagrangian coordinates, and their initial data as given in Sect. 2.3.1; let

Zl" th? Z,O[/7 Zas ha Ala A? ba a, DO(/7 DO{7 y’)7 Qi(t)y E(I)a etc.
be the quantities associated with Z, z as defined in Sects. 2, 3.1, and

31‘7 31‘[’ -3,0[,7 56{7 ii? A’ls A’ 5’ a" Do{/’ ba, 5’%, é(t)! g(t)a etc.
be the corresponding quantities for 3, 3. Define

l=hoh ! (3.16)

sol(a’,0) = o, fora’ € R.
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Theorem 3.7 (Uniqueness and Stability in & < oc0) Assume that Z, 3 are
solutions of Eqs. (2.9)-(2.11)~(2.15)—(2.14), satisfying (Z;, Z:1), (3¢, 3i1) €
cl(o, 11, HSTV/2-m(R) x H*7™(R)) form =0, 1, s > 4. There is a constant
C, depending only on T, supy 7, E(t) and supyg 1) E(1), such that

sup (|| (Z -3 oz) Ol + 1 (Zie = 3u 01) Ol e

0 T
! : 1/2

+ sup (|| G~ DOl + 1DuZs— (B30 ol
[0,7]

H(AL = A1 o DOz + 1ber = bar 0 DO 12 )

=c(1(z -3 ) Ol + 1 (Zie = 3u) Ol

Az -50)el,.)

~ 1
c (n (Dale — (Dur30) O)ll 2 + H (; - T) (©)

)

(3.17)

By precomposing with #, we see that inequality (3.17) effectively gives
control of the differences, z; — 3¢, z;r — 3+ etc, in Lagrangian coordinates.

Notice that in the stability inequality (3.17), we control the H'/2 norms of
the differences of Z; and 3; o/, Z;; and 3, o/, and — and -ol, and the L?

norms of the differences of D,/ Z; and (Da 3ol and A and Al o[, while
the energy functional &(¢), or equivalently £(¢), gives us control of the L2
norms of Z; o, Z;; o and 0y /L and the L>™ and H'/? norms!” of D,/ Z; and

Aj1. Indeed, because the coefﬁc:lent |2 in Eq.(2.24) is solution dependent

|Z
and possibly degenerate, for given solutlons Z =127, t),3 =30,1)of
Egs. (2.24)—(2.25), the sets of zeros in — (t) and 1 -(¢) are different and move

with the solutions, hence one cannot 51mply subtract the two solutions and

perform energy estimates, as is usually done in classical cases. Our approach

is to first get a good understanding of the evolution of the degenerate factor
1

Zo via Eq. (2.35), this allows us to construct a series of model equations that

capture the key degenerate features of the Eq. (2.24) to get some ideas of what
would work. We then tailor the ideas to the specific structure of our equations.
We give the proof for Theorem 3.7 in Sect. 5.

17 See Sects. 4.1.1 and 5.2.3.
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3.3 The wellposedness of the water wave equation (1.1) in £ < oo

Since it can be tricky to define solutions for the interface equation (2.9) when
the interface is allowed to have singularities, we will directly solve the water
wave equation (1.1) via the system (2.31)—(2.33)—(2.32)—(2.29). As we know
from the discussions in Sects. 2.5 and 3.1.1, Eq.(1.1) is equivalent to (2.31)—
(2.33)~(2.32), for (U, W) € C(Z_x [0, THNCY(P_ x (0, T)) with U (-, 1),
W(-, t) holomorphic, prov1ded W (., t) is a Jordan curve; and the energy func-
tionals £ = & + |Z—(0 1)|?. Observe that the energy functional £(¢) does

not give direct control of the lower order norms NZ: () 25 |1 Zs(t)]l 12 and

H T( )—1 H ; in the class where we want to solve the water wave equa-

tion we require in addltlon that Z,(t) € L*(R) and —(t) — 1 € L*(R). This
is consistent with the decay assumption made in Sect. 1.2.

3.3.1 The initial data

Let €2(0) be the initial fluid domain, with the interface > (0) := 9<2(0) being
a Jordan curve that tends to horizontal lines at the infinity, and let W(-, 0) :
Z_ — (0) be the Riemann Mapping such thatlim,_, o, 3, W (z’, 0) = 1. We
know W(-,0) : #_ — £(0) is a homeomorphism. Let Z(c/, 0) := W(a’, 0)
fora’ € R,s0 Z = Z(-,0) : R — X(0) is the parametrization of £(0) in
the Riemann Mapping variable. Let v(-, 0) : 2 (0) — C be the initial velocity
field, and U (7, 0) = V(¥ (Z/, 0), 0). Assume V(-, 0) is holomorphic on €2 (0),
so U(-, 0) is holomorphic on &_. Assume that the energy functional £1(0) for
W, 0),¥(,0)) as given in (3.14) satisty £1(0) < oo. Assume in addition
that!®

1
_— - < 0.
W (-+iy’,0)

co == sup [U(- +iy", 0)|| 2g) + sup
L2(R)

y'<0 y'<0

(3.18)

In light of the discussion in Sect. 2.5 and the uniqueness and stability
Theorem 3.7, we define solutions for the Cauchy problem of the system (2.31)—
(2.33)—(2.32) as follows.

Definition 3.8 Let the data be as given in Sect. 3.3.1, and (U, ¥,P) €
C(Z_ x [0,T]), with (U,¥) € CY(Z_ x (0,T)), limy (U, ¥, —
1)(z,t) = (0,0) and U(-, 1), W(-, t) holomorphic in the lower half plane
ZP_fort € [0, T]. We say (U, ¥, *P) is a solution of the Cauchy problem

18 This is equivalent to | U (- +i0, 0) | 2z + H - < o0, see Sect. 3.1.1.

: H L2(R)
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of the system (2.31)—(2.33)—(2.32), if it satisfies the system (2.31)—(2.33)-
(2.32) on &_ x [0,T], and if there is a sequence Z, = Z,(d,1),
(a/, 1) € R x [0, T], which are solutions of the system (2.9)—(2.11)—(2.15)-
(2.14), satisfying (Z,,.,, ﬁ — 1,0y Z, — 1) € CI([0, T, HSTV/2L(R) x

H*"L(R) x H*"!(R)) for some s > 4,1 = 0, 1, Sup,, sef0.71En () < 00
and sup, ;cr0.71(1 Zn (D)2 + “ﬁ(r) — 1HL2) < o0, and the holomor-

phic extension (U,, ¥,) in &_ of (7,1,;, Zy), with lim,/_ o (U, 0¥, —
1)(Z',t) = (0,0), and the function ‘B, defined by (2.31)-(2.32)—(2.33),
such that lim, . U, = U, lim,,c W, = Y, lim,-sPr = P and
limy,— 0o ﬁ = ﬁ, uniformly on compact subsets of P_x [0, T], and the
data (Z,,(-: 0), Z,, tz (+, 0)) converges in the topology of the right hand side of

the inequality (3.17) to the trace (W (- 4 i0, 0), U(-+i0,0)).
Let £(0) = &1(0) + | 7—(0, 0)2.

Theorem 3.9 (Local wellposedness in the £ < oo regime) 1. There exists
T > 0, depending only on £(0), such that on [0, T, the initial value problem
of the system (2.31)—(2.33)—(2.32) has a unique solution (U, \V, ), with the
properties that U(-, 1), V(1) are holomorphic on &_ for each fixed t €
[0,T], U, V¥, \p , P are continuous onZ_x[0,T], U, W, B are continuous

differentiable on Z_ x [0, T}, supjo. 71 €1(t) < 0o and

1
sup sup (IIU(' +iy, Dllew) + l=————= — 2w > < oo.
[0,T]y'<0 ® W (- +iy', 1) ®

(3.19)

The solution (U, \V, *B) gives rise to a solution (v, P) = (U o vl Po vl
of the water wave equation (1.1) so long as X(t) = {Z = V(a',1) | &' € R}
is a Jordan curve.

2 If in addition that the initial interface is chord—arc, that is, Z o (-, 0) €
(R) and there is 0 < § < 1, such that

Ioc

/S/
5f 1 Zo(y.0)|dy <|Z(',0) — Z(B',0)]
a/
/S/
< f |1Zo(y,0)|dy, YV—oo<da <p <oo.
a/

Then there is T > 0,T) > 0, T, T, depend only on £(0), such that on
[0, min{T, %}], the initial value problem of the water wave equation (1.1)
has a unique solution, satisfying £1(t) < oo and (3.19), and the interface
Z = Z(-, t) remains chord—arc.
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We prove Theorem 3.9 in Sect. 6.

4 The proof of Theorem 3.1 and Theorem 3.6

We need the following basic inequalities in the proof of Theorems 3.1 and 3.6.
The basic energy inequality in Lemma 4.1 has already appeared in [40]. We
give a proof nevertheless.

Lemma 4.1 (Basic energy inequality I, cf. [40], lemma 4.1) Assume ® =
O, 1), a € R, t € [0,T) is smooth, decays fast at the spatial infinity,
satisfying (I — H)® = 0 and

(0 4 b3y)?O 4+ i A0y 0 = Gg. 4.1)
Let
Eo(1) —/—|(8t+b8 N0 da’ +l/(8a/®)@da/. (4.2)
Then
%E@(t) < H% oh™! HLOO Eo(t) + 2Ee ()2 (/ % do/>1/2
(4.3)
Remark 4.2 By ® = HO and (A.2),
/(a /0)0 do’ —/(18 HO)Oda' = (|07, > (4.4)

Proof By a change of the variables in (4.1), we have
(02 4iad,)(©oh) =Geoh
where ahy, = Ao h; and in (4.2),
Eo(t) = / £|a,(® oh)|>da + / i94(0 0 h)® o hda.
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So

diE@(z) - /2Re {183(@) o h)3,(® oh)} — 213, (© 0 )P
t a a

+2Re{i/8a(®oh)3,((90h)dot} 4.5)
1 —_— ay 2
=2Re [ ~Goohdy(@chyda — | 23, o h)Pda,
a a

where we used integration by parts in the first step. Changing back to the
Riemann mapping variable, applying Cauchy—Schwarz inequality and (4.4)
yields (4.3). |

We also need the following simple energy inequality.

Lemma 4.3 (Basic energy inequality II) Assume ® = ®(d’, 1) is smooth and
decays fast at the spatial infinity. And assume

(0 +b0y)® = gg. (4.6)
Then
d 2 2
o @@ =2lgel2 1O@I2 + 1be (DL 1O@72  (4.7)

Proof We have, upon changing variables,

/ O/, 0> da’ = / ©(h(a, 1), D hg da,
o)
d / 2 1 @ ~ 2
o O, )] da" = | 2Red;(®oh)®oh hy + |® o h|“hyy da
= /ZRe ((8;4b0,)O) O, 1) +by |O (', 1)|* dat’;
(4.8)
here in the second step we changed back to the Riemann mapping variable, and

used the fact that %” = by oh.Inequality (4.7) follows from Cauchy—Schwarz
inequality. |

Let

P = (0 + bdy)> + i Ady. (4.9)
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We need two more basic inequalities.

Lemma 4.4 (Basic inequality III) Assume that ® = ®(d/, t) is smooth and
decays fast at the spatial infinity, and assume ® = H®. Then

(I = H) (PO) ()2 = [18e (87 + b))l L 1O@) ] 12
+ 1Bl 1@ + 53O 12 + Iber 700 1O @) 12 + | Agr I 1012 . (4.10)

Proof Because ® = H®, we have
(I —H)(PO®) =[P, H]©;
and by (B.22),

[P, H]O® = [(3; + bdy)b, H] 0, ® + 2 [b, H] 9y (0; 4+ bOy) O
—[b,b; 9,01+ [i A, H] 0, 0.

Inequality (4.10) follows from (A.14). O

Lemma 4.5 (Basic inequality IV) Assume f is smooth and decays fast at the
spatial infinity. Then

1
Zo|P
H “ |: Z,o{’i| f L2
S @ +b3y)(boy — Dy Z) Lo | f1I 12
+1(bar = Dar Z) 70 I fll 12 + (bor — Doy Zo) |l o 1137 + b0r) £ 11 2

(NAIVER 4.11)

LOO

+ 1Al Lo O

Z Z

Proof Lemma 4.5 is straightforward from the commutator relation (B.25),
identities (B.26), (B.27) and the definition A} := A ‘Z,a/ 2. |

Let Z = Z(-,t) be a solution of the system (2.9)—(2.11)-(2.14)—(2.15),
satisfying the assumption of Theorem 3.1. By (2.19) and (B.15), we have

,Pit,oc’ = _(at + baa/)(ba’aa/ft) - ba/a(x’itt - iAa’aa’Zt
'y (ﬂ oh~N(Z, — i)> 4.12)
a

Equation (4.12) is our base equation in the proof of Theorems 3.1 and 3.6.
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4.1 The proof of Theorem 3.1

We begin with computing a few evolutionary equations. We have

1
PZi o (4.13)

/
, 0

_ 1 _
PDyZ; = [Ps _] Zio +
Zy

DL PZ,.

P(Lp2z)=|p. | 027 + L [p.02]Z, +
Z!a/ o t 5 Z’a/ a t Z’Ol/ ) o t Z’a/

(4.14)
And, by the commutator identity (B.12) and the fact that (9; + bdNZ: = Zy,
O + b0 Zto = Zitor — ba Zy o (4.15)

and by (2.35) and (B.12)

(0r + b0y) 0y ——

4
,a

1
= O (9 + b0ay) —— + [(9) + bdar). O]

’
Ped &

1
= <8a/ 7 > (b — DyZy) + Dy (byy — Doy Zy) — by 0y

/
, O

I

N

1
=—DyZ, <3a/ ) 4+ Dy (byr — Dy Zy) . (4.16)

o
We know from the definition of E, (¢), E;(¢), and A := A|Z 2,

E.(0)i=Ep 7 (D). and Ept):=E 1 o7 (),

where Eg (t) is the basic energy as defined in (4.2). Notice that the quantities
Dy Z; and D ,Z, are holomorphic. So the energy functional

€)= Ep Z(t)+E Lpz O+ Zrw 72

2 2

+HIDLZ D3, +

0, 1) 4.17)

|

L? Zy

Our goal is to show that there is a universal polynomial C = C(x), such that
d
E(’E(I) < C(&(1)). (4.18)
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We begin with a list of quantities controlled by &(¢).
4.1.1 Quantities controlled by &(t)

It is clear that &(¢) controls the following quantities:

— 1 —
|02 e | 703

1
Zy

— )=
o N Zewli2s 11D Zell 2,
172

Oy

0,0)]. (4.19)

L2 , ‘ Z,Ol/
By (A.18) and (2.15),

1<An,  and |Aillpe S1+1Zwli 1+E (420)

We also have, by (2.22) and (A.18), that

lber = 2Re Doy Zi |l 1o S || O 1Zsallz2 < €. (4.21)

L2

/
, O

We now estimate || D, Z;||; . We have, by the fundamental Theorem of cal-
culus,

(D, Z/)" - /(Dﬁ/ )d,B—Z/ / Do Z13q Doy Zy do'd
=2 / f 9o Z; DL Zdo'dp’, (4.22)

where in the last equality, we moved % from the first to the second factor.
,a

So for any y’ € R,

1
‘(DV/ZI(V/» 1) —/0 (DpZi(B, 1) dB'| <20 Z1 ol 21 DY Ze | 2 < 2€.

(4.23)

Now by the fundamental Theorem of calculus and Cauchy—Schwarz inequality
we have, for 8’ € [0, 1],
1
[P
0

do’

/

IA

Oy

; (4.24)
L2

o

L
Z’ﬁ’ ’

! /

PLod ,a
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SO

2

2 2
S 1Zel;2

L°[0,1]

2
2 2 2
> 1Zilly2 S €.
L2

! =1\2
[ 0oz ap

<<10t
< Z(,)

4
o

!/
,

_l’_

Oy ——
Lo

Combining the above argument, we get

Doy Zill oo = | Do Zi || ;o0 S C(€). (4.25)
This together with (4.21) gives us
Ibgrll Lo S C(&). (4.26)

We now explore the remaining terms in E, () and E, (7). We know
1 = = 12
Eq (1) = f A—1|z,a/(a, +b3y) Doy Zi|* do + | Do Zi || 1o - (4.27)

Now by (2.35), product rules and (4.15), !°

Z,a’(at + baoz’)Da’?t = (ba’ - Da/Zt)?z,a’ + (at + baa’)ft,a/
=Zyo — Dy Zt)Zt o (4.28)

SO

1Zsrall 12 < 1D Zill ool Zs o | 12 + 1 2. (s + Do) Do Z1 || 12
<D Zill2o N1 Ze.o I 12 + (1A1 ] LoEg)/? < C(€).  (4.29)

Similarly,

2

D2Z, :

172
(4.30)

!

2
do' + H

1 1 —
E,(t) = / A_l )Z,a/@, + bdy) (Z DéZ,)
o

o

19 One can also compute by changing to the Lagrangian coordinate and using the commutator
relation (B.1).
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and by product rule and (2.35),

1 — — —
Z o (3 + b ( Do%/z,) = (bo' = Dot Z) Dy Z1 + (3 + bdy) DY Zs;

Z
(4.31)
o)
@+ b0.,)D2 7] .-
1 _
< H Z o (0 + bda) ( Dﬁ/zt)
Zo .2
by — Do Zi 12011 D2 Z4 |l 12 S C(€). (4.32)
Now from
2 1 1 5
Da/Zf = 801/ Z7a, DOZ/Z[ + Z—zalaa,zz, (433)
)= 1 — | -
Da/Zl» = aa/aDa/Z[ + Z_Za/aa/Zt, (4.34)
we have
2 1 25
1Dy Zill 2 < 2|0 Do ZillLoe + 1Dy Zs 12 S C(E).
Zao ;2
(4.35)
Commuting d; + bd, with Di/ by (B.7), we get
D Zi = (3 + bdy) Dy Zy + 2(Der Z) DY Zi + (D3 Z1) Doy Zs'
(4.36)
by (4.19), (4.25), (4.35) and (4.32), we have
ID2 Zill 2 < C (). (4.37)

From (4.37) and (4.29), we can work through the same argument as from (4.22)
to (4.25) and get

1Do ZisllLe = | Dot Zusll 1o S C(€); (4.38)
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and then by a similar calculation as in (4.33)—(4.34) and (4.37), (4.38),
1D Zitll 2 < C(€). (4.39)
Additionally, by (4.15),

1@ + 53N Zr o N2 < N Zuw 2 4+ 16l Zy o ll 2 S C(E).
(4.40)

Sum up the estimates from (4.19) through (4.40), we have that the following
quantities are controlled by €:

_ 1 _ _ _
H Dy Z, ”1‘11/2 s H ZDZ/Z’ i ’ ”Zr,a’”sz ||D§'Zt 2.
) ! ‘ ! O, 1)
* Z,a’ L2 ' Z,a’ ' ' (441)

A1z, o lize, 1D Zellzoe, Do Zillzoe, N8 + b8u)Zs ol 2
1 Zitallp2e IDEZill2, I1D2 Zull2, 113 + b8e) D2 Z Nl 2, IDEZe) 12

We will use Lemmas 4.1-4.5 to do estimates. Hence we need to control
the quantities that appear on the right hand sides of the inequalities in these
Lemmas.

4.1.2 Controlling ||% o h™"| ,  and [[(3; 4 bdg) A1l o0
By (2.21),
O + bdy)A
Y o opl = @ + bda) Ay 1 by —2Re Dy Z;.
a A1

We have controlled ||by/| L and || Dy Z;|| L in Sect. 4.1.1. We are left with
the quantity [|(3; + bdg) A1 || L. By (2.23),

(0 + bdy)A1 = —Im ([Zzz, H] 7;,0:/ + [Z;, H] 30[’7” —[Z:, b; 7:,0/]) .
Applying (A.18) to the first two terms and (A.22) to the last we get

10 + 53N Atll oo S 1 Zurar 1201 Z1a 22 + bl L1 Zs 172 S C();
(4.42)
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consequently

a —
Zon™!| | = 1@+ b0 A~ + byl + 21 Do Zils S C(©).

(4.43)
4.1.3 Controlling || Ay || .~ and H S .
By (2.9), we have
74
A= tl (4.44)
Z
Differentiating with respect to «’ yields
. . 1
iAy = (Ziy + D)0 —— + Do Zur. (4.45)

, o

Apply I — H to both sides of the equation and use the fact that Ba/% =

H (80/%) to rewrite the first term on the right hand side as a commutator,
we get

1
i(1 = W) Ay = [Zyp, H] b —— + (I = H) D Zy. (4.46)

/
, 0

Notice that A is purely real, so Im (i(/ — H)Ay) = Ay, and |Ay| <
| i(I —H).Ay) |. Therefore,

1
|Aa’| = [Ztta H] aa’ 7

o

+2|De Zis| + |(I + H) Doy Zis|. - (4.47)

!/

We estimate the first term by (A.18),

1
” [th, H] aoe’ 7

/
, o

1
e

,o

S ||Zzt,oe’||L2
LOO

’

L2

’

and the second term has been controlled in Sect. 4.1.1. We are left with the
third term, (I + H) Dy Z;;. We rewrite it by commuting out %:

1
(I +H)Dy Ziy = Doy (I +H)Z; — |:Z_’ H] Zito's (4.48)
af
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where we can estimate the second term by (A.18). For the first term, we know
(I + H)Z; = 0 because (I — H)Z; = 0 and H is purely imaginary; and
Ztl - (3[ + baa/)Zt. SO

I +H)Zy = —[0; + bdy, H1Z; = —[b, HIZ; o . (4.49)

We further rewrite it by (2.14):

V4 Z Z 4 Z
b=PA< I)HP’H L) == 4P| == - =), @50
Z,Cl/ Z,Ol/ Z,Ol/ Z,a{/ Z’a/

Prop A.1, the fact that (/ +H)Z; ,» =0 and (I + H)Dy Z, = 0. We have

V4 _ =
(I +H)Zy = — |:7—t, Hj| Ziw = — [Zt, H] Dy Z;. 4.51)
af
We have reduced the task of estimating D, (I + H)Z;; to estimating
Dy [Z;, H] Dy Z;. We compute, for general functions f and g,
L [ (f@)— f(B)

o[ f, H]lg = foHg — ; (a — 131)2

g(BHdp (4.52)
therefore

1
Dy [f, H]lg = Z—fang
o

o (F@ =) (5 - 7)

mi (o — ,3’)2 g(B)dp’
1 A / 1
i / (f((o;/) - ﬁjj)(zﬁ ) zﬂ,g(ﬁ/) dp’. (4.53)

Now using (4.51), (4.53), and the fact that (I + H)Dy Z, = 0, we have
= |2
Dy (I +H)Zy = |Da’Zl|
@) =Zp)) (75 - 75)

E ((x/ — IB/)Z D'B/Zt dﬂ
1 [ (Zia)=Zu(B) 1 = ar
+E @ — ) Zs DgZ;df’,
(4.54)
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where we rewrite the third term further

1 [ (Zi@)=Z(B)) 1

DgZ,dp’
wi @ —pr  zy rhP
1 Z(a)— Z, (B 1 = 1 =
L[ GO ZB) (1 a1
i (o — B)? Z g Zw
1 —
+——DuZi Ziu'; (4.55)

,o

here we simplified the second term on the right hand side by the fact that
Z, =HZ,.

We can now estimate || Dy (I + H)Z;; || <. We apply (A.23) to the second
term on the right side of (4.54); for the third term we use (4.55), and apply
(A.23) to the first term on the right hand side of (4.55), and notice that

1 —— 1 — —
By DyZ,) =0y | =— | Dy Z: + Dy Dy Z;: (4.56)
Zo z

!
.

we have
| Do (I +E) Zis e S || DarZe |5

+

12 [P Zit] o + | 20w

L? H Dng HLZ :

1
aalz HLZ ” Zl,()l, }
(4.57)

Sum up the calculations from (4.47) through (4.57), and use the estimates
in Sect. 4.1.1, we conclude

Mgl S C(€). (4.58)

Observe that the same argument also gives, by taking the real parts in (4.46),

IHAy |10 S C(€). (4.59)
Now from (4.45) and (2.38),
iA 1
— 0y =iAy — Dy Zy; 4.60
7.7, 1 (4.60)

Because A; > 1, we have

! 9
Zo  Zy

< I Awlipe + 1Do Ziglle S C(€).  (4.61)
LOO
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4.1.4 Controlling

B (3 + D)7 ”L2 and H (0 + b7~ |

We begin with (4.16), and rewrite the second term on the right hand side to
get

!

1 1
(0 + baa’)aol/z_ = —Du Z ((%/Z

Lo o

) + Dy (byy — Doy Zy)

1
= —Da/Zt (805, 7

,a

) 4+ Dy (byy —2Re Dy Zy) + Dy Dy Z;.

/

(4.62)

We control the first and third terms by

1
H Dy Z; <3a/Z ) < [1DoZill oo |0 S, C(€¢) (4.63)
o /2 a 2
and
|De Do Zi||,> = | DL Z:| > S C (). (4.64)

We are left with the term D, (b — 2Re Dy Z;). We begin with (2.22):

!’ !

1
by —2Re Dy Z; = Re (|:Z

o

1
) H] Zl,()l/ + [Zl9 H] aa’ 7

o

) . (4.65)

Notice that the right hand side consists of [%, H] Zios [Z;, H] aa/z% and
their complex conjugates. We use (4.53) to cémpute ’

Dy Z;

!

1 1
D(x’ |:Z,a’ s H:| Zt,oe/ = —30,/ 7

o4

Z,a/ Z,ﬂ/ , Z,a/ Z,ﬂ/
—— | o ZupdB ——/W

/
i (o — /)2 i Dy zidp-

(4.66)

Applying (A.21) to the second term and (A.12) to the third term yields
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Similarly
1 1 1
Dy [Z;, H] aa/z = Zt,a/zaa’ Z,Ol/
L@@ -ze) (A -7)
- “ g dp’
i (o — p)? Zg
1 Z (&)= Z,(B)) 1 1
L (Z:(@) = Z(B)) B, (468)
Tl (O(/ — ,3')2 Z’/g/ Z’Ig/

and applying (A.21) to the second term and (A.12) to the third term yields

The estimate of the complex conjugate terms is similar, we omit. This con-
cludes, with an application of the results in Sects. 4.1.1 and 4.1.3, that

1 1
Zo " Zg

1

1
Dy [Z, H] 0y 02t Ziw

Zy

L2

~

2
|| Zl,a’
! Lz

< |ay .
V4 Lo

(4.69)

L? N

Dy (byy —2Re Dy Zy)|l 12 S C(€), (4.70)
therefore
1
“ (0 + b0y) 0y < C(€@). 4.71)
Z o |12
Now by
1 1 1
0o (0 + b0y') Za = (0 + b3a’)3a/a + ba’aa’a, 4.72)
we also have
1
0y (0; + boy’) < C(@). (4.73)
Za 2
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4.1.5 Controlling ||0, (0; + b3y )b|| oo, ||(0r + b0y )by || oo and
” (8t + baa/)Da/Zl ||L°°

We apply (B.19) to (4.65) and get

(0 + bdy) (byr —2Re Dy Z;)

1 1 1
=Re <[(8t + bdy’) Z o s Hi| Zio + |:Z,o/ , Hi| le,ot’ - |:Z,a’ . b; Zt,a’:|>

1 1 1
+Re ([le! H] 0yr 5— + [Z;, H] 94 (3; + baa’)? - |:Zt7 b; 0y 7 i|> ;

Z,o(’ a a
4.74)
using (A.18), (A.22) and results from previous subsections we obtain
”(at + baoﬂ) (ba/ —2Re D(x’Zt)”LOO
1
< 8 (B + D) —— H |Zo | ;2
Zo |2
| | (4.75)
+ || 0w 7 |Ztor | 2 + 3a'Z— 1bar Lo Zs o Il 2
o L2 o L2
S C(@).

We now compute (9; + bd,) Dy Z;. By (B.6),
(0 + b30) Doy Zt = Doy Zis — (D Z1)* . (4.76)
So by the estimates in Sect. 4.1.1, we have

13 + b0y) Do Zt || o < Doy Zitll oo + |1 Dev Zill 700 S C(€). (4.77)

This combine with (4.75) yields
10 + by )bo |l oo S C(E). (4.78)
From 8, (3; + bdy)b = (8; + bdy )by + (by)?,

19 (3 + b0u )bl oo < 101 + bdo)bar [l oo + llbar 70 S C(E).
(4.79)

We are now ready to estimate % ¢.
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27 12 d 1
dr HDa’Z’HLz’ dr 80‘/Z 12 and
d 1
417, z)(
d |7 d | n27 |12 d 1
We use Lemma 4.3 to control ; ‘ v H D, Z; H 12 and - aa/ﬁ s
Notice that when we substitute
1

®=Z4, ©=D3Z, and O= a""z

/
o

in (4.7), all the terms on the right hand sides are already controlled in
Sects. 4.1.1 and 4.1.4. So we have

d 2

dt

HD2 ZtHLz + = < C(®).  (4.80)

1
8 R
Zyo

L2

2
To estimate % ‘%(0, t)‘ , we start with (2.35) and compute

2
=2Re 0y + by
(Z’a(t ) ,a’)

2
(2by — 2Re Dy Zy) - 4.81)

(0 + Dy

!
L,

B 'Z,a/

Recall we chose the Riemann mapping so that (0, ) = 0 for all 7. So h; o
h=1(0,1) = b(0,1) = 0 and

1 1 2
— =|=—(0,1)] @by (0,1) —2Re Dy Z;(0,1)) < C(€).
|z 700 @bw(0.0)=2Re DyZ,(0.1)) £ C(®)
(4.82)
We use Lemma 4.1 to estimate the two main terms E,(?) and 4 T Eb(0).

4.1.7 Controlling %Ea(t)

We begin with %Ea (t). Apply Lemma 4.1 to ® = Dy Z; we get

12
D, Z,|
*IH a(t)+2Ea(t)1/2(/|P—tda’> .

(4.83)

d as
—E, (1) <
dt ()_)a
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By (4.43), we know the first term is controlled by C(€&). We need to estimate
= 1/2
the factor < f % da’ ) in the second term. By (4.13):

_ 1 1= | R
PDa/Zt p— [’P, Z] Z[va/ + Z’a, Pzt’a/’
(4.84)
and we have
I [P’ %] 7t,(x’|2 |Z,(x’ I:Pa %] 7t,a’|2
/ = do' = / < do’
A Aq
1 7=
=< Z,oz’ [Pv _] Z[,Ol, S C(e)v

Z 12

(4.85)

here in the last step we uged (4.11), notice that all the terms on the right hand
side of (4.11) with f = Z, , are controlled in Sects. 4.1.1-4.1.5. We are left

1 Y2 2
T,a’ PZm/l

|
with the term [ —&———da’. Because A| > 1,

17 PZywl? _
/ﬂTd“/E/mZ’*“" do'.
By the base Eq. (4.12),

PZio = — 0 + bdy) (bo 0oy Z1) — bo 0o Z1y
_ a _
i A0y 7, + By (Et oh~N(Z, — i)) : (4.86)

we expand the last term by product rules,
a — a — a —
b (L0 h™ @i = 1)) = = oh™ Zyor + 8 (L0 h™) Zir = ).
a a a
(4.87)

It is clear that the first three terms in (4.86) are controlled by &, by the results
of Sects. 4.1.1-4.1.5:

| = (B + b3y (b e Z1) — by dey Zts — i Ay e Zs || 12 S C(E),
(4.88)
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and the first term in (4.87) satisfies

We are left with one last term 0,/ (%f o h_l) (Z,; — i) in (4.86). We write

a; =
—oh 1Ztt,o/
a L?

g

a _ _
Lon| NZuwl SC@©. @89

_ a _
PZy o = O (Et o h_1> Zuy—i)+R (4.90)

where R = —(0; +b0y) (ba 00 Z1) — ba 8 Zit — i Aqr O Zi + 2L 0 h ™ Zyy 0.
We want to take advantage of the fact that 9, (% ) h_l) is purely real; notice
that we have control of ||(I — H)PZ’M ;2 and ||R||;2, by Lemma 4.4 and

Sect. 4.1.1-4.1.5, and by (4.88) and (4.89).
Apply (I — H) to both sides of Eq.(4.90), we get
(I - H)Pztva’
a _ — .
= (I —H) (ao,/ (Et oh 1) (Z,s — z)) + (I —HR
_ a _ a
= (Zy—i)(I—H)d, (—’ o h—1>+[z,,, H] 8, (—’ ° h_l)—l—(l “HR
a a
4.91)

where we commuted Z;; —i out in the second step. Now because 0,/ (%’ o h_l)
is purely real,

‘(Z, —i)dy <% oh_l)‘ < ‘(Z, — (I — H)dy (%’ oh_l) . (492)

so by (4.91),

‘(Z, — i)y (% o h*l)‘ < | ~H)PZ,

+|Zo B o (2 0n7) |+ 10 ~ BRI,
(4.93)

We estimate the L2 norm of the first term by Lemma 4.4, the second term by
(A.15), and the third term by (4.88) and (4.89). We obtain

| @i =iroe (Fon™)| | S C@+|Zuwl,a | Fon™]
+C(@) < C(6). (4.94)
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This concludes
d
EEa(t) S C(E@)). (4.95)

_ We record here the following estimate that will be used later. By (4.94),
Zy —i=—24L and A; > 1, we have

Zy
|2 (G o)l

4.1.8 Controlling LE, (1)

< C(©). (4.96)

Taking © =
— 1/2
d —1 12 P (ﬁDi’ZJ ? / /
TE(0) < |, B+ 202 | [ 2
(4.97)

By (4.43), the first term is controlled by €. We consider the second term. We
know

P lDZZ P ! D22+1
Z o O VS U

and because A| > 1,

P-D2Z,?
/%da < /‘ [ , Zla,} D27,
+/ [P. D] Z do/+/ D2 PZ|" do.
(4.99)
Now by Lemma 4.5 and the results of Sects. 4.1.1-4.1.5, the first term on the

right hand side of (4.99) is controlled by €. For the second term, we compute,
using (B.10),

[P.D2]Z 2PZ,,

(4.98)

2
do’

[73 D2] = —4(Dy Zi) D2 Zy + 6(Do Z)2 D2, Z, — (D2 Zyy) Do Z:

+6(Dy Z) (DY Z) Dy Zt — 2(D2 Z) Dy Ztr — 4(Dyy Z4) DY Zsr.
(4.100)
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By results in Sect. 4.1.1, we have
I[P, D3] Zil2 S C(@). (4.101)
We are left with the term f ‘Di,P?t !2 do’, where
_ _ _ a _
PZi=Zuyt +iAZ; o = Et oh N (Z, —1i).
We expand Di,PZr by product rules,
— a _
Di/PZt = Dix <Ez o h_1> (Ziy — 1)
a — a _
42D, (-’ o h—‘) Dy Z: + (—’ o h_1> D% Z,;.
a a
(4.102)

We know how to handle the second and third terms, thanks to the work in
the previous subsections. We want to use the same idea as in the previous
subsection to control the first term, however D, is not purely real, so we go

through the following slightly evoluted process.
First, we have

a — a, —
H2Da/ (—t o /’l_1> DO[/ZU + (_t o ]’l_1> D(%/Zt,
a a

_ a _
S NDuZulli | Do (T on7")

L2
a _ _
“on IHLOO |D2Z0],. S C(®);

~

|

and by Lemma 4.4 and (4.101),

|1 =)D PZ||,» < | —HYPDLZ|,,
+ | =1 [Dy. P]Zi||,2 S C(@).

~

So

| —m(p2 (% oh™) Zu—1)) HL2 <c(e).

L2

(4.103)

(4.104)

(4.105)
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This gives, from

1

(I —H) (Dg, (% o h‘l) (Z - i))

_ (72—;")(1 —H) (aa,Da/ (%’ ° h”))

| Bt (aep (% o))

(4.106)

and (A.14) that

H (Z’—_i)(] — H) (80,/Dar <%’ ° h—1>)

<C(®).  (4.107)
Zy

L2

Now we move the factor % back into (I — H) to get

(7”—_”(1 —H) (aa/Da, (% ° h—l))

|Z,oz/| B
S = [ R
+ (I —H) (%%Dw (% o h‘l)) ;

and observe that

T — i T —i |
(Zy l)aa’Da’ (ﬂ ohil) _ (Zu l)aa/ ( Ay <& oh71)>
|Z,c/| a Z,a’ |Z,a’| a

(7” —1i) 1 ay —1 (th — 1) 1 ay —1
8/—3r—h)— D 3/—h).
Iz <Z> o (e Zo iz o (e

(4.109)

We know the L2 norms of the last two terms on the right hand side of (4.109)
are controlled by C(€); and by (A.14), the L? norm of the commutator in
(4.108) is also controlled by C (&), therefore by (4.108), (4.107), (4.109),

_ (7tt_i) 1 &O -1
! H)< Za a""(|Z,o,/|a"“(a : >>)

< C(e).

L2
(4.110)
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Now we commute out the factor % from (/ — H) to get

_ (7tt_i) 1 20 -1
(I H)( o a“’<|zﬂ/|a°‘<a h )))

_(7tt_i) B 1 , 20 1
=0 (1 - H)a, <—|z,o,/|a“< h )) @.111)

Zy a
Zy— i 1
4| ZeD gy, (—ao, <2oh—1>)
Z,a/ |Z,a/| a

Observe that the quantity the operator (I — H) acts on in the first term on
the right hand side of (4.111) is purely real. Applying (A.14) again to the
commutator in (4.111) and using (4.110) and the fact that | f| < |(/ — H) f|
for f real, we obtain

Zy—i 1
( it l)aa, < aa/ (& ° h—]))
Z,Ol/ |Z,0l/| a 12
(711 —1i) 1 ar -1
T _H)ay —a,(— h )
Z,a’ ( ) O <|Z,a’| o'\ ©

Applying (4.112) to (4.109) yields,

<

S C(€). (4.112)

L2

o2 (o) 0], < @

and by (4.103), (4.102),
|D2PZi|,. S C(@). (4.113)

This finishes the proof of

d

EEb(t) < C(E(1)). 4.114)
Sum up the results in Sect. 4.1.6-4.1.8, we obtain

d
E@(z‘) < C(E(1)). (4.115)
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4.2 The proof of Theorem 3.6

Assume that the initial data satisfies the assumption of Theorem 3.6, we know
by (2.17), Proposition A.7 and Sobolev embedding, that ZL,(O) —1,Z 4(0)—

1 € H*(R), with

1
HZ O < 1ZuO@llx +1 < 1 Zu @)l + 1 < o0
o L
1 4.116
HZ O —1] < CUAZO g 1Ze O o) : (4.116)
o H*

1 Z.w ) = 1] o S CUZOlas 1 Z2e (O] 115 -

From Theorem 2.3 and Proposition 3.3, we know to prove the blow-up criteria,
Theorem 3.6, it suffices to show that for any solution of (2.9)—(2.11)—(2.14)—
(2.15), satisfying the regularity properties in Theorem 3.6, and for any 7 > 0,

sup €(1) < oo implies  sup (| Z,o ()l + 1 Ze(0) | 3172
[0,70) [0,70)

HZe )l gg3) < o0.

We begin with the lower order norms. We first show that, as a consequence
of Eq.(2.35),if || Z o/ (0) || < oo, then

sup || Z o/ (t)][pe < 00 aslongas sup €(r) <oo. (4.117)
[0,T0) [0,T0)

Solving Eq.(2.35) we get, because d; + bd, = U{lat Up,

1 (Ol, O)efé(ba/oh(a,‘[)—DaZ;(O{,‘[))d‘L’; (4118)

1
(h(ee, 1), 1) = Z

o o

so by (4.41) of Sect. 4.1.1,

T
Sup | Z.o ()] oo = | Z.at O o €0 0o =P 10 lioe
[0,T]
S Zw (O] o €T SUP0TI CEWD), 4.119)
hence (4.117) holds. Notice that from (4.118), we also have

! <

~

LOO

eT Sllp[(),T] C(@(l)) (4120)
Loo©

©0)

sup
[0,7]

()

1
Zy

!/
o
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Now by Lemma 4.3,

d
E”Zt(t)”iz SNZu O 21 Ze 2 + b Ol 1 Ze N 72, (4121)

d
Ellzn(t)lliz SN Zus O 21 Zes Ol 12 + ber Dl 2o 1 Zus (011725 (4.122)

and from Egs. (2.37) and (2.38),

— — a — iAy /a —_—
Zyt = (Zy — i) (—toh_l ‘f‘Da/Zz) = <—t°h_l +Da/zt>7
a o Na
(4.123)
SO
— 1 az ]
1Za Ol SOl |—©| (|2 o o] +1Deziol;2).
Z’a/ L.oo a L2

(4.124)

We want to show that H % oh~ (1) H 12 and || Dy Z;(t)||; 2 can be controlled by
€ and the initial data; by (2.21), it suffices to control || by (t) || 1 2, | Do Z: ()|l ;2
and || (9; + b3 ) A1 (1)l 2.

Applying Holder’s inequality and (A.15) to (2.22) yields

1
Zy

O NZne®ll2,  (4.125)

1bo (Dl 2 + |1 Do Ze (Dl 12 S H
L(X‘/

and applying Holder’s inequality, (A.15), (A.21) to (2.23) gives

10 + b3a) A1l 2 S N Zet Ol oo 1 Ze e O 12 + 1bar Ol 1211 Zs e (11725
(4.126)

so by (2.21), using the fact (2.38), we have

0y _
S on ‘H WA
a L2

’

S <||A1“L°° + 1) 1Zs.all 22+ 1ol 201 Z1 1172
LOO

(4.127)

,o
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This gives, by further applying the estimates (4.41) in Sect. 4.1.1 and (4.120),
that fort € [0, T'],

2

Lw)

2
) . (4.128)

)

(4.129)

Q)

1Zi1: (@)1l 2 S C(T, sup &(2)) (l + H 7

1
[0,7] o

<
S C(T, sup €(2)) (1 + H Z

1
0)
[0,7] o

Lo©

We now apply Gronwall’s inequality to (4.122). This yields

1
Z

sup |Z; (Dll2 S C (T, sup E(1), | Z:(0)]l 2, 0)
] ]

(0.7 [0,7

We then apply Gronwall’s inequality to (4.121), using (4.129). We obtain

)

(4.130)

1
Zy

(0)

sup |1Z (D2 S C (T, sup €(1), | Z: (0)lI 2, 1 Z1: (0)]l 2,
[0.7] [0.7]

Therefore the lower order norm supyg 71([ Z¢ (£) 11 12 + 1| Z1: (2) || 2) is controlled
by suppo, 71 €(¢), the L* norm of (Z,(0), Zy;(0)) and the L> norm of .2
We are left with proving ’

sup €(r) < oo implies  sup (92 Z: ()l gij2 + 1182 Zee (1)l 12) < 00.
[0,T0) [0,To)
(4.131)

We do so via two stronger results, Propositions 4.6 and 4.7.
Let

Ex(t) 1 = Epy iz (O + 105 Zo (1)1 72

-—/1 Z o (3 + bdy) 1a’<7
= Al ,a'\Ut o Z,a’ o &1

1 _ 2
3 Z, (1)
o

2
/
do’ (4132)

+ 105 Z ()17

+
“ VA 012

20 H #@ HLoo is controlled by the H! norm of Z::(0), see (4.116).

@ Springer



Wellposedness of the 2D full water wave equation 289

where k = 2, 3. We have

Proposition 4.6 There exists a polynomial p; = p1(x) with universal coeffi-
cients such that

d
EEz(f) < p1 (€(1)) E2(2). (4.133)

Proposition 4.7 There exists a polynomial py = p>(x, y, z) with universal
coefficients such that

d 1
B30 = p2 (Qf(t),Ez(t), 75O >(E3(t)+1)- (4.134)

o Lo

By Gronwall’s inequality, we have from (4.133) and (4.134) that

Ey(1) < Ey(0)edo 1@eDds.  ang

t
Es(r) < <E3(0>+ fo P2 (e(s),Ez(s), “

1
/(S)

)

Loo> . (4.135)

z

I pz<e<s>,Ez<s),
e

Zf/ (s)

so supyg 71 E2(7) is controlled by E»(0) and supg 7 €(#); and supyg 77 E3(7)
is controlled by E3(0), supyo, 71 €(7), supyg, 1 E2(#) and supyg 7y H #(I) H Lo
And by (4.120), supjg 7y E3(#) is in turn controlled by E3(0), supyg 7 €(7),
E>(0) and ” i(O) HLOO We will prove Propositions 4.6 and 4.7 in the next

two subsections. In Sect. 4.5 we will exam the relation between the energy
functionals E», E3 and the Sobolev norms || Z;(t)|| g3+1/2, [|Z#(¢)] g3 and
complete the proof of Theorem 3.6.

4.3 The proof of Proposition 4.6

We begin with a list of quantities controlled by E> (7).
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4.3.1 Quantities controlled by E>(t)

It is clear by the definition that the following are controlled by E> ().

_ 1, |?
192 Z112, < Ea, Hz—ag,zz ,
% H1/2
1 _ 2
< E, HZ,a/(aﬂrba&/)( aj,z,) < C(®)E;, (4.136)
Z o 2

because 1 < A} < C(€) by (4.20). We compute, by product rules and (2.35),
that

1
Z,cx’(at + baa’) (

> ajZ) = (0 + b3y Z; + (ba — Do Z1) 0 Zs,
o

(4.137)

therefore, by estimates (4.41) in Sect. 4.1.1,

‘ | @ +b3a)03 Z4 | — ” Z,a/(a,+baa/)z%ﬂa§/z e C@N2Z 2,
’ ' (4.138)
SO
|9 + 53102 Z: |72 < C(&)En. (4.139)
Now by (B.12),
o (O + b3e)Z1 0 = (B + b3y)d2 Zy + by 32 Zs, (4.140)
so by (4.41),
19 (B + b0 Zy o172 < C(E)En. (4.141)
Using Sobolev inequality (A.7) and (4.41), we obtain
1Zra 3o < 20 Zeall 21182 Zill 2 < C(@)Ey'; and (4.142)

1 + b3a) Zi o 1300 < 201@r + b3ar) Zi o0 112 100 By + D) Ze a2 < C@E,*. (4.143)

We need the estimates for some additional quantities, which we give in the
following subsections.
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4.3.2 Controlling the quantity |0y (byr — 2Re Dy Z;)| 12
We begin with Eq. (2.22), and differentiate with respect to o’. We get

3y (by — 2Re Dy Zy)

1 1
=Re ([aa’Zv H:| Zt,ot’ + [Zt,oz” H] 80{/2_)

!
o

1 1
+Re(|=— H|822 +1[Z,, H] 3> ; (4.144)
Zy Zy
using HZ; ,» = —Z; o to rewrite the first term,
1 1
O — H | Z; oo = = +H) | 9y Zs o (4.145)
Z,a’ ’ Z,a/ ’

and then applying (A.15) and (A.14) to the last two terms. We get, by (4.142)
and (4.41),

< c(@©)E)".

L2

1
190 (bar — 2Re Do Zo) 12 S M| Zs.arllLoe 10—

/
L,

(4.146)

4.3.3 Controlling ||02,Z|| 12

We start with (3; + bd,)2,Z;, and commute 9; + bd, with 82,; by (B.16),
we have

02 Z 1 — By + b3,)92Zs = 1821, (3 + bde)Z,
=2by 02 Zt + Vb)) Zyors  (4.147)

We further expand the second term

(80/170/) Zt,oc’
_ 1 _
= (801/ (b(x’ —2Re Da/Zt)) Zt,(x’ +2Re <aa’ 7 Zt,o/) Zt,a/
o
1 _
+2Re (Z—aj,z,> Zi o' (4.148)
o
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we get, by (4.147) and (4.148) that

182 Zucll 2 S 113 + b8 Zy 2
+||ba/ ||L00 ||8£/7t ”LZ + || 8tx/(bo/ — 2Re Da/Zt) ||L2 ”Zt,a/ ||Loc

+

Oy ——
Lo

1Z1 150 + 1 Do Zell 102 192 Z4 | 12 (4.149)
2

L

Therefore by the estimates in Sects. 4.3.1, 4.1.1 and (4.146),

102 Z 1113, < C(&)En. (4.150)

~

As a consequence of the Sobolev inequality (A.7), and estimates (4.41) in
Sect. 4.1.1,

= = = 1/2
10w Zus oo < 20100 Zusll 2102 Zusll2 S COEY?. (4.151)

We also have, by the L? boundedness of H,

IHZ s o l1700 < 20180 HZe 121102 HZ 1|2

S 10w Zitll 21102 Z1ll 12 S C(E)ES>. (4.152)

4.3.4 Controlling the quantity ||(9; + b0y) 0y (by — 2Re Dy Z1) | 12

We begin with (4.144), replacing the first term by (4.145), then use (B.17) on
the first term and use (B.19) to compute the remaining three terms,

(0 + b3y)0 (byr — 2Re Doy Zy)

1
Zt.a’) + (I + H)(at + baa’) (aa/ 7 Zt,a’))

a

1
= —Re ([b, H]9y (a(,/ ~

o

1
+Re ([(a, + b0y Z o H] ~

a

1 1
Zo [ZW” bl o D (4.153)

1
+ Re <|: s H] 0y (0r + baa’)zt,a’
Zy

+[Z1 o, H] 8 (3 + b0y)

1 1
+ [(a, + bda) — H] 9272 — [z b; aj,z[D

)
7
N3

1 1 1
+Re ([z,,, H] 92, —— +[Z0, H 0 (3 + b0e) oy —— = [z,, b; 3% ~ D .
o o o

@ Springer



Wellposedness of the 2D full water wave equation 293

We have, by (A.14), (A.11), (A.15), (A.12), and estimates in Sects. 4.1.1,4.1.4,
4.3.1-4.3.3,

1
13s + b0a) B (bor = 2Re Doy Z)l2 S ber | | 0 1Z1,0 o
o g2
1 1
+ || (3 + bde)d 1Z10llLoe + || B 13 + bda)Zy ol
Z,ot’ Lz Z,Ol/ L2
1 1
+ || (3 + ber) 1Z1 0 llLoe + || B 1 Zst 0l Lo
Z’a/ 12 ZA,DZ' 12
S c@E)”. (4.154)

4.3.5 Controlling the quantity 9, Ay

We begin with Eq. (4.45),

1 1
IAw = 500 Zu + (Zy + 1)y (4.155)
Zy Zy
and differentiate with respect to o’. We get
. O Zut ! .
la(x’Aa’ = Z,a, + 28arZ,,8arZ + (le‘ + l)aa/ Z’a/ . (4156)
Applying (I — H) yields
. 9 Zu 1
i(l —H)oy Ay = (I —H) +2(1 —H) | 0y Z1 0y
Z Z
1
+(I — H) ((Z,t +1i)2, ~ ) . (4.157)
af

We rewrite the first term on the right by commuting out %, and use (I —
o

H) 8@2, % = 0 to rewrite the third term on the right of (4. 157)’ as a commutator.
We have

1

) 1
i(I —H)oy Ay — Z ¢ —H)ajzt, = [Z

R

,H] 92 Zs
,0(/ !/

1
+2(1 — H) (aa/znaa,z_> + [ Zy, H1 92, (4.158)

/
Nos

Zy
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Taking imaginary parts, then applying (A.14), (A.15) and Hoélder’s inequality
gives

/

1
Oy Ay — Im { Z

, 0

= H)(ajzn)}

L2

<

~

1Zus el S C@Ey™. (4.159)

1
'

,

!

L2
4.3.6 Controlling ||8a/ (%’ ° h_l) ||L2

We begin with (2.21). We have controlled |9y (bey —2Re Dy Z;)||72 in

) (0,4+b3,) A,
(4.146), we are left with | 9, (A—1> e

We proceed with computing d,/ A1, using (2.15). We have

O A1 = —1m (1Zy o, HIZ1 o0 + [ 21, H10p Zy)
= —Im(-H|Z, o * +[Z;, H10, Z,); (4.160)

here we used the fact ]H[fmr = Zmr to expand the first term, then removed
the term Im |Zt’0,/|2 = 0. Applying (A.14), (4.142) and (4.41) gives

1/4
100 Atll 2 SN ZrollLellZo e S C(G)Ez/ . (4.161)
Now taking derivative d; + b9, to (4.160), using (B.17) and (B.19), yields

(0r + b0y )0y A = Im ([b7 H]aa’|7t,a/|2 + 2HRe {Zt,a’(at + baa’)it,a/})

—Im([Zy, H102 Z,) + [Z1, 0 (8 4 b3u) Z1 o — [Z4, b3 82 Z41);
(4.162)

By (A.14), then use (4.41), (4.142), (4.151) we get

13 + b3 Atll 2 S 1ot 1111 Zt w121 Z0 e 2 + 1 Zotar 251 Zoar [ 12
= 1/4
11 Z o 2o 11O + D) Zr a2 S C(EVEN
(4.163)

Commuting d,s with d; + bd, gives

1/4
1807 (3 +b8a) A1l 2 S 113 458 )dar A1l 12+ 1B Bar A1l 2 S CE)E,™.
(4.164)
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Combine (4.164) with (4.161) and (4.146), using (4.20), (4.42), we obtain

» (ﬁ o h—l) H < c@EV, (4.165)
a L2

Sum up the estimates obtained in Sects. 4.3.1-4.3.6, we have that the fol-
lowing quantities are controlled by C(€)E, /2

27,

)= 1
||3a/Zt”L2s 7.

1Zs a3y 110+ b3e) Zta I30es N0ar ZetIoes  IHZ st a0 13, (4.166)
90’ (bor — 2Re Doy Z)I72 » 113 + b3a)der (b — 2Re Dot Z) 175

Oy’ (ﬁ o h_l)
a

I ,=
H Z,a’(at + bdyr) <Z,o/ o

H/2 )

B @ + 03N Zew |2y 192 Z1tll 2
I L

L2
(3 + b3y )02 Z,

L2’

2

1
0y Ay — Im { Z.

2
Lo oAl

4.3.7 Controllmg T Ea(t)

We are now ready to estimate %Ez (). We know

Ex(t) = Ep, 5 7, () + 185 Z:(0lI75,

where E, Z, (2) is as defined in (4.2). We use Lemma 4.1 on E, 5 Z, (1)
and Lemma 4.3 on [[02,Z, (1) |17,
We start with || 80%/7, (1) ||%2. We know by Lemma 4.3 that

d _
SIS ZD T2 SN, + bda) g Zi (O 2105 Ze ()l 2
b ll o 105 Z: 1172 (4.167)

We have controlled ||(d; + bao,/)aj,Z(t)an in (4.139), and ||by/||L> in
Sect. 4.1.1, therefore

d _
TN ZiONG: S CEEEAD). (4.168)
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We now estimate %E D, 3,7 (t). Take ® = Da/z,a/ in Lemma 4.1, we
have

d
dt

ar
EDa/aa/Z (t) = ‘ a

— 12
PDyZ; o>
VE, /Z(t)l/z (/ | aA tal da’) (4169

1 -
H 1,00 EDa/aa/ Z; (t)

2
We have controlled ” & ) 1o N (4.43). We need to control [ M
da'.
We know A = |2 and A > 1, so
PDyZ; o =
/ % do' < / \Z.oPDoZy o de!. (4.170)
We compute
_ — 1 —
PDO[’ZI‘,O(’ = [7), Da/] Zt,a/ —|— Z—aarPZ,’a/; (4171)

o
further expanding [P, Dy/] Z; o by (B.9) yields

[7), Da/] 7[,(1/ = (_2Da/Ztt)Da’7l,a’ - 2(Da/Zt)(at + baa’)Da/it,a/;

(4.172)
and by (4.41) and (4.136),
1Z o [P, Dol Zs W2 S 1Dt Zusll oo 103 Zi 2
+ Do Zt || Lo H Z,a’(at + b0dy) Dy Z
S COE,”
(4.173)

We are left with controlling |8, PZ; o || 2
Taking derivative to o’ to (4.12) yields

0o PZro = — (0 4 bdy)((0arbar) d Z1) — (Borbor) do Zits — i (9 Ag) O Zt

— @B + b)) bo 2 Zy) — by 02 Zy — i Ay 32 Zy — D202 Z1 — by (Bybo) 3w Z4

+ 2 o 9 Z,y 42 (aa& o h*‘) o Zt + (ag,& o h*‘) Zy —i); (4.174)
a a a
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we further expand the terms in the first line and the last term in the second line
according to the available estimates in Sects. 4.3.2-4.3.6,

(3 + b3o) ((orbar) 3 Zy)
= (0 + bdy) {0a (bey — 2Re Dy Z;) 0o Z, }
+2 {Re 0y (Do Z1)} (3 + b0g) o Zy
+2{Re(d; + bdy)dy (Do Z1))} o0 Zs (4.175)

we expand the factors in the second line further by product rules,

82/21‘
0w Z: +Re ; , (4.176)

’
o

1
Re d, (DyZ;) = Re 0y
Zy

Re(9; + b0y) 0o (Do Z1)

1
= Re(9; + bdy )0y ~ (0 + b0y) 0o Z;

o

1
o/ Z1 + Re B

/
o

!

3 + bdy)d%Z 32,7
+Re(’ Z“) o t+Re§ by — Do Zy), 4.177)
o o

here we used (2.35) in the last term; and by (B.12),
(9 + baa’)aa/ft = Ztt,a’ - ba/it,oﬂ- (4.178)

We are now ready to conclude, by (4.146), (4.154), (4.142), (4.143), (4.41),
(4.71), Sect. 4.3.1 and the expansions (4.175)—(4.178) that

13 + b3e) ((orbar) D ZO)| 12 < C(E)ES?. (4.179)

Similarly we can conclude, after expanding if necessary, with a similar estimate
for all the terms on the right hand side of (4.174) except for (802/ %’ oh™ l) (Z1—
i). Let

0w PZr o =Ry + (aj,% o h_1> (Zi — i) (4.180)

where R is the sum of the remaining terms on the right hand side of (4.174).
We have, by the argument above, that

IR1ll2 < C(€)E,)>. (4.181)

We control the term (35,%’ oh™')(Z;; — i) with a similar idea as that in
Sect. 4.1.7, by taking advantage of the fact that 2,% o 1! is purely real.

o' a
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Applying (I —H) to both sides of (4.180), and commuting out Z;; —i yields

(I —H)3yPZ o = I —H)R,
+[Zo H] 22 o b + (Zo — DU — 822 o n™!; (4.182)
a a

B

Because His purely imaginary, we have [02,% o h™!| < |(1 — H)92, % o h™!
and

_ a _
‘(zn _ i)ag/z’ o h_l‘ < (I — M)y PZy o

_ a
11 = )R] + |[Zus, H] 8§/Etoh_l‘. (4.183)

Now by (B.15),

[P» aa/]zt,a/ = _(at + baa/)(ba/aa’zt,a/)
—bo 3o (3 + b0 Z1or — iAg 00 Zyor;  (4.184)

SO

I[P, 81 Zsll 2 < C(E)EN?
(4.185)

by (4.41), Sects. 4.1.3 and 4.1.5. By Lemma 4.4, and (4.185),

I(I — M) PZr o2 < (I —H)Poy Zy o2
HIU ~ ) [P, 31 Zroll 2 S C(@)E,?.
(4.186)

Now we apply (A.14) to the commutator on the right hand side of (4.183). By
(4.181) and (4.186), we have

= .00 12
“(Ztt - l)aa/z oh HLZ S C(OE,

= a
T/ P E Y H < Cc@ES (4.187)
a L2
This together with (4.181) and (4.180) gives
190 PZyoll 2 S COE,). (4.188)
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We can now conclude, by (4.170), (4.171), (4.173) and (4.188) that

Dy Z; o|?
f WDO‘T”“' do' < C(@E,); (4.189)
and consequently,
d
27 Ep,0,2, 0 S C(OE,. (4.190)

Combining (4.168) and (4.190) yields
d
EEz(t) S C(EM)Ex(1). (4.191)

This concludes the proof for Proposition 4.6.

4.4 The proof of Proposition 4.7

We begin with discussing quantities controlled by E3. Since the idea is similar
to that in previous sections, when the estimates are straightforward, we don’t
always give the full details.

4.4.1 Quantities controlled by E3 and a polynomial of € and E»

By the definition of E3, and the fact that 1 < A < C(€), cf. (4.20),

2
377 12 1 377
192 Z: 1%, < Es, H Z. o (3 + b (—aa/zt>
Z o 12
1 _ 2
< C(®)Es, H 927, < Es. (4.192)
Z,a/ H1/2

By (2.35) and product rules,

1
Z,a/(at + baoﬂ) (

~ a;Z) = (O + b3) I Z; + (ba — Do Z1) 03 Z,
o

(4.193)

so by (4.41),

(0 + b3 Zy < C(®N193Z: ]2,

(4.194)

1 _
o HZ‘“/(S’ + bdy) (Z—a/aj,z,>

‘LZ
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therefore
|3 + baa/)ag,ZHiz < C(®)E;. (4.195)
We commute out d,/, by (B.12),
o (O + b3e)D2Zs = (8 + b)) Zy + bor 82 Zs, (4.196)
SO
|8 (3 + bda) g Ze 72 < C(&)Es. (4.197)
As a consequence of the Sobolev inequality (A.7), and (4.166),

2 = 2 1/2
192 Z 30 < 2002 Z: 1112103 Z1 112 S C(€, E2)Ey?, (4.198)

13 + b))% Z 1300 < 2013 + bdu)DZ Z |l 121180 (3 + b3e)D2 Z1 |l 12

< C(€, E2)ES"”. (4.199)

Now we commute out 35, by (B.16), and get

023 + b3y Zs = (3 + b3y)2Zs + (Burbyr) 32 Zs + 2by 2 7,4,
(4.200)

We expand the second term further according to the available estimate (4.146),
as we did in (4.148); we get

”8(3/(81‘ + baa/)aafitniz <C (€’ E,,

) (E3+1); (4.201)

,a' oo

and consequently by Sobolev inequality (A.7) and (4.166),

186 (3 + D)o Zy 1300 < C <e, E,

) (ES? +1). (4.202)
LOO

I
,a

We need to control some additional quantities.

4.4.2 Controlling ||dy A1l L, 102 A1 12 and aj,i L
We begin with (4.160):
d At = —Im ([Z o, H1Z, o + [Z4, H192 Z,) . (4.203)
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By (A.18), (4.41), (4.166),

1/2
10w Atll oo S 1 Zeall 2102 Zill 2 S C(E)Ey'?. (4.204)

Di_fferentizging (4.203) with respect to o’ then apply (A.14), (A.16) and use
HZ,, = Z; 4 gives

182 A1l 2 SN ZeallLeelld2 Zell 12 < C(€, Er), (4.205)

where in the last step we used (4.166). To estimate 802[,% we begin with
(2.17): ’

1 Zy—i
Zo AL

—i

Taking two derivatives with respect to o’ gives

1 %Zy  — A — 32A1  (0yA))?
— i —— = 27, Zu—i) [ -2 p R :
! o Z,a/ Al 1, A% —J’_( tt l) A% + A:;)

(4.206)

therefore, because A; > 1, and (2.38), (4.41), (4.166), (4.204), (4.205),

O S 19 Zull 2 + 100 Zie 12100 At [l L
o L2
1
+ (193 A1l 22 + 190 A1l 121190 A1 | o)
Zo | oo
1
5 C (@, E2’ ) b
Zo | oo
(4.207)
and consequently by Sobolev inequality (A.7), and (4.41),
0y <C (@, E | =— ) . (4.208)
o2 | = o |l oo
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4.4.3 Controlling ||02,by || 2 and 1102, Zy || 12

We are now ready to give the estimates for ||8§/ba/|| 12 and ”803/7"” 2. We
begin with (4.144), differentiating with respect to o', then use (A.14), (A.15),

1 1 - Sq d P,
the fact that HZ,; ,» = —Z; o, HE =z and Holder’s inequality; we get
2 2 1 2 1
195 (ber =2Re Do Zll 2 S 10y Zillp2 |0 5— | + 1 Zrwllie |9y
Z o | oo Zao 2
<c (ez, Ea, ) . (4.209)
ol |l pee

It is easy to show, by product rules and Holder’s inequality that

1
182/ Do Zi 2 < €192 Z¢ 1|12 || e F 1 Zp o llzee |92
Z o L® Z o L?
+ : 83,7
Zo Y7 o
1 12
<cC | ¢, Ey, + | =— E;, (4.210)
o Lo® Z,a/ Lo©
SO
2 1 1 12
102 by ll2 S C (€ Ea | =— + E;". @211
o |l oo Z,a/ Lo°

Now starting from (4.15) and taking two derivatives to o’ gives

O Zus = 03 (3r + b)) Z1 + 9y (bar Z o)
= 00 (B + b3 Zs + grbe) Z1.ar + 2Paba) 0 Zi o + b 0 Zit

(4.212)
SO
102 Zu 7, < C (e, Ey, | — ) (E3+ 1), (4.213)
o [l oo
and as a consequence of (A.7),
102 Z |30 < C (e, Es, ) (E3”* +1). (4.214)
,a' oo
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4.4.4 Controlling 85/./4,1/

We differentiate (4.158) with respect to «’ then take the imaginary parts and
use Holder’s inequality, (A.14), (A.15). We have,

2
105 Aarll L2 =

1
e

a

182 Zeell 2 +

)=
||30,/Ztt 2

o i =N

1/2

) (EN? 4 1).
LOC
(4.215)

+

190 Zisll e < C (@, E>,
2

2
Ba,z /

o L o

4.4.5 Controlling Haif%’ oh™! ”L2

We begin with (2.21), and take two derivatives to o’.

2O 92, (3 + bd) Al o e (0 + b)) A1y A
o« q - A A%
_82/Al 0y’ A 2
+(3 +bo) A | —15 2 e 31) + 92 (by — 2Re Dy Zy)
Al A
(4.216)
We have controlled ||802l,(ba/—2ReDa/Z,)||L2, ||802l,A1 120 10 Atll oo,

|0q’ A1l 72 and || 0 (3; 4+ bOyr) A1l 72 ete. in (4.209), (4.204), (4.205), (4.161),
(4.164) and (4.20), (4.42). We are left with 85,((% + bdy)Aj.

We begin with (2.15), taking two derivatives to «’, then one derivative to
0; + bd,. We have

2
(O + b0)02 A1 = — Y ChIm(@, + boy) ([0, 2. H] 0377, )
k=0
4.217)

where Cg =1, C21 =2, C% = 1. Using (B.19) to expand the right hand side,
then use (A.14), (A.15) and (A.16) to do the estimates. We have

19 + bds)og Arll 2 S C (03, E,

) (B +1). (4.218)
LOO

!
o

Now we use (B.16) to compute

92 (3 + by ) A1 = (8 + bdy)32 A1 + ooy D A1 + 2byr 82, A
(4.219)
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Therefore

> (Ey"* +1), (4.220)
LOO

19230 + b ALl 2 < € (@, .

!’
o

consequently

a
[2%en™| sc (e, Es,
a L?

> (EV?41).  @.221)
LOO

’
L,

446 Controlling | (0 +bi) 7| and |0 +b3)32 7

L2

We begin with (2.35),

1

0; 4+ b0y
( t + o )Z,a’ Z,a’

(ba/ - Da’Zt)’ (4.222)

differentiating twice with respect to «’; we get

1
2 2
80[/(81 + Ddy) Z,a’ = <aa’Z> (byy — Do Zy)
1 1
+2 (aa/z ) (Bubar = o Dor Z1) + — (02 by — 82Dy Zy). (4.223)
o o

We further expand 9,/ D, Z; and 85, Dy Z; by product rules then use Holder’s
inequality, (4.41), (4.166) and (4.207), (4.208), (4.210), (4.211). We have

1 1 1
03 B+ b 7 — e 7 LTtz Vet = B D Zil
+ H Zl 193 bor — 83 Dar Zi | .2 (4.224)
o e
50(@-:, Es, )<E§/2+ 1.
o llpee
Now by (B.16),
2 1 2 1 2 1

(9 + baa’)aa/f = 0,/(0; + baa’)f — (0g'bo) 0o -~ Zboﬂaaff

o . , ,a
(4.225)
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SO
1
H(a, + bdy)d2 <c (e, E, | — ) (E3”* +1).
Zy 12 o oo
(4.226)
We apply (4.41) to (4.222), and obtain
1 1
H (8; + bdy) < C(®) H (4.227)
Z,a/ 1,00 Z,a/ Lo
4.4.7 Controlling ||02,(; + bdg )byl 2
By (B.16),
92 (3 + bdy)by = (3 + bdy)d2 by + (Jurbar)* + 2542y
(4.228)

where by Holder’s and Sobolev inequalities (A.7),

”(aa’ba’)ZHLQ + Hbo{’aozl/boc’ ||L2 5 ”801’170(’ ||L2 ||3a’ba/||L°° + ”aé/ba’ ||L2 ”ba/“Loo

3/2 1/2
S 18 bar 1257102 b 157 + 192 b 2 1B o
1
<cC (e, Er. |5 ) (E3 + 1), (4.229)
o Nl oo

Now we consider (0; + baa/)ag/ by . We begin with (4.65), differentiating twice
with respect to o/, then to 9; + bd,/,

(3 + bdy)d2 (by —2Re Dy Zy)
2

1
= > CERe(d; + biy) ([a{;z— H] 927k Z,,a/)
k=0 o

2

1

+> " ChRe(d + biy) <[a§ Z, ]HI] 937k —) . (4.230)
k=0 Zo

where Cg =1, C21 =2, C% = 1. We expand (9; + baa,)aj,Da,zt by product
rules, and use (B.19) to further expand the right hand side of (4.230); we then
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use (A.14), (A.15), (A.16), (A.21) and Holder’s inequality to do the estimates.
We have

10r + bda)2be ll 2 S 1B + b)) Ze ) 12

’

ol oo
1 1
+ 182 Zell 12 || (3 + D) + 113 + b3y)32 Z¢ |l Lo || B
Zo | o Zo ;2
1 1
+ 1182 Z; | oo (H(a,+baa/>aa/ + 80 (B¢ + bdy) )
Z,o(/ L2 Z,o/ L2
1 1
+ 182 Zll oo 1 ber | 2o || 3o + 1B + b)) Ze 1o |02,
Z,Ot/ L2 ,O[/ L2
2 1 2 1
+ 1100 Zu o bl | 85— 1 Zia e | 0
a2 a2
1
1 Ze ol || B + bde)d2 ——| -
Zy 12
(4.231)
This, together with (4.229) gives,
2 2
1(0; + b3ar) 0, bor |l 2 + 110, (3 + DOy )by || 12
gc(cz, Es, || — >(E3‘/2+1). (4.232)
o |l oo

4.4.8 Controlling %E3 (1)

We know E3(t) consists of EDa/Bz,Z and || 82/7, ||i2. We apply Lemma 4.1 to
Ep, 527 and Lemma 4.3 to | 93,Z:117,. We begin with [[02,Z, |17 ,. We have,
by Lemma 4.3,

d _ _ _ _
Enas,zzniz SN @+ b33 Zi N 12183 Zi 12 + b 121183 Z4 13 -
(4.233)

We have controlled all the factors, in (4.41) and (4.195). We have

d _
TN Zi07: S C@OEs (). (4.234)
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We now consider E 027, Applying Lemma 4.1 to ® = D/ 802/7, yields

t

d

ay 1
aiEoupz @ = [ Jon ™t Ep 2,0

LOO

— 1/2
PD, /32,2 2
+2Ep 27 (nH'7? ( f % do/) (4.235)

We have controlled the factor H %’ oh~! ” 100 in Sect. 4.1.2, we are left with the
second term. We know, by AIZ,O,/I2 = A > 1, that

PDyd%Z,|? _
f %da’ < / |Z.oPDy 3% Z|* de’. (4.236)

We compute

PDO[,E)(%/?I‘ = [P7 Do{’] 82/71‘ + Da’ [7), 30,/]7;’“/
+Dy [P, 31Zs + Do 33 PZy; (4.237)

and expand further by (B.9),

[P, Dol 94 Z; = (—2Dy Z1s) Day 3 Zs — 2(Dey Z) (0 + bdur) D0 Zs;
(4.238)

by (B.15) and product rules,

0o/ [P 001 Zy o
= — (0 + b3 b0 Z1) = Vutber Do (Or + b3 Z 1o — i Aa 0 Z s
— (B + by (berd3Zy) — berd2 (B + b)) Zy o0 — i Ay Z,
~b282Zs — by by 32 Zs; (4.239)

and by (B.15),

02 [P, 9 1Zs = —02/ (3 + b3y (boy 8y Zt) — 82/ (b Z1r) — 102/ (Agr 3y Z1),
(4.240)

and then expand (4.240) by product rules. We have controlled all the factors
on the right hand sides of (4.238), (4.239) and (4.240) in (4.41), (4.166) and
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Sect. 4.4.1-4.4.7. We have, by Holder’s inequality,
f Z o [P, Do 105 Z4|* + 10 [P, 801 Z1 o0 |* + 105[P, 312, |* dot’

co(er

) (E3 + 1). (4.241)

o [l o0

We are left with the last term 82,737,. We expand by product rules, starting
from (2.19); we have

03 PZ, = % o h ™03 Zi+30y (% ° h—l) 0271 +392, (% ° h_1> Zot o
+02, (% oh™) Zu ). (4.242)
Let
Ry = % o h ™93, Zys + 30, (% oh™) 027 + 302 (% oh™) Zug
(4.243)

We have controlled all the factors of the terms in R, with

1Ral2 < \

a _ —
Zon| 03Zul,.+3

2 (% 1
3a/ (E Oh )

B (%f o) “L2 102 Z0e |,

)(E31/2+1).
LOO

(4.244)

+3

L2 HZW’ ||L2 SC (QE» E,

/
0

We are left with controlling H 83, (% o hfl) (Z — 1) H 12 We use a similar idea

as that in Sect. 4.1.7, that is, to take advantage of the fact that 83, (%’ o h_])
is purely real.
Applying (I —H) to both sides of (4.242), with the first three terms replaced
by R, and commuting out Z;; — i yields,
az

(I — )93 PZ, = (I — HYR, + [Zyr. HI3S (E on™")
+(Zo — i) (I — H)D3, (% oh™'). @245

Now

92 PZy = 8200, P1Z1 + /(00 P1Z1
+[3y, P10 Zs + PO Zy. (4.246)
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and by (B.15),

[P, 00102 Z; = —(8 + bor) (boy 082 Z1) — b8 (31 + b)) Z,
—i Ay 8,827, (4.247)

so by Sects. 4.1.1-4.1.5, 4.4.1 and Holder’s inequality,
2= < 1/2
I[P, 010, Zt |l 2 S C(E)ES™. (4.248)

Applying Lemma 4.4 to the last term in (4.246). We have, by (4.241), (4.248)
and Lemma 4.4, that

I —H)3y PZill 2 S C (Qf, E,

> (E3 +1). (4.249)
LOO

’
,a

This gives, by (4.245), that

3 (Gt -1\ = .
Ba,<zoh )(Z,t—z)HLz
t

— — a _
=1 =D PZill2 + IRalpe + | Zuw HIO (o h™")

L2

SC (2‘3, E;,

) (B3 +1);
LOO

4
,a

(4.250)

here for the commutator, we used (A.14), (4.166), and (4.221). Combining
with (4.242), (4.243), (4.244) yields

) (E3”* +1). (4.251)
LOO

[02PZ,] . < C (e, Es,

!
N

Further combing with (4.236), (4.237), (4.241) gives
PDyd? Z,|?
/ %do/ e (e, Es,

By (4.235), this shows that Proposition 4.7 holds.

) (E3+1). (4.252)

,af [l pee
4.5 Completing the proof for Theorem 3.6
Now we continue the discussion in Sect. 4.2, assuming that the initial data

satisfies the assumption of Theorem 3.6, and the solution Z satisfies the reg-
ularity property in Theorem 3.6. By (4.135) and the ensuing discussion, to
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complete the proof of Theorem 3.6, it suffices to show that for the given data,
E>(0) < oo and E3(0) < oo; and suppg 7)(E2(2) + E3(f) + €(2)) control the

higher order Sobolev norm supyy 71(1183,Z; (1)1l 12 + 192, Z (1)l 12).
By (4.137) and (4.147),

1 _ _ _ _
Z. o (3 +bdy) (Z—ai/z,) =02 Z1y—(by + Doy Z1)82 Zt — (3rbo)) Z o
af

(4.253)

expanding further according to the available estimates in (4.21), (4.146), and
using Holder’s inequality, we have

|Z o (8: + b0e) Doy 3o Z1 |, 2

)=
S0y Zullpe + 1 Zsorll 2

1
%'

o

182 Z¢ll 12 + | Dot Z:92 Z4 | 1.2
iy

L

+ |3 Doy Z1) 3o Z1 | .25
L2

+11Zo 17 ||8 !
t,a'll o0 otZ

4
,a

(4.254)

it is clear that we also have

I ,=
sz
,a

1
<C (H — IH , ||Z,||H2+1/2) ; (4.255)
g2 Zw Hl

so for the given initial data, we have E>(0) < oo. A similar argument shows
that we also have E3(0) < oo. This implies, by (4.135) and the ensuing
discussion, that supyg 7,,(E2(t) + E3(#)) < oo provided supyq 7,y €(7) < oo.
On the other hand, we have shown in (4.213) that || 803{,71, (t)]1 2 is controlled

by Ex(1), E5(t) and H 70 HLOO; and by (A.6),

1

3>z
Zy o't

+

1
o'

,o

3=
100 Zill gr2 S N Z o llLoe (H

||a§/Z||Lz) ,
2

’

H!/2 L

SO ||83/Z||H1/2 is controlled by E3(t), €(t) and || Z o ()] L. With a further
application of (4.119) and (4.120), we have

sup 102 Zu (0l 2 + 182 Z |l g12 < 0o, provided sup €(f) < oo.
[0,T0) [0,T0)

(4.256)
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This, together with (4.119), (4.129), (4.130) and Theorem 2.3 shows that The-
orem 3.6 holds.

5 The proof of Theorem 3.7
5.1 Some basic preparations
We begin with some basic preparatory analysis that will be used in the proof
of Theorem 3.7.

In the first lemma we construct an energy functional for the difference of
the solutions of an equation of the type (2.24). We will apply Lemma 5.1 to
@ - Zl‘7 % - 1 and Zl[.

Lemma 5.1 Assume ©, ® are smooth and decay at the spatial infinity, and
satisfy

(3, 4+ bdy)?O +iAdy® = G,

T (5.1
(0 + b0y)?O + iAoy 0 = G.

Let

3 = f Ail |Z,O, (9 +b3)O +¢) — 3 401 ((at 45,0 ol + c)‘z

+idy(©® —Ool)(©® —Bol)dd, (5.2)

where k = /%la/, ¢ is a constant, and
10

~ - 2
F() = f )Z,a/ (3 + 53O +¢) — 3 401 <(a, 53O ol + c)‘ do'.

(5.3)
Then
, 1| & ~
FoSFO ) Hz,a/c ~3aolGol| |
1| K (0; + b))k
+F02 || | (|2« +b3)O+ 0],
1l poe K L2
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|30+ Bord+ 0 )

LR | ( R L e —}—HDO,/Zt—[)a/f),ol )
1|l a a 2 L?
|)3,o,/(<a, + b0 +0)|
w70 | (5] 1pezie)
A1 allpee

lo

+ 11— kll 2 F(r)? (IID O L +

[)O,/@)

)

2Rei L 0 ) (UG (@ + b0 + 0O
+ ez/(z - zg)(z( @ (@ + 530 + )

/
.o

LOO

~Z. o (3 + D3O + (O o l)a/) do!. (5.4)

Remark 5.2 Bydeﬁnition,i = /Alj{' I.Andinwhatfollows,‘/&haf/coh =
14106
Ol oh, Jahy —, oh.

Proof Let0 = ® o h, and 6 = © o h. We know 0, ] satisfy

920 +iad,0 = G o h,

~ - . (5.5)
326 4 60,0 = G o h.
Changing coordinate by 4, we get
2
S() / \/?(9 +¢) ! (é +c) +i0,(0 —0)(O —0)d
= _ —_—— l j— J— a’
a t m t o
(5.6)

where k = k o h, \/a := Y12 AIOhh" and /@ ;= YA Alohh . Notice that here, /a

and v/ are complex valued, and |a > =a, |\/_ |2 = a. Differentiating to ¢,
integrating by parts, then applying Eq. (5.5), we get

S’(t):ZRc/{\/5(0,4—0—\/1&7{(5,4%)}{\/EGoh—\/léikéol;}
+{\/§(9,+c) JL?<9’+°)}{22(‘/5(9’“”\/27{(5’“))}
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—{\/f(QI-FC)—OtTC}{<lat—llmDaZ;)\/>(9z 0)
1a, 1 9[+C
—(za—zImDO,g,)m}da
+2Rez/(9,—9,)(9 —9)—{[(9[“)— 6[+c>}
f

Oy d
{ff v ] .
=1 +1I (5.7)

where I consists of the terms in the first three lines and 77 is the last line

I —2Rez/(e,—9t)(9 —9)—{\/7(9, ¢ (9,+c)}

Ja
{\/_\/_Ga—ﬁa}da.

Further regrouping terms in // we get

[T =2Rei /(1 {f(z-i-c) <9t+c)}{ﬁ0a+ﬁéa}da

+2Re,-/m(

~ 1 ~
(9[ + C)ea — ﬁ(et + C)9a> da
(5.8)

1
Vak

Changing variables by 4! in the integrals in (5.7) and (5.8), and then applying
Cauchy—Schwarz and Holder’s inequalities, we obtain (5.4). O
We have the following basic identities and inequalities.

Proposition 5.3 Let Q; = U/HU,-1 — H, wherel : R — R is a diffeomor-
phism,?! withl, — 1 € L?. Forany f € H'(R), we have

1S,y = c(a! o I o) 1o — Tl 22118 f Il 25 (5.9)
1Q: fllz < C([Ja! ol o) ey — Tl L2100 fll 25 (5.10)
191 £l < (@ o loo) 1o — Tl 22l fll oo (5.11)

21 we say [ : R — R is a diffeomorphism, if / : R — R is one-to-one and onto, and
1, 171 e CY(R), with [l || oo + [ g/l < o0.

@ Springer



314 S. Wu

1Q:fllz2 < C(a! oWl o) 1y — Tl L2 LF Nl 12 (5.12)
Proof We know
J )1,3/(,3)
SO

Qlf:% L) =1(B) @) = 1N =)

R R e ey (CORy (-0
B @)= 1) ()~ 1N ~B)

1 lar(B)) — 1 1) — B+ 1(B
f(,g(ﬂ) o — @) ﬁ+(ﬂ)>f(ﬁ,)dﬂ/
(5.14)

) (f(BH = fayap,

here in the second step we inserted — f («’) because H1 = 0. Apply Cauchy—
Schwarz inequality and Hardy’s inequality (A.8) on the second equality in
(5.14) we obtain (5.10) and (5.12). Using (A.11) and (A.12) on the first equality
in (5.14) we get (5.11). We are left with (5.9).

Differentiate with respect to &’ and integrate by parts gives

10 fia) = / I (@) 1 ' dg
=55 (l(a/)—l(ﬂ) a/—ﬁ')fﬂ/(ﬁ g

(5.15)

Let p € Cg°(R). We have, by using the fact H1 = 0 to insert —p(B’), that
[ prise i@ as

_L//< @) 1 >f B (p@) — p(B)) da’dB
] (@) —=1B) o —p B P p

p@) —pB) . o
// I(a /) 1(B) (lo (@) = 1) fp () dar'dp

— 1) =B +1(B) ) ) / o

’ - do'dp’.

f/ (1) — 1(B))( /_ﬁ)fﬂ B)(p(a) — p(B))dedp
(5.16)

Applying Cauchy—Schwarz inequality and Hardy’s inequality (A.8) to (5.16).
We get, for some constant ¢ depending only on ||ly || zoc and |[(I™ g/ [l 200,

‘/P(O/)aa/sz(a/) do'| < cllpligielile = U203 fll2. (5.17)
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This proves inequality (5.9). O

Lemma 5.4 Assume that f, g, f1, g1 € H'(R) are the boundary values of
some holomorphic functions on &_. Then

f dPA(fR)() f1(e)g (@) da’

_ 1 / / (f@) = FENUi@) = fi(B))
T 2mi (@ —p)?

g(B)Hg () da'dp’.
(5.18)

Proof Let f, g, fi, g1 € H'(R), and are the boundary values of some
holomorphic functions in Z_. We have

2P4(fg) = (I —H)(fg) =[f, Hlg (5.19)
and

j— S 1 vy / _— /
2aa/PA<fg>=aa/ng_;/ f((a> 78"

a,_—ﬁ,)zg(ﬂ/) dp’. (520

Because g,0,Pa(ffig) € L'(R) is the boundary value of an anti-
holomorphic function in &2_, by Cauchy integral theorem,

0=2 f 2104 Pa(f f1g) do’

_ 1 Foin _ F(R!
= / 00T 1198, do/ — — f FCI=TP) 4 (8)e(8z, @) da'dB.
i (' — B)
(5.21)

here we applied formula (5.20) to the pair of holomorphic functions f and
f1g, and used the fact that H( fig) = fi1g. Now we use (5.20) to compute,
because Hg = g,

2 [ 9P fi7) dor
— 1 Fla') — F(B'
= / do f 81181 da’ — — Lf,(f)g(ﬁ’) fiaHg, (@) da'dp'.
i () — B")
(5.22)
Substituting (5.21) in (5.22), we get (5.18). a
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Remark 5.5 By Cauchy integral theorem, we know for f, g, f1, g1 € H (R,

/ 9 Pa(T9) (@) fi(e)E) (@) do’ = / 00 Pa(To)PH (1)) do
_ / 0w Pa(FO)Pa(F gD der’

As a corollary of Lemma 5.4 and Remark 5.5 we have
Proposition 5.6 Assume that f, g € H'(R). We have

LA HT g g2 S N giadiglize + IHgI Le); (5.23)
ILf HI gl gz S W0 fll2 gl (5.24)
ILf HTOargll g2 S N8N 12 (0 fllLoe + 10 Hf [l 2o0). (5.25)

Proof By Proposition A.1 and the decompositions f = Paf + Py f, g =
Pag +Prug,

[f,Hlg =[Paf, HIPrg + [Py f, H|Pag. (5.26)

So without loss of generality, we assume f is anti-holomorphic and g is holo-
morphic, i.e. f = —Hf, g = Hg. (5.23) is straightforward from (5.18),
Remark 5.5 and the definition (A.2); and (5.24) can be easily obtained by
applying Cauchy—Schwarz inequality and Hardy’s inequality (A.8) to (5.18).
We are left with (5.25).

By integration by parts, we know

/(f(o/) f(ﬂ))(g(a) 8(B))

, H] 0y , H]0y
[f, H10w g + [g, H10e f = — Ay

dp’:=r;
(5.27)
and by (5.23),
Ilg. HIde 1l 172 < &M g172 118 fll 0w
For the term r in the right hand side of (5.27), we have

/ (f() — f(ﬂ N(g) —g(B)
— 13 )3

d,B/ + foHge + goH for;
(5.28)

and using f = —H f, g = Hg, we find

JoHgy + 8ol fy = fo8a — 8o for = 0.
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Let p € Cg°(R). We have, using the symmetry of the integrand,

/pa rdo — ;1/ (f@) = f(BN(g) —gBN(p@)— pB)
“ T owi

@ — B do'dp’;

(5.29)

applying Cauchy—Schwarz inequality and the definition (A.2), we get

'f poyrda

so [Irll g2 S 110e fllLeellg Nl g1/2. This finishes the proof for (5.25). O

~

Proposition 5.7 Assume f, g, fi, g1 € H'(R), and [ : R — R is a diffeo-
morphism, with l,, — 1 € L?. Then

S e fllzee gl g2l g, (5.30)

ILf, H]00rg — Ur Lf1, Hl 0o g1l S I = fiolllgia 108l 22

1
+10a fill 2 Mol 7o 18 — &1 0 Ul 12 + 19 fill 21180 g1 1l L2 Nl — Ll 2
(5.31)

Proof We know

Lf. H] 078 — Ur Lf1. B drg1 = Lf H) 0rg — [ 1 0 L UHUp1 (o)™ | 881 0 1)

— [f. H]0yg — [fi o1, H] 0y (g1 0 1) + [fl ol H— UZHU,,l(zaf)*l] (g1 01);
(5.32)

applying Proposition A.8 to the term

[f, H] 00 — [f1 01, H] 0 (g1 01)
=[f—fiol,Hldyg+[f1ol,H]dy(g —g10l)  (533)

gives

I[f, H]0erg — [f1 0L, H] s (g1 0D|l2
SWf = fiolllgie 19wgllz + 100 (froDliz2 lg —g1olllgz. (5.34)

Now by (5.13),

[0 B = UBU- ()™ (a1 01)

_ L/ (fiol(@) = fiol(BNU) —a —1(B)+ )
i (") = I(BN (" — B)

g (g1o (BB
(5.35)
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applying Cauchy—Schwarz inequality and Hardy’s inequality (A.8) we get

|[fi 0l H = UHU-1 (Ia) ™ o (g10 D) 2
S 19 fill g2 lller — 122119081112 (5.36)

This finishes the proof for (5.31). |

Proposition 5.8 Assume that f, g, fi, g1 are smooth and decay at infinity,
andl : R — R is a diffeomorphism, withly — 1 € L. Then there is a constant
(ot oo, 1A~ NarllL0), depending on ||y || Lo, | o || Lov, such that

I[fs H] 0o g — Ur [ f1, H] 0s g1l 2
< c(llallzoo, 10 DarllLoe) 18 f — 8ar(f1 0 D2 lIgllzoe
+ (o llzoe, 1D llzoe) (19 fill oo lg — g1 o Ll 2
+ 110a fillLollgrliLoe o — 1l 12)- (5.37)
ILf, H] 00 g — Ui [f1, H] 0 g1l 2 S 10er f — 9 (f1 0Dl 2 gl 172
+ el loos 1T D llzo) (180 fill e g — g1 0l 2
+ 10a fillLoellg1ll g1z llar — 1l £2)- (5.38)

Proof We use the same computation as in the proof for Proposition 5.7, and
apply Proposition A.7 to the terms in (5.33) and (5.35) to get (5.37). To obtain
(5.38) we apply (A.19) and (A.14) to (5.33); and for the term in (5.35), we
first integrate by parts to get

1 [ (fiol@)— fiolBNU@)—o —1(B)+B) o
wi dg/ ol d
i / (L) —1(B)) (@ — B) p(g1o)(B)dp

S <(f1 ol(@) = fiol(BNU) —a' —I(B) + ﬂ/>)

mi (") = 1))@ = )
(g101(B) —giol@)dp’ (5.39)

and use the product rule to expand the factor on the right hand side of (5.39),
we then apply Cauchy—Schwarz inequality and Hardy’s inequality (A.8) to the
resulting terms. O

Proposition 5.9 Assume that f, g, fi, g1 are smooth and decay at infinity,
and | : R — R is a diffeomorphism, with ly — 1 € L?. Then there is a
constant ¢ := c(|[l/ || L, 1|17 g | L), depending on ||yl oo, |1 ll L,
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such that
I[f, H] 0y g — Ui [ f1, Hl 0 g1l 1,2

1
S e f = 8o (f1 0 DIl g2 10 &1l 2 1lar 11} o0 (5.40)
+ (10a fllLoe + 10 H f (| L) [|g — g1 0 Ul 112
+ cllOg f1llLoo 100 g1 ll 2 oy — 2.

Proof We begin with (5.32) and write the first two terms on the right hand side
as

[f, H]00g — [f1 01, H] 0y (g1 01)
=[f = fiol,H]8y(g10]) +[f,H] 0y (g —g100); (5.41)

applying (5.24) and (5.25) to (5.41) we get

I[f, H] 0y g — [f10l, H]dx (g1 0Dl g
SN0 (f = froDlig2 19a(g1 0 DIlz2 (5.42)
+ (100 fllLe + 10/ H f L) lg — g1 0 Ul 172 -

Consider the last term on the right hand side of (5.32). For any p € C3°(R),

/aﬂﬂﬁoLH—mHm4%J4pw@mndw
=:/8w@100[ﬂolJH—IAHUrdMO‘ﬂawpdaﬁ (5.43)

the same argument as in the proof of (5.38), that is, integrating by parts, then
applying Cauchy—Schwarz inequality and Hardy’s inequality (A.8) gives

1[0, H = UHU;—1 (o))~ ] 80 pliz2 < € 18a fill oo llor = T2 Pl g2,
where ¢ := c(||ly |l 2o, |1~y |l o) is a constant depending on ||/,/|| Lo and
1™ N ar | oes 50
'/%mU@LH—mmhﬂm”pﬂgwmw
< clla (81 0 DIl g2 110a fillLoeller — 2121 f1/2-
This finishes the proof for (5.40). |

Proposition 5.10 Assume that f, g, fi, g1 are smooth and decay at infinity,
and | : R — R is a diffeomorphism, with ly — 1 € L?. Then there is a
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constant ¢ := c(||l || Lo, |7 )or || L), depending on ||y || Lo, |1l Loo,
such that

ILAHl g — Ul fi, Hlgillgie SNf— frolllgie (lIgllze + I1Hg| ze)

L
9 fill L2 lar Iz lg — g1 0 L2 4+ clldar fill 2llg1 I oo Nlar — LI z2
(5.44)

Proof Similar to the proof of Proposition 5.7, we have

[f,Hlg—Ulf1,H] g
=[fHlg—[fiol,Hl(giol)+ [fiol,H— UHU-1] (g1 0D);
(5.45)

writing

[fHlg—[fiel, Hl(grol)=[f = fiolLHIg+[fiol.H](g —g100)
(5.46)

and applying (5.23) and (5.24) gives,

ILf, Hlg —[fiol, H](g1 oDz
S = fiolllgiz (lgllize + IHgl L) (5.47)
+ 10/ (fioDll2llg —grolll2.

Consider the second term on the right hand side of (5.45). We write
[f1 ol , H— U[H[Ul—l] (g1010)

1 1

= |:f1 ol, H—UHU,- l—} (g1 0D +[fiol, UHU, 1] (== Dig1oD.
a/ 0(/

(5.48)

Now

[f10l, UHU- ] ((Ue) ™" = D(g1oD) = Uil fi, H (I Har — Dg1) -
(5.49)

Changing variables, and then using (5.24) yields

i1 H (7 Dar = Dgn) || g2 < clldar fill 2 llgi oo oy — 112
(5.50)
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for some constant ¢ depending on ||l ||z, |1~ sl L.
For the first term on the right hand side of (5.48) we use the duality argument
in (5.43). Let p € Cj°(R),

/ Ou' P [f] ol, H— U[HUl—l(la/)_l] (g1o0l)da’
= /gl ol [f1 ol, H— UIH[Ul—l(lo,/)_l] Oy pdad’, (5.51)

and

[fiol, H— UHU-1(y)" "] 8p
_ i/ (fiol@) = fiol(B)NU) —a' —1(B) + B)
' (") = 1))@ = p)

dgp(BHdp’.
(5.52)

Integrating by parts, then apply Cauchy—Schwarz inequality and Hardy’s
inequalities (A.8) and (A.9) gives

|[f1 0l H = UHU-1(e) ™ 3 p| 11 < cldar fill 2 e = Uz [Pl e

(5.53)
for some constant ¢ depending on ||y || 700, |1~ e || 150, 50
‘/ o' p [f1 01, H— UI]HIUI_1(la/)_1] (g10l)da’
< cligilizeellder fill 22 Mo = L2 1Pl 12 (5.54)
This finishes the proof for (5.44). |
We define
(f@) = f(B))m@) —m(B))"
o tghy = — [ & f - s P e ap

So [f, m; 0y gl = [f, m; 3y gl1, and [ f, H]dy g = [ f, m; 3eglo-

Proposition 5.11 Assume that f, m, g, fi, mi, g are smooth and
f, g, fi, g1 decay at infinity, and | : R — R is a diffeomorphism, with
ly — 1 € L%, Then there is a constant c, depending on ||ly ||z, |(1™ el L,
such that
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ILf, m; 8 8)n — Uil fi,mi; 0 &1lnllp2 < cllf — fiolll g 18gmll o 10872
+clldg fill L2 (18grmll oo + 18grmillpoe)™ ™ 18gr(m — my o Dl 2 19 gll 2
+ellder fill L2 10armill o llg — &1 0 Ll g2
+clldg fill g2 10emillfoc 100 g1l 2 Mo — 1l g2 (5.55)

Proposition 5.11 can be proved similarly as for Proposition 5.7, we omit the
details.

Proposition 5.12 Assume that f, m, g, f1, my, g1 are smooth and decay
at infinity, and | : R — R is a diffeomorphism, with l,y — 1 € L%. Then there
is a constant ¢, depending on ||l || L, 1Y |l oo, such that

LS gsm]— Ul fi, grsmilllp2 <l f — fiolllgiz 10gllp2 lImll e
+cllda fill g2 lg — g1 0 Ll g1y lImll oo
+cllda fillz2 10 g1l lm —my o2

+clla fill2 lmillpeo 1100 g1l 22 Har — 1l 2 - (5.56)
Proposition 5.12 straightforwardly follows from Cauchy—Schwarz inequality,
Hardy’s inequality and the definition of H'/? norm.

Proposition 5.13 Assume f € H/2(R) N L®(R), g € H/%(R), and g can
be decomposed by

g=2g +pgq (5.57)

with g1 € L¥(R), g € L*(R), and dyp € L*(R), satisfying 0y (pf) €
L*(R). Then fg € H'/?(R), and

1fghgin S N llLee 18l g2 + lIgtllzoe I f 1l g2
+llgli2 18 (PO 2 + llgllz2 18 Plz2 1 fll Loe - (5.58)

Proof The proof is straightforward by definition. We have

N2

||fg||H1/z~f | (B)1? Ig(aﬁ)zg(ﬂ)l do'dp
g1 f)—fBH* .,
+/ o/—,B/)z da'dp

SN 11502 + gl zoe £ 172
N2 1 n o / N2
+/ l9@)PIpe)f@) = pBV B

(o — p)? ¢
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N2 n o N2 N2
+/ 9@ 1p@) = pBOISBOE o
(Ol’ _ ,3’)2
ST g3 + gt o 113510 + 172 180 (PO 2
+ g7 19 P72 I £ 1l o - (5.59)

where in the last step we used Fubini’s Theorem and Hardy’s inequality (A.8).
O

5.2 The proof of Theorem 3.7

In addition to what have already been given, we use the following convention
in this section, Sect. 5.2: we write A < B if there is a constant ¢, depending
only on Supyo, 7] &(r) and Sup[o, 7] (;E(t), such that A < ¢B. We assume the
reader is familiar with the quantities that are controlled by the functional &(¢),
see Sect. 4 and Appendix C. We don’t always give precise references on these
estimates.

LetZ = Z(a',1),3 = 3(, 1), € [0, T] be solutions of the system (2.9)—
(2.11)—(2.14)—(2.15), satisfying the assumptions of Theorem 3.7. Recall we
defined in (3.16)

=1, 0)=hoh (1) =h(h ', 1),1). (5.60)
We will apply Lemma 5.1 to © = Z;, % —1,Z; and Lemma4.3tol, — 1
to construct an energy functional F(¢), and show that the time derivative 7/ (1)

can be controlled by F(¢) and the initial data. We begin with computing the
evolutionary equations for these quantities. We have

h he (h h .
3 (ly oh) = 0, (-“) =2 (ﬂ — ﬁ) = (ly o h)(by o h — by o h):

he ha \ hy  ha
(5.61)
precomposing with 2~! yields
@ + b3)or = Lo (bar 01 = by). (5.62)

The equation for Z; is given by (2.24)—(2.25). To find the equation for Z,; we
take a derivative to ¢ to (2.18):
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(atz +100¢)Zr = — 1 Z1q + O ( a) (Zye — 1) + —Zm

=0, ( a) @ — i)+ _(Zm %)
= Gy — i) (3t (%) + (%) 42 (E> Daz;> . (5.63)

here we used Eq.(2.18) and substituted by (2.2): —i0Zg =Z — I in the last
step. Precomposing with #~!, and then substituting Z;; — i by (2.38), yields,

for P = (8, + bdy)? + zAao,,

PZy =-i- ((8,+b8/)(—oh )

,Ol

+<%oh—) +2(th D /zt>:=G3. (5.64)

To find the equation for ZL/ we begin with (2.35). Precomposing with %, then
differentiate with respect to ¢ gives

h h
97 (Z—">=Z—°‘((ba/oh— Dozt)* + 3 (by 0 h — 2Re Dyz;) + & Do)
(5.65)

here we subtracted 9, D, z; and then added 9, Dz, in the second factor on the
right hand side to take advantage of the formula (2.22). We compute

0 Dozt = Dazrr — (Dazo)’, (5.66)
replacing Z;; by (2.38) yields

DoZ 1a<'A1) 'Ala<1)'1aA
, = —0, | —1 = —] = ’ —1 1AL
o 1t Zva/ o Z,a/ Z’ , o Z,a/ |Z,a’ |2 o

(5.67)

precomposing Eq. (5.65) with 2~! and substitute in by (5.66)—(5.67), we get

B A
P = — ((bar — Dy Z:)? + (8 + bdy)(by —2Re Dy Z;) — (Dafz,)2 —i— 12)
Z,a’ Zoz’ |Z,(x’|

= Gs. (5.68)
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We record here the equation for Z,, which is the first equation in (2.24), in
which we substituted in by (2.38),

=Gj. 5.69
, Zo 1 (5.69)

5.2.1 The energy functional F(t)

The energy functional F (¢) for the differences of the solutions will consist of
i (1) = 1112, (», and the functionals F(r) when applied to © = Z, (1), % -1
and Z,;, taking ¢ = —i, 0, O respectively. Let
Fo(®) = llor(®) = U3 (5.70)
_ — 2
5100 = [ 5 |2a @ =) =301 (301 1)

+i00 (Z —3i0)(Z; — 3,0l da’; (571)
50 = [ 2| z0@ 4 b1 (=) = 30 016, + b [ —— lzd/
2()_/A1 .Ot’(l+ a/)<Z,a/)_ ' © (l+ a’)(a’a,)o o
. 1 1 1 1 .
+i / » (Z - oz> (Z -3 oz) do (5.72)

and

K
0= [ 5

Substituting the evolutionary equations (2.36), (2.35) and (2.37) in the func-
tionals §§; we get

_ _ 2 _ — _
ZoZiy — 3 013 0l| +idy(Zy — 3 0 )(Zyy — 341 01) do'. (573)

~ 2 J— —_ - =
510 = [ 5 |4 = Avo] 40,2~ 3, 01(Z = 5,01 dl

(5.74)
K ~ ~ 2
520 = [ 5 |0 = Duz0) = B~ D3 o1
+i9 ( : : l)( : : l)d/ (5.75)
[0y | =— ——o ——o0 o .
o Z,Ol/ 3’0[/ Z,Ol/ 3’0[/
and
. 2
F3(0) = / Ail Ay (%’ oh™! +m) - <A~1 (%’ oh™'+ Da'3t>> ol| do’
+i / 30(’(7[[ - gtt Ol)(ftt - gtt olydd'. (576)
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Remark 5.14 Assume that the assumption of Theorem 3.7 holds. Because h; =
b(h,t),and h(a, 0) = «, where b is given by (2.14), we have h;, = hqby o h,
and

By (-, 1) = elo barohCO)dT (5.77)

So there are constants ¢; > 0, ¢2 > 0, depending only on supy, 71 €(7), such
that

1 < hola, 1) < ca, foralla € R, ¢ € [0, T]. (5.78)

Consequently, because /s = Lo h~! there is a constant 0 < ¢ < 00,
o

depending only on supy, 7y €() and supy 7y &(1), such that
Tl <iy@, 1) <e, foralla € R, € [0, T]. (5.79)

It is easy to check that for each r € [0, T'], by (t) € L*(R), s0 he(t) — 1 €
L%(R), and hence I,/ (1) — 1 € L*>(R). It is clear that under the assumption of
Theorem 3.7, the functionals §;(¢), i = 1, 2, 3 are well-defined.

Notice that the functionals §;(¢), i = 1,2, 3 are not necessarily positive
definite, see Lemma A.2. We prove the following

Lemma 5.15 There is a constant Mo, depending only on supy, 1 €(¢) and
Supyo, 7] (;E(I), such that for all M > My, and t € [0, T],

Mee @) = T2 + 1Zs = 34 0 DO 0 + H (Zi - 3# oz) (0 j{/
< M30(0) + 1) + §200); (5.80)
a1 = 4o zmHiz + | Dz = Bur3i o D0 ; + || bar = B 0 101) ;
S MTSo@) + T1(1) + Fa(0). (5.81)
Proof By Lemma A.2,
/ i00/(Zy — 3, 01)(Z, — 31 01) de!
= 1Py (Zi — 310 Dl = IPA(Zs — 31 0 D300 (5.82)

and  [|Z, = 30113,

= fiaa/(7, —3100(Z; — 30l de +2||PA(Z, — 3, 0 l)”?;l/z-
(5.83)
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Because Z, = HZ, and Et = Hgt,
2PA(Zr —3r0l) = =2P4(3r o) = —Qi(3;r 0 ])
and by (5.9),
191G o Dl g2 < Clllollzows 1A D o) 19a 3l 2 Mor = T2 S Mor = T2

So there is a constant My, depending only on supg 7 €(#) and sup 7y &),
such that for all € [0, T] and M > M,

IZe =3, 00012 = [ 000 =500~ 3,00 do

M|l — 11132 < F1() + MFo(t)  (5.84)

2
A similar argument holds for H (ZLQ/ — 3%/ o l> (1) H s This proves (5.80).

Now by =~ = Loy , Remark 5.14 and the estimate (4.20), there is a
Al AjAjol

constant 0 < ¢ < 00, depending on supy 7 €(7) and supy 7, (1), such that

1 K
- = A_l <c, (5.85)
SO
~ 2 - - 2
|1 = Aion®)| |, + | e = D Zi = bu = D3 o)D)
S MBo(t) + F1(t) + F2(0), (5.86)

for large enough M, depending only on supy, 7y €(7) and supyg 7 E(r). Using
(2.22) we have, from Proposition 5.7,

by —2Re Dy Z; — (byr —2Re Dy 3; 0 1)

L2

ol

Z,oe’ 3,0/

+ Mo — lz2;  (5.87)

S ”7t _gt 01||H1/2 =+ H
H1/2

combining with (5.86) yields

|Dwzi= B3, 00O, +|w =B 0 DO,

< MBo(r) +51(1) + F2(0),
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for large enough M, depending only on supy, 7 €(#) and supyg 7, &(7). This
proves (5.81). m|

Lemma 5.16 Let Mg be the constant in Lemma 5.15. Then for all M > M,
andt € [0, T],

IPAZis = 30 0 DO S M) +F1(1) +Fa(t)  (5.88)
Proof We have
2P4(Zit — 31 01) =2Pa(Zy) — 2UiPA(By) — Q3 0l);  (5.89)

and by (5.9),

|2Gion],,, Sl =1l

12 ~

Consider the ﬁrst_ two terms on the right hand side of (5.89). We use (B.17)
and the fact that Z, = HZ, to rewrite

2P4(Zy1) = [8; + bdy, HIZ; = [b, H]3y Z; . (5.90)

We would like to use (5.40) to estimate OZIP’A (Zi) = 2U;P4(3,)) e
observe that we have controlled all the quantities on the right hand side of
(5.40), except for ||Hbgy || Loo.

By (2.22),

4

1
by —2Re Dy Z;, = Re ([Z

, o

1
: H} Zio +1Z;, H] Ba/—> ., (53.91)
Zy
and by the fact Z; ,, = —HZ, ,,
1
|:Z_’ H] Zz,a/ =—( +H)Dy Z;, (5.92)

Ne4

SO

1 1
H |:Z’a, ) H] Z[,Oé, == |:Z’a, N Hi| Z[,O{" (593)

This gives, by (A.18),

1
il
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i
o
Z,a/ ~

similarly HH[Z,,H]B ! “Lw < C(E(r)), therefore HH(ba/ — 2Re

Da/zt)HLoo < C(€(1)). Observe that the argument from (5.92)—(5.94) also
shows that

I +H) Do Zi| oo S C(E()),

therefore
IHDg Zillpoe < 11 + H) Do Zll oo + |1 Do Zi | 1o S C(E(@)),
(5.95)

and hence ||[Hby ||~ < C(E(t)). Notice that

3o (b —bol) HLZ < by =By ol ‘Lz 4 e — 120
Applying (5.40) to (5.90) we get

|24 @) —20PaG)|

< by — by 01 ‘Lz ol — 12 + HZ ~3,01 ‘HUZ .

A further application of Lemma 5.15 yields Lemma 5.16. O

As a consequence of Lemmas 5.15, and 5.16 we have

Proposition 5.17 Thereisaconstant My > 0, depending only on supy 11 €(1)
and Supyo, 77 (}E(t), such that for all M > My, and t € [0, T],

2

T 1(Zir =31t 0 O30

= T 1 1
1 =3, 0 DO + H (T -3 ol) ®

T H(Da’zt — Dy3r 0 D)(1)

+|@ai-4ono g

2
L

+|

~ 2
(b = b DD, + Mhor ) = 112

+H<&Oh_l - 2 oh_l)(l‘)
a a

Remark 5.18 1tis clear that the reverse of inequality (5.96) also holds. Observe
that by (2.15) and Proposition 5.7, we have for any ¢ € [0, T],

SMFo) +F1(0) + 5o + M55, (5.96)

2
L2

|1 = AioD®)| , S I =30 DOl 12 + lar ) = ]2
(5.97)
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and by (2.21)—(2.22)—(2.23) and Propositions 5.7, 5.11,

H (ﬂ on-t_ %, h_1> (t)
a a

= H(ﬂoh_l—gofl_lol)(t)
L2 a a

L2
- = 1 1
SIZi =30 DOl e + ( 75 1> o
HI(Zee =31 0 DOl 12
|| tor = o oD+ o) = 112, (5.98)

This, together with (5.87) shows that for all r € [0, T],

MFo(t) +F1(1) + Fo(6) + M7 F3(0)
2

3,(1/

H1Zis =3 0 DI + | (D Zi = Dar3i 0 HO)|

- = 1 1
SN =30 DI + H (Z— LI 1) )

g2

2
LAl =112 (5.99)

Now fix a constant M, with M > M, > 0, so that (5.96) holds. We define

F(t) := MFo(t) + F1(t) + F2(0) + M~ 'F3(0). (5.100)

We have

Proposition 5.19 Assume that Z = Z(d',t), 3 = 3(a’,t) are solutions
of the system (2.9)—(2.11)—(2.15)—(2.14), satisfying the assumption of The-
orem 3.7. Then there is a constant C, depending only on T, supyy 7y €(t) and

Supyo, 7] (;E(t), such that fort € [0, T,

d ! 1 1 1
Ef(t) <C (f(t) +./0 F(r)dr + H(Z,cx’ - 3—a/> ) N F(t) ) .
(5.101)
Assuming Proposition 5.19 holds, we have, by (5.101),
d t
o (}'(t)—i-/o F(r)dt)
t 1 1 2
<C|F@) +‘/(; F(r)ydr + H(Z,a/ — E) 0) Loo) ;
(5.102)
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and by Gronwall’s inequality,

2

t
f(t)+/ F(r)drt §C<_7-(O)+ H(L _ L) (0)
0

s fort € [0, T],
Zy 3B« )

LOO

(5.103)

for some constant C depending on 7', supy 7) €(7) and sup 7, &(t). This
together with (5.96) and (5.99) gives (3.17).
We now give the proof for Proposition 5.19.

Proof To prove Proposmon 5.19 we apply Lemma 4.3 to ® = [, — 1, and
Lemma5.1t0 ® = Z;, — — 1, Z;:. We have, by Lemma 4.3 and (5.62),

bor o D), o) + oo Fo(0) S F (),
(5.104)

here we used (5.79), (5.96), and Sect. 4.1. 1 (4.41).
Now we apply Lemma 5.1 to ©® = Z,, - —1, Z,; to get the estimates for

%/1 (1), 3/2 (t)and 33 (t). Checking through the rlght hand sides of the inequalities
(5.4) for ® = Z,;, % —1, Z,;, we find that we have controlled almost all of

the quantities, respectively by F(¢) or &(¢), E(1), except for the following:

o 1. H (8 +bd, )k

L’
o 2. |I1 —«llz2;

o3 2Rei [ (ZL — ol) (3,0,/ o 1((B; + 53O ol + ©)Oy
— Zo (@ + 53O + 0O 0Dy ) dot,
for ® = Z;, 7= — 1, Zy; with ¢ = —i for ® = Z,, and ¢ = 0 for

O = ZLO/ — land Zy;

o 4. HZ’O{/G[ - 3701/ Olé[ ol

‘ fori =1.2.3.
L2

We begin with items 1. and 2. By definition x = /%la/, SO
10

5 @ b ) @+ bda) AL @+ b Al

= _ [+ (by ol —by):
p Al A O+(tx° 0{)

(5.105)
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and by (2.21),

8, +bda) A
Otb)AL_ %yt — 2Re Dy Z2);
a

Ay
(5.106)
therefore
H o <2 oh™!l — i oh™!
K 1.2 ~ a a 12
n bar—Eo,/ol| ¥ “Da/Zt—f)arB,ol < F@)2.
L? L?
(5.107)

And it is clear that by the definition of «,

1=kl < HA1 _ Aol

1
‘Lz + g — Ul SF@)2. (5.108)

What remains to be controlled are the quantities in items 3. and 4. We first
consider item 4. We have, by (5.69), Z G| = —i %’ oh 1Ay, s0

a

HZ(x’Gl_Ba’Olé1ol) S &Oh_l—Toh_l
s ’ L2 a a 2
+”A1 — A ol‘ < F(n)?;
L2

(5.109)

and by (5.68), Zy'Gr = (by — DOl/Zt)2 + (0 + b0y)(by —2Re Dy Z;) —

2 .0, A1
{Da’Zt) — l|Za_/|2’ SO
o

|24Ga=3w0lGaol| | S |bw—burol| ,+|DuZi = Dudiol]
+ H (0 + by) (b = 2Re Dy Z1) = (3 + b) (b —2Re Dyr30) o 1|
dw Al A
. Y (5.110)
|Z,oz’| |3,a/| 12
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observe that we have controlled all but the last two quantities on the
right hand side of (5.110) by F(¢)!/2. By (5.64), Z,G3 = —iA

((at +b0) (Loh )+ (Lo ;rl)2 +2(2on 1) D(,/z,), S0

i

)ZvarG3—3,arolC~;301 L2§ %oh_l—%toh_l L2+ Da/Z,—IN)a/B,ol L2
o], (J6+ba (Ten)] . +1)
+‘(3,+baar)(&oh_l)7(3,+I;Bar)<iofz_l)ol (5.111)

a a 2

We have controlled all but the factor in the third quantity and the very last
quantity on the right hand side of (5.111).

In the remaining part of the proof for Proposition 5.19, we will show the
following inequalities

0,/ A1 0,/ A1

ZgP " Bl
o ||(8; + bdy)(by —2Re Dy Z;) — (8; + bdy)(by —2Re Dy3;) ol
F)7;

o @ +b3e) (S oh )|, <C(EWD)):

. ‘(a, +b3) (% 0 h™Y) = (3 + by (E o irl) ol
and control the quantities in item 3.

01HL2 < F();

<

2~

A

SF0?:

P

Our main strategy is the same as always, that is, to rewrite the quantities in
forms to which the results in Sect. 5.1 can be applied.

5.2.2 Some additional quantities controlled by €(t) and by F(t)

We begin with deriving some additional estimates that will be used in the proof.
First we record the conclusions from the computations of (5.91)—(5.95),

IHDy Zi || Lo < C(€(1r)),  [Hbyllpe = C(E@)).  (5.112)

1 _ 1
Because Ba/ﬁ =H (80,/ _Z,a’)’

1
2P 4 (Zt Ou/ Z

o

1
) = [Z;, H] 0o’ —

o

; (5.113)

! /
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and we have, by (A.18) and (5.31),
S H Zt,a’

1
Pa | Z;0y —
‘ A(taz,a’) L>®

1 1
PA (Ztatx’ Zﬂ/) - UI]P)A (3130/5)

=CE&@®); (5.114)

2
L 12

oy ——
o Z,a/

<Fn'?. (5.115)

L2

Similarly we have

HPA (Z:0wZ,) — UiPa (3,80/3,)

‘Lz < F(o)2, (5.116)

By (2.15),iA1 =i —PA(Z: Z, o) + Pu(Z: Z, o), and by (2.38),

_ i PA(ZZ: o) Pu(Z:Z, o
Z,,—i:— + A( t t,a)_ H( t t,ot); (5‘117)
Z Z Zy

applying Py to both sides of (5.117) and rewriting the second term on the right
hand side as a commutator gives

Pu(ZiZio) (1 11 = =
—_— = —-1)-= S|\ Pa(ZiZs o) — P (Zir).
Z’a/ 1 Za/ ) Z,a/ A( t t,a) H( ZZ‘)

(5.118)
Now we apply (5.44), (5.9), (5.96) and (5.116) to get
1 = 1 =z 1/2
HNPA(ZiZto) — Up | 5— H| Pa(3:31,07) SF0S
Z,a’ 3,0[’ H1/2
(5.119)
IP) 7 Z o IP) 3 o
H( t4, ) _ Ul H(3t3z, ) 5 ]:(t)l/z; (5'120)
Z,Ol/ 5,0[/ H1/2
consequently by (5.117) and (5.120), (5.96),
PA(Z:Zy o Pa(3:3 o
A( t t,a) _ Ul A(3z3t,a) 5 f(t)l/z. (5'121)
Z,Ol, 3,(1/ Hl/z
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Similarly we have
<FO? 0 (5.122)

H[ : ’H}P" (Z’a“’i>_U’[3laﬂH}P’* <3’8""3L> e
o 2on ol (55

H1/2
SFOY (5.123)
provided we can show that
HH (Al (Da/Z, + 2, h—l)) H < ce). (5.124)
a L>®

We now prove (5.124). It suffices to show HIP’A (A1 D, Z, + & _1))”L°°
< C(@), since we have HA1 ( o' Lt + _l)HLoo < C(@). We know

~

Ay

ZPA(AlDa/Zt) = |:7—a H:| 2[,0/ = —i[Zy, H]ft,oz/s
o

hence by Cauchy—Schwarz inequality and Hardy’s inequality (A.8),
|12PA(A1De Z0) || oo SN Zitar 1201 Z1 a2 S C(€). (5.125)

For the second term we use the formula (2.23) of [43],22

a _ — _ _
Alzt oh™! = —Im(2[Z;, H]Zzz,a/ +2[Zy, Hl0y Zy — [Zy, Zt; Do Z4]),

(5.126)

observe that the quantities_[Z,, H]Zm/, [Zs+, H]aa/Z are anti-holomorphic

by (A.1), and [Z;, Z;; Dy Z;] is anti-holomorphic by integration by parts and
(A.1), so

a . _ | _
P, (Alg’ oh 1) =i ([Zt, HIZ,1. o0+ Zuss Ml Z, = 5121, 2 Dafzt]> :
(5.127)

therefore

HIPA (Al% 0 h—1>”m < C(©) (5.128)

22 This formula can be checked directly from (2.21)—(2.22)—(2.23) via similar manipulations
asin (5.181)—(5.193).
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by Cauchy—Schwarz inequality and Hardy’s inequality (A.8). This proves
(5.124).

12 We begin with
(2.37) and calculate Zn,a/. We have

— — — aqa — a
Zm,a’ = Zzt,a’(Da/Zt + zl ° h_l) —iA1 Dy (Da’Zz =+ Et © h_l)
(5.129)

where we substituted the factor Z;; — i in the second term by — ’A' , see (2.36).

We know from Sect. 4 that all the quantities in (5.129) are controlled and we
have

| Zissar | 12 < CEQ@)). (5.130)

5.2.3 Controlling the H'/? norms of Z o/ ((3; + bdg)® + <) for
O = Z,, — 1, Zy, with ¢ = —i, 0, 0 respectively

We will use Proposition 5.13 to control the item 3 above. To do so we need to
check that the assumptions of the proposition hold. One of them is Z o/ ((9; +
bd,)®O+c¢) € Hl/ZﬂLOo for® = Z,, ——1 Zuic = —i,0, Orespectively;
with the norms bounded by C (&(t)). By (2 36), (2.37) and (2.35),

_ , 1
Zy(Zy—i)=—iA1, ZuO + baa/)z

/
Nos

_ — a
= by — DyZy, ZoZu = —iA (Da/Z, + o h’1> .
a
(5.131)
In Sect. 4, we have shown that these quantities are in L, w@th their L norms
controlled by C(&(#)). So we only need to estimate their H 172 norms.

Applying Prgposition 5.6, (5.24) to (2.15) and (2.22), we get Ay, by —
2Re Dy Z; € H'/?, with

1A g2 S 10 Zil3, S CIE®)):; (5.132)

Iber = 2Re Doy Zi |l 12 S 100 Zi Il 2

~

, < C(E@).  (5.133)

da

o 2
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We next compute || Do Z;(t)|| 1/2. By definition,

1D Zi 0I5 = / (0w HD, Z,) Dy Z, de
| I .
= [ idy | H, Zi o Doy Z: da
Z,a’ ’
i .
+ laa/ HZ;,O,/ Da/ Z[ da
Zy

__ 1 __
= / iDy [H, ]Zw/ Oy Z; da’
Z o

+ / iZy o (Do Dy Zy) do! (5.134)

where in the last step we used integration by parts and the fact HZ,; ,» = —Z; 4.
Recall in (4.67), we have shown H Dy [H, %} Zia| , = C(&@). S0 by
Cauchy—-Schwarz inequality, we have ’

1
”Da/zt(t)nip/z 5 HDOH |:Ha Z_:| Zt,o/
o

L H Ziw |L2

+[Ziw|

12| D3 Ze] 2 < Ce). (5.135)

Now we consider | % o A1 5, . By (2.21)~(2.22)~(2.23), we know Propo-

sition 5.6, (5.24) can be used to handle all terms, except for [Z;, b; Z,a/].
Let p € C3°(R), we have, by duality,

‘/ 0o’ pPlZs, b; 71,0/] dao’ /[Zz, b; 30{’17]?1,(1’ do'

SNZew 132 0a ol Pl 12, (5.136)

where in the last step we used Cauchy—Schwarz inequality and (A.20). There-
fore |[[Z;, b; Z; 1| 1,2 < C(€(1)). Applying Proposition 5.6, (5.24) to the
remaining terms and using (A.5) yields

|

& op! ” < CE@)). (5.137)
a o2
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We can now conclude that for ® = Z,, Zl/ — 1, Zy, with ¢ = i,0,0

Nt

respectively,

1 Z.o (0 +b0)O + 0| oo + || Z.e (3 4+ 50e)O + ) || 12 < C(E@)).
(5.138)

5.2.4 Controlling [ (ZL - 1) (3,0,/ o 1((3, + B3g)® ol + )0y —
Z o (0, T b3)O + 0@ o 1)0,/> do/

We begin with studying 7~ — = o I. By (4.118), 7—(h(a,1),1) =

o

ZL/(O[’ O)efot(ba/oh(a,r)—Daz,(oe,r))a'r, .
N3

( 1 _ 1 ol)oh:( 1 _ 1 )efé([;a/fﬁq/:’j,)ol;(r)dr
Z,a’ 3,01’ Z,a’ 3,0/

1 to7 ~ -
o — f ((byr —Dy1 31)oh—(by —Dyy Zi)oh) () dT
t7o h (1 o ) '
(5.139)
We know for ¢ € [0, T'],
1 ~
- _(0)) efo(b 1= /3t)0h(r)dr
(Lo )
- _(O) ; (5.140)
[0,7] Lo
and
”1 — ot =Des3)oh~(byr =Dy Znyol) () 2~ / F()2dr,
(5.141)

Now we rewrite

! ! 1) (3 0l((3 +53y)® 0l +0)®
(75~ 55 °1) Gurott@+ba601+ 00,

~Zo (@ + 0300 T 0@ o 1)0,/) da

1 1 S—
- / <Z’a, s ol)@o/ (3,0(, o l((B + b3y )O ol + )
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~Zo (@ + 53,0 + c)) da

+/<Zl —%oz)z (B + 03O+ 0) (O —Bolyda =1+11. (5.142)

We apply Proposition 5.13 to 1, with g =

/((8t
bd,)® + ¢), where ® = Z,, -1, Zt,, w1th ¢ = 1,0, 0 respectively. We
know ’

- 19 ?tl‘v

1 — 1 — _
O/ ( f) =Zito» 0o (0 + baa’)T, Zitto s for ® = Z;,

Zy o o

SO

Oor ( )” < C(€&(1)), by Sect. 4 and (5.130). Applying Proposi-
tion 5.13 to the g and f given above yields

1 1
H ( —— z) Z o (3 + bdy)O + )

Hl/z
<“ o1 H ) +/t}'( )12 g
< ——o0 T T;
Zy 3o 2 Zy 3 . 0
(5.143)
consequently
t
111 5f(t)+T/ ]—'(r)dt—l—‘ Fr)l/2.
0 3 o g
(5.144)

We apply the decomposition (5.139) and Cauchy—Schwarz inequality to
I, notice that |y ;2 < C(€(?)), and | Dy Bl ~ < C(E(1)), for ©® =
Zt’ L 1 Z[; We have

|1|5‘

t
3 FO'?+ Fn'? / F(o)'*dr.
o 0

OO

(5.145)

This shows that for ® = 7,, % -1, Z;, with ¢ =i, 0, O respectively,

/G

) (3,0, o l((3 + b3y)O ol + 0)Oy

—Z (3 T 3O+ (O o 1)05,) do’
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t
5.7:(2‘)+T/ F(r)dt + ‘ _3_(0) ]:(t)1/2.
0 a 1,00
(5.146)
/Al ) /Al “
1Z 17 |3 /|2

We will take advantage of the fact that |2 is purely real to use (/ + H) to

convert it to some commutator forms to Wthh the Propositions in Sect. 5.1
can be applied.
Observe that

0w Al 1 9 1A iAl8 1 1 9.7 +(7 N 1
l = ) — — | = = / — 1 [ — ,
Zol? Zw " Zo Za " Zey Za o Y Z

o4

(5.147)
we apply (I +H) to (5.147), and use the fact 8(,/71 =-—-H <8a/zl > to write
the second term in a commutator form. We have ,

(1+H) = (I +H) ! Z [Z:, H] 0 !
I o’ — , r=.
|Z /|2 Z’a/ tt 1t o Z,a/

(5.148)
For the first term on the right hand side, we commute out ——, then use the
fact Z; = —HZ, to write (I + H)Z,, as a commutator [see (5 90)]

1 1 1
({ +H) Zo 0o Zy | = | H, Z 0o Ztt — Zo Oy'[b, H1Z; o5
(5.149)
we compute
80{’[[7’ H]Zt,a’
o
1 1 ba', 1) —b(p',1)
= _ba’Hzt,a’ R / 7 N2 Zt,ﬂ’ d,B/
o 7'”Z,ot/ (a/ = B)
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1
= —byDyZ; — [T’ b; Zs o Dp Z; dﬁ/

o

1 /b(a/, ) —b(p,1)
i (Ol/ _ ,3/)2
1
= _boc’Doz’Zt - [7, b; Zt,oc’j| + [b, H]ao{’Dcx’Zt - H(bot/Doc’Zt)a

,o

(5.150)

in the last step we performed integration by parts. We have converted the right
hand side of (5.148) in the desired forms. Applying (5.31), (5.37), (5.55),
(5.11) and (5.96), then take the imaginary parts gives

Al Oy A

— ol
|Z,a/|2 |3,a/|2

< F@)2. (5.151)

L2

In what follows we will use the following identities in the calculations: for
f7 g, P Satisfying g = Hg and p= Hp’

[f, Hl(gp) = [fg, Hlp = [Pa(fg), Hlp; (5.152)
[f, H]ow (gp) = [fow g, Hlp + [ fg, H]0y p
= [Pa(f0xg), Hlp + [Pa(fg), H]oy p (5.153)

(5.152) is obtained by using the fact that the product of holomorphic functions
is holomorphic, and (A.1); (5.153) is a consequence of (5.152) and the product
rules.

5.2.6 Controlling
| @1 +b00) (b —2Re Doy Z)) = @ + b (bor = 2Re Do) o1

L2
We begin with (4.74),
(0 +b3y) (boy —2Re Dy Zy)

1 1
=Re | |0 +bdy)5—  H | Z; o + [Z, H] ¢/ (3; + bDy)
Z Z

/
L,

’

1 1
Re JH Zss o Z, H] 0y
+ <|:Z,a/ i| tt. + [Zsr, H] 0y 7

o

1 1
- [Z’b; Zt,a’i| - [Zz,b; o’ Z,a/D ; (5.154)

observe that using Propositions 5.7, 5.11 and 5.17 we are able to get the
desired estimates for the last four terms on the right hand side of (5.154). We
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need to rewrite the first two terms in order to apply the results in Sect. 5.1.
First, by (2.35) we have

1 1
0r + b0y =
( t + o ) (Z,a’> Z,a/

and by HZ; o = —Z; o,

(byy — Dy Zy) ; (5.155)

[(fh + by ) ]Zta =—( +H) ((DyZi)(byy — Dy Zt)) ;
,oz/
(5.156)
so we can conclude from (5.11) and (5.96) that
H [(at + blar) — } Zio — U [(at + bdyr) ] 3| SFOV
,a’ 3,a L2
(5.157)

For the second term on the right hand side of (5.154), we use (2.14) to
further rewrite (5.155),

1 1 Z,
@ +bdy) [ — ) = dwRe(l —H) 22 — Dy 7,
Z,a/ Z’a,

Z o
! ]P’Z +P Ziw +Re(l — H) ! Dy Z
= (&} — — ’
Zy Zy n= Z,a’ Z,o/ ot
1 N 1 1
= Za Py (Da’ Zi — Da’Zt) + Py Zﬁa’ﬁ + Py ZIBQ,Z .

(5.158)

We substitute the right hand side of (5.158) in the second term, [ Z;, H] 9,/ (9; +
baa/)% of (5.154), term by term. For the first term we have, by (5.153),

1 1 _
[Z;, H] 8y (Z—]P’H (Im Dy Z,)) = []PA (Z,aarz—) ,]HI] Py (Im Do Z;)
o o
Z
+ []P’A (Z d ) , H] 0Py (Im Dy Z;)
af

:(I—]HI)( (Z,a %)PH (Im Dy Z, Z,)>+[b H] 8, Py (Im Dy Z;); (5.159)

s
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in the last step we used (4.50) and (A.1). Therefore by (5.114)—(5.115), (5.96),
(5.11) and (5.37),

1 1 ~
H (20, H] 3 ( ~—Pu (Im Dasz)> ~ U3, Hl g (—PH (1m Dafs,))

3,a’ L2
< Fr. (5.160)
We substitute in the second term and rewrite further by (A.1),
[Z,,H]o : Pal Z;0 !
IX) o Z’a/ A tOa’ Z’a/
= [Z;, H] 0,/P : Pal Z;0, : (5.161)
— IX) o’ T H Z,O[/ A t O’ Z’a/ .

1 1 1
= —=[Z;, H] 3y JH | Py | Zi0y
iz (| 5 8|2 (2007 )

This allows us to conclude, by (5.31), and (5.122), (5.96),%

Z:, H] o, IP(281>—U3H3 1]?(331))
[Z:, H] 0y ZA ZQ’Z 1[5 ]a’(ﬂA ra’z L2

< F@)t. (5.162)

Now we substitute in the last term and rewrite further by (5.153),

1
Zﬁar
= [Pa | Z;0 ! H (P | Z:0 !
= A tOa’ Z,a’ s A tOo’ Z,(x’

Z; 1
P 5 H 3 /]P) Z 8 /

+|: A<Z,oﬂ> i| “ A( ' aZ,o/)
={U-H)(P Z:0 ! P Z:0 !
- A tOu Z,a/ A tOx Z,a’

1
+ [0, H] 9P 4 (Zraa/ Z

o4

1

Py (Z,aa/

!/
,a

[Zl’ H] 806/ (Z

). (5.163)

!

% For the estimate | (74 (Zi0 7)) |, = C(E@). see (4.681-(4.69)
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Again, this puts it in the right form to allow us to conclude, from (5.114)—
(5.115), (5.11), and (5.37), that

Z:,H]9 I]P> Za1 U [3:,H]9 I]P’ 381
[Z:, H] 3 ZA ta’z — U [3¢, H] 0y EA ta’ﬂ o

< F)?. (5.164)

This finishes the proof of

| @ + b0u) by = 2Re Doy Z0) = (0 + by (bor — 2Re Dee3) o1

L2
< F)'2. (5.165)
5.2.7 Controlling ||(3; + bdg) (% 0 h™)|

We begin with (2.21) and take a d; + b0, derivative. We get

@+ b)AL (B +bd)AL
B Ay Ay
+(3; + bdy)(by —2Re DyZ)).  (5.166)

(0 + bdy) (% ° h—‘)

We have controlled all the quantities on the right hand side of (5.166) in Sect. 4,
except for ||(9; + by )2 Al L. We proceed from (2.23) and use (B.19) to
compute,

(@ + bdw) Ay
= —1Im ([2 [Z:, H] 7”,0/ —[Zi, b; 7:,0/] —[Z;, b; 7tt,oz/]])
—1Im ([Zm, H1 Z; o + [Zi, H] 00 Z1sy — (3 + b)) Z1, b; 7:,0:/]) ;

(5.167)
and we expand similarly
(0 + b)) Z1, b3 Zt o]
=1[Zy,b; Zy 1+ [Zs, (0 +b0u)b; Zy o1 + 21, b5 Ztt o]
2 b, 1) —b(B, ) (Z (1) — Z/(B, 1) —
__'f( (o', 1) — D(B )/)( t/(O; ) —Zi(B ))Z,,ﬂ/dﬁ’

i (" = B')

(5.168)
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Applying Cauchy—Schwarz inequality and Hardy’s inequality, we get

| @+ b3) AL

g “ Ztt,a’ iz + ||Ztt,a/ ”Lz ”ba’”LOO H Zt,a’ L2 + ||Zttt,a/ ” L2 H Zt,a’ L2
+ 190 @+ b3a)bll oo | Zear |72 + b 12 | Zew | 72 (5.169)

Observe that all quantities on the right hand side of (5.169) are controlled in
Sect. 4 and in (5.130). This shows that

H (0 + bdy)2 A, HLOO < C(€()), H (8 + bdy) (%’ oh—l)HLw < C(E0)).
(5.170)

5.2.8 Controlling | @ + be) (% 0 h™") = @ + bir) (Y 0) o1

L2

By the expansions (2.23), (5.166), and (5.167), (5.168), we see that by the
results in Sect. 5.1 and by (5.165), we can directly conclude the desired esti-
mates for all but the following three

P

o ([Zsy, H] 7l,a’ — ([Bs1e, H gt,a/) ol 5
o |1z B0 Zin - (30 B 0300 01|
o |21 @+ b3t Zyar) = Uil3r. (3 +bou)b: 3ol

The first two items can be analyzed similarly as in Sect. 5.2.6. We begin with
[Zi1, H] Z, o and rewrite it using HZ; o» = Z; o/, and substitute in by (2.37),
(2.36),

(Zits W) Zpor = (I = B)(Zits Zga) = (I =D (i 41 Do Zs (D 71 + %’ on")).
(5.171)

From here we are ready to conclude from (5.11), (5.96) that

< F(n)'/2. (5.172)

2"

H [Z14:, H] Zt,a/ — ([3111, H] gt,a/) ol

Now substitute in by (2.37), (2.36), and use the identity Py + P4 = I, then
use (5.153) and (A.1),

[Zl" H] 8a/7m

= —i[Z,, H] 8y (Z’la, (P +Py) <A1 (er % o h—1))>
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| S
= [IP’A (ztaa/—) , H} Py <A1 <Dath + %, h*‘))
Zy a
z S
_ [[PA (z i ) ,H] 3y Py <A1 (Dath + % o h”))

.
1 SR
Py <A1 (Da/Zt + & o hl)))
Z o a

o
. /)PH (4 (m+%oh—l)))

o

—i[Z;, H] 0y'Pr (

= —i(I —H) (IPA (ztaa,

—i[b. W) 0, Py (A1 (DuZ: + % )

. 1
_Z[ZI7H] 80/ []P)Ha 7

,

]]PA <A1 (er % o h_1>) . (5.173)

/

From here we can apply the Propositions in Sect. 5.1 and (5.114)—(5.115),
(5.123) to conclude

H [Z,, H] aa’Zm - ([31, H] 30/31”) ol

‘ <FOV2  (5.174)
L2

Now we consider the last term, [Z;, (3; + bd,)b; Z,a/]. The problem
with this term is that we don’t yet have the estimate, ” 0q'(0; + b0yr)
b — (3 (3, + bd,)b) ol“L2 < F(1)'/2, 10 apply Proposition 5.11. We will not

prove this estimate. Instead, we will identify the trouble term in d,/(9; +b9,)b,
and handle it differently. We compute, by (B.12), (B.6),

o (3 + bdo)b = b2 + (3 + bdy)by
= b2, + (3 + bdy)(by—2Re Dy Z;) —2Re{ (Do Z1)*} + 2Re Dy Zyy;
(5.175)

observe that we have the estimate for the first three terms. We expand the last
term by substituting in (2.38),

YRe Dy Zy — 2Re —— g, AL _ g (1AL
c / = c | — = / —_—
o ~1t Z’o{/ o Z,a/ o |Z,a/|2

9 (i A A 1

o ( 21) 2y — (5.176)
|Z,oz’| Z,a’ Z,a/
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Substitute (5.176) in (5.175), and then apply P4, writing the last term as a
commutator; we get

Pady | (8 + b3y )b — iA
AOy t / |Z /|2

Oy’ A
=Py <b '+ (0;+ b0y ) (by —2Re Dy Z;) — 2 Re{(D,, /Zt) }_IIZ |12>
o

A 1
- [’_—1 Hj| By ——: (5.177)

a direct application of the results in Sect. 5.1,5.2.6 and 5.2.5 to the right hand
side of (5.177) yields

Ppdy (37 + bdar)b — |Z 7o)~ UPad | @+ bk - |3 s

SFn'V?, (5.178)

which of course holds also for its real part. We know the real part

1A 1 Al
Re P40y ((8; + bdy)b — |Z,(x’|2> 2 <(8, + bdo)b + H <|Za IZ))

We split [Z;, (0; + bdy)b; 7t,a/] in two:

[Z:, (0 + bdg)b; Zy o] = [Zs, (8 + bdg)b

iA] 2 iA] .7
*H (ﬁ) 2wl - (20 H (W)  Zoar]

(5.179)
and we can conclude from Proposition 5.11 for the first term that,?*
iA]
H[z,,(a,w/w(' n).2,]
O{
i\ -
3t7(81+b8 /)b+H = 2 3 o
3] .
< Fin'2. (5.180)

24 The fact that
4.79).

0y ((8; + b3y )b+ H (|ZiAl\z )) H < C(€&(1)) follows from (4.59) and
o Lo
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|z
so that on which we can directly apply known results to conclude the desired
estimate,

| A = A =
[5G 7 () 5

We need the following basic identities: 1. for f, g satisfying f = Hf,
g = Hyg,

We are left with the term [Z,, H ( ’A‘|2> ; Z,a’]- We will convert it to a form

< FW'2
L2

[f. 8 1]1=0; (5.181)

2.for f, p, g, satisfying g = Hg and p = Hp,

(P, Pufi gl =[Puf pg 11=1fPa(pg);1] (5.182)
(5.181) can be verified by (A.1) and integration by parts. (5.182) can be verified

by (5.181).
We split

2B (2N Zw | =2y (22 )2
IX] |Z’a/|2 ) t,a - ts H |Z’a/|2 ’ t,a

A
—[Z,, 7w ]:21—11.

|Z o P
(5.183)
Applying (5.182) to [ yields
=z py (A7 A (27,0 1
- t» TH |Z’a/|2 ) t,a |Z |27 A t&t,a
(5.184)
substituting in (5.184) the identity
iA1<a’)_iA1<ﬂ/):(z'Alax’)_iAl(ﬂ’)>L+iAl<a’) IR RY
ZaP  1ZpP Za  Zp )Zyp  Zao \Zo Zp)’
(5.185)
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gives

L PAZZe o) @)~ BAZZ, ) (8) (D - 440 L

P B /.

I:_. / N2 dﬁ ’
i @—F)

(5.186)

here the second term disappears because of the fact (5.181). Using the identity
Pa (Zlft,a/) — Py (Zlft,ﬁ’) _ PA(tht,a/) . PA(tht,ﬁ/)
Z B Z o Z B

! ! (5.187)
Zo Zp)

_PA (tht,a/) (

we get

PA(Z:Z, ) iA 1A
_ [ Bal&Zie) AL g7 o 2 AL (sass)
Z,Ol/ Z,Ol/ Z,O{’ Z,Dl/

from here we are readily to conclude from Proposition 5.12. We now work on
11.By (5.185),

) 1A — lAl. 1A 1 = )
II = Zta |Z |2, Z 1o Zt, Z ; Da/Zt + Z7a/ Zt, Z, Zt,a/ y

(5.189)

the first term can be handled by Proposition 5.12. We focus on the second
term. By a (5.187) type identity, we have

L P e I I [
Z’O{/ IR 270[, ) I, - Z’a/ ) 7’0/ ) t,a Z’a/ ) 7’0/ ) 1~t,a

=L—-h+h-1 (5.190)

The first two terms I, I3 in (5.190) can be handed by Propositions 5.11 and
5.12, because P4 (ZL’/> = P4b. We need to manipulate further the last two
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terms. We begin with I4, and use the first equality in (5.182), then use the
identity Py = —P4 + 1,

1 1 — 1 Py(Z:Zi o
14 = |: s 7 ’]P)H (ZZZZ,O/)} = [Z , H (_T Z,CY); 1}

Z,ot/ o o Z,o/

Pa(Z:Z, o Dy Zy)
:_|:Zl , A(_t t,a);1i|+|:zl P4 (Z,IP’HDa’Zt ;1:|
o /

o Nt

1 _
+ |: , ZPaDy Zy; 1] (5.191)
Zy

because of the fact (5.181), the P4 can be inserted in the second term. Now
the first two terms on the right hand side of (5.191) can be handled by Propo-
sitions 5.12 and 5.10, we need to work further on the last term,

1 I
I3 = |:Z—, Z:PaDy Zs; 1] .

Ne4

We consider it together with /3. By (5.182),

1 Z\ — Z, -
Li=|=—Py|=-):Ziw|= Pa(DyZy); 1. (5.192)
Z o Z o

Z,Ol/ o

Sum up /3 and —143 gives

Ps(Dy Z, Ps(Dy Zy)
1 ( A(Z;/ 2 Azj/ t )(Zz(Ol,, 1 —Z(B'. 1)
I — I = — ’ ) d /
3 = T (Ol/ _ 13/)2 ,3
—_— 1
= —Pa(DoZ1) [Zt, > 1] (5.193)
Zy

here we used (5.181) in the second step.

Through the steps in (5.183)—(5.193), we have converted [Zt, H <|ZiA,1|2> ;

Z,a/] into a sum of terms that can be handled with known results in Sect. 5.1—
5.2.2. We can conclude now that

A . A~ _
” |:Zz, H (ﬁ) > Zt,(x’i| - Ul |:31’ H (éﬁ) ;3t,a/j|
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Combine with (5.180), we obtain

H [Zh (0¢ + b0y)b; 71,0{’] - U |:3t, (8 + bdy)b; Em/]

< 1/2
‘Lz < Fn)'2.
(5.195)

Now combine all the steps in Sect. 5.2.8, we get

H (3 + bdy) (% o h’l) — (3, + bdy) <% o /21) ol

< Fn'2
L2
(5.196)

Combine all the steps above we have (5.101). This finishes the proof for
Proposition 5.19, and Theorem 3.7. O

6 The proof of Theorem 3.9

For the data given in Sect. 3.3.1, we construct the solution of the Cauchy
problem in the class where £ < oo via a sequence of approximating solutions
obtained by mollifying the initial data by the Poisson kernel, where we use
Theorem 3.7 and a compactness argument to prove the convergence of the
sequence. To prove the uniqueness of the solutions we use Theorem 3.7.

In what follows, we denote 7/ = x’+1iy’, where x, y' € R. K is the Poisson
kernel as defined by (3.12), f * g is the convolution in the spatial variable. For
any function ¢, ¢ (x) = %@(f) for x € R.

6.1 Some basic preparations

Observe that in inequality (3.17), the stability is proved for the difference of
the solutions in Lagrangian coordinates. We begin with some inequalities that
will allow us to control the difference in Riemann mapping coordinates.

We have

Lemma 6.1 Let [ : R — R be a diffeomorphism with | — o' € H'(R). Then
1. forany f € H'(R),
< /4
Ifol—= fllgye S 10 fllp2lll — el e

1/4 _
115 4+ C et | oo s Mo ar = 2118w Fll 22 (6.1)
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2. for any function b : R — R, with by € H'/*(R) N L®(R),

Ibor 01 = bar 122 S Nball 2 15ar |1 1 | o2 e
— Ul 2+ 1barll 1216 0 =Bl 172 + b 17 N — 1117 2.

(6.2)
Proof We know
ifaaf(fol—f)mda/:2Reif8a/fmda/
(6.3)
50
o (f ol = ))(fol— fda'| <200 fll 2 f = foll2. (6.4)
Now

f If(@) — fa@)Pda’ < |l — |7 f IM @By f)) (@) da’
S = 173 £1132, (6.5)

where M is the Hardy-Littlewood maximal operator. Therefore by Sobolev
embedding (A.7) and Lemma A.2,

1f ol = Fllgne S18 f 2l — oI5 e — LS +IPACS oL = Dl
(6.6)
1f ol = Fllgie S8 £l 2l — oI5 e — 115 +IPa(f ol = Pl
6.7)

Now

2Pa(fol = f)=QPaf) ol =2Psf + Qi(fol).

Applying (6.7) to (P4 f) ol — P4 f and using (5.9) gives

IPACf ol = Pl S 18w fll2ll = o/ 115 e

1/4 —
—115 @D W)W = 1200 12

This proves (6.1).
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To prove (6.2), we begin with
by ol —by = dyr(bol —b) + by ol(1 —1y); (6.8)

and by expanding the integral, we have

100 (B ol = b)|I3, = /(ba/ o2 —ly)da' +2 / bedy (b —bol)da'.
(6.9)

(6.2) follows directly from the Triangular, Cauchy—Schwarz and Holder’s
inequalities. m|

Lemma 6.2 For any ¢ € C*®°(R), with [ ¢(x)dx = 1 and [ Ixp(x)|?dx <
oo, and for any f € H'(R),

lpe * f— fllee S €2 18x fll2lxell 2. (6.10)

The proof is straightforward by Cauchy—Schwarz inequality and Hardy’s
inequality (A.8). We omit the details.

Let Z, 3 be solutions of the system (2.9)—(2.11)—(2.15)—(2.14), satisfying
the assumptions of Theorem 3.7, and let / be given by (3.16). We know

(8 + bdy)( — ) = Up-1(h; —h;) =bol —b,
and [(a/, 0) = o for o’ € R. By Lemma 4.3,
d 2 P /
1O —allps =206 0 1) = bl 201(1) — ol 2
Hllbo ()| oo 118 — 75, (6.11)
and from (2.14) and Sobolev embedding,

1
Zy

) —1

16O a1y S 12Ol 1) (H + 1) - (6.12)
HY(R)

Therefore by Gronwall’s inequality, we have

sup [|1(t) — o[l ;2®) < C, (6.13)
[0,T]

where C is a constant depending on sup 7 <||Z,(t)||Lz + 13:®)l 2

1]+ [0 1], i + o
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Let

1Z =3O = 11(Ze = 3:) Oz + 1 (Zie = 31) Oll e

Az -52)0l,..

1 1
1 (DorZi = (Dur30) (0>||L2+H( ——) (©)

Z,a’ 3,0{’ Lo°
(6.14)
Applying (6.1) to f = 3,, 5~ — 1 and 3;; and use (3.17) gives
sup | | <Z - gz) Ol gr2g) + H <L _ > (1)
[0,7] Zy B HI2(R)
+ll (7” - 3tt> (I)HHI/Z(R))
< C((Z = 3)O) + 1I(Z = 3)(©O)|'"H); (6.15)

and applying (6.2), (6.1) to b and use (6.12), (5.133), (5.135), Appendix C and
(3.17) yields

sup l(bar — b ) D 2wy < CUNZ = 3O + 1(Z — 3)O)]'/®),

(6.16)

where C is a constant depending on Supo. 77 <||Zt(t)||Lz + 13:(®)|l .2

0= 1] #3501 0 0.3 vk
embedding (A.7),

G 1) = & oy S MG D = llp2y T = DO 2Ry, (6.17)
therefore by (6.13), (5.77)~(5.78), and (3.17),

[sou%(nh(r) RO T ooy + 1B (0) = B Ol o) < CIZ = 3)(O)]],

(6.18)

where C is a constant depending on supj 7) (||Zt(t)||Lz + 113:®)l 2

+H (1) — 1” +H3 (t)—l“ )andsup[o,T](E(t)Jré(t))-
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We also have, from Sobolev embedding (A.7), (6.12), (6.13), (6.17) and
(3.17) that for r € [0, T],

2 2 2

o e

< H(b—i»oz)(:)“ +H(501—15)(t)H

L®(R) L®(R) L®(R)
~ - - 2
< H b—ho zmHLZ(R) hb=bonw] .+ 16 - - ba/(t)H .
< CUIZ = 3O + 11(Z = 3O, (6.19)

where C is a constant depending on supy 7y <||Zt(t)||Lz + 13:@®)l 2

We have

Lemma 6.3 /. Assume that f € H 1/2(R). Then

1Ay S 2@ ). (6.20)

2. Letp € C®(R)NLI(R), and f € LP(R), where 1 < p < 00, %Jﬁ =1
Foranyy <0, x' € R,

oy % £ < (=) VPlpliLa@ll £ llLr - (6.21)

Proof By the Theorem 1 on page 119 of [32], Plancherel’s Theorem and
Cauchy—Schwarz inequality, we have, for any f € H!/2(R),

1/4
I fllemy < X Fllezw S W 2@l fll g g

(6.21) is a direct consequence of Holder’s inequality. O

We need in addition the following compactness results in the proof of the
existence of solutions.

Lemma 6.4 Let {f,} be a sequence of smooth functions on R x [0, T]. Let
1 < p < oo. Assume that there is a constant C, independent of n, such that

sup || fu(D)llzee + sup [[0x fr(@)llr + sup [|0; fu(®)llLe < C. (6.22)
[0,7] [0,7] [0,7]

Then there is a function f, continuous and bounded on R x [0, T], and a
subsequence {fy;}, such that f,;, — f uniformly on compact subsets of R x
[0, T].

Lemma 6.4 is an easy consequence of Arzela-Ascoli Theorem, we omit the
proof.
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Lemma 6.5 Assume that f,, — f uniformly on compact subsets of R x [0, T],
and assume there is a constant C, such that sup,, || fullL<®x[0,77) < C. Then
K * fu converges uniformly to K/ x f on compact subsets of &7 _ x [0, T].

The proof follows easily by considering the convolution on the sets |x'| < N,
and |x’| > N separately. We omit the proof.

Definition 6.6 We write
fn=f onkE (6.23)

if f, converge uniformly to f on compact subsets of E.

6.2 The proof of Theorem 3.9

The uniqueness of the solution to the Cauchy problem is a direct consequence
of (6.15) and Definition 3.8. In what follows we prove the existence of solutions
to the Cauchy problem.

6.2.1 The initial data

Let U(Z/, 0) be the initial fluid velocity in the Riemann mapping coordinate,
W(7,0): Z_ — Q(0) be the Riemann mapping as given in Sect. 3.3.1 with
Z(a',0) = W(a’, 0) the initial interface. We note that by the assumption

1
sup |9y (7) = &1(0) < o0,
v<oll -\ (@, 0 ) | 2 m.an
1
sup || ———— — 1 = ¢p < 00,
y<0 Il Wz (2, 0) L2(R,dx)

sup U, (7, Ol 2®.axy < €1(0) <00 and sup U, Ol 2®.axy < co < 00,
y'<0 y'<0

%(-, 0), U(-, 0) can be extended continuously onto P_.SoZ(-, 0) :=V¥(+
i0, 0) is continuous differentiable on the open set where q%(“/ ,0) #£ 0, and

(@, 0) = m where \P%/(a', 0) # 0. By \UL( 0)—1 e H'(R) and

Sobolev embedding, there is N > 0 sufficiently large, such that for |a’| >
N, |%(a’ ,00—1] < 1/2,s0 Z = Z(-,0) is continuous differentiable on

(—00, =N) U (N, 00), with |Z o (', 0)| < 2, for all |&'| > N. Moreover,
Zo(-,0)—1€ H'{(—00, =N) U (N, c0)}.
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6.2.2 The mollified data and the approximate solutions
Let e > 0. We take

Z€,0) = W(a —€i,0), Z (@, 0)=U( —¢€i,0), h0)=a,
US(Z,0) = U(Z —€i,0), W(Z,0) = W(Z — e, 0).
(6.24)

Notice that U€ (-, 0), W€(-, 0) are holomorphic on &Z_, Z€(0) satisfies (2.11)
and Z; (0) = HZ; (0). Let Z5(0) be given by (2.17). It is clear that Z¢(0),
Z; (0) and Z;, (0) satisfy the assumption of Theorem 3.6. Let Z€(¢) := Z€(-, 1),
t € [0,T}), be the solution given by Theorem 3.6, with the maximal
time of existence T, the diffeomorphism h€(r) = h¢(-,1) : R — R,
the quantity b€ := hf o (h$)~1, and z¢(ar, 1) = Z€(h(a, 1), 1). We know
5 (o, t) = Z; (h®(a, 1), t). Let

USx"+iy', 1) =Ky *7,6()6', 0, Wi +iy, =Ky xZ, &0, W1

be the holomorphic functions on &_ with boundary values 7: (1), Z¢,,(t) and
Z¢(t); we have

L(x' +iy, t) =Ky * L(x' 1)
) - y )
\I-’ZE, Zix,

by uniqueness.”> We denote the energy functional & for <Z6 ®), Zf (t)) by
E°(t) and the energy functional & for (U€(t), W€(¢)) by & (7). It is clear

that £7(0) < £1(0), and || Z; (0)[ 2 + 1 < ¢q for all € > 0;

1
7,0 ",

and by the continuity of %(-, 0) on P_, there is a €o > 0, such that for all
0 < € < ¢, |Z£ (0, O)|2 < |%(0, O)|2 + 1. By Theorem 3.6, Theorem 3.1
and Propositioria3.3, there exists Tp > 0, Ty depends only on £(0) = £1(0) +
|%(O, 0)|2,26 such that for all 0 < € < €g, T* > T and

2

= sup E°(1) < M (£(0)) < oo; (6.25)
[0,70]

sup | &7 (1) +

1
[0.7p] zZ,

, o

25 By the maximum principle, (Kv/ * Z%)(Ky/ * Zfa,) =lon_.
) » ,
26 By (3.13).
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and by (2.17), (4.129) and (4.130),

[0,T0]

) < ¢ (c, £(0)),

(6.26)

S Z5(t + 1 Z;5, (¢ +||=—1
up (II t Oll2 + 12Ol 2 20 .

so there is a constant Cq := C(cg, £(0)) > 0, such that

1

— =1 C 0.
WEC iy 1) P=Cos

L2(R)

sup {sup |U(-+iy", )]l 12 gy + sup
[0,To] y'<0 y'<0

(6.27)

6.2.3 Uniformly bounded quantities

Besides (6.15), (6.18) and (6.19), we would like to apply the compactness
results Lemma 6.4, Lemma 6.5 to pass to limits of some of the quantities. To
this end we discuss the boundedness properties of these quantities. We begin
with two inequalities.

We have, from (2.35),

1
Z fa/

<

LOO

@ b Ol + 1D Z7 ()l L)

LOC

1
(0 + b°0)—— (1)
z<,

(6.28)
and by (2.37),

19 + b 06) Z5, ()l L < 11 Z7, ()

) as _
+i| o0 (HDMZfa)nLoo + a—go(/f) L)

)

(6.29)

Let 0 < € < ¢y, and M(E(0)), c(co, £(0)), Coy be the bounds in (6.25),
(6.26) and (6.27). By Proposition 3.3, Sobolev embedding, Appendix C and
(6.28), (6.12), the following quantities are uniformly bounded with bounds
depending only on M (£(0)), c¢(co, £(0)), Co:
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sup 1ZEWllpoe,  sup 1ZE, Dll2,  sup 1Z5Olpe,  sup 1Z5 Dl p2.
Tt [0,To] ’ Tt [0,To] ’

[0,To] [0,To]
Lo 0y —— (1)
sup sup o =
0.1 | L |~ 070 Z% |2 (6.30)
1
sup | (3 + b0q1) e (1) sup 6| oo ;
[0.T0] o g [0.T0)

and with a change of the variables and (5.78), (6.29) and Appendix C,

sup [lz7 (Dllzee + sup Nz5q (Dl 2 + sup iz, (DL < Clco, £(0)),
[0,To] [0, 70]

[0,To]
h¢ he hS
sup [=Z(0)|  + sup |3 (=)D + sup |d—E1)| = Cleo, EO,
[0,To] Il a L [0,To] Za L2 [0,Tp] a Lo
sup 15, (DllLoe + sup 125 (D2 + sup llzf, (DIl < C(co, EO)).
[0,70] [0,70] [0,70]

(6.31)
Observe that h€ (o, t) —a = f(; hé(a, s)ds, so
sup |h(a, 1) —a| < Tp sup [|hy(t)|ze < ToC(co, £(0)) < o0o.

Rx[0,7o] [0.T0]
(6.32)

Furthermore by (5.78) and Appendix C, there are cy, ¢ > 0, depending only
on £(0), such that

- h€(a,t) — he(B, 1)
= «— B

0 < <y < 00, Va, B € R, t € [0, Ty].

(6.33)

6.2.4 Passing to the limit

It is easy to check by Lemma 6.2 and (A.S5), (5.24) that the sequence
(Z€(0), Zf (0)) converges in the norm || - || defined by (6.14), so by (6.16),
(6.18) and (6.19), there are functions b and & — «, continuous and bounded
on R x [0, Ty], with A(-,¢) : R — R a homeomorphism for ¢ € [0, Tp],
by € L%([0, Tp], L*(R)), such that
lim (b, h€, (h)™") = (b, h, h™"),  uniformly on R x [0, Tp];
€—
(6.34)
lim bS, = by in L*([0, Tol, L*(R));
€e—
(6.35)
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and (6.33) yields

- h(a, 1) —h(B, 1)

0<Cl ,3
a_

<y < 00, Va, B € R, t € [0, Ty].
(6.36)
By Lemma 6.4, (6.31) and (6.15), there are functions w, u, ¢ := w;, con-
tinuous and bounded on R x [0, Ty], such that

€
o

i = w, — =u, 75 =q. onR x [0, Tol, (6.37)

o

as € — 0; this gives

7f:>woh*1, :uohil, 7;=>w,oh*1, on R x [0, Tp]

Zfa,
(6.38)

as € — 0. (6.15) also gives that

e—0

lim (Zle, ZT’ Z;) = (u) oh—l’ u oh—ly wy oh—1> , in L*°([0, To], Hl/Z(R)).
o

(6.39)

Now

- 1
Uz, 1) = Ky Z,, ge @0 =Ky (6.40)

; ze,

z o

LetU(Z,t) = Ky x (woh )(x', 1), Az, 1) = Ky * (wo h™ ) (x',1). By
Lemma 6.5,
1 _
UG(Z/a t) = U(Z/5 t)’ F(Z/5 t) = A(Z/v t) on ‘@— X [Oa TO]’
Z/
(6.41)
as € — 0. Moreover U (-, t), A(-,t) are holomorphic on &_ for each r €

[0, Tp], and continuous on & _ x [0, T]. Applying Cauchy integral formula
to the first limit in (6.41) yields, as € — 0,

Us@@,0) = Uy, 1) on Z- x [0, Tpl. (6.42)
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Step 1. The limit of V€

We consider the limit of W€, as e — 0. Let 0 < € < ¢p. We know

t
(o, 1) = 2%, 0) +f zs (o, 8) ds
0 , (6.43)
= V(x —€i, 0) +/ z; (a, s)ds,
0

therefore

Z€@ 1) — Z€(, 0) = W((h®) Mo/, 1) — €i, 0) — W(a/ — €i, 0)

t (6.44)
+/ ()N 1), 5) ds.
0
Let
We(a', 1) == W((h) (@, 1) —€i,0) — U(a —ei, 0)

t
+/ ()N, 1), 5) ds. (6.45)

0

Observe Z€(a’, t) — Z¢(a’, 0) is the boundary value of the holomorphic func-
tion We(z/, 1) — W(Z/, 0). By (6.37) and (6.34), foz zf((he)_1 (o, 1), 8)ds —
fot wh~ N, 1), 5)ds uniformly on compact subsets of R x [0, Tp], and
by (6.31), fot zf((he)_1 (a’, 1), s)ds is continuous and uniformly bounded in
L*®(R x [0, Tp]). By the assumptions lim, o W,/(z/,0) = 1 and W(-, 0) is
continuous on & _, and by (6.32), (6.34),

W(h) N/, 1) —€i,0) — W(a —€i, 0)

is continuous and uniformly bounded in L (R x [0, Tp]) for 0 < € < 1, and
converges uniformly on compact subsets of R x [0, Tg] as € — 0. This give527

Ve, ) — v, 00 =Ky« W', 1) (6.46)
and by Lemma 6.5, W€(z/, 1) — W¢(Z’, 0) converges uniformly on compact

subsets of Z_ x [0, Ty] to ) a function that is holomorphic on Z_foreveryt €
[0, Ty] and continuous on & _ x [0, Tp]. Therefore there is a function W(-, 1),

27 Because W€ () and 9y WE(-, 1) := Zfa/ @', t) — Zea/ (e’, 0) are continuous and bounded
onR, \IJZE, @, - \pzf, (Z,0) = Ky # (8 W)/, 1) = 3 Ky W (x', 1). (6.46) holds because
both sides of (6.46) have the same value on 9 Z7_.

@ Springer



362 S. Wu

holomorphic on &_ for every ¢ € [0, Ty] and continuous on P_ x [0, Tol,
such that

V(7 1) = W(, 1)  on Z_ x [0, Tp] (6.47)
as € — 0; as a consequence of the Cauchy integral formula,
WS 1) = (2 1) on P x [0, To] (6.48)

as € — 0. Combining with (6.41), we have A(Z, t) = m soW, (7, 1) #
0 forall (Z,1) € Z_ x [0, Tp] and

1 1

Z_ %[0, Ty 4
\IJ;(Z/,[) = \IIZ/(Z/’t) on ¥ _ x [0, To] (6 9)

ase — 0.

Denote Z(o/, 1) := W(a', 1), o’ € R, and z(a, t) = Z(h(a,t),1). (6.47)
yields Z€ (o, 1) = Z(d', 1), together with (6.34) it implies z¢ («, 1) = z(a, 1)
on R x [0, Tp], as € — 0. Furthermore by (6.43),

!
2, 1) = z(a/, 0) + / w(a, s)ds,
0

sow = z,. We denote Z, = z, o h— 1.

Step 2. The limits of V5 and Uf

Observe that by (6.45), for fixed € > 0, 3; W€(-, r) is a bounded function on
]R x [0, Tp], so by (6.46) and the dominated convergence Theorem, ¥ =
y * 0, W€, hence Wf is bounded on L@_ [O Tyl

Slnce for given t € [0, Tp] and € > 0, e is bounded and holomorphic on
Z_, by (2.29),

i Zi e
F = Ky/ * 7€ —b . (650)

Therefore by (6.34), (6.38) and Lemma 6.5, as€ — 0 e converges uniformly

on compact subsets of P_x [0, Tp] to a function that is holomorphlc on Z_
for each r € [0, T] and continuous on P_ x [0, Th]. Hence we can conclude
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from (6.47) and (6.48) that W is continuously differentiable and
Ui =W, onZ_ x |0, Tyl (6.51)

ase — 0.

Now we consider the limit of U as € — 0. Since for fixed € > 0, 9, Zf =
Z; — b€ Z;a, isin L*°(R x [0, Tp]), by (6.40) and the dominated convergence
Theorem,

US(Z,0) = Ky %8, Z, = Ky % (Z;, — bZ, ). (6.52)
We rewrite

Ky % (Zy, —bZ, o) = Ky % Zy, — QuKy) % (0°Z)) + Ky + (b5, Zy).
(6.53)

Now we apply (6.34), (6.35), (6.39) and Lemma 6.3 to each term on the right
hand side of (6.53). We can conclude that U is continuously differentiable
with respect to ¢, and

Uf = U, onZ_ x|0, Tyl (6.54)
ase — 0.

Step 3. The limit of 3¢

By the calculation in Sect. 2.5, we know there is a real valued function 3¢,
such that

WEUS = WiUS + U US —iWs = —(9y —idy)PS,  in P
(6.55)

and
B¢ = constant, ondF_. (6.56)
Without loss of generality we take the constant = 0. We now explore a few

other properties of B€. Moving U U; = 81/(66 U¢) to the right of (6.55)
gives

1
WEUS — WEUS —iWs = —(3y — iy) (P + §|U€|2), in 7_;
(6.57)
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Applying (8, +idy) = 29, to (6.57) yields

1
— AP + 5|U€|2) =0, inZ_. (6.58)

So P45 | U*€|? is aharmonic function on #2_ with boundary value 1 5 |Z |2 On
the other hand itis easy to check that lim,/_, _ o<,(\IJ€ Uf -5 U6 —1i \IJ6 ) = —
Therefore

1 1 —
P ) = —EIUG(ZC I —y+ EKy/ «(1Z;H(' 0. (6.59)
By (6.41), (6.38) and Lemma 6.5,

1 1 _ _
PE L =—IUE, N> — v+ Ky (Z/H', 1),  onZ_ x [0, Ty)
(6.60)

as € — 0. We write

1 1 —
P = —§|U(z/, N —y+ Ky (ZH ', 0).

We have B is continuous on Z_ x [0, Tp] with P e C([0, Th], C*°(£-)),
and

P=0, ondZ_. (6.61)

Moreover, since K/ * (|7f |2) (x’, t) is harmonic on Z2_, by interior derivative
estimate for harmonic functions and by (6.41),

(0 — i9,)P = (B —i0y)P  on Z_ x [0, To] (6.62)

as € — 0. And by (6.59) and a similar argument as that in (6.52)—(6.54), we
have that ‘I3 is continuously differentiable with respect to ¢ and

9P = 9P on Z_ x|[0,Tp] (6.63)
ase — 0.
Step 4. Conclusion

We now sum up Steps 1-3. We have shown that there are functions W (-, 7) and
U (-, t), holomorphic on &_ for each fixed r € [0, Tp], continuous on & _ X
[0, Tp], and continuous differentiable on 93_ x [0, Tp], with % continuous

on Z_ x [0, Ty], such that W¢ — W, \pe

compact subsets of Z2_ x [0, To], Vi — W, ¥ — Wy, U5, — Uy and

— \1% U¢ — U uniform on
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Uf — U; uniform on compact subsets of &_ x [0, Tp], as € — 0. We have

also shown that there is ‘J3, continuous on P_ x [0, Tp] with PT=0ond¥_,
and continuous differentiable on &_ x [0, To], such that 3¢ — P uniform
on compact subsets of &#_ x [0, To] and, (0,» —i 9,/ )P — (d,» —idy)P and
9;P€ — 9, uniformly on compact subsets of &Z_ x [0, Ty], as € — 0. Let
€ — 01in Eq.(6.55), we have

VU — WUy +UUy —iVy = —(3y —idy)P,  on Z_ x [0, Tyl
(6.64)

This shows that (U, W, P3) is a solution of the Cauchy problem for the system
(2.31)-(2.32)—(2.33) in the sense of Definition 3.8. Furthermore because of
(6.25), (6.27), letting ¢ — 0 gives

sup £(t) < M(£E(0)) < oo. (6.65)
[0.T0]

and

1
sup {sup [|U" +iy", Ol 2wy + SUP | 5——————
[O,T()] y,<0 ( e ) y’<0 \IIZ/(-XJ + lyly t)

—lz2® axy} < Co < 00. (6.66)

By the argument at the end of Sect. 2.5, if X(r) :={Z = ¥ (a/, 1) |’ € R}
is a Jordan curve, then W(-,¢) : &Z_ — Q(t), where Q(¢) is the domain
bounded from the above by X (¢), is invertible; and the solution (U, W, 3)
gives rise to a solution (v, P) := (U o w1 T o W1y of the water wave
equation (1.1). This finishes the proof for part 1 of Theorem 3.9.

6.3 The chord-arc interfaces

Now assume at time ¢ = 0, the interface Z = W(a’, 0) := Z(a/,0), o’ € Riis
chord-arc, that is, there is 0 < § < 1, such that

s [ 1zt oy

ﬁ/
<|Z(',0) = Z(p,0) < / | Zo (v, 0)ldy, V—o00<a <f <c0.

o
We want to show there is 71 > 0, depending only on £(0), such that for

t € [0, min{Ty, %}], the interface Z = Z(a’, t) := W(a’, t) remains chord—
arc. We begin with
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t rB
— 2, ) +z2°(B, 1) + z°(a, 0) — z°(B, 0) =/ f 2y (v, 8)dy ds
0 Ja

(6.67)
for ¢ < . Because
d
Elzgl2 = 2|z5 1> Re Dozt (6.68)
by Gronwall’s inequality, for ¢ € [0, Tp],
126 (e, D2 < [, 0) P2 o 1Pui o)l (6.69)
o)
2k (@, D] < 125 (@, )| Dazf (e, 1)]eho 1Pt 0147, (6.70)
ta o t
by Appendix C, (6.25) and Proposition 3.3,
sup |zz, (e, )| < |z (a0, 0)|C(E(0)); (6.71)
[0,To]

therefore for ¢ € [0, Tp],

t pB B
/O f 125, (. )| dy ds < 1C(E0)) / G0y, (672)

Now z¢(a, 0) = Z¢(r, 0) = W (x — €i, 0). Because Z ,(-,0) € L}OC(]R), and
Z o (-,0) — 1 € H'(R\[-N, N]) for some large N,

[P . B

lim [ |W(y —€i,0)|dy < / |Z.o(y,0)|dy. (6.73)

=0 Jy a

Lete — 0in (6.67). We get, for ¢t € [0, Tp],

B
llz(a, 1) — 2(B, ) — | Z(e, 0) — Z(B, 0)[| = tC(f‘fl(O))/ |Z, (v, 0)|dy,

(6.74)
hence forall « < f and 0 < ¢ < min{7y, M},
1 B B
3 / Z.o (Ol dy < 2@, ) — 2(B, )] <2 f \Z .00 (. 0)] dy.
o o
(6.75)
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This show that for < ¢ < min{Ty, M}, z = z(-, t) is absolute continuous

on compact intervals of R, with z,(-, 1) € L}OC(R), and is chord-arc. So

% (t) = {z(a, t) | @ € R} is Jordan. This finishes the proof of Theorem 3.9.

Appendix A. Basic analysis preparations

We present in this section some basic analysis results that will be used in this
paper. First we have, as a consequence of the fact that product of holomorphic
functions is holomorphic, the following identity.

Proposition A.1 Assume that f, g € L*(R). Assume either both f, g are

holomorphic: f = Hf, g = Hg, or both are anti-holomorphic: [ = —Hf,
g = —Hg. Then

[f, H]g = 0. (A.1)

Let f : R — C be a function in HY2(R), we define

1 1 = 1 g = / iHO, f (x) f (x) dx

_ L@ = fOP
2n (x —)?

dxdy. (A.2)
We have the following results on H'/2 norms and H'/? functions.
Lemma A.2 For any function f € H'/2(R),

10302 = IBH F 100 + IPAS 0 (A3)

[ 008 Fdel = WP £y = 1P SV (A4)

Proof Lemma A.2 is an easy consequence of the decomposition f = Py f +
P4 f, the definition (A.2) and the Cauchy integral Theorem. We omit the
details. O

Proposition A.3 Let f, g € C'(R). Then

18z S W fllzeellgll g + Mgzl f 1 gi2s (A.5)
el gz S U izl f el g + 1 1 z2llgl 2)- (A.6)

@ Springer



368 S. Wu

The proof of (A.5) is straightforward from the definition of H'/2, and the
proof of (A.6) is straightforward from the definition of H'/? and the Hardy’s
inequality®®. We omit the details.

We next present the basic estimates we will rely on for this paper. We start
with the Sobolev inequality.

Proposition A.4 (Sobolev inequality) Let f € CJ(R). Then

£ 10 < 20 F N2l £l 2 (A7)

Proposition A.5 (Hardy’s inequalities) Ler f € C'(R), with f' € L*(R).
Then there exists C > 0 independent of [ such that for any x € R,

2
[ LOE ol @9
and
4
[JUD=LOF gy . (A9)

Let H € CY(R:RY), A; e C'(R),i = 1,...m,and F € C®(R). Define

H — H " (A; — A;
CilAr ..., Am,f)<x)=pv./F( Sl (y)) =1 A0 Z AW gy

x—y (x — yym+!
(A.10)

Proposition A.6 There exist constants ¢c; = ci(F,||H'||L~), c2 = ¢
(F, ||H'|| ), such that
1. Forany f € L?, AleLl™® 1<i<m,
ICI(A1, ... Am, Pl < ctllAlllze . A, izl fll2. (ALD)
2.Forany f € L®, Al e L*, 2<i<m, A| € L?

IC1(AL, ..., Am, D2 < c2llAfll2ll Ao .. A, Iz ll fllzos.
(A.12)

(A.11) is a result of Coifman, McIntosh and Meyer [14]. (A.12) is a conse-
quence of the Tb Theorem, a proof is given in [40].

28 First write g(x) — g(y) = £() " (F(0)g(x) — FOMEM) + g f@) L F ) = £(x)).
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Let H, A; F satisfy the same assumptions as in (A.10). Define

H(x)—H " (A (x) — A;
CalA. () :/F< (x) (y)) im1(Ai(x) : (y))ayf(y)dy.
X—y (x—y)

(A.13)

We have the following inequalities.

Proposition A.7 There exist constants c3, c4 and cs, depending on F and
| H'|| oo, such that
1. Forany f € L?, AleL™® 1<i<m,

IC2(A, F)ll2 < callAllee - 1A, Izl £l 2 (A.14)
2.Forany f € L®, Al € L™, 2 <i <m, A} eL?

IC2(A, P2 < callAfll 2l Al - (1AL Lo | fllzoe.  (A.15)

3. Forany f' € L*, A; € L, AleL™® 2<i<m,
IC2(A, P2 < esllArllellAyllLee . A, Izl f 2. (AL16)
Using integration by parts, the operator C2(A, f) can be easily converted
into a sum of operators of the form C{(A, f). (A.14) and (A.15) follow from
(A.11) and (A.12). To get (A.16), we rewrite C2(A, f) as the difference of

the two terms A{C1(Az, ..., Ay, f') and Ci(Ay, ..., Ay, AL f') and apply
(A.11) to each term.

Proposition A.8 There exists a constant C > 0 such that for any f, g, m
smooth and decays fast at infinity,

1A HIgl 2 < C I llgn Ighes (A.17)
1A HIgl oo < C | ] 12 g2 (A.18)
ILf HIBw gl 2 < C | f/] 2 Ngllgies (A.19)
LS m: g2 < C | F' ] 2 [|m']| oo &N 12 - (A.20)

Here [ f, g; h] is as given in (1.5). (A.17) is straightforward by Cauchy—
Schwarz inequality and the definition of H'/2. (A.18) is straightforward from
Cauchy-Schwarz inequality and Hardy’s inequality (A.8). (A.19) and (A.20)
follow from integration by parts, then Cauchy—Schwarz inequality, Hardy’s
inequality (A.8), and the definition of H'/2,
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Proposition A.9 There exists a constant C > 0 such that for any f, g, h,
smooth and decay fast at spatial infinity,

ILfs gl < C | )| 8] 2 1l 22 s (A.21)
ILfs &: hlllpee < C | f'] 2 1|18 | oo 111 L2 (A22)
ILfs g: hlllpee < C | f'] 2 18" 2 17l e - (A.23)

(A.21) follows directly from Cauchy—Schwarz inequality, Hardy’s inequality
(A.8) and Fubini Theorem; (A.22) follows from Cauchy—Schwarz inequality,
Hardy’s inequality (A.8) and the mean value Theorem; (A.23) follows from
Cauchy-Schwarz inequality and Hardy’s inequality (A.8).

Appendix B. Identities
B.1. Commutator identities

We include here various commutator identities that are necessary for the proofs.
The first set: (B.1)—(B.5) has already appeared in [24].

[8;, D] = —(Daz) Dy (B.1)
[6:, D2] = —2(Dyz) D} — (D%2) Dy (B.2)
[07, Do] = (= Dazir) Do + 2(Dazs)* Do — 2(Dyzi) Dady;  (B.3)
[07 + iady. Da| = (—2Dazit) Da — 2(Dyaz1)d; Dy (B.4)

and

[(97 +iady), D] = (—=4Dgzi) D} + 6(Daz/)> D — (2D%211) D
+ 6(Dgz1)(D22;) Dy — 2(D22;) Dyd; — 4(Dyz,) D20,
(B.5)

Let
P = (8 + bdy)> +iAdy.

Notice that U, '9,Up, = 8, + bdy, U, 'DuUy = Dy and P = U, ' (82 +
iady)Up, we precompose with h=1to Egs. (B.1)-(B.5), and get

[0 + bde, Doyl = —(Dey Z1) Doy (B.6)
[a, + boy, Dﬁ,} = —2(Do Z) D% — (D% Z) Dy (B.7)
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@ + b1, Dor| = (=D Zi0) Dy + 2D 20 Dy = 2D Z0) D (34 + bk); - (B.8)
[P, Dyl = (=2Dy Zi) Dyt — 2(Dgr Z1)(3; + bdyr) Dy (B.9)

and

[P, D}, ] = (=4Dy Zi1) Dy + 6(De Z:)* D}y = (2D} Zi1) Dy
+6(Do Z)(Dy Zy) Dyt — 2D} Z1) Doy (3 + bdyr) (B.10)
— 4(Doy Z1) D3 (3; + bay).

We need some additional commutator identities. In general, for operators
A, Band C,

k
[A, BCK] =[A, B]IC* + B[A, CF] = [A, BICF + Z BC A, c1Ck .
i=1

(B.11)
We have

[0 + by, o1 f = —borde [ (B.12)
(3 + by >2 o' 1f = =3 + bde) (bt o ) — b8 (31 + b0 [ : (B.13)
[ A8y, 3y 1f = —i Ay B (B.14)
o' 1f = =0 + b)) (b Do ) — by (0 + b)) [ — iAo f3 - (B.15)
[9: + bdor, 83 1f = =00 (bor Bt ) = by f- (B.16)

Here (B.13), (B.16) are obtained by (B.11) and (B.12). We also have
[0; + b0y, H] = [b, H]0y (B.17)

We compute

(0 + bdy)[ f, Hlg
= [(0r + bdy) f, Hlg + [ f, [0: + b0y, HIT g + [f, HI(0; + bdur)g
= [(8; + bdy) f, HIg + [, [b, H] 018 + [f, HI(3; + bdsr)g
= [0 + bdy) f, Hlg + [f, HI ((9; + b3y)g + ber8)
+ [/, [b, H]1 0o g — [b, HI(forg) — Lf, H](ber ).

It can be checked easily, by integration by parts, that
[fa [b7 H]] a(x’g - [ba H](f()t’g) - [f’ H](ba’g) = _[f’ ba g]
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So
(0 + Do) f, Hlg = [(3; + bdy) f, Hlg (B.18)
+ [f, HI((9; + b3 g + barg) — [f. b3 g1 '
with an application of (B.12) yields
(0r + b3y f, Hl0arg = [(8; + bdy') f, H0e g (B.19)

+ [f. H18y (3 + b3e)g — L f, b; 98]

We compute, by (B.17), (B.11) and (B.19) that

[0 + b3w)* H] f = @3 + bou) [b. H] s f + b, H] s (8 + b) f
= [(8; + bdy)b, H] 3y f (B.20)
+ 2 [b, H] 83y + b3gr) f — [b, b; 0t £

We also have
[iAdy, H] f = [i. A, H] 9y f. (B.21)
Sum up (B.20) and (B.21) yields

[P,H] f = [(0; + b0y )b, H] 0y f
+2[b, H] 8y (0; + bdy) f — [b, b; 3y f1+ [i A, H] 3y f.

(B.22)
We have, by product rules, that
(8 + bdy)? L f =0 +bdy)? ! f
t o ) Z’a/ _— t o Z7a/
1
+2(0; + bdy) ( ) (0r + b0y) f
Zy
(B.23)
and
. 1 : 1

zAaa/,Z f =iAdy Za fi (B.24)
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SO

P ! = 0+ bag)? =
|: ’Z,a’]f_(t-i_ a,) (Z,oz/)f

1 _ 1
+2(at+baa,)(z )(8,+b8a/)f+zA8a/(Z /)f.

4

N
(B.25)
And we compute, by (2.35),
(9 + b0y) Ly_ 1 b Dy Z;); (B.26)
t o Z,(x’ = Z,a’ o a'Lt)s .

(at + baa’)(ba’ - Dot/Zt)‘
(B.27)

@ + b3 (=) = ——(by — Dy Z0)? + —
Z,(x’ Z,a’ Z,a/

Appendix C. Main quantities controlled by &

We have shown in Sect. 4.1.1 that the following quantities are controlled by a
polynomial of € (or equivalently by £):

_ 1 _ _ _
|DaZi | 172 - HT DLZ, 1Ziallz2, I1D2Zll 2.
Lo ]

g2

1 1
Zo |12 Zy
Al balle. 1D Zillz. Do Zullizo. 1@ + bda)Zywll 2

1Zuo 2. D2 Zull 2. D2 Zill2, N +b30)DLZi 2, D% Zill 2. (C.1)

W

0,0

s

In the remainder of Sect. 4.1 we have controlled the following quantities by a
polynomila of € (or equivalently by £):

a _ 1 1
[Zon™| o 1@+ bd)Atle . TAle s | —de ,
a Lo© Z,Ol’ Z’a/ L

1 1
aa’(at + baa’) s (81 + baa/)aa/_ s
o |12 Z,a/ L2
1007 (3r + b3l oo, [1(0; + by )by || o0
a _
1(0s + bdy) Dy Zull oo » H D, <Ft oh 1) ‘ " (C.2)

As a consequence of (4.70) and (C.1) we have

”Da/ba’”Lz S C(@)
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