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Abstract: We consider the motion of the interface separating a vacuum from an invis-
cid, incompressible, and irrotational fluid, subject to the self-gravitational force and
neglecting surface tension, in two space dimensions. The fluid motion is described by
the Euler–Poisson system in moving bounded simply-connected domains. A family of
equilibrium solutions of the system are the perfect balls moving at constant velocity. We
show that for smooth data that are small perturbations of size ε of these static states,
measured in appropriate Sobolev spaces, the solution exists and the perturbation remains
of size ε on a time interval of length at least cε−2, where c is a constant independent of
ε. This should be compared with the lifespan O(ε−1) provided by local well-posedness.
The key ingredient of our proof is finding a two-step nonlinear transformation which
removes quadratic terms from the nonlinearity. Compared with the gravity water wave
problem, besides the different geometry of the bounded moving domain, an important
difference is that the gravity in water waves is a constant vector, while the self-gravity
in the Euler–Poisson system depends nonlinearly on the interface.

1. Introduction

We consider the motion of the interface separating a vacuum from an inviscid, incom-
pressible, and irrotational fluid subject to self-gravitational force in two spatial dimen-
sions. We assume that the fluid domain is bounded and simply connected and the surface
tension is zero. Denoting the fluid domain by �(t) ⊂ R

2, the fluid velocity by v, and
the pressure by P, the evolution is described by the Euler–Poisson system
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⎧
⎪⎨

⎪⎩

vt + (v · ∇)v = −∇P − ∇φ in �(t), t ≥ 0,
div v = 0, curl v = 0 in �(t), t ≥ 0,
P = 0 on ∂�(t),

(1.1)

where the self-gravity Newtonian potential φ satisfies
{

�φ = 2πχ�(t),

∇φ(x) = ∫∫

�(t)
x−y

|x−y|2 dy.
(1.2)

In the equilibrium case where the total force from the pressure and self-gravity are
balanced, a ball in R2, possibly moving with constant velocity, gives a static solution of
the system (1.1)–(1.2). An important stability condition for this problem is the Taylor
sign-condition [36]

∂P

∂n
< 0,

where n is the unit outward pointing normal to the boundary of the fluid region. In
two dimensions and without the irrotationality assumption, a-priori estimates for this
problemwere obtained byLindblad andNordgren [29] under the assumption that initially
the Taylor sign-condition holds. In three dimensions, Nordgren [31] proved local well-
posedness. In our case where the fluid is incompressible and irrotational, the Taylor
sign-condition holds automatically. Indeed by taking divergence of the first equation in
(1.1) and using the fact that �φ = 2π in �(t) we see that in �(t)

�P = −�φ − |∇v|2 = −2π − |∇v|2 < 0,

so by the Hopf’s Maximum principle

∂P

∂n
< 0.

In this paper we show that if ε � 1 is the size of the difference of the smooth initial data
from one of the equilibrium states above, measured in Sobolev norms, a unique solution
exists and its lifespan has a lower bound of order O(ε−2). This should be compared with
the O(ε−1) estimate from local well-posedness. The key to obtaining our long-time
O(ε−2) estimate is to find a new unknown function and a coordinate change such that in
the new coordinates the new unknown satisfies an equation with only cubic and higher
order nonlinearity.

To state our main theoremmore precisely we first discuss the reduction of the system
(1.1)–(1.2) to a system on the boundary ∂�(t). We occasionally use the notation �t :=
�(t). When there is no risk of confusion we simply write �; similarly we occasionally
write the parametrization of ∂� := ∂�(t) as z = z(·) instead of z = z(t, ·). Moreover,

we use the usual identification

(
x
y

)

�→ z = x + iy of R2 with C to identify � with a

domain in the complex plane.
Let z(t, α), α ∈ R, be a counterclockwise and 2π -periodic Lagrangian parametriza-

tion of ∂�. By this we mean

zt (t, α) = v(t, z(t, α)),
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so in particular

ztt (t, α) = vt (t, z(t, α)) + (v · ∇v)(t, z(t, α))

is the acceleration. The conditions div v = 0, curl v = 0 now imply that v is anti-
holomorphic in � and therefore zt is the boundary value of a holomorphic function in
�. It then follows, cf. Proposition A.1 in Appendix A, that

zt = Hzt ,

where H denotes the Hilbert transform associated to � defined by

H f (z0) := p.v.

π i

∫

∂�

f (z)

z − z0
dz := p.v.

π i

∫ 2π

0

f (z(t, β))

z(t, β) − z(t, α)
zβ(t, β)dβ

for z0 = z(t, α) ∈ ∂�. Since z is a counterclockwise parametrization of ∂� the unit
exterior normal of this boundary is given by n := −i zα|zα | , and since P is constant on ∂�

we can write ∇P(t, z) = iazα for a real-valued function

a := − 1

|zα|
∂P

∂n
.

It follows from (1.1)–(1.2), and these observations that z satisfies the fully nonlinear
system

{
ztt + iazα = −2∂zφ,

Hzt = zt ,
(1.3)

or equivalently
{
ztt − iazα = −2∂zφ,

Hzt = zt .
(1.4)

As shown in Lemma 3.1 the gravity term in (1.4) can be written as

−2∂zφ = −π

2
(I − H)z, (1.5)

which depends nonlinearly on the unknown interface. The remainder of this paper is
devoted to the study of this equation. Note that once a solution z to (1.3) is found, one
can recover v by solving the Dirichlet problem

{
�v = 0, in �

v = zt , on ∂�
.

We can now state the main result of this paper. See also Theorems 3.2 and 6.2 for more
quantitative formulations.

Theorem 1.1. Let �0 be a bounded simply-connected domain in C with smooth bound-
ary ∂�0 satisfying |�0| = π, and denote the associated Hilbert transform by H0.

Suppose z0(α) = eiα + ε f (α) is a parametrization of ∂�0 and z1(α) = v0 + εg(α)

where f and g are smooth and g satisfies H0g = g, and v0 ∈ C is a constant. Then
there is T > 0 and a unique classical solution z(t, α) of (1.3) on [0, T ) satisfying
(z(0, α), zt (0, α)) = (z0(α), z1(α)).Moreover, if ε > 0 is sufficiently small the solution
can be extended at least to T ∗ = cε−2 where c is a constant independent of ε.
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Remark 1.2. The normalization |�0| = π is made only for notational convenience. By
the incompressibility of the flow the area of �(t) remains constant during the evolution,
and our proof goes throughwithout this assumption by renormalizing the transformations
in Sect. 3.

Remark 1.3. The constant v0 ∈ C corresponds to the fact that we consider the stability of
the equilibrium solution eiα + v0t. In practice we work in the center of mass coordinates
(see Sect. 3) to reduce the analysis to the case v0 = 0.

We continue with a brief historical survey of developments related to Eqs. (1.1)–(1.2)
followed by a discussion of the main difficulties in the proof of Theorem 1.1 and the
ideas for resolving them. To the best of our knowledge, the only works on the Cauchy
problem for the incompressible Euler–Poisson system are due to Lindblad andNordgren.
Although the proof of local well-posedness in [31] should extend to two dimensions,
for the sake of completeness we include a sketch of an alternative proof for the local
well-posedness of our Eqs. (1.3)–(1.5) using Riemann mapping in Sect. 7. We discuss
our motivation for using Riemann-mapping coordinates in the discussion of the proof
below.

There are many more works on the related gravity water-wave problem, in which
the gravity is a constant vector. Local well-posedness was proved in [1,2,4,5,7,10–
12,20,26–28,30,32,34,38,39,42,44]. For global and almost-global well-posedness of
the gravity water-wave problem, first Wu obtained almost-global well-posedness in
dimension two in [40]. Then global well-posedness in three dimensions was proved
by Wu in [41] and by Germain, Masmoudi, and Shatah in [15]. The 2d result was later
extended to global well-posedness by Alazard and Delort in [3] and Ionescu and Pusateri
in [22]. We refer the reader to [14,16,21] for other related developments. See also [17–
19]. For the long-time lifespan estimates of small smooth solutions in the aforementioned
works, the main idea is to use the method of the normal forms to eliminate quadratic
nonlinearities, although the exact analysis in carrying out the idea varies. Almost-global
and global existence rely on the dispersive property of the equation. The use of normal-
form transformations in the study of evolution PDEs has a long history, and here we
mention for instance the works [13,33,35].

In this paper,we construct a two-stepnonlinear transformation to remove thequadratic
nonlinearity in the equation. The advantage of this approach is that once the transfor-
mation is derived, the construction of the energy is very natural and the analysis is
much simpler. Most importantly, the nonlinear transformation and the equation it sat-
isfies reveal deep structural properties of the equation in exact form, which we believe
will be useful for further investigations. An analogous transformation was discovered
by the last author in [40,41] for the gravity water-wave problem. The crucial differences
between the present problem and the gravity water-wave problem are that the gravity of
the water-wave problem is a constant vector while in the Euler–Poisson system (1.1)–
(1.2) the self-gravity∇φ depends nonlinearly on the interface, and that the fluid domains
of the two problems assume different geometric forms. From a physical point of view
an important difference between the self-gravitating one-body problem (1.1)–(1.2) and
the gravity water wave problem is that they are subject to two different types of physical
forces, one internal and the other external. As in [40,41], the construction of our nonlin-
ear transformation is non-algorithmic. While the near-identity transformation for water
waves in [40] is for perturbations near the flat interface, our near-identity transformation
is for perturbations near the unit circle. Our construction is accomplished via a thorough
analysis of the structure of our equation, in particular, of the nonlinear gravity and the
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geometry. We mention that our nonlinear transformation can be easily modified to allow
non-constant vorticity, see Appendix B. Finally note that since the fluid domain �(t) is
bounded, dispersive tools are not available to prove global well-posedness at the time of
writing this paper.

We now turn to the discussion of the main ideas of the proof of Theorem 1.1. The
two-step nonlinear transformation described above, consists of finding a new unknown
and a coordinate change such that the new unknown satisfies an equation with only cubic
and higher-order nonlinearities in the new coordinates. To understand what we mean by
cubic we have to specify what kinds of terms are considered small. Recall that we are
studying the stability of the static solution1 z(t, α) ≡ eiα, zt (t, α) ≡ 0. It therefore
makes sense to consider a quantity depending on z to be small if it is zero when z is
the static solution. For instance the quantities |z|2 − 1 and zt are considered small, and
to say that the nonlinearity is “cubic and higher order” means that every term in the
nonlinearity is the product of at least three small terms.

The new unknown Let ε := |z|2 − 1 and denote by δ the projection of ε onto the space
of functions that are holomorphic outside � (see Appendix A), that is,

δ := (I − H)ε

where H is the Hilbert transform. Then δ satisfies

(∂2t + ia∂α − π)δ = (I − H)(∂2t + ia∂α − π)ε − [∂2t + ia∂α, H ]ε. (1.6)

The first step in our proof of long-time existence, which is carried out in Proposition 3.15,
is to show that the right hand side of this equation contains no quadratic terms, or in
other words

(∂2t + ia∂α − π)δ = cubic.

This comes from a careful analysis of the holomorphicity structure of the equation
satisfied by ε. More precisely, the projection operator I − H already annihilates the
holomorphic quadratic nonlinearities in the equation for ε, and the key observation is that
the remaining quadratic contributions exactly cancel out with the commutator above. An
interesting point, which can be seen from an inspection of the proof of Proposition 3.15,
is that the same transformation formally2 yields a cubic equation even if we turn gravity
off by setting ∇φ = 0. In fact, a large part of the proof of Proposition 3.15 consists
of showing that the quadratic terms contributed by the gravity cancel out with each
other. As already mentioned, the nonlinear gravity is one of the key differences with the
water-wave equation.

The coordinate change. To prove energy estimates for this equation we need to have
control on the size of the coefficient a, and the dependency of a on z is nonlinear. Now
a careful computation shows that the contribution of the term ia∂αδ to the nonlinearity
is quadratic. To remedy this problem, we exploit the remaining freedom in the equation,
that is, the choice of coordinates. More precisely, note that the right hand side of (1.6)

1 More precisely we consider the stability of the solutions z(t, α) = eiα + v0t where v0 ∈ C is a constant
initial velocity. However, by working in the center of mass frame we are able to reduce to the case v0 = 0.
See Sect. 1 below as well as Sect. 3.1 for more details.

2 We say “formally” because in the absence of gravity our equilibrium solutions have no special significance,
so we need to interpret smallness with respect to the equilibrium solutions in the presence of gravity.
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is invariant under change of coordinates, whereas a = −1
|zα |

∂P
∂n varies under coordinate

transformations k : R → R. Given such k and with the notation

χ := δ ◦ k−1, A := (akα) ◦ k−1, b = kt ◦ k−1,

we see that χ satisfies
(
(∂t + b∂α)2 + i A∂β − π

)
χ(t, β) = cubic.

The idea now is to choose k in such away that b and A−π are quadratic. Here in the static
case the transformation k is simply the identity and A is the constant π. We will show in
Sect. 3 that these conditions will be satisfied if we choose k so that zeik is the boundary
value of a holomorphic function F(t, z) in � such that log F is also holomorphic in �

and in addition F satisfies the normalization F(t, 0) ∈ R+. The proof of the existence of
k satisfying these conditions reduces to solving a Dirichlet problem in �. See Sect. 3, in
particular Proposition 3.20 and Remark 3.21, for more details. This non-trivial choice
of k comes again from gaining a structural understanding of the equation, and the fact
that an extra normalization F(t, 0) ∈ R+ is needed is related to the geometry of the fluid
domain. Indeed, this is reminiscent of the freedom in the choice of Riemann mappings
for bounded simply-connected domains, and should be compared with the normalization
in our choice of Riemann mapping in the proof of local well-posedness (see below).

Positivity of the energy. With the above choice of k we have obtained our cubic equation,
and we next focus on the energy estimates for the equation

(
(∂t + b∂α)2 + i A∂β − π

)

 = cubic,

where 
 = (I − H) f for some f. Unfortunately the operator i A∂β − π is not positive
even when restricted to the class of functions satisfying 
 = (I − H) f. On the other
hand, we observe that if we are in the static case z(t, α) ≡ eiα, so that A = π, then a
Fourier expansion shows that i∂β − 1 is indeed positive on the class of functions with
only negative frequencies, i.e., functions of the form 
 = (I − H) f where now H

is the Hilbert transform associated with the unit circle. This suggests that the negative
part of i A∂β − π should be higher order with respect to our energy, and in Sect. 5 we
show that this is indeed the case. As shown in Lemma 5.7, the most natural way to
see this structure is to work with the quantity (z ◦ k−1)
 instead of 
, but a careful
examination of the statement of this lemma shows that the main estimate comes with
a loss of a half derivative. Therefore, to control the negative part of the energy without
loss of derivatives, a very careful choice of higher-order energies is needed, which is
based on the observation that the negative error for the energy for the time derivative
of χ is controlled in terms of χ itself. For a more detailed discussion of this point
we refer the reader to the paragraph following the proof of Lemma 5.7. The detailed
execution of these ideas is contained in Sect. 5, and specifically in Lemmas 5.8 and 5.9
and Corollary 5.10.

A formula for the center of mass. We close our discussion of the proof of long-time
existence by describing an extra difficulty that arises from working in the center-of-
mass coordinates to handle the constant-velocity motion of the equilibrium balls. It is
important for the construction of our transformation that the center ofmass of the domain
moves along a straight line in C. This fact which is consistent with physical intuition,
as no external forces act on the body, is proved in Proposition 3.4. However, to be able
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to use this fact to obtain estimates for the new unknown χ it is important to obtain an
expression for the center of mass in terms of our transformed quantities. This expression
which is obtained in Proposition 3.5 plays a crucial role in estimating χ and its first
derivative in terms of our energies, as shown in the proof of Proposition 4.20.

Riemann mapping and local well-posedness. In our proof of local well-posedness we
use a Riemann mapping to derive an explicit formula for the important quantity − ∂P

∂n ,
analyze the interface equation, and derive the quasilinear equation. The advantage of
Riemann-mapping coordinates is that it simplifies the structure of the interface equation.
In particular the Dirichlet–Neumann operator is simply |∂α| in these coordinates, and
the holomorphicity condition is expressed in terms of the Hilbert transform associated
with the unit disc, which is a linear operator. The importance of Riemann-mapping
coordinates in studying free-boundary problems is by now well-established and far-
reaching consequences are known, see for example [25,38,43].

We end our discussion of local well-posedness by pointing out an important differ-
ence between the water-wave and self-gravitating models, stemming from the different
domain geometries. Whereas the requirement that infinity is mapped to infinity in the
case of the lower half-plane corresponding to the water-wave problem provides a natu-
ral normalization of the Riemann mapping in that case, the choice of normalization is
not clear in the self-gravitating model. Indeed, as shown in Proposition 7.3, a judicious
choice of normalization is needed to guarantee that the contribution of B does not depend
on the highest-order derivatives of the unknown. As we already mentioned above, this
should be compared with the required normalization in the choice of coordinate-change
k in the proof of long-time existence.

1.1. The case of constant vorticity. In Appendix B at the end of this paper we show
that our transformations can be easily modified to allow for nonzero constant vorticity,
and a similar energy method as in the irrotational case gives an estimate T � ε−2 for
the lifespan T of solutions with data which are size ε perturbations of the equilibrium.
Assuming that the fluid vorticity is 2ω0, we find that when ω2

0 < π the Taylor sign
condition ∂P

∂n < 0 is satisfied and the fluid motion is stable. When ω2
0 > π we have

∂P
∂n > 0 if the fluid velocity is close to that of the equilibrium state, leading to instability.
Our interest in constant vorticity was sparked by the recent paper [19] of Ifrim and
Tataru, where they investigated the gravity water wave equation with constant gravity
and constant vorticity.

1.2. Organization of the paper. The rest of this paper is organized as follows. In Sect. 2,
we collect some analytic tools which are used in the rest of the paper. The proof of the
long-time existence statement of Theorem 1.1 is the content of Sects. 3–6. The proof
relies on the existence of a local-in-time solution, but as local well-posedness is not the
primary focus of this paper the proof of local well-posedness is postponed to Sect. 7,
where Riemann mapping coordinates are introduced and the quasilinear structure of the
equation revealed. In Sect. 3 we introduce the normal form transformation and obtain the
desired cubic equation discussed above. In Sect. 4we investigate the relation between the
original and transformed quantities, and how estimates on one set of quantities translate
to estimates for the other set. In Sect. 5 we introduce the energies and carry out the
energy estimates, and finally in Sect. 6 we combine the results from the previous three
sections to conclude the proof of long-time existence. Appendix A contains a review of
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basic facts that are used about the Hilbert transform in this paper. As mentioned above,
Appendix B is devoted to the case of constant vorticity. For the convenience of the reader
we have provided a list of notations we use in this paper, before the references.

2. Analysis Tools

In this section we collect a number general estimates which will be used in the rest of
the paper. Most notably we will provide classical estimates on certain singular integral
operators adapted to our case. Throughout this section we let

z : [0, 2π ] → ∂� ⊆ C

be a parametrization of the (closed) boundary of a domain � in C. We require z to be at
least C1, but most of the results in this section hold under the weaker assumption that z
is Lipchitz. By abuse of notation, for a function A : ∂� → C, we write A(α) instead
of A(z(α)). In this context A′(α) means ∂αA(z(α)), so for instance if A = |z|2 − 1
then A′ = 2Re zzα. In the proof of local well-posedness z will usually be chosen as
z(α) = eiα or z(t, α) = Z(t, α). For the long-time existence we will often consider
z(t, α) = ζ(t, α) or z(t, α) = z(t, α) (the definitions for Z and ζ will be given in later
sections).

Even though the functions in this section depend only on α and not on t, we use
the notations L p

α and Hs
α for the Lebesgue and Sobolev spaces in the variable α to be

consistent with the rest of the paper. The following standard Sobolev estimate will be
used throughout this work, often without reference.

Lemma 2.1 (Sobolev). There is a constant C such that for all f in the Sobolev space
H1

α

‖ f ‖L∞
α

≤ C(‖ f ‖L2
α
+ ‖∂α f ‖L2

α
).

We now turn to the main estimates of this section. We are interested in bounding
operators of the forms

C1(A, f )(α) := p.v.
∫ 2π

0

∏
i≤m (Ai (α) − Ai (β))

(z(α) − z(β))m+1−k(z(α) − z(β))k
f (β)dβ, k ≤ m + 1,

(2.1)

and

C2(A, f )(α) :=
∫ 2π

0

∏
i≤m (Ai (α) − Ai (β))

(z(α) − z(β))m−k (z(α) − z(β))k
∂β f (β)dβ, k ≤ m. (2.2)

The two propositions below are due, in their original forms, to Calderon [6], Coifman,
McIntosh, Meyer [9], Coifman, David, and Meyer [8], and here we only provide the
straightforward modifications necessary for their application in our periodic setting. See
also Wu [40] for the proof of the second part of this proposition using these results and
the Tb Theorem.
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Proposition 2.2. Suppose z satisfies

sup
α �=β

∣
∣
∣
∣
eiα − eiβ

z(α) − z(β)

∣
∣
∣
∣ ≤ c0

for some constant c0. Then there is a constant C = C(c0) such that the following
statements hold.

(1) For any f ∈ L2
α, A′

i ∈ L∞
α , 1 ≤ i ≤ m,

‖C1(A, f )‖L2
α

≤ C‖A′
1‖L∞

α
...‖A′

m‖L∞
α

‖ f ‖L2
α
.

(2) For any f ∈ L∞
α , A′

i ∈ L∞
α , 2 ≤ i ≤ m, A′

1 ∈ L2
α ,

‖C1(A, f )‖L2
α

≤ C‖A′
1‖L2

α
‖A′

2‖L∞
α

...‖A′
m‖L∞

α
‖ f ‖L∞

α
.

Proof. Propositions 2.2 is a consequence of Propositions 3.2 in [40]. Here we describe
the modifications necessary to apply this result to our setting. We restrict attention to
the case m = 1, k = 0, and write A instead of A1. The general case can be handled in a
similar way. With χ denoting the characteristic function of the interval [0, 2π ] we have

L :=
∫ 2π

0

(∫ 2π

0

A(α) − A(β)

(z(α) − z(β))2
f (β)dβ

)2

dα

=
∫

R

χ(α)

(∫

R

A(α) − A(β)

(z(α) − z(β))2
χ(β) f (β)dβ

)2

dα. (2.3)

Since A appears only as A(α) − A(β) in this expression, we may assume without
loss of generality that A(0) = A(2π) = 0. We introduce some more notation. First let
χ j , j = 1, 2, 3 be the characteristic function of the interval [ 2( j−1)π

3 ,
2 jπ
3 ]. Next define

Ã by Ã(α) = A(α) if α ∈ [−4π, 4π ] and Ã(α) = 0 if α /∈ [−4π, 4π ]. Let

K := {w ∈ C | w = z(α′) − z(β ′)
α′ − β ′ for some |α′ − β ′| ≤ 5π

3
} ⊆ C.

From the assumptions of Proposition 2.2 it follows that K does not contain the origin
w = 0 in C. Let K ′ ⊇ K be a compact set containing K such that 0 /∈ K ′, and let φK
be a cut-off function supported in K ′ and equal to one on K . If follows that the function

F(w) := φK (w)

w2

is smooth. With these definitions we have

L �
3∑

i, j=1

∫

R

χ(α)χi (α)

(∫

R

Ã(α) − Ã(β)

(z(α) − z(β))2
χ(β)χ j (β) f (β)dβ

)2

dα =:
3∑

i, j=1

Li, j
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and we will estimate these integrals separately for different values of i, j. First we treat
the case i = j, and for simplicity of notation we assume i = j = 1 :

L1,1 =
∫

R

χ(α)χ1(α)

(∫

R

F

(
z(α) − z(β)

α − β

)
Ã(α) − Ã(β)

(α − β)2
χ(β)χ1(β) f (β)dβ

)2

dα

≤
∫

R

(∫

R

F

(
z(α) − z(β)

α − β

)
Ã(α) − Ã(β)

(α − β)2
χ(β)χ1(β) f (β)dβ

)2

dα

�‖z‖
C1

α
‖ Ã′‖2L∞

α
‖χχ1 f ‖2L2

α([0,2π ]) � ‖A′‖2L∞
α

‖ f ‖2L2
α([0,2π ]),

where we have used Propositions 3.2 in [40] to pass to the last line. The case where
j = i + 1 is similar, and we now treat the case i = 1, j = 3. Using again Propositions
3.2 in [40] and the periodicity of A, f, and z we have

L1,3 =
∫

R

χ(α)χ1(α)

(∫

R

A(α) − A(β − 2π)

(z(α) − z(β − 2π))2
χ(β)χ3(β) f (β − 2π)dβ

)2

dα

=
∫

R

χ(α)χ1(α)

(∫

R

A(α) − A(β ′)
(z(α) − z(β ′))2

χ(β ′ + 2π)χ3(β
′ + 2π) f (β ′)dβ ′

)2

dα

≤
∫

R

(∫

R

F

(
z(α)−z(β ′)

α−β ′

)
Ã(α) − Ã(β ′)

(α − β ′)2
χ(β ′ + 2π)χ3(β

′+2π) f (β ′)dβ ′
)2

dα

�‖z‖
C1

α
‖A′‖2L∞

α
‖ f ‖2L2

α([0,2π ]).

The remaining cases can be handled using similar arguments. ��
Asimilar argument as in the proof of Proposition 2.2 allows us to deduce the following

result from Proposition 3.3 in [40]. We omit the proof.

Proposition 2.3. Suppose z satisfies

sup
α �=β

∣
∣
∣
∣
eiα − eiβ

z(α) − z(β)

∣
∣
∣
∣ ≤ c0

for some constant c0. Then there is a constant C = C(c0) such that the following
statements hold.

(1) For any f ∈ L2
α, A′

i ∈ L∞
α , 1 ≤ i ≤ m,

‖C2(A, f )‖L2
α

≤ C‖A′
1‖L∞

α
...‖A′

m‖L∞
α

‖ f ‖L2 .

(2) For any f ∈ L∞
α , A′

i ∈ L∞
α , 2 ≤ i ≤ m, A′

1 ∈ L2
α ,

‖C2(A, f )‖L2
α

≤ C‖A′
1‖L2

α
‖A′

2‖L∞
α

...‖A′
m‖L∞

α
‖ f ‖L∞

α
.

The next lemma is a simple computation which is used in estimating derivatives of
expressions such as C1(A, f ) and C2(A, f ).
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Lemma 2.4. Suppose

K f (α) = p.v.
∫ 2π

0
K (α, β) f (β)dβ

where K (α, β) or ei(α−eiβ)K (α, β) are continuous and K isC1 away from the diagonal
in [0, 2π ] × [0, 2π ]. Then

∂αK f (α) = K fα(α) + p.v.
∫ 2π

0
(∂α + ∂β)K (α, β) f (β)dβ.

Proof. This follows from integration by parts. ��
The following two lemmas are important corollaries of Propositions 2.2 and 2.3 and

Lemma 2.4. Recall that for a C1 parametrization ζ : [0, 2π ] → ∂� of the boundary of
� the Hilbert transform is given by

H f (α) = p.v.

π i

∫ 2π

0

f (β)

ζ(β) − ζ(α)
ζβ(β)dβ.

Lemma 2.5. Suppose ζ : [0, 2π ] → ∂� ⊆ C satisfies
∑�+1

i=1 ‖∂ j
αζ‖L2

α
≤ c for some

nonzero constant c, where � ≥ 4 is a fixed integer, and

sup
α �=β

∣
∣
∣
∣
eiα − eiβ

z(α) − z(β)

∣
∣
∣
∣ ≤ c0

Then there is a constant C = C( j, c, c0) such that for 4 ≤ j ≤ �

∑

i≤ j

∥
∥
∥
∥∂

i
α

∫ 2π

0

g(β) − g(α)

ζ(β) − ζ(α)
f (β)dβ

∥
∥
∥
∥
L2

α

≤ C
∑

i≤ j

‖∂ iαg‖L2
α

∑

i≤ j−1

‖∂ iα f ‖L2
α
.

In particular
∑

i≤ j

∥
∥
∥
∥∂

i
α[g,H] f

ζα

∥
∥
∥
∥
L2

α

≤ C
∑

i≤ j

‖∂ iαg‖L2
α

∑

i≤ j−1

‖∂ iα f ‖L2
α
.

Proof. The second estimate follows from the first by writing

[g,H] f

ζα

= 1

π i

∫ 2π

0

g(α) − g(β)

ζ(β) − ζ(α)
f (β)dβ.

To prove the first estimate we use Lemma 2.4 to distribute the derivative on f and g. In
the case where all derivatives fall on f Proposition 2.3 gives

∥
∥
∥
∥

∫ 2π

0

g(β) − g(α)

ζ(β) − ζ(α)
∂
j
β f (β)dβ

∥
∥
∥
∥
L2

α

� ‖∂αg‖L∞
α

‖∂ j−1
α f ‖L2

α
.

When all derivatives fall on g we use the boundedness of the Hilbert transform and
Proposition 2.2 to estimate

∥
∥
∥
∥
∥

∫ 2π

0

∂
j
βg(β) − ∂

j
αg(α)

ζ(β) − ζ(α)
f (β)dβ

∥
∥
∥
∥
∥
L2

α

� ‖∂ j
αg‖L2

α
‖H f ‖L∞

α

+ ‖H( f ∂ j
αg)‖L2

α
� ‖∂ j

αg‖L2
α
(‖ f ‖L2

α
+ ‖∂α f ‖L2

α
).
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The case when j − 1 derivatives fall on g and one derivative on f can be estimated
directly by Proposition 2.3. When j − 1 derivatives fall on g and none on f we have

∥
∥
∥
∥
∥

∫ 2π

0

(∂
j−1
β g(β) − ∂

j−1
α g(α))(ζβ(β) − ζα(α))

(ζ(β) − ζ(α))2
f (β)dβ

∥
∥
∥
∥
∥
L2

α

�
∥
∥
∥
∥
∥

∫ 2π

0

∂
j−1
β g(β) − ∂

j−1
β g(α)

(ζ(β) − ζ(α))2
f (β)ζβ(β)dβ

∥
∥
∥
∥
∥
L2

α

+

∥
∥
∥
∥
∥
ζα(α)

∫ 2π

0

∂
j−1
β g(β) − ∂

j−1
β g(α)

(ζ(β) − ζ(α))2
f (β)dβ

∥
∥
∥
∥
∥
L2

α

which can be estimated using Proposition 2.2. All other cases can simply be esti-
mated by bounding the contributions of both f and g in L∞

α and using the embedding
L∞

α ↪→ L2
α. ��

Lemma 2.6. Under the assumptions of Lemma 2.5 for any � ≥ 4
∑

j≤�

‖∂ j
α(I − H) f ‖L2

α
≤ C

∑

j≤�

‖∂ j
α f ‖L2

α
,

where C depends on the H �
α norm of ζ.

Proof. This follows from Lemma 2.5 and Propositions 2.2 and 2.3 by writing

∂ j
α(I−H) f =(I−H)∂ j

α f −
j∑

i=1

∂ j−i
α [ζα,H]∂

i
α f

ζα

=(I − H)∂ j
α f −

j∑

i=1

∂ j−i
α [η,H]∂

i
α f

ζα

,

where η := ζα − iζ, Here to compute the commutator [∂α,H] = [ζα,H] ∂α

ζα
we have

used Lemma 3.7. ��
As another corollary of Proposition 2.2 and Lemma 2.4 we get the following L∞

α

estimate for C1(A, f ), which is similar to Proposition 3.4 in [40].

Proposition 2.7. Suppose z satisfies

sup
α �=β

∣
∣
∣
∣
eiα − eiβ

z(α) − z(β)

∣
∣
∣
∣ ≤ c0

for some constant c0, and A′
i , A

′′
i , f, and f ′ are in L∞

α .Assume further that ‖z‖H2
α

≤ M.

Then there exists a constant C = C(c0) such that

‖C1(A, f )‖L∞
α

≤ C(1 + M)
∏

i≤m

(‖A′′
i ‖L∞

α
+ ‖A′

i‖L∞
α

) (‖ f ‖L∞
α
+ ‖ f ′‖L∞

α

)
.

Proof. This follows from applying the Sobolev inequality toC(A, f ) and using Lemma
2.4 and Proposition 2.2. Note that in view of the embedding L∞

α ↪→ L2
α we may replace

the L2
α norms appearing on the right hand side of the statement of Proposition 2.2 by

L∞
α norms. ��
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We close this section by stating the following estimates from [42] (see also [38]
Lemma 5.2) which are proved using Fourier analysis. The adaptations from the case of
the real line to the circle are straightforward and omitted. HereH is the Hilbert transform
on the circle.

Lemma 2.8. Let r ≥ 0, and q > 1/2. Then for any smooth functions a and u

‖[a,H]u‖Hr
α

� ‖a‖Hr+p
α

‖u‖Hq−p
α

, p ≥ 0.

3. The Normal Form Transformation

In this section we begin the study of the Cauchy problem of the system (1.3) with
small initial data. We start with the following important representation formula for the
boundary contribution of the gravity term.

Lemma 3.1. −2∂zφ = −π
2 (I − H)z = −π z + π

2 (I + H)z.

Proof. With x = z(α) and by the dominated convergence theorem

∇φ(x) = −
∫ ∫

�

∇y log(|x − y|)dy = − lim
ε→0

∫ ∫

�\Bε

∇y log(|x − y|)dy

where Bε is a ball of radius ε centered at x. We now identify R2 with C in the usual way
and abuse notation to write for instance ∇φ = ∂xφ + i∂yφ. Defining the vector fields

X = (log(|x − y|), 0), Y = (0, log(|x − y|)),
we have

∇φ(x) = − lim
ε→0

∫ ∫

�\Bε

(div X + i div Y )dy = − lim
ε→0

∫

∂(�\Bε )

(X + iY ) · Ndσ(y)

where dσ is the line element of the boundary and N the outward pointing normal vector.
The boundary has two parts: Cε corresponding to ∂Bε and �ε corresponding to ∂�ε.

We can find δ1(ε) and δ2(ε) which are O(ε) and such that �ε is parametrized by z(·) :
[0, 2π ]\[α−δ1, α+δ2] → �ε.The outward pointing normal vector is therefore given by
−i zα/|zα| in complex notation or 1

|zα | (Im zα,−Re zα) in real notation. Similarly there
are numbers η1(ε) < η2(ε) in (0, 2π) such that in complex notation Cε is parametrized
by θ ∈ (η1, η2) �→ x+εeiθ . It follows form the computation above and the 2π -periodicity
of z(·) that

∇φ(x) = i lim
ε→0

∫ 2π+α−δ2

α+δ1

log(|z(α) − z(β)|)zβ(β)dβ

− lim
ε→0

ε log |ε|
∫ η2

η1

(1, i) · NCεdθ

= i
∫ 2π

0
log(|z(α) − z(β)|)∂β(z(β) − z(α))dβ

= −i
∫ 2π

0

(z(α) − z(β))Re ((z(α) − z(β))zβ(β))

|z(α) − z(β)|2 dβ
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= − i

2

∫ 2π

0

z(α) − z(β)

z(α) − z(β)
zβ(β)dβ − i

2

∫ 2π

0
zβ(β)dβ

= − i

2

∫ 2π

0

z(α) − z(β)

z(α) − z(β)
zβ(β)dβ = π

2
(I − H)z.

��
In view of Lemma 3.1 we can replace (1.3) by

{
ztt + iazα = −π

2 (I − H)z,
Hzt = zt .

(3.1)

The norms in which the data are assumed to be small will be made precise below. Our
main objective here to transform Eq. (3.1) to an equation for which the nonlinearity is
small of cubic order. Again the exact meaning of the term “cubic” will be clarified below,
but roughly speaking we consider a quantity to be ‘small’ if the corresponding quantity
in the case of the static solution z(t, α) ≡ eiα

′
, zt (t, α) ≡ 0 is zero. This implies, for

instance, that the quantity (|zα| − 1)(|z|2 − 1)zt is thought of as cubic. However, before
we can investigate the structure of (3.1) we need to know the existence of a solution, at
least locally in time. Theorem 3.2 on local well-posedness for (3.1) is therefore the first
stepping stone in our analysis. Since local well-posedness is not the focus of this work,
we postpone the proof of Theorem 3.2 to Sect. 7 and until then we treat it as a black box.

Theorem 3.2. Let s ≥ 5. Assume that z0 ∈ H
s+ 1

2
α z1 ∈ H

s+ 1
2

α and |z0(α) − z0(β)| ≥
c′
0|eiα − eiβ | for some constant c′

0 > 0. Then there is T > 0, depending on the norm of
the initial data, so that (3.1)with initial data (z, zt )|t=0 = (z0, z1) has a unique solution
z = z(t, α) for t ∈ [0, T ) satisfying for all j ≤ s,

∂ j
α z, ∂

j
α zt ∈ C

(

[0, T ], H
1
2
α

)

,

∂ j
α ztt ∈ C

(
[0, T ], L2

α

)
,

and |z(t, α) − z(t, β)| ≥ c′
0
2 |eiα − eiβ | for all α �= β. Moreover, if T ∗ is the supremum

over all such time T , then either T ∗ = ∞, or

sup
t<T ∗

(

‖ztt‖H4
α
+ ‖zt‖

H
9
2

α

)

+ sup
t<T ∗
α �=β

∣
∣
∣
∣

eiα − eiβ

z(t, α) − z(t, β)

∣
∣
∣
∣ = ∞.

Remark 3.3. Note that to prove local well-posedness we differentiate Eq. (1.3) with
respect to time (cf. Eq. (3.4)) to reveal the quasilinear structure, and treat the resulting
equation as a second order equation for zt . The original unknown z is then obtained from
zt by integration, which explains the choice of regularity for the initial data. See Sect. 7
for more details.

In what follows we will use the notation

ga := π

2
(I + H)z,
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for the anti-holomorphic part of the contribution of the gravity and

gh := ga = π

2
(I + H)z,

for the holomorphic part of the conjugate of the gravity term. We will show later that
ga and gh are small in an appropriate sense. With this notation we rewrite the equations
for z and z as

ztt + iazα = −π z + ga (3.2)

and

ztt − iazα = −π z + gh . (3.3)

For future reference we also record the time-differentiated versions of Eqs. (3.2) and
(3.3). Differentiation of (3.2) and use of anti-holomorphicity of zt give

zttt + iaztα = −iat zα +
π

2
[zt , H ] zα

zα
. (3.4)

Similarly, differentiating (3.3) we get

zttt − iaztα = iat zα +
π

2
[zt , H ] zα

zα
. (3.5)

Since |z| is not expected to be small, we want to linearize these equations about the
static solution z0(α) := eiα in some sense, to exploit the smallness of the initial data.
This will be achieved in Sect. 3.3, but before that we will need to establish some basic
identities involving H and H . This will be the content of Sect. 3.2. A final point to keep
inmindwhen thinking about the smallness of the solution is that if we start with the static
solution z0(α) := eiα but with arbitrary constant initial velocity, then the domain will
move in the direction of the initial velocity without changing its geometry. Therefore to
properly interpret small quantities as those which are small when the static solution is the
unit disk centered at zero, we need to appropriately renormalize the solution to account
for this motion with constant velocity. It turns out that this issue can be resolved simply
by choosing coordinates in which the center of mass is static. We begin the analysis in
this section by clarifying this point in Sect. 3.1.

3.1. Center of mass. In this subsection we first show that the center of mass C = C�(t)
moves along a straight line with constant speed, that is, Ctt = 0, which is consistent
with the fact that no external force acts on the system. Then we derive a formula for the
center of mass only involving quantities defined on the boundary ∂�(t), which will be
useful later. We begin by recalling the definition of the center of mass

C�(t) := 1

π

∫∫

�

x dxdy. (3.6)

Proposition 3.4. The center of mass C := C� satisfies

d2C

dt2
= 0.
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Proof. We prove that

π
d2C

dt2
= −

∫

∂�

φ �n dS, (3.7)

where φ is the gravity potential, n = − i zα|zα | is the exterior unit normal of ∂�, and
dS = |zα|dα is the line element of the boundary. We assume (3.7) for the moment and
prove that the integral on the right hand side vanishes. Recall that φ satisfies ∂z∂zφ = π

2
inside �. Integration in z gives ∂zφ = π

2 z + A(z) where A is an anti-holomorphic
function inside �, and another integration in z gives φ = π

2 zz + A(z) + B(z) for some
holomorphic function B. Moreover, from Lemma 3.1 we know that for points on the
boundary ∂zφ = ∂z(φ − B) = π

4 (I − H)z. With this notation we rewrite (3.7) as

π
d2C

dt2
= i

∫ 2π

0

(π

2
zz + A(z)

)
zαdα + i

∫

∂�

B(z)dz

= −π i

2

∫ 2π

0
z z zαdα − π i

4

∫ 2π

0
((I − H)z) z zαdα

= π i

4

∫ 2π

0
z(Hz) zαdα = π i

4

∫

∂�

zHzdz.

(3.8)

Now recall that the (conjugate) Hilbert transform is defined as

H f (z) := −p.v.

π i

∫

∂�

f (w)

w − z
dw := − 1

π i
lim
ε→0

∫

∂�\Bε (z)

f (w)

w − z
dw,

where the last limit converges in the L2 sense. In particular if f, g ∈ L2 then

−π i
∫

∂�

g(z)H f (z)dz =
∫

∂�

g(z) lim
ε→0

∫

∂�\Bε (z)

f (w)

w − z
dwdz

= lim
ε→0

∫

∂�

∫

∂�−Bε (z)

g(z) f (w)

w − z
dwdz

= lim
ε→0

∫

∂�

∫

∂�−Bε (w)

g(z) f (w)

w − z
dzdw

= lim
ε→0

∫

∂�

∫

∂�−Bε (z)

g(w) f (z)

z − w
dwdz

=
∫

∂�

f (z) lim
ε→0

∫

∂�−Bε (z)

g(w)

z − w
dwdz=π i

∫

∂�

f (z)Hg(z)dz.

Applying this observation to f (z) = g(z) = z we see that
∫

∂�
zHzdz = − ∫

∂�
zHzdz

and therefore in view of (3.8) we get d2C
dt2

= 0. Finally we establish (3.7) by direct
differentiation. For this we denote the flow map by X, that is,

X (t, ·) : �(0) → �(t)

satisfies dX (t,x)
dt = V (t, X (t, x)), d2X (t,x)

dt2
= −∇P(t, X (t, x)) − ∇φ(t, X (t, x)). Then

since the flow is incompressible we have
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C = 1

π

∫∫

�(0)

X (t, x′)dx′,

and hence

π
d2C

dt2
= −

∫∫

�(0)

∇ (
P(t, X (t, x′)) + ∇φ(t, X (t, x′))

)
dx′

= −
∫∫

�(t)

(∇P(t, x) + ∇φ(t, x))dx = −
∫

∂�

φ �n dS,

as desired. ��
The formula (3.6) is in terms of the domain�(t), but sinceweworkwith the boundary

Eq. (3.1), it is more convenient to derive a formula for center of mass only involving
quantities defined on the boundary. This is achieved in the following proposition.

Proposition 3.5. Let us denote

ε := |z|2 − 1, δ := (I − H)ε. (3.9)

Then the center of mass (3.6) as a complex number can be written as

C�(t) = − i

2π

∫ 2π

0
ε(t, α)zα(t, α)dα = − i

4π

∫ 2π

0
δ(t, α)zα(t, α)dα (3.10)

where z(t, α) is the parametrization of ∂�(t).

Proof. We can write the center of mass as 1
π

∫∫

�(t)(x + iy)dxdy. Using the divergence
theorem, we have
∫∫

�(t)
xdxdy =

∫∫

�(t)
div

(
x2

2
, 0

)

dxdy =
∫

∂�(t)

(
x2

2
, 0

)

·
(

yα
|zα | , −

xα
|zα |

)

ds

= 1

2

∫ 2π

0
x2yαdα = − i

2

∫ 2π

0
x2(xα + iyα)dα

and

i
∫∫

�(t)
ydxdy = i

∫∫

�(t)
div

(

0,
y2

2

)

dxdy = i
∫

∂�(t)

(

0,
y2

2

)

·
(

yα
|zα | ,−

xα

|zα |
)

ds

= − i

2

∫ 2π

0
y2xαdα = − i

2

∫ 2π

0
y2(xα + iyα)dα.

Therefore we have
∫∫

�(t)
(x + iy)dxdy = − i

2

∫ 2π

0
|z|2zαdα = − i

2

∫ 2π

0
εzαdα

= − i

2

∫ 2π

0

(
I − H

2
ε

)

zαdα = − i

4

∫ 2π

0
δzαdα.

This completes the proof. ��
We have the following corollary.
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Corollary 3.6. Let v0c and c0 be the initial velocity and position of the center of mass
respectively. If z = z(t, α) is a solution to (3.1) then z(t, α)− c0 − v0c t is also a solution
to (3.1). Moreover, z − c0 − v0c t parametrizes the boundary of a domain whose center
of mass is always at the origin.

Proof. This follows from Proposition 3.4 and the fact that ztt , zα and H are invariant
under the transformation

z(α, t) �→ z(α, t) − c0 − v0c t. (3.11)

��
In what follows, we will only consider this normalized solution to (3.1), that is we

assume that the center of mass is always at the origin, and this assumption is justified by
Corollary 3.6. Therefore in view of Proposition 3.5 and Corollary 3.6 we always have

∫ 2π

0
εzαdα =

∫ 2π

0
δzαdα = 0.

3.2. Basic identities. In this subsection we record some basic identities which will be
used in the remainder of this work. A few more standard properties of the Hilbert
transform are recalled in Appendix A. In the remainder of this section we assume that
the parametrization z of ∂�(t) has regularity C2

t,α.

3.2.1. Commutation relations. We compute the commutators of various operators with
the Hilbert transform.

Lemma 3.7. For any 2π -periodic function f in C2
t,α

(i) [∂t , H ] f = [zt , H ] fα
zα

,

(ii) [∂2t , H ] f = 2[zt , H ] ftα
zα

+ [ztt , H ] fα
zα

+ 1
π i

∫ 2π
0

(
zt (β)−zt (α)
z(β)−z(α)

)2
fβ(β)dβ,

(iii) ∂αH f = zαH
fα
zα

,

(iv) [a∂α, H ] f = [azα, H ] fα
zα

,

(v) [∂2t +ia∂α, H ] f =−π
2 [(I−H)z, H ] fα

zα
+2[zt , H ] ftα

zα
+ 1

π i

∫ 2π
0

(
zt (β)−zt (α)
z(β)−z(α)

)2
fβ(β)dβ.

Proof of Lemma 3.7. (i)

[∂t , H ] f = p.v.

π i

∫ 2π

0

(
f (β)ztβ(β)

z(β) − z(α)
− (zt (β) − zt (α)) f (β)zβ(β)

(z(β) − z(α))2

)

dβ

= −p.v.

π i

∫ 2π

0

(zt (β) − zt (α)) fβ(β)

(z(β) − z(α))zβ(β)
zβ(β)dβ = [zt , H ] fα

zα
.

(ii)

[∂2t , H ] f = ∂t ([zt , H ] fα
zα

) + ∂t H∂t f − H∂2t f

= ∂t ([zt , H ] fα
zα

) + [zt , H ] ftα
zα

= [ztt , H ] fα
zα

+ 2[zt , H ] ftα
zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

fβ(β)dβ.
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(iii)
∂αH f = p.v.

π i

∫ 2π

0

f (β)

(z(β) − z(α))2
zα(α)zβ(β)dβ

= zα(α)
p.v.

π i

∫ 2π

0

fβ(β)

zβ) − z(α)
dβ = zαH

fα
zα

.

(iv)

[a∂α, H ] f = azαH
fα
zα

− H(a fα) = [azα, H ] fα
zα

.

(v) This part is a corollary of the previous parts combined with Eq. (1.3) and Lemma
3.1. ��

Lemma 3.8. For any 2π -periodic function f and g in C2
t,α

∂t [ f, H ]g = [ ft , H ]g + [ f, H ]gt + f [zt , H ] fα
zα

− [zt , H ]∂α( f g)

zα
.

Proof. Using part (i) of Lemma 3.7 we get

∂t [ f, H ]g = ∂t ( f Hg) − ∂t H( f g) = ft Hg + f Hgt

+ f [zt , H ]gα

zα
− H( ft g) − H( f gt ) − [zt , H ]∂α( f g)

zα

= [ ft , H ]g + [ f, H ]gt + f [zt , H ] fα
zα

− [zt , H ]∂α( f g)

zα
.

��
Next we recored the following important computation relating [z, H ]z and the area

of �.

Lemma 3.9. If z : [0, 2π ] → ∂� is a counterclockwise parametrization then

[z, H ]z = −2|�|
π

= −2.

Proof. Since the parametrization is counterclockwise the exterior normal n is given by

n = − i zα
|zα| = yα − i xα

|zα|
in complex notation. It follows that with z = x + iy

[z, H ]z = 1

π i

∫ 2π

0
z(β)zβ(β)dβ = 1

2π i

∫ 2π

0
(z(β)zβ(β) − z(β)zβ(β))dβ

= 1

π

∫ 2π

0
Im (z(β)zβ(β))dβ = 1

π

∫ 2π

0
(xβ(β)y(β) − yβ(β)x(β))dβ

= − 1

π

∫

∂�

(
x
y

)

· n |zβ(β)|dβ = − 1

π

∫∫

�

div

(
x
y

)

dxdy = −2|�|
π

.

��



180 L. Bieri, S. Miao, S. Shahshahani, S. Wu

Lemma 3.10. For any 2π -periodic function f in C2
t,α

[z, H ] fα
zα

= 0

Proof. This is an immediate consequence of the definition of the Hilbert transform and
the periodicity of f. ��
Lemma 3.11. For any 2π -periodic function f , g, and h in C2

t,α

[ f g, H ]h = f [g, H ]h + [ f, H ](gh).

Proof.

[ f g, H ]h = f gHh − f H(gh) + f H(gh) − H( f gh) = f [g, H ]h + [ f, H ](gh).

��
Lemma 3.12. Suppose f and g are 2π -periodic functions in C2

t,α which are anti-
holomorphic inside �. Then with the notation ε = |z|2 − 1

[ f, H 1

zα
+ H

1

zα
]gα = − 1

π i

∫ 2π

0

( f (α) − f (β))gβ(β)z(α)z(β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

|z(β) − z(α)|2 dβ.

Proof.

[ f, H 1

zα
+H

1

zα
]gα = p.v.

π i

∫ 2π

0

(
1

z(β) − z(α)
− 1

z(β)−z(α)

)

( f (α) − f (β))gβ(β)dβ

= −[ f, H ] gα

zα
+z[ f, H ] zgα

zα
− 1

π i

∫ 2π

0

( f (α) − f (β))gβ(β)z(α)z(β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

|z(β) − z(α)|2 dβ.

Since gα

zα
is anti-holomorphic in side �, the first two terms on the last line above are

zero, and this proves the lemma. ��

3.2.2. The relation between H and H. In the static case where the boundary of the
domain � is exactly the unit circle, the corresponding Hilbert transform H satisfies
H = −H + 2Av where Av( f ) := 1

2π

∫ 2π
0 f (α)dα. Here we prove an important lemma

which quantifies the failure of this identity when � is a small perturbation of the unit
disc.

Lemma 3.13. For any 2π -periodic function f in C2
t,α

H f = −zH
f

z
+ z[ε, H ] fα

zα
+ E( f )

= −H f − [z, H ] f
z
+ z[ε, H ] fα

zα
+ E( f )

(3.12)
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where ε := |z|2 − 1 and E( f ) = E1( f ) + E2( f ) + E3( f ) with

E1( f ) := − 1

π i

∫ 2π

0

f (β)
(

ε(α)
z(α)

− ε(β)
z(β)

)
(z(α)z(β))2

(z(α) − z(β))2
∂β

(
ε(β)

z(β)

)

dβ

E2( f ) := − 1

π i

∫ 2π

0

f (β)
(

ε(β)
z(β)

− ε(α)
z(α)

)2
(z(α)z(β))2

(z(β) − z(α))|z(β) − z(α)|2 ∂β

(
ε(β)

z(β)

)

dβ

E3( f ) := − 1

π i

∫ 2π

0

f (β)
(

ε(β)
z(β)

− ε(α)
z(α)

)2
(z(α)z(β))2

(z(β) − z(α))|z(β) − z(α)|2 ∂β

(
1

z(β)

)

dβ.

Proof. Recall the following relations:

z = 1 + ε

z
, zβ(β) = εβ(β)z(β) − zβ(β)(1 + ε(β))

(z(β))2
.

We have

(H f )(α) = − 1

π i

∫ 2π

0

f (β)zβ(β)

z(β) − z(α)
dβ

= − 1

π i

∫ 2π

0

f (β)

1+ε(β)
z(β)

− 1+ε(α)
z(α)

((
ε(β)

z(β)

)

β

− zβ(β)

(z(β))2

)

dβ

= − 1

π i

∫ 2π

0

f (β)
1

z(β)
− 1

z(α)

((
ε(β)

z(β)

)

β

− zβ(β)

(z(β))2

)

dβ

− 1

π i

∫ 2π

0

f (β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

(
1

z(β)
− 1

z(α)

) (
1

z(β)
− 1

z(α)
+ ε(β)

z(β)
− ε(α)

z(α)

)

((
ε(β)

z(β)

)

β

− zβ(β)

(z(β))2

)

dβ

= − 1

π i

∫ 2π

0

f (β)
1

z(β)
− 1

z(α)

((
ε(β)

z(β)

)

β

− zβ(β)

(z(β))2

)

dβ

− 1

π i

∫ 2π

0

f (β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

(
1

z(β)
− 1

z(α)

)2

((
ε(β)

z(β)

)

β

− zβ(β)

(z(β))2

)

dβ

− 1

π i

∫ 2π

0

f (β)
(

ε(α)
z(α)

− ε(β)
z(β)

)2

(
1

z(β)
− 1

z(α)

)2 (
1

z(β)
− 1

z(α)
+ ε(β)

z(β)
− ε(α)

z(α)

)

((
ε(β)

z(β)

)

β

− zβ(β)

(z(β))2

)

dβ.

(3.13)

The ‘constant term’ above (the second term in the first line) is

1

π i

∫ 2π

0

f (β)z(α)z(β)

z(α) − z(β)

zβ(β)

(z(β))2
dβ

= 1

π i

∫ 2π

0

f (β)z(α)zβ(β)

(z(α) − z(β)) z(β)
dβ = −zH

(
f

z

)

.

(3.14)
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The ‘linear terms’ above (the first term in the first line and the second term in the second
line) are given by

− 1

π i

∫ 2π

0

f (β)z(α)z(β)

z(α) − z(β)

(
ε(β)

z(β)

)

β

dβ. (3.15)

and

1

π i

∫ 2π

0
f (β)

(
ε(α)

z(α)
− ε(β)

z(β)

)(
1

1
z(β)

− 1
z(α)

)

β

dβ

= − 1

π i

∫ 2π

0
fβ(β)

(
ε(α)

z(α)
− ε(β)

z(β)

)(
1

1
z(β)

− 1
z(α)

)

dβ

+
1

π i

∫ 2π

0
f (β)

(
ε(β)

z(β)

)

β

(
1

1
z(β)

− 1
z(α)

)

dβ. (3.16)

The last term in (3.16) cancels with (3.15). Therefore the ‘linear term’ in H f is given
by

− 1

π i

∫ 2π

0
fβ(β)

ε(α)z(β)

z(α) − z(β)
dβ +

1

π i

∫ 2π

0
fβ(β)

ε(β)z(α)

z(α) − z(β)
dβ = z[ε, H ]

(
fα
zα

)

.

(3.17)

where in the last step we used the fact that f (0) = f (2π). The remaining terms in H f
are the first term in the second line and the two terms in the third line of (3.13). The first
term in the second line can be written as

E1( f ) := − 1

π i

∫ 2π

0

f (β)
(

ε(α)
z(α)

− ε(β)
z(β)

)
(z(α)z(β))2

(z(α) − z(β))2
∂β

(
ε(β)

z(β)

)

dβ. (3.18)

The first term in the third line of (3.13) can be written as

E2( f ) := − 1

π i

∫ 2π

0

f (β)
(

ε(β)
z(β)

− ε(α)
z(α)

)2
(z(α)z(β))2

(z(β) − z(α))|z(β) − z(α)|2 ∂β

(
ε(β)

z(β)

)

dβ. (3.19)

The second term in the third line of (3.13) can be written as

E3( f ) := − 1

π i

∫ 2π

0

f (β)
(

ε(β)
z(β)

− ε(α)
z(α)

)2
(z(α)z(β))2

(z(β) − z(α))|z(β) − z(α)|2 ∂β

(
1

z(β)

)

dβ. (3.20)

��
Remark 3.14. Note that if we measure smallness of quantities by comparison with the
static case z ≡ eiα, then by Lemma 3.13, E( f ) is order of ε2 smaller than f. This
observation will be made precise when we carry out the estimates in Sects. 4 and 5.
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3.3. The δ equation. In this section we derive an equation for the small quantity

δ := (I − H)ε, (3.21)

where

ε := |z|2 − 1. (3.22)

Note that in view of our small data assumptions we expect the quantities ε and δ to
be (linearly) small. Our main goal here is to show that δ satisfies a constant-coefficient
PDE with cubic nonlinearity. This will be accomplished in two steps. In the first step
we show that the nonlinear part of (∂2t + ia∂α)δ is cubic. If we then replace the operator
∂2t + ia∂α by ∂2t + iπ∂α, corresponding to the value of a in the static case, we will notice
that the resulting error is only quadratic. For this reason, in the second step we perform
a change of variables β(t, α) = k−1(t, α) such that the nonlinearity in the equation for
(∂2t +iπ∂β)δ has no quadratic part. The first step is achieved in the following proposition.

Proposition 3.15. The quantities δ = (I − H)ε and δt = ∂tδ satisfy

(∂2t + ia∂α − π)δ = N1 := π

2
[E(z), H ]εα

zα
+

π

2
(I − H)E(ε)

− 2[zt , H 1

zα
+ H

1

zα
]∂α(zt z) − 1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

εβ(β)dβ (3.23)

and

(∂2t + i∂α − π)δt = N2 := −iat∂αδ +
π

2

(

(I − H)∂t E(ε) − [zt , H ]∂αE(ε)

zα

)

+
π

2

⎛

⎝[∂t E(z), H ]εα

zα
+ [E(z), H ]∂t

(
εα

zα

)

+ E(z)[zt , H ]
∂α

(
εα
zα

)

zα
− [zt , H ]

∂α

(
E(z) εα

zα

)

zα

⎞

⎠

+
2

π i
∂t

∫ 2π

0

(zt (α) − zt (β))∂β(zt (β)z(β))z(α)z(β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

|z(β) − z(α)|2 dβ

− 1

π i
∂t

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2
εβ(β)dβ, (3.24)

where E( f ) is as in Lemma 3.13. Moreover, we can write

[zt , H 1

zα
+ H

1

zα
]∂α(zt z) = − 1

π i

∫ 2π

0

(zt (α) − zt (β))∂β(zt (β)z(β))z(α)z(β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

|z(β) − z(α)|2 dβ. (3.25)

Proof. We want to apply the last part of Lemma 3.7. To this end we first compute
(∂2t + ia∂α)ε.

(∂2t + ia∂α)ε = (ztt + iazα)z + (ztt + iazα)z + 2zt zt

= −π

2
(z(I − H)z − z(I − H)z) + 2∂t (zzt ),

(3.26)
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and since zzt is holomorphic

(I − H)(∂2t + ia∂α)ε = π

2
(I − H)

(
z(I − H)z − z(I − H)z

)
+ 2[zt , H ]∂α(zzt )

zα
.

Applying Lemma 3.7 we get

(∂2t + ia∂α)δ = π

2
(I − H)

(
z(I − H)z − z(I − H)z

)
+

π

2
[(I − H)z, H ]εα

zα

− 2[zt , H ]∂α(zt z)

zα
− 1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

εβ(β)dβ

= π

2
(I − H)

(
z(I − H)z − z(I − H)z

)
+

π

2
[(I − H)z, H ]εα

zα

− 2[zt , H 1

zα
+ H

1

zα
]∂α(zt z) − 1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

εβ(β)dβ.

(3.27)

The last two terms already have the right form so we concentrate on the first two. Using
Lemma 3.9 we write

z(I − H)z = (I − H)(zz) − [z, H ]z = δ +
2|�|
π

= δ + 2,

and hence

π

2
(I − H)

(
z(I − H)z − z(I − H)z

) = π

2
(I − H)(δ − δ) = πδ − π

2
(I − H)δ,

(3.28)

where to pass to the last equality we have used the fact that
( 1
2 (I − H)

)2 = 1
2 (I − H).

To understand the contributions of δ and (I − H)z we use Lemma 3.13 to replace H by
H. For δ, noting that H 1

z = − 1
z we get

δ = ε + zH(z − 1

z
) − z[ε, H ]εα

zα
− E(ε)

= z(I + H)z − z[ε, H ]εα

zα
− E(ε)

= z(I + H)z − zε(I + H)
εα

zα
+ z(I + H)

εεα

zα
− E(ε),

which implies

−π

2
(I − H)δ = π

2
(I − H)(zε(I + H)(

εα

zα
)) +

π

2
(I − H)E(ε)

= π

4
(I − H)(zδ(I + H)(

εα

zα
)) +

π

2
(I − H)E(ε).

(3.29)

Similarly for (I − H)z we have

(I − H)z = 2z − z[ε, H ]1 + E(z) = 2z − zδ + E(z).
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It follows from this and Lemma 3.10 that
π

2
[(I − H)z, H ]εα

zα
= −π

2
[zδ, H ]εα

zα
+

π

2
[E(z), H ]εα

zα

= −π

4
[zδ, H ](I+H)

εα

zα
− π

4
[zδ, H ](I−H)

εα

zα
+

π

2
[E(z), H ]εα

zα
.

(3.30)

By Lemma 3.11, the second term in (3.30) can be written as

−π

4
z[δ, H ](I − H)

εα

zα
− π

4
[z, H ]δ(I − H)

(
εα

zα

)

. (3.31)

The first term in (3.31) can be written as

−π

4
z[δ, I + H ](I − H)

εα

zα
= π

4
z(I + H)

(

(I − H)ε(I − H)

(
εα

zα

))

= 0.

By (i i i) in Lemma 3.7, the second term in (3.31) can be written as

−π

4
[z, H ]δ δα

zα
= 0.

Combining these observations with the fact that

[zδ, H ](I + H)
εα

zα
= (I − H)

(

zδ(I + H)
εα

zα

)

we get

−π

2
(I − H)δ +

π

2
[(I − H)z, H ]εα

zα
= π

2
(I − H)E(ε) +

π

2
[E(z), H ]εα

zα
.

Equation (3.23) now follows from combining this identitywith (3.27) and (3.28). Finally,
Eqs. (3.24) and (3.25) are direct consequences of Lemmas 3.7, 3.8, and 3.12 and
Eq. (3.23). ��

By comparing the terms on the right hand sides of the Eqs. (3.23) and (3.24) with
their corresponding values in the static case, one can see that the nonlinearity is cubic.
This is least clear for the first term involving at in the equation for δt so in the following
lemma we present a formula for at which sheds some light the structure of this term.

Lemma 3.16. Let K ∗ denote the formal adjoint of K := Re H = 1
2 (H + H), i.e.,

K ∗g(α) = −Re
p.v.

π i

∫ 2π

0

zα(α)

|zα(α)|
|zβ(β)|

z(β) − z(α)
g(β)dβ = −Re

{
zα
|zα|H

|zβ |g
zβ

}

.

Then

(I + K ∗)(at |zα|) = Re

[−i zα
|zα|

{
2[zt , H ] zttα

zα
+ 2[ztt , H ] ztα

zα
− [ga, H ] ztα

zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

ztβ(β)dβ +
π

2
([zt , H ]∂αgh

zα
)
}]

.
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Proof. Using Eqs. (3.2), (3.5) and Lemma 3.7 we have

(I − H)(iat zα) = (I − H)(zttt − iaztα − π

2
[zt , H ] zα

zα
)

= [∂2t − ia∂α, H ]zt − π

2
(I − H)([zt , H ] zα

zα
)

= 2[zt , H ] zttα
zα

+ [ztt , H ] ztα
zα

− [iazα, H ] ztα
zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

ztβ(β)dβ − π

2
(I − H)([zt , H ] zα

zα
)

= 2[zt , H ] zttα
zα

+ 2[ztt , H ] ztα
zα

− [ga, H ] ztα
zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

ztβ(β)dβ − π

2
(I − H)([zt , H ] zα

zα
).

The lemma now follows bymultiplying the two sides of this equation by −i zα|zα | and taking
real parts and also observing that

π

2
(I − H)

(

[zt , H ] zα
zα

)

= −π

2
(I − H) (∂t (I − H)z) = π

2
[zt , H ]∂αgh

zα
.

��
For future reference we also record the following representation for K ∗ which is

more amenable to estimates.

Lemma 3.17. For any real valued 2π -periodic function f

K ∗ f = 1

π |zα|
∫ 2π

0
f (β)|zβ(β)|dβ − 1

2|zα| (H + H)(|zβ | f )

− Re

{
1

|zα| [zα − i z, H ] |zβ | f
zβ

}

.

Proof. Using the definition K ∗ f = −Re { zα|zα | H
|zβ |
zβ

f } of K ∗ we have

−2K ∗g = zα
|zα|H

|zβ | f
zβ

+
zα
|zα|H

|zα| f
zα

= 2
Re

|zα|
{

[zα, H ] |zβ | f
zβ

}

+
1

|zα| (H + H)(|zβ | f )

= 2Re

{
1

|zα| [zα − i z, H ] |zβ | f
zβ

}

+
1

|zα| (H + H)(|zα| f ) + 2Re

{
i

|zα| [z, H ] |zβ | f
zβ

}

.

The lemma now follows by noting that

i

|zα| [z, H ] |zβ | f
zβ

= − 1

π |zα|
∫ 2π

0
|zβ(β)| f (β)dβ.

��
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We now turn to the left hand side of (3.23). As mentioned above, the nonlinear
contribution of a to (3.23) can be seen to be only quadratic, and therefore a change of
variables is necessary to retain the cubic structure. More precisely suppose

k(t, ·) : R → R

is an increasing function such that k−α is 2π periodic and k is differentiable on (0, 2π).
Let us define

ζ(t, α′) := z ◦ k−1(t, α′), χ(t, α′) := δ ◦ k−1(t, α′).

Then introducing

b := kt ◦ k−1, A = (akα) ◦ k−1

we have

zt ◦ k−1 = (∂t + b∂α′)ζ, (azα) ◦ k−1 = Aζα′ .

In particular,

(δt t + iaδα − πδ) ◦ k−1 = ((∂t + b∂α′)2 + i A∂α′ − π)χ.

We wish to choose the change of variables k in such a way that b consists of quadratic
and higher order terms, and A has no linear terms. This is achieved in the following three
propositions. First in Propositions 3.18 and 3.20 we derive the desired representations
for b and A under various assumptions on k. Then in Remark 3.21 we explain how to
construct k satisfying these assumptions.

Proposition 3.18. Suppose that z(t, ·) is a simple closed curve containing origin in its
interior for each t, and that k is increasing and such that k − α is 2π periodic and
(I − H)(zeik) = (I − H)(log z + ik) = 0. Then

(I − H)kt = −i(I − H)
ztε

z
− i[zt , H ]

(
log(zeik)

)

α

zα
.

(I − H)(akα) = [zt , H ] (zt z)α
zα

− [zt , H ]zt

− (I − H)
zttε

z
+ (I − H)

ghε

z
+ [ztt − ga, H ]

(
log(zeik)

)

α

zα
.

Remark 3.19. The conditions on k in the proposition can be understood in the following
way. First note that if we fix a value of arg(z(t, 0)) (uniquely determined up to an integer
multiple of 2π ) then log z(t, ·) is an unambiguously defined continuous function of the
real variable α for each fixed t. Moreover, if z(t, ·) is a simple closed curve surrounding
the origin, then by the periodicity assumption on k, the curve zeik does not contain
the origin in its interior. Therefore log(zeik) is defined unambiguously as a complex
logarithm, its value agreeswith log z+ik, and for any other choice of arg(z(t, 0)) it differs
from this by an additive constant, so in particular the condition (I −H)(log z+ik) = 0 is
independent of this choice. The conditions on k can now be understood as requiring that
zeik be the boundary value of a holomorphic function F, such that 0 /∈ {F(z)|z ∈ �}
and therefore log F is also well-defined and holomorphic.
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Proof of Proposition 3.18. Differentiating (I − H)
(
log(zeik)

) = 0 on both sides with
respect to t , we have:

0 = (I − H)

(
zt
z
+ ikt

)

− [zt , H ]
(
log(zeik)

)

α

zα
,

which implies

(I − H)kt = i(I − H)

(
zt
z

)

− i[zt , H ]
(
log(zeik)

)

α

zα
.

In view of the fact (I − H)(zt z) = 0, the first term on the right hand side above can be
written as

−i(I − H)
ztε

z
,

which gives the first formula in the proposition. For the second formula, we apply the
operator ia∂α to the equation (I − H)

(
log(zeik)

) = 0, to arrive at

0 = (I − H)

(
iazα
z

− akα

)

− i[azα, H ]
(
log(zeik)

)

α

zα
.

Using (3.3) we get

(I − H)(akα) = (I − H)

(
ztt
z

+ π − gh

z

)

+ [ztt + π z − ga, H ]
(
log(zeik)

)

α

zα

= (I − H)

(
ztt z

|z|2 − zgh

|z|2
)

+ [ztt − ga, H ]
(
log(zeik)

)

α

zα

= (I − H)(ztt z) − (I − H)
zttε

z
+ (I − H)

ghε

z
+ [ztt − ga, H ]

(
log(zeik)

)

α

zα
.

Here we used the fact that (I − H)(zgh) = 0. The first term above can be written as

(I − H) ((zt z)t − zt zt ) = [zt , H ] (zt z)α
zα

− [zt , H ]zt ,

and this completes the proof. ��
Now suppose we define k in a way that (I −H)zeik = 0. Then in view of Proposition

3.18, to prove that b is quadratic and akα contains no linear terms we need to understand
the invertibility properties of Re (I − H) (note that akα and kt are real). In fact, a proper
understanding of this is necessary also for controlling various other quantities, such as
ε from our control of δ. A rigorous quantitative treatment of this in the context of small
data problem will be given when we carry out the estimates in Sects. 4 and 5, but for
now we note that if f is real valued, then regarding the last two terms on the second line
of (3.12) in Lemma 3.13 as O(ε),3

Re (I − H) f = (I − 1

2
(H + H)) f = (I + O(ε)) f +

1

2
Re

(

[z, H ] f
z

)

.

3 Note that in the static case z(α) = eiα the ‘average’ [z, H ] f
z is real if f is real-valued. We may therefore

treat the imaginary part of this average as perturbative.
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Therefore, roughly speaking, if ε is small, then we expect Re (I − H) to be invertible
on the space of functions in L2

α which satisfy ReAV( f ) = 0, where 4

AV( f ) := 1

2
[z, H ] f

z
= − 1

2π i

∫ 2π

0

f (β)zβ(β)

z(β)
dβ. (3.32)

With this observation in mind we compute AV for ε, b, and akα in the following
proposition.

Proposition 3.20. Suppose that z(t, ·), t ∈ I, for some interval I ⊆ R, is a simple
closed curve containing the origin in its interior for each t, |�| = π, and that zeik

is the boundary value of a holomorphic function F(t, z) such that log F(t, z) is also
holomorphic and F(t, 0) ∈ R+, ∀t ∈ I. Then

AV(ε) = 0,

AV(akα) = −π +
1

2π i

∫ 2π

0
zt ztβdβ +

1

2π i

∫ 2π

0

(ztt − gh)εzβ
|z|2 dβ

− 1

2π i

∫ 2π

0

(
ztt − ga

z

)

∂β log Fdβ,

ReAV(kt ) = Re

2π

∫ 2π

0

ztε

|z|2 zβdβ − Re

2π

∫ 2π

0
log F

(
zztβ − zt zβ

z2

)

dβ.

Proof. For ε we have

AV(ε) = 1

2π i

∫ 2π

0

zβ(β)

z(β)
dβ +

1

2
[z, H ]z = 0

by Lemma 3.9. To compute AV(akα) we write zeik = F(z) where F is as in the
statement of the lemma. Differentiating with respect to α and multiplying by ia we get

iazαe
ik − akαF = iazαFz

or

akα = iazα
z

− iazα∂z log F.

Using Eqs. (3.2) and (3.3) and the relation 1
|z|2 = 1 − ε

|z|2 we get

akα

z
= π

z
+
ztt − gh

|z|2 + π∂z log F +

(
ztt − ga

z

)

∂z log F

= π

z
+ ztt − gh − (ztt − gh)ε

|z|2 + π∂z log F +

(
ztt − ga

z

)

∂z log F.

4 Note that the sign convention is such that AV(1) = −1.
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It follows that

AV(akα) = − 1

2π i

∫ 2π

0

akβ zβ
z

dβ

= − π +
1

2π i

∫ 2π

0
zt ztβdβ +

1

2π i

∫ 2π

0

(ztt − gh)εzβ
|z|2 dβ

− 1

2π i

∫ 2π

0

(
ztt − ga

z

)

∂β log Fdβ.

The computation for AV(kt ) is similar. We differentiate the equation zeik = F(t, z)
with respect to time to get

zt e
ik + ikt F = ∂t (F)

or

kt = i zt
z

− i∂t (log F).

It follows that

kt
z
zα = i zt zα − i ztεzα

|z|2 − i∂t

(
zα log F

z

)

+ i log F

(
zztα − zt zα

z2

)

.

Therefore, since zt and log F are holomorphic,

AV(kt ) = 1

2π

∫ 2π

0

ztε

|z|2 zβdβ − 1

2π

∫ 2π

0
log F

(
zztβ − zt zβ

z2

)

dβ + ∂t (i log F(0, t)).

The last equality in the lemma now follows by taking real parts of this expression and
noting that log F(0, t) ∈ R, ∀t. ��

It follows from the previous two propositions that if k satisfies the conditions in these
propositions then A and b have the desired smallness properties. In the following remark
we explain how to construct k satisfying the hypotheses of these propositions. Note that
the fact that k is increasing will follow from the definition of k below and the smallness
assumptions in our problem. See Proposition 6.1 and the proof of Theorem 6.2 for more
details.

Remark 3.21. Suppose z(t, ·) is a simple closed curve containing the origin in its simply
connected interior for each t ∈ I, where I is some time interval. We explain how to
construct a function k : I ×R → R such that k − α is periodic and zeik is the boundary
value of a function F such that F and log F are holomorphic inside �, so in particular
(I − H)(log z + ik) = 0. Moreover, we normalize k such that log F(t, 0) ∈ R for all
t ∈ I.

We fix a choice of the logarithm so that log z− iα is continuous and 2π periodic. We
let u be the solution of the Dirichlet problem in � with boundary value log |z| and let v
be the harmonic conjugate of u which exists because the domain is simply connected.
It is then easy to see that if k := v|∂� + arg z then zeik is the boundary value of a
holomorphic function F such that log F is also holomorphic and k − α is 2π periodic.
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It remains to show that k may be chosen such that log F(t, 0) ∈ R. For this note that
0 /∈ {F(t, z) | z ∈ �} and the function

G(t, z) := F(t, z)e−i arg F(t,0)

is also holomorphic and 0 /∈ {G(t, z) | z ∈ �}, so logG is also holomorphic. More-
over, G now satisfies G(t, 0) = |F(t, 0)| ∈ R and the boundary value of G is zeip

where p(t, α) = k(t, α) − arg F(t, 0). In other words, we have found p such that
(I − H)(zeip) = (I − H)(log z + i p) = 0 and zeip is the boundary value of a holomor-
phic G such that G(t, 0) ∈ R and logG is holomorphic.

Corollary 3.22. Suppose k is defined as inRemark 3.21. Assumealso that k is increasing.
Then χ := δ ◦ k−1 and v := δt ◦ k−1 satisfy the equations

(∂t + b∂α′)2χ + i A∂α′χ − πχ = N1 (3.33)

and
(∂t + b∂α′)2v + i A∂α′v − πv = N2 (3.34)

where N j := N j ◦ k−1 andN1 andN2 are as defined in Eqs. (3.23) and (3.24) respec-
tively.

4. Relations Between Original and Transformed Quantities

In the previous section we derived an equation for the transformed quantities δ = (I −
H)ε and χ = δ ◦ k−1, defined as in (3.21)–(3.22), where k was chosen according to
Remark 3.21. In order to prove energy estimates for this equation it will be important to
be able to transfer estimates on δ to estimates on ε and conversely. More precisely we
define the following quantities

ζ = z ◦ k−1, u = zt ◦ k−1, w = ztt ◦ k−1

χ = δ ◦ k−1, v = (∂tδ) ◦ k−1 = (∂t + b∂α′)χ,

μ = ε ◦ k−1, η = ζα − iζ, ε = |z|2 − 1.

(4.1)

We will useH for the Hilbert transform in the variable ζ and H for the Hilbert transform
in z. Our goal in this section will be to obtain algebraic and analytic relations between
the ‘transformed’ quantities

χ, v, (∂t + b∂α)v (4.2)

and the ‘original’ quantities

ζ, u, w, η, μ. (4.3)

Note that by comparison with the static case (where z ≡ eiα and k ≡ α) we expect the
‘small quantities’ to be

original : η, μ, u, w, (4.4)

transformed : χ, v, (∂t + b∂α)v. (4.5)
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The analytic relations in this section will be derived under the following bootstrap
assumption, where � ≥ 5 is a fixed integer and M ≤ M0 < ∞ are small numbers
to be fixed:

{∑
k≤�

(
‖∂k

α′w‖L2
α′ + ‖∂k

α′u‖L2
α′ + ‖∂k

α′η‖L2
α′

)
≤ M < M0,

|ζ(t, α′)|2 ≥ 1
4

(4.6)

for t ∈ I where I is some interval containing 0.
We start with the following estimates for ζ which will be used in many other com-

putations.

Proposition 4.1. (1) There exists α′
0 = α′

0(t) such that

‖ζ(·) − ei(α
′
0+·)‖L∞

α′ ∩L2
α′ ≤ C‖η‖L2

α′ ≤ CM,

‖μ‖L∞
α′ ∩L2

α′ ≤ C‖η‖L2
α′ ≤ CM.

(2) If M0 in (4.6) is sufficiently small then there exist non-zero constants c and C such
that for all j ≤ � and k ≤ � − 1

c ≤ ‖∂ j
α′ζα′ ‖L2

α′ , ‖∂kα′ζα′ ‖L∞
α′ ≤ C.

(3) If M0 in (4.6) is sufficiently small then for all k ≤ �

∑

j≤k

‖∂ j
α′μα′ ‖L2

α′ ≤ C
∑

j≤k

‖∂ j
α′η‖L2

α′ ,
∑

j≤k−1

‖∂ j
α′μα′ ‖L∞

α′ ≤ C
∑

j≤k−1

‖∂ j
α′η‖L∞

α′ .

Proof. (1) Note that since 0 ∈ �(0) and |ζ(t, α′)| ≥ 1
2 for all α′, 0 ∈ �(t) as long as

the bootstrap assumptions hold. Direct differentiation implies that f (α) := e−iαζ(α)

satisfies ‖ fα′ ‖L2
α′ ≤ ‖η‖L2

α′ . Moreover since the area of � is a preserved by the flow,

there exists γ ∈ [0, 2π ] such that | f (γ )| = 1, or equivalently f (γ ) = eiα
′
0 for some

α′
0. Now for any other α′ ∈ [0, 2π ] we have

| f (α′) − eiα
′
0 | ≤

∫ max{γ,α′}

min{γ,α′}
| fβ ′(β ′)|dβ ′ ≤ √

2π‖η‖L2
α′ ,

proving the first inequality. The second inequality is a direct consequence of the first
and the definition of μ.

(2) From the definition of η we have

∂
j
α′ζα′ = i∂ j

α′ζ + ∂
j
α′η.

The desired estimates now follow from the previous part by induction on j and use
of the Sobolev inequality ‖∂k

α′η‖L∞
α′ ≤ C(‖∂k

α′η‖L2
α′ + ‖∂k+1

α′ η‖L2
α′ ).

(3) This estimate is a direct consequence of the previous part and the relation μα′ =
ζη + ζη. ��
A corollary of Proposition 4.1 is the following result which allows us to use the tools

from Sect. 2 in the remainder of this section and in the next section.
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Corollary 4.2. Under the bootstrap assumption (4.6), and if M0 is sufficiently small,

|ζ(α′) − ζ(β ′)| ≥ 1

10
|eiα′ − eiβ

′ |.

Proof. Since ζ(α±2π) = ζ(α) and ei(α±2π) = eiα it suffices to prove the corollary forα
andβ such that |α−β| ≤ 3π

2 .Since for this range ofα andβ wehave |eiα−eiβ | � |α−β|,

∣
∣ζ(α′) − ζ(β ′)

∣
∣ =

∣
∣
∣
∣
∣

∫ α′

β ′
ζα′ ′(α′′)dα′′

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
i
∫ α′

β ′
ζ(α′′)dα′′ +

∫ α

β

O(M)dα′
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
eiα

′
0

∫ α′

β ′
ieiα

′′
dα′′ +

∫ α′

β ′
O(M)dα′′

∣
∣
∣
∣
∣
≥
∣
∣
∣eiα

′
0
(
eiα

′ − eiβ
′)∣∣
∣

−
∣
∣
∣
∣
∣

∫ α′

β ′
O(M)dα′′

∣
∣
∣
∣
∣

≥ 1

10
|eiα − eiβ |.

if M is sufficiently small. ��
As immediate important consequences of Proposition 4.1 andCorollary 4.2we record

the following two corollaries.

Corollary 4.3. If M0 in (4.6) is sufficiently small, then for any 2 ≤ k ≤ �, any 2π -
periodic function f, and with E defined as in Lemma 3.13

∑

j≤k

‖∂ j
α′E( f )‖L2

α′ ≤ C

⎛

⎝
∑

j≤k

‖∂ j
α′μ‖2

L2
α′

⎞

⎠

⎛

⎝
∑

j≤k

‖∂ j
α′ f ‖L2

α′

⎞

⎠ ≤ CM2
∑

j≤k

‖∂ j
α′ f ‖L2

α′ .

Proof. From the definition of E this is a direct corollary of Proposition 2.2 and Lemma
2.4. Notice that by Proposition 4.1 ‖∂�+1

α′ μ‖L2
α′ ≤ CM and 1 � ‖∂�+1

α′ ζ‖L2
α′ � 1 under

the bootstrap assumptions (4.6). ��
Corollary 4.4. If M0 in (4.6) is sufficiently small, then for any 2 ≤ k ≤ �,

∑

j≤k+1

‖∂ j
α′χ‖L2

α′ ≤ C
∑

j≤k

‖∂ j
α′η‖L2

α′ .

Proof. Since χ = (I − H)μ, this follows from Lemma 2.6 and Proposition 4.1. ��
Next we record the following algebraic relations.

Proposition 4.5. With the same notation as (4.1)

∂α′χ =
(

I − ζα′H 1

ζα′

)

μα′ (4.7)

v = (∂t + b∂α′)χ = 2uζ − (
H +H

)
uζ − [u,H]μα′

ζα′
, (4.8)
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(∂t + b∂α′)v = 2wζ + 2uu − (H +H)(wζ + uu) − [u,H] (uζ )α′

ζα′
− [u,H] (uζ )α′

ζ α′

− [w,H]μα′

ζα′
− [u,H] (uζ + uζ )α′

ζα′

− 1

π i

∫ 2π

0

(
u(t, α′) − u(t, β ′)
ζ(t, β ′) − ζ(t, α′)

)2

μβ ′(t, β ′)dβ ′. (4.9)

Proof. First

∂α′χ = (
ζ ζ − 1

)

α′ − ∂α′
(
H(ζ ζ − 1)

)

= (I − H)
(
ζ ζ − 1

)

α′ − [ζα′ ,H]

(
ζ ζ − 1

)

α′
ζα′

=
(

I − ζα′H 1

ζα′

)
(
(ζ ζ − 1)α′

)
.

Composing with k−1 we get the first identity. Similarly

∂tδ = ∂t (I − H)(zz − 1) = (zz − 1)t − ∂t (H(zz − 1))

= (zz − 1)t − H ((zz − 1)t ) − [zt , H ] (zz − 1)α
zα

= zt z − H(zt z) − [zt , H ] (zz − 1)α
zα

= 2zt z − (
H + H

)
(zt z) − [zt , H ] (zz − 1)α

zα
.

To derive the third formula, we need to compute a time derivative as follows:

∂t

(

[zt , H ] fα
zα

)

= [ztt , H ]
(

fα
zα

)

+ [zt , H ] ftα
zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

fβ(β)dβ.

Therefore

∂2t δ = 2ztt z + 2zt zt − (H + H)(ztt z + zt zt )

− [zt , H ] (zt z)α
zα

− [zt , H ] (zt z)α
zα

− [zt , H ] (zt z + zzt )α
zα

− [ztt , H ] (zz)α
zα

− 1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

(zz)βdβ.

The third formula follows by precomposing with k−1. ��
The estimates for u and w are given in the following proposition.
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Proposition 4.6. If M0 in (4.6) is sufficiently small, then there are non-zero constants c
and C such that for any 2 ≤ k ≤ �

c
∑

j≤k

‖∂ j
α′v‖2

L2
α′

≤
∑

j≤k

‖∂ j
α′u‖2

L2
α′

≤ C
∑

j≤k

‖∂ j
α′v‖2

L2
α′

, (4.10)

∣
∣
∣
∣
∣
∣

∑

j≤k
‖∂ j

α′(∂t + b∂α′)v‖L2
α′ −

∑

j≤k

‖∂ j
αw‖L2

α′

∣
∣
∣
∣
∣
∣
≤ C

∑

j≤k

‖∂ j
α′u‖2

L2
α′

. (4.11)

In particular

c
∑

j≤k

(‖∂ j
α′u‖L2

α
+ ‖∂ j

αw‖L2
α′ ) ≤ C

∑

j≤k

(‖∂ j
α′v‖L2

α
+ ‖∂ j

α′(∂t + b∂α′)v‖L2
α′ )

≤ C
∑

j≤k

(‖∂ j
α′u‖L2

α′ + ‖∂ j
α′w‖L2

α′ ).

Proof. First we prove (4.10). We begin by rewriting (4.8) as
⎧
⎨

⎩

2u = v

ζ
+ ζ

ζ
[μ,H] ∂α′ (uζ )

ζα′ + 1
ζ
[u,H]μα′

ζα′ + 1
ζ
E(uζ ) − 2

ζ
AV(uζ )

v = 2uζ − ζ [μ,H] ∂α′ (uζ )

ζα′ − [u,H]μα′
ζα′ − E(uζ ) + 2AV(uζ )

. (4.12)

Now we estimate the terms above in Hk
α′ . First note that by Proposition 4.1 and Sobolev

∑

j≤k

‖∂ j
α′

v

ζ
‖L2

α′ �
∑

j≤k

‖∂ j
α′v‖L2

α′ ,
∑

j≤k

‖∂ j
α′(uζ )‖L2

α′ �
∑

j≤k

‖∂ j
α′u‖L2

α′ ,

so it suffices to bound the contribution of all other terms on the right hand sides by
M
∑

j≤k ‖∂ j
α′u‖L2

α′ . The contribution of E(uζ ) is already handled in Corollary 4.3. For

AV(uζ ) note that since u is anti-holomorphic inside �
∫ 2π

0

uζ ζα′

ζ
dα′ =

∫ 2π

0

uμα′

ζ
dα′ −

∫ 2π

0
uζ α′dα′ =

∫ 2π

0

uμα′

ζ
dα′,

which is bounded by M‖u‖L∞ (note that AV(uζ ) is a constant as a function of α). The
contribution of the other terms is handled by Lemma 2.5.

For (4.11) we use (4.9) and a similar argument as for the proof of (4.10) to bound

the contributions of the last integral in (4.9), |u|2, [u,H] (uζ )α
ζα

, and [u,H] (uζ )α
ζα

by
∑

j≤k ‖∂ j
αu‖2

L2
α
. The contribution of [w,H]μα

ζα
is bounded by M

∑
j≤k ‖∂ j

αw‖L2
α
, by

Lemma 2.5. Finally, applying the identity

(H +H) f = −2AV( f ) + E( f ) + ζ [μ,H] fα
ζα

to f = wζ and f = |u|2 and using similar arguments as above we can estimate the
contribution of (H +H)(wζ + |u|2) by

M
∑

j≤k

‖∂ j
α′w‖L2

α′ +
∑

j≤k

‖∂ j
αu‖2

L2
α′

.
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Here to estimate AV(wζ) we have noted that
∫ 2π

0

wζζα′

ζ
dα′ =

∫ 2π

0

wμα′

ζ
dα′ −

∫ 2π

0
wζα′dα′ =

∫ 2π

0

wμα′

ζ
dα′ −

∫ 2π

0
uα′u dα′,

where for the last equality we have written zt = F(t, z) for some anti-holomorphic
function F to get ztt = Ft +Fzzt = Ft +

ztαzt
zα

.The desired estimates now follow from the

bootstrap assumptions (4.6) if M0 is sufficiently small. Note that the term
∫ 2π
0 uα′udα′

is bounded by
∑

j≤k ‖∂ j
α′u‖2

L2
α′
because it does not depend on α′. Therefore it vanishes

when the spatial derivatives hit it. ��
Our next goal is to estimate η and its higher derivatives. To this end we rearrange

Eq. (3.2) to get

πη = iw − (A − π)ζα′ − iga ◦ k−1. (4.13)

To use this equation we first need to estimate A − π. This is accomplished in the next
proposition.

Proposition 4.7. If M0 in (4.6) is sufficiently small then for any 2 ≤ k ≤ �

∑

j≤k

‖∂ j
α′(A − π)‖L2

α′ ≤ C

⎛

⎝
∑

j≤k

‖∂ j
α′u‖2

L2
α′
+
∑

j≤k

‖∂ j
α′η‖2

L2
α′
+
∑

j≤k

‖∂ j
α′w‖L2

α

∑

j≤k

‖∂ j
α′η‖L2

α′

⎞

⎠ .

Proof. Using Propositions 3.18 and 3.20 and the fact that ∂α′ log(ζeiα
′
) = η

ζ
we write

⎧
⎪⎪⎨

⎪⎪⎩

(I − H)(A − π) = [u,H] (uζ )α′
ζα′ −[u,H]u−(I − H)

wμ

ζ
+ (I − H)

μgh◦k−1

ζ
+ [w − ga ◦ k−1,H] η

ζα′ ζ

AV(A − π) = 1
2π i

∫ 2π
0 uuβ ′dβ ′ + 1

2π i

∫ 2π
0

(w−gh◦k−1)μζβ′
|ζ |2 dβ ′ − 1

2π i

∫ 2π
0

η(w−gh◦k−1)

|ζ |2 dβ ′
.

(4.14)

Now since A is real

A − π = Re (I − H)(A − π) +
1

2
(H +H)(A − π)

= Re (I − H)(A − π) +
1

2

(

ζ [μ,H] Aα′

ζα′
+ E(A − π) − 2AV(A − π)

)

.

(4.15)
Moreover, by Lemma 3.13 we can write

ga ◦ k−1 = gh ◦ k−1 = π

2
(H +H)ζ = π

2
ζχ +

π

2
E(ζ ).

Notice that by Corollary 4.3 and Proposition 4.1

∑

j≤k

‖∂ j
α′E(ζ )‖L2

α′ ≤ C
∑

j≤k

‖∂ j
α′η‖2

L2
α′

,
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and by Proposition 4.1 if M0 in (4.6) is sufficiently small
∑

j≤k

‖∂ j
α′(ga ◦ k−1)‖L2

α′ ≤ C
∑

j≤k

‖∂ j
α′η‖L2

α′ .

It follows from this, Proposition 4.1, Lemma 2.5, and (4.14) that
∑

j≤k

‖∂ j
α′Re (I − H)(A − π)‖L2

α′ + ‖AV(A − π)‖L2
α′

≤ C

⎛

⎝
∑

j≤k

‖∂ j
α′u‖2

L2
α′
+
∑

j≤k

‖∂ j
α′η‖2

L2
α′
+
∑

j≤k

‖∂ j
α′w‖L2

α′

∑

j≤k

‖∂ j
α′η‖L2

α′

⎞

⎠ .

Similarly the bootstrap assumptions give

∑

j≤k

(‖∂ j
α′(ζ [μ,H] Aα′

ζα′
)‖L2

α′ + ‖∂ j
α′E(A − π)‖L2

α′
) ≤ CM

∑

j≤k

‖∂ j
α′(A − π)‖L2

α′ .

Combining these estimates with (4.15) we arrive at the desired conclusion if M is
sufficiently small. ��

We now go back to the analysis of Eq. (4.13). As observed in the proof of Proposition
4.7 we can write ga ◦ k−1 = π

2 (ζχ + E(ζ )). This shows that Eq. (4.13) by itself is not
enough to obtain estimates on η and its higher derivatives in terms of (∂t + b∂α′)χ and
(∂t + b∂α′)v and their higher derivatives. To get such estimates we will also need to use
the original Eq. (3.33), which in turn requires estimates on the right hand side of (3.33).
These estimates are also of independent interest in proving energy estimates, so before
stating the final estimates for η we state the following estimates on the right hand sides
of the Eqs. (3.33) and (3.34).

Proposition 4.8. Let N1 and N2 be as in Corollary 3.22. Then if M0 in (4.6) is sufficiently
small, for any 3 ≤ k ≤ �

∑

j≤k

(
‖∂ j

α′N1‖L2
α′ + ‖∂ j

α′N2‖L2
α′

)
�
∑

j≤k

(
‖∂ j

α′η‖L2
α′ + ‖∂ j

α′u‖L2
α′ + ‖∂ j

α′w‖L2
α′

)3

(4.16)

Proof. We begin with N1. Using Lemmas 2.5 and 2.6 and Corollary 4.3 we can bound
the contributions of the first two terms on the right hand side of (3.23) by the right hand
side of (4.16). Similarly, in view of Eq. (3.25), the contributions of the last two terms
on the right hand side of (3.23) can be bounded by the right hand side of (4.16) by
using Lemma 2.4 and Propositions 2.2 and 2.3. This completes the estimates for N1.

The contribution of N2 can be treated in a similar way. Indeed except for the first term
on the right hand side of (3.24) all other terms can be estimated by similar arguments as
above using Propositions 2.2 and 2.3 and Lemmas 2.4, 2.5, and 2.6. Here we will also
use the observations that

∂t

(
A(t, α) − A(t, β)

z(t, β) − z(t, α)

)

= At (t, α) − At (t, β)

z(t, β) − z(t, α)
− (A(t, α) − A(t, β))(zt (t, β) − zt (t, α))

(z(t, β) − z(t, α))2
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and ∂tε = zt z + zzt . We omit the details. Finally the term at is treated independently in
the proof of Lemma 5.12 below.5 ��

Using Eq. (4.13), we can now combine Propositions 4.6, 4.7, and 4.8 to prove the
following proposition.

Proposition 4.9. If M0 in (4.6) is sufficiently small then for any 3 ≤ k ≤ �,

∑

j≤k

(
‖∂ j

α′w‖L2
α′ + ‖∂ j

α′u‖L2
α′ + ‖∂ j

α′η‖L2
α′

)

≤ C
∑

j≤k

(
‖∂ j

α′(∂t + b∂α′)v‖L2
α′ + ‖∂ j

α′(∂t + b∂α′)χ‖L2
α′

)
.

Proof. In view of Proposition 4.6 we only need to prove this estimate for η. From
Proposition 4.7 we know that (A−π) is quadratic. In Eq. (4.13), using Lemma 3.13 we
can write the term ga ◦ k−1 as

ga ◦ k−1 = π

2
(I +H)ζ = π

2
(H +H)ζ = π

2
ζχ + E(ζ )

and Eq. (4.13) can be written as

πη = iw − π i

2
ζχ − π i

2
E(ζ ) − (A − π)ζα′ (4.17)

The arguments for estimating η itself and its derivatives are different. For η we use
Eq. (3.33) and the definition of v := (∂t + b∂α′)χ to get

{
πχα′ + iπχ = i (∂t + b∂α′) v − (A − π)∂α′χ − i N1

N1 := (∂t + b∂α′)2χ + i A∂α′χ − πχ
. (4.18)

For higher derivatives of η we instead use the following system which is obtained by
differentiating (4.17) and the second equation in (4.18)

{
π∂�

α′η = i∂�
α′w − π i

2 ∂�−1
α′ ∂α′(ζχ) − π i

2 ∂�
α′E(ζ ) − ∂�

α′ ((A − π)ζα′) , � ≥ 1
∂α′(ζχ) = ζ(χα′ + iχ) + ηχ = ζ( i

π
(∂t + b∂α′)v − 1

π
(A − π)χα′ − i

π
N1) + ηχ

.

(4.19)

We start with the estimates for η itself. In view of Eq. (4.17), we need to obtain an
estimate for ζχ . On the other hand, by Propositions 4.1, 4.7, 4.8 and Corollary 4.4, the
second equation in (4.19) gives us an estimate for ∂α′(ζχ):

5 We note that the treatment in Lemma 5.12 does not rely on the validity of Proposition 4.8. In fact we only
use the estimates for N1 in the proof of Proposition 4.9 below and the proof of the estimates for at in Lemma
5.12 are even independent of this proposition.
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‖∂α′(ζχ)‖L2
α′ � ‖(∂t + b∂α′)v‖L2

α′ + M‖η‖L2
α′

+ M2
∑

j≤3

(
‖∂ j

α′u‖L2
α′ + ‖∂ j

α′w‖L2
α′ + ‖∂ j

α′η‖L2
α′

)
. (4.20)

In order to obtain the L2-estimate for ζχ , we still need to know the value of ζχ at least
at one point. Note that by Proposition 3.5

∫ 2π

0
ζχ · ζα′

ζ
dα′ = 0.

Therefore
∫ 2π

0
ζχdα′ = i

∫ 2π

0
χηdα′,

from which we have
∣
∣
∣
∣

∫ 2π

0
Re (ζχ)dα′

∣
∣
∣
∣ ,

∣
∣
∣
∣

∫ 2π

0
Im (ζχ)dα′

∣
∣
∣
∣ � M‖η‖L2

α′ .

These together with (4.20) imply that

‖ζχ‖L2
α′ � ‖(∂t + b∂α′)v‖L2

α′+M‖η‖L2
α′+M

2
∑

j≤3

(
‖∂ j

αu‖L2
α′ + ‖∂ j

α′w‖L2
α
+‖∂ j

α′η‖L2
α′

)
.

(4.21)

Substituting this into (4.17), using Corollary 4.3 and Proposition 4.7, and taking M > 0
sufficiently small we get

‖η‖L2
α′ �‖(∂t + b∂α′)v‖L2

α′ + ‖(∂t + b∂α′)χ‖L2
α′ + M2

∑

j≤3

‖∂ j
α′η‖L2

α′

+ M2
∑

j≤3

(
‖∂ j

α′(∂t + b∂α′)χ‖L2
α′ + ‖∂ j

α′(∂t + b∂α′)v‖L2
α′

)
.

(4.22)

Finally applying Propositions 4.7 and 4.8 and Corollary 4.3 to Eq. (4.19), for and 3 ≤
k ≤ �, we get the bound

∑

1≤ j≤k

‖∂ j
α′η‖2

L2
α′

�
∑

j≤k

(

‖∂ j
α′(∂t+b∂α′)χ‖2

L2
α′
+‖∂ j

α′(∂t + b∂α′)χ‖2
L2

α′

)

+M
∑

j≤k

‖∂ j
α′η‖2

L2
α′

.

Combining this with (4.22) and choosing M sufficiently small gives

∑

j≤k

‖∂ j
α′η‖2

L2
α′

�
∑

j≤k

(

‖∂ j
α′(∂t + b∂α′)χ‖2

L2
α′
+ ‖∂ j

α′(∂t + b∂α′)χ‖2
L2

α′

)

,

which completes the proof of the proposition. ��
The next step in our analysis is to obtain estimates for quantities of the form ‖∂ j

α′(∂t +

b∂α′) f ‖L2
α′ in terms of ‖(∂t +b∂α′)∂ j

α f ‖L2
α′ ,which in turn will be bounded by the higher

order energies to be defined in the next section. For this we first obtain estimates on b
and its derivatives.
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Proposition 4.10. If M0 in (4.6) is sufficiently small then for 2 ≤ k ≤ �

∑

j≤k

‖∂ j
α′b‖L2

α′ ≤ CM
∑

j≤k

‖∂ j
α′u‖L2

α′ .

Proof. The proof is similar to that of Proposition 4.7. Recall from Propositions 3.18 and
3.20 that

⎧
⎨

⎩

b = Re {−i(I − H)
uχ

ζ
− i[u,H] η

ζζα′ } +
1
2ζ [μ,H] bα′

ζα′ +
1
2 E(b) − AV(b)

AV(b) = Re
2π

∫ 2π
0

uχ

|ζ |2 ζβdβ + Re
2π

∫ 2π
0

uη

|ζ |2 dβ.
.

The Proposition now follows from similar arguments as those in the proof of Proposition
4.7. ��

An important corollary of Propositions 4.9 and 4.10 is the following result.

Corollary 4.11. If M0 in (4.6) is sufficiently small then for 2 ≤ k ≤ �,

∑

j≤k

(
‖∂ j

αw‖L2
α′ + ‖∂ j

α′u‖L2
α′ + ‖∂ j

α′η‖L2
α′

)

≤ C
∑

j≤k

(
‖(∂t + b∂α′)∂ j

α′v‖L2
α′ + ‖(∂t + b∂α′)∂ j

α′χ‖L2
α′

)
.

Proof. We first note that for any function f

∂
j
α′(∂t + b∂α′) f = (∂t + b∂α′)∂ j

α′ f +
∑

1≤i≤ j

(
j

i

)

∂ iα′b ∂
j+1−i
α′ f,

and therefore by Sobolev

‖∂ j
α′(∂t + b∂α′) f ‖L2

α′ ≤ ‖(∂t + b∂α′)∂ j
α′ f ‖L2

α′ + c
∑

i≤max{2, j}
‖∂ iα′b‖L2

α′

∑

i≤ j

‖∂ iα′ f ‖L2
α′ .

Summing this estimate over j ≤ k for f = χ and f = v and using Propositions
4.6, 4.9 and 4.10, Corollary 4.4, and the bootstrap assumption (4.6) we get the desired
result. ��

5. Energy Estimates

In this section we define the energy and prove energy estimates for Eqs. (3.33) and
(3.34). The main energy estimates are stated in Proposition 5.15 below. We consider an
equation of the form

((∂t + b∂α′)2 + i A∂α′ − π)
 = G. (5.1)

In most applications 
 will be the boundary value of a holomorphic function outside
� decaying to zero as |z| → ∞, that is, 
 = (I − H) f for some f. More precisely,
the relevant choices of 
 are χ = (I − H)μ and v = (∂t + b∂α′)χ . Since v cannot be
written as (I − H) f we define the new unknown

ṽ := (I − H)v. (5.2)
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Associated to (5.1) we define the following basic energy

E

0 :=

∫ 2π

0

|(∂t + b∂α′)
|2
A

dα′ +
∫ 2π

0

(
i
α′
 − π

A
|
|2

)
dα′ =: E


0 + F

0 .

and for the choices of 
 above we let

E0(χ) := E0(χ) + F0(χ) := Eχ
0 + Fχ

0 = Eχ
0 ,

E0(v) := E0(v) + F0(v) := E ṽ
0 + F ṽ

0 = E ṽ
0 .

We will show below that if 
 = (I − H) f for some f then i
∫ 2π
0 
α
dα′ is non-

negative. It is not, however, in general true thatF

0 is non-negative even if
 = (I−H) f,

but this is the case if ∂� is a an exact circle. This can be seen by noting that in this case
the Fourier expansion of 
 contains only negative frequencies if 
 = (I − H) f , and
then carrying out the integration on the frequency side after an application of Plancherel.
Therefore, we expect that for small data where ∂� is nearly a circle, F


0 can be written
as a positive term plus ‘higher order terms.’ This can be achieved for instance by writing
H as the Hilbert transform on the circle plus an error. While this intuition is helpful, we
will not use this argument in our applications, but instead explicitly decompose F


0 as
the sum of a positive term and a ‘higher order’ difference in terms of known quantities
for choices of 
 that interest us. We will postpone this computation to after defining the
higher order energies and now only prove the following general estimate.

Lemma 5.1. The integral i
∫ 2π
0 
α
dα′ is real and if 
 = (I − H) f for some 2π -

periodic function f, then

i
∫ 2π

0

α′
dα′ ≥ 0.

Remark 5.2. Note that this lemma does not apply to the choice 
 = v, which is why we
have replaced v by ṽ in the definition of E0(v).

Proof. Integration by parts shows that the integral i
∫ 2π
0 
α′
dα′ is equal to its conju-

gate and is therefore real, and hence

i
∫ 2π

0

α′
dα′ = Re

{

i
∫ 2π

0


α′

|ζα′ |
|ζα′ |dα′
}

.

Now note that if
 = (I −H) f then by Proposition A.1 we can write
 as the boundary
value of a function F which is holomorphic in �c and decays as |ζ |−1 when |ζ | → ∞.

A simple computation using the holomorphicity of F in �c and the Cauchy–Riemann
equations gives

Re

{
i
α′


|ζα′ |

}

= −〈F,
∂F

∂n
〉

where n := − i zα|zα | is the exterior normal of � and 〈F,G〉 := f1g1 + f2g2 for complex
numbers F = f1 + i f2 and G = g1 + ig2. From Green’s formula and with ds denoting
the arc-length measure we get

i
∫ 2π

0

α′
dα′ = −

∫

∂�c
〈F,

∂F

∂n
〉ds =

∫∫

�c
|∇F |2dxdy ≥ 0,
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where we have used the decay properties of F stated above to justify the use of Green’s
formula. ��

With this basic positivity estimate in place we turn to the following energy identity
for E


0 .

Lemma 5.3. Suppose 
 satisfies Eq. (5.1). Then

d

dt
E

0 = 2

∫ 2π

0

1

A
Re {G(∂t + b∂α′)
}dα′

−
∫ 2π

0

(
1

A

at
a

◦ k−1
)(

|(∂t + b∂α′)
|2 − π |
|2
)
dα′.

Remark 5.4. Note that if 
 = χ or v, then by the results of Sect. 3 the first integral on
the right hand side above is of ‘order four’. However, in the definition of E0(v) we have
used 
 = ṽ, so to have this smallness we still need to show that ṽ satisfies a ‘cubic’
equation. This will be accomplished in Proposition 5.11 below.

Proof. Precomposing with k we can rewrite (5.1) as

(∂2t + ia∂α − π)θ = g, θ := 
 ◦ k, g = G ◦ k. (5.3)

Then

E

0 =

∫ 2π

0

|∂tθ |2
a

dα +
∫ 2π

0

(
iθ∂αθ − π

a
|θ |2

)
dα. (5.4)

It follows that

d

dt
E

0 =

∫ 2π

0

2

a
Re {∂2t θ∂tθ}dα −

∫ 2π

0

at
a2

|∂tθ |2dα

+
∫ 2π

0
i∂αθ∂tθdα +

∫ 2π

0
iθ∂2tαθdα

−
∫ 2π

0

2π

a
Re {θ∂tθ}dα +

∫ 2π

0

πat
a2

|θ |2dα

= 2
∫ 2π

0

1

a
Re {g∂tθ}dα −

∫ 2π

0

at
a2

(|∂tθ |2 − π |θ |2)dα.

Composing back with k−1 we get the desired identity. ��
We now turn to the higher energy estimates for (5.1). For simplicity of notation we

define

P = (∂t + b∂α′)2 + i A∂α′ − π,

and note that

P∂
j
α′ f − ∂

j
α′P f =

j∑

i=1

∂
j−i
α′ [P, ∂α′ ]∂ i−1

α′ f.
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Applying this identity to (5.1) we get
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P∂
j
α′
 = G j

G j := ∂
j
α′G +

j∑

i=1
∂
j−i
α′ [P, ∂α′ ]∂ i−1

α′ 


= ∂
j
α′G+

j∑

i=1
∂
j−i
α′

(−bα′(∂t+b∂α′)∂ i
α′
−(∂t + b∂α′)

(
bα′∂ i

α′

)−b2

α′∂ iα′
 − i Aα′∂ i
α′


)

.

(5.5)

The j th order energy is now defined as

E

j :=

∫ 2π

0

|(∂t + b∂α′)∂ j
α′
|2

A
dα′ +

∫ 2π

0

(
i∂ j+1

α′ 
∂
j
α′
 − π

A
|∂ j

α′
|2
)

=: E

j + F


j .

and in analogy with the undifferentiated case we let

E j (χ) := E j (χ) + F j (χ) := Eχ
j + Fχ

j = Eχ
j ,

E j (v) := E j (v) + F j (v) := E ṽ
j + F ṽ

j = E ṽ
j .

(5.6)

The following lemma follows from a similar argument to the proof of Lemma 5.3.

Lemma 5.5. ∂t Eθ
j = R j (t) where

R j (t) := 2
∫ 2π

0

1

A
Re

(
G j (∂t + b∂α′)∂ j

α′

)
dα′

−
∫ 2π

0

(
1

A

at
a

◦ k−1
)(

|(∂t + b∂α′)∂ j
α′
|2 − π |∂ j

α′
|2
)
dα′.

Supposing for the moment that we know how to deal with the non-positive part F

j

of the energy, we can use Corollary 4.11 and Proposition 4.7 to estimate the quantities
appearing in the bootstrap assumption (4.6) in terms of the positive parts of the energy
E j (χ) and E j (v). The only difficulty with this is that in the definition of E j (v) we have
replaced v by ṽ, so in the next proposition we show that the conclusions of Corollary
4.11 hold with v replaced by ṽ.

Proposition 5.6. If M0 in (4.6) is sufficiently small then for 2 ≤ k ≤ �,

∑

j≤k

(

‖∂ j
α′w‖2

L2
α′
+ ‖∂ j

α′u‖2
L2

α′
+ ‖∂ j

α′η‖2
L2

α′

)

≤ C
∑

j≤k

(Eχ
j + E ṽ

j ).

Proof. In view of Corollary 4.11 and Proposition 4.7 we only need to show that under
the assumptions of the proposition

∫ 2π

0
|(∂t + b∂α′)∂ j

α′v|2dα′ �
∫ 2π

0
|(∂t + b∂α′)∂ j

α′ ṽ|2dα′

+ M
∑

i≤ j

∫ 2π

0

(
|(∂t + b∂α′)∂ iα′χ |2 + |(∂t + b∂α′)∂ iα′v|2

)
dα′. (5.7)
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To see this we first write

ṽ ◦ k = (I − H)∂tδ = ∂t (I − H)δ + [zt , H ]δα

zα
= 2∂tδ + [zt , H ]δα

zα

so

ṽ = 2v + [u,H]χα′

ζα′
. (5.8)

Now

(∂t + b∂α′)∂ j
α′ [u,H]χα′

ζα′
= ∂ j

α(∂t + b∂α′)[u,H]χα′

ζα′
−

j∑

i=1

(
j

i

)

∂ iα′b ∂
j−i
α′ [u,H]χα′

ζα′
.

(5.9)

By Corollary 4.11, Proposition 4.10, and Lemma 2.5 the contribution of the last term
above can be bounded as
∥
∥
∥
∥∂

i
α′b ∂

j−i
α′ [u,H]χα′

ζα′

∥
∥
∥
∥

2

L2
α′

� M
∑

i≤ j

(
‖(∂t + b∂α′)∂ iα′v‖L2

α′ + ‖(∂t + b∂α′)∂ iα′χ‖L2
α′

)
.

(5.10)

To estimate the first term on the right hand side of (5.9) we first note that

∂t [zt , H ]δα

zα
= [ztt , H ]δα

zα
+ [zt , H ]∂αδt

zα
+

1

π i

∫ 2π

0

(
zt (α) − zt (β)

z(β) − z(α)

)2

δβ(β)dβ,

so

(∂t + b∂α′)[u,H]χα′

ζα′
= [w,H]χα′

ζα′
+ [u,H]∂α′v

ζα′

+
1

π i

∫ 2π

0

(
u(α′) − u(β ′)
ζ(β ′) − ζ(α′)

)2

χβ ′(β ′)dβ ′.

It follows from this, Corollary 4.11, Proposition 4.6, Proposition 2.3, and Lemma 2.4
that
∥
∥
∥
∥∂

j
α′(∂t + b∂α′)[u,H]χα′

ζα′

∥
∥
∥
∥

2

L2
α′

� M
∑

i≤ j

(
‖(∂t + b∂α′)∂ iα′v‖L2

α′ + ‖(∂t + b∂α′)∂ iα′χ‖L2
α′

)
.

(5.11)

Combining (5.8)–(5.11) we get (5.7). ��
We now turn to the issue of non-positivity of F


j . Note that even if 
 can be written

as (I −H) f this will not in general imply that ∂ j
α′
 is the boundary value of a function

holomorphic outside of�, so even the first integral in the definition ofF

j abovemay not

be non-negative for j ≥ 1.Nevertheless, as forF

0 ,we are able to show that the negative

part of F

j is of higher order for the choices of 
 we need in the energy estimates. The

following simple observation is the main step in this direction.
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Lemma 5.7. Suppose 
 := (I − H) f for some 2π -periodic function f. Then with
g = ζ


i
∫ 2π

0

α′
dα′ −

∫ 2π

0
|
|2dα′ =

∫ 2π

0
gα′gdα′ −

∫ 2π

0
(iζαζ + 1)|
|2dα′ −

∫ 2π

0
iμ
α′
dα′

≥ −
(

‖iζαζ + 1‖L∞
α′ ‖
‖2

L2
α′
+ ‖μ‖L∞

α′ ‖
α′ ‖L2
α′ ‖
‖L2

α′

)

.

Proof. The first equality follows from

i
α′
 − |
|2 = i∂α′(ζ
)(ζ
) − (iζα′ζ + 1)|
|2 − iμ
α′
.

To get the inequality it suffices to show that i
∫ 2π
0 gα′gdα′ ≥ 0. For this note that

g = (I − H)(ζ f ) − [ζ,H] f
and that [ζ,H] f is independent of α′. It follows that

i
∫ 2π

0
gα′gdα′ = i

∫ 2π

0
∂α′ [(I − H)(ζ f )][(I − H)(ζ f )]dα′

which is non-negative by Lemma 5.1. ��
Lemma 5.7 shows that the difference between the energy and a positive term is of

higher order. Note however, that the lower order term involves an extra derivative of 
.

This causes a problem only when we consider ∂�
α′v, where � is the maximum number

of derivatives we commute. But in this case we can write

∂�
α′v = (∂t + b∂α′)∂�

α′χ + [∂�
α′ , ∂t + b∂α′ ]χ,

and the main term here is already bounded by the energy of χ, that is,

‖(∂t + b∂α′)∂�
α′χ‖2

L2
α′

� Eχ
� .

Since ‖(∂t + b∂α′)∂�
α′χ‖2

L2
α′
is precisely the negative term in the energy of ∂�

α′v this idea

can be used to resolve the issue in the case where we commute the maximum number of
derivatives. We will nowmake this argument more precise, starting with a few important
identities stated only for the choices of 
 which will be used in the energy estimates,
namely 
 = χ and ṽ.

Lemma 5.8. If χ and v are as in (4.1) then

∂
j
α′χ = (I − H)∂

j
α′μ −

j∑

i=1

∂
j−i
α′ [η,H]∂

i
α′μ

ζα′
,

∂
j
α′ ṽ = (I − H)∂

j
α′v −

j∑

i=1

∂
j−i
α′ [η,H]∂

i
α′v

ζα′
.
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Proof. The first identity follows from commuting ∂
j
α′ with H in the definition χ =

(I − H)μ of χ and noting that

[∂ j
α′,H] f =

j∑

i=1

∂
j−i
α′ [∂α,H]∂ i−1

α′ f,

and

[∂α′ ,H] f = [ζα′,H] fα′

ζα′
= [η,H] fα′

ζα′
.

The proof of the second identity is similar where we use the definition
ṽ = (I − H)v. ��

We can now prove the following positivity estimate.

Lemma 5.9. (1) If M0 in (4.6) is sufficiently small then for � ≥ 2
�∑

i=0

Fχ
i ≥ −C

�∑

i=0

(
Eχ
i + E ṽ

i

) 3
2
,

�−1∑

i=0

F ṽ
i ≥ −C

�∑

i=0

(
Eχ
i + E ṽ

i

) 3
2
.

(2) If M0 in (4.6) is sufficiently small then for � ≥ 2

F ṽ
� ≥ −C

�∑

i=0

(
Eχ
i + E ṽ

i

)2 − C
�∑

i=0

(Eχ
i + E ṽ

i )
3
2 − CEχ

� .

Proof. (1) We assume M0 is small enough that Corollary 4.11 holds. We start with the
estimate for χ. By Lemma 5.8

∂ iα′χ = (I − H)∂ iαμ −
i∑

m=1

∂ i−m
α′ [η,H]∂

m
α′μ

ζα

=: fi + gi .

It follows that

Fχ
i = i

∫ 2π

0
∂α′ fi fi dα′ −

∫ 2π

0
| fi |2dα′

− 2Re i
∫ 2π

0
fi∂α′gi dα′ − 2Re

∫ 2π

0
fi gi dα′ + i

∫ 2π

0
∂α′gi gi dα′ −

∫ 2π

0
|gi |2dα′.

(5.12)

To estimate the first line above we apply Lemma 5.7 with 
 = (I − H)∂
j
α′μ = fi

to get (for i ≤ �)

i
∫ 2π

0
∂α′ fi fi dα′ −

∫ 2π

0
| fi |2dα′ ≥ − (‖ζ‖L∞

α′ ‖η‖L∞
α′

+ ‖μ‖L∞
α′ )‖ fi‖2L2

α′
− ‖μ‖L∞

α′ ‖∂α′ fi‖L2
α′ ‖ fi‖L2

α′

≥ − C
i∑

j=0

(
Eχ
j + E ṽ

j

) 3
2
, (5.13)
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by Corollary 4.11 and Proposition 4.7. Here to estimate ‖∂α′ f�‖L2
α′ we have noted

that

∂α′ f� = (I−H)∂�+1
α′ μ−[η,H]∂

�+1
α′ μ

ζα′
= (I−H)∂�

α′(ζη + ζη) − [η,H]∂
�
α′(ζη + ζη)

ζα′
.

(5.14)

To estimate the second line in (5.12) it suffices to show that for i ≤ �

(
‖ fi‖L2

α′ + ‖gi‖L2
α′

) (
‖gi‖L2

α′ + ‖∂αgi‖L2
α′

)
≤ C

i∑

j=0

(
Eχ
j + E ṽ

j

) 3
2
. (5.15)

But (5.15) is a direct consequence of Corollary 4.11 and Lemma 2.5. Combining
(5.12), (5.13), and (5.15) we get the estimate for χ.

The estimate for ṽ is similar. Using Lemma 5.8 we write

∂ iα′ ṽ = φi + ψi

where

φi := (I − H)∂ iα′v, ψi = −
i∑

m=1

∂ i−m
α [η,H]∂

m
α′v

ζα

.

The argument is now the same as for χ where we replace gi by ψi and fi by φi
everywhere. The only difference is that (5.14) is now replaced by

∂α′φ�−1 = (I − H)∂�
α′v − [η,H]∂

�
α′v

ζα′
,

which is responsible for the loss of one derivative.
(2) Note that with ci := (

�
i

)

∂�
α′v = (∂t + b∂α′)∂�

α′χ +
�∑

i=1

ci∂
i
α′b ∂�+1−i

α′ χ.

It follows from this, Corollary 4.11, Proposition 4.7, and Proposition 4.10 that

‖∂�
α′v‖2

L2
α′

≤ C
�∑

i=0

(Eχ
i + E ṽ

i )2 + CEχ
� ,

and from the second identity in Lemma 5.8 that

‖∂�
α′ ṽ‖2

L2
α′

≤ C
�∑

i=0

(Eχ
i + E ṽ

i )2 + CEχ
� .

From the definition of F ṽ
� and in view of Proposition 4.7 if M0 is sufficiently small

it follows that

F ṽ
� ≥ i

∫ 2π

0
∂
j+1
α′ ṽ∂

j
α′ ṽdα′ − C

�∑

i=0

(Eχ
i + E ṽ

i )2 − CEχ
� ,



208 L. Bieri, S. Miao, S. Shahshahani, S. Wu

so it suffice to show

i
∫ 2π

0
∂�+1
α′ ṽ∂�

αṽdα′ ≥ −C
�∑

i=0

(
Eχ
i + E ṽ

i

) 3
2
. (5.16)

For this we use Lemma 5.8 to write

∂�
α′ ṽ = f + g

where

f = (I − H)∂�
α′v, g = −

�∑

i=1

∂�−i
α′ [η,H]∂

i
α′v

ζα′
.

Since

i
∫ 2π

0
fα′ f dα′ ≥ 0,

arguing as in (5.12) and (5.15) we just need to show that

‖g‖L2
α′ ‖gα′ ‖L2

α′ + ‖ f ‖L2
α′ ‖gα′ ‖L2

α′ + ‖ f ‖L2
α′ ‖g‖L2

α′ ≤ C
�∑

i=0

(
Eχ
i + E ṽ

i

) 3
2
.

But this is again a consequence of Corollary 4.11, Proposition 4.6, and Lemma 2.5.
This now proves (5.16) which concludes the proof of the Lemma. ��
Combining Lemmas 5.5 and 5.9 we see that if M0 in (4.6) is sufficiently small we

can find constants c1, C1 and C2 such that with Rk as in Lemma 5.5

∑

k≤�

Eχ
k (t) +

∑

k≤�−1

E ṽ
k (t) ≤

∑

k≤�

(
Eχ
k (0) + E ṽ

k (0)
)

+ C1

∑

k≤�

(
Eχ
k (t) + E ṽ

k (t)
) 3

2
+
∑

k≤�

∫ t

0
|Rk(t)|dt

and

E ṽ
� (t) − c1Eχ

� (t) ≤
∑

k≤�

(
Eχ
k (0) + E ṽ

k (0)
)

+ C2

∑

k≤�

(
Eχ
k (t) + E ṽ

k (t)
) 3

2
+ C2

∑

k≤�

(
Eχ
k (t) + E ṽ

k (t)
)2

+
∑

k≤�

∫ t

0
|Rk(t)|dt.

Adding an appropriate multiple of the second estimate to the first we get the following
energy estimate.
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Corollary 5.10. If M0 in (4.6) is sufficiently small then with Nk as in Lemma 5.5
∑

k≤�

(Eχ
k (t) + E ṽ

k (t)) ≤ C
∑

k≤�

(Eχ
k (0) + E ṽ

k (0)) + C
∑

k≤�

(Eχ
k (t) + E ṽ

k (t))
3
2

+ C
∑

k≤�

(Eχ
k (t) + E ṽ

k (t))2 + C
∑

k≤�

∫ t

0
|Rk(t)|dt.

We now turn to the estimates for Rk . For notational convenience we define

E :=
�∑

i=0

(
Eχ
i + E ṽ

i

)
. (5.17)

Our first step will be to compute the equation for ṽ.

Proposition 5.11. ṽ = (I − H)v satisfies

(∂2t + ia∂α − π)(ṽ ◦ k) = (I − H)(∂2t + ia∂α − π)δt + 2[zt , H ]∂α(∂2t + ia∂α − π)δ

zα

+
1

π i

∫ 2π

0

(
zt (t, β) − zt (t, α)

z(t, β) − z(t, α)

)2

δtβ(t, β)dβ

+ 2π

[

z[ε, H ] ztα
zα

, H

]
δα

zα
+ 2π [E(zt ), H ]δα

zα

+ π

[

z[ε, H ] ztα
zα

, H

](
∂α

zα

)2

δ + π [E(zt ), H ]
(

∂α

zα

)2

δ

+ −2[zt , H ]∂α

zα

(
gaδα

zα

)

+ 2[zt , H ]∂α

zα

(
zttδα

zα

)

+
π

2
[zδ, H ]∂α

zα
[zt , H ]εα

zα
− π

2
[E(z), H ]δtα

zα
.

Proof. From Lemma 3.7 we have

(∂2t + ia∂α−π)(ṽ ◦ k) = (∂2t +ia∂α−π)(I−H)δt=(I−H)(∂2t + ia∂α−π)δt − [∂2t +ia∂α, H ]δt
= (I − H)(∂2t + ia∂α − π)δt − π

2
[(I − H)z, H ] δtα

zα
+ 2[zt , H ]∂αδt t

zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2
δtβ(β)dβ

= −π

2
[(I − H)z, H ] δtα

zα
− 2[zt , H ]∂α(ia∂αδ − πδ)

zα

+ (I − H)(∂2t + ia∂α − π)δt + 2[zt , H ]∂α(∂2t + ia∂α − π)δ

zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2
δtβ(β)dβ.

The last three terms above already have the right form, so we only need to consider

I + I I + I I I := −π

2
[(I − H)z, H ]δtα

zα
− 2[zt , H ]∂α(ia∂αδ)

zα
+ 2π [zt , H ]∂αδ

zα
.

(5.18)
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Note that if g is the boundary value of a decaying holomorphic function F outside of
�, i.e., g = (I − H) f1 then gα

zα
is the boundary value of Fz so

gα

zα
= (I − H) f2 for

some f2. We will use this observation repeatedly in the rest of this proof. Applying this
observation to I I I we see that since δ = (I − H)ε

I I I = π [(I + H)zt , H ]δα

zα
= π [(H + H)zt , H ]δα

zα

= π

[

z[ε, H ] ztα
zα

, H

]
δα

zα
+ π [E(zt ), H ]δα

zα
.

For I I we use (3.2) to write

I I = −2[zt , H ]∂α

zα

(
gaδα

zα

)

+ 2[zt , H ]∂α

zα

(
zttδα

zα

)

+ 2π [zt , H ]∂α

zα

(
zδα

zα

)

.

The first two terms have the right form and we can rewrite the last term as

2π [zt , H ]∂α

zα

(
zδα

zα

)

= π [(I + H)zt , H ]δα

zα
+ 2π [zt , H ] z

(
∂α

zα

)2

δ

= π

[

z[ε, H ] ztα
zα

, H

]
δα

zα
+ π [E(zt ), H ]δα

zα

+ 2π z[zt , H ]
(

∂α

zα

)2

δ + 2π [[zt , H ], z]
(

∂α

zα

)2

δ

The first term in the last line above can be written as

π z[(I + H)zt , H ]
(

∂α

zα

)2

δ = π z[(H + H)zt , H ]
(

∂α

zα

)2

δ

= π z

[

z[ε, H ] ztα
zα

, H

](
∂α

zα

)2

δ + π [E(zt ), H ]
(

∂α

zα

)2

δ.

For the second term 2π [[zt , H ], z]
(

∂α

zα

)2
δ, we use Jacobi identity to write this as

− 2π [[H, z], zt ]
(

∂α

zα

)2

δ = −2π [H, z]zt
(

∂α

zα

)2

δ

= 2

i

∫ 2π

0
zt (β)∂β

(
∂β

zβ
((I − H)ε) (β)

)

dβ.

By Lemma 3.12, we have

(I − H)ε = (I + H)ε − z[ε, H ]εα

zα
− E(ε).

Therefore the contribution we need to consider is
∫ 2π

0
zt (β)∂β

(

(I + H)
εβ

zβ

)

(β)dβ =
∫ 2π

0
zt (β)Gz(z(β))zβ(β)dβ = 0.
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HereGz(z(β)) = ∂β

zβ

(
(I + H)

εβ

zβ

)
is the boundary value of an anti-holomorphic function

Gz(z) in�.We also used the fact that zt (β) is the boundary value of an anti-holomorphic
function in �. Finally for I we compute

I = −π

2
[(I − H)z, H ]δtα

zα

= π

2
[(I + H)z, H ]δtα

zα

= π

2
[zδ, H ]δtα

zα
+

π

2
[E(z), H ]δtα

zα

= π

2
[zδ, H ]∂α

zα
(I − H)(zt z) − π

2
[zδ, H ]∂α

zα
[zt , H ]εα

zα
+

π

2
[E(z), H ]δtα

zα
.

Again the last two terms have the right form and for the first we use Lemma 3.11 with
f = z, g = δ and h = ∂α

zα
(I − H)(zt z) and the fact that for and f1 and f2

[(I − H) f1, H ](I − H) f2 = 0

to write

π

2
[zδ, H ]∂α

zα
(I − H)(zt z) = π

2
[z, H ]δ ∂α

zα
(I − H)(zt z)

= − 1

π i

π

2

∫ 2π

0
δ∂α(I − H)(zt z)dα = 0.

Here for the last step we have used the fact that since δ and (I − H)(zt z) are boundary
values of holomorphic functions F1 and F2, respectively, in�c going to zero as |z| → ∞,

∫ 2π

0
δ∂α(I − H)(zt z)dα =

∫

∂�c
F1(z)∂z F2(z)dz = 0.

��
The following estimate is used for estimating the second integral in the definition of

Nk .

Lemma 5.12. If M0 in (4.6) is sufficiently small
∥
∥
∥
∥
1

A

at
a

◦ k−1
∥
∥
∥
∥
L∞

α′
≤ CE .

Proof. We use Lemmas 3.16 and 3.17 and the Sobolev embedding H1
α′ ↪→ L∞

α′ . Recall-
ing that A = (akα) ◦ k−1, from Lemma 3.16 and precomposition with k−1 we get

(I +K∗)(at
a

◦ k−1A|ζα′ |) = Re

{

− i
ζα′

|ζα′ |
{
2[u,H]wα′

ζα′
+ [2w − ga ◦ k−1,H]uα′

ζα′

− π

2
(I − H)

(

[u,H]ζ α′

ζα′

)

+
1

π i

∫ 2π

0

(
u(t, β ′) − u(t, α′)
ζ(t, β ′) − ζ(t, α′)

)2

uβ ′(t, β ′)dβ ′}
}

.
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Recalling that g1 ◦ k−1 = π
2 ζχ + E(ζ ), it follows from this, Lemmas 2.5 and 2.6, and

Corollary 4.11 that

1∑

i=0

‖∂ iα′
(
(I +K∗)(at

a
◦ k−1A|ζα′ |)

)
‖L2

α′ ≤ CE . (5.19)

On the other hand,

1

A

at
a

◦ k−1 = 1

A2|ζα′ | (I +K∗)(at
a

◦ k−1A|ζα′ |)

− 1

A2|ζα′ |K
∗(at

a
◦ k−1A|ζα′ |) =: I − 1

A2|ζα′ | I I.

By (5.19) and Propositions 4.1 and 4.7

‖I‖L2
α′ + ‖∂α′ I‖L2

α′ ≤ CE,

and therefore in view of Propositions 4.1 and 4.7 to complete the proof of the lemma it
suffice to show that

‖I I‖L2
α′ + ‖∂α I I‖L2

α′ ≤ CM

(∥
∥
∥
∥
1

A

at
a

◦ k−1
∥
∥
∥
∥
L2

α′
+

∥
∥
∥
∥∂α′

(
1

A

at
a

◦ k−1
)∥
∥
∥
∥
L2

α′

)

+ CE .

(5.20)

For this we use Lemma 3.17. Note that since K ∗ f = −Re { zα|zα | H
|zα | f
zα

} we may replace
z by ζ and zα by ζα′ everywhere in formula derived in Lemma 3.17 to get a representation
for K∗. Using this observation and Lemma 3.13, 3.17 we get with f = at

a ◦ k−1A|ζα′ |

I I = 1

π |ζα′ |
∫ 2π

0
f (α′)|ζα′(α′)|dα′ + AV( f |ζα′ |)

|ζα′ |
− ζ

2|ζα′ | [μ,H]∂α( f |ζα′ |)
ζα′

− E( f |ζα′ |)
2|ζα′ | − Re { 1

|ζα′ | [η,H] f |ζα′ |
ζα′

}.
(5.21)

The contribution of the second line above can be bounded by the right hand side of (5.20)
using Lemma 2.5, Corollary 4.3, and Proposition 4.1. To estimate the contribution of
the first line of (5.21) we go back to Eq. (3.4) which we rewrite as

f |ζα′ | = at
a

◦ k−1A|ζα′ |2 = iζ α′(∂t + b∂α′)w − πuα′ζα′ − (A − π)uα′ζ α′

− π i

2
[u,H 1

ζα′
+H 1

ζ α

]ζα′ . (5.22)

Moreover, we can write

AV(g) =
∫ 2π

0

ηg

ζ
dα′ + i

∫ 2π

0
g dα′

so to prove (5.20) for the first line of (5.21), it suffices to bound
∫ 2π
0 gdα′ by the right

hand side of (5.20) with g replaced by each of the terms on the right hand side of (5.22).
For the last two terms of (5.22) the contributions are of the right form in view of Lemma
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3.12 and Proposition 4.7. For the second term of (5.22) it suffices to note that since u is
anti-holomorphic inside �

∫ 2π

0
uα′ζ α′dα′ =

∫ 2π

0
uα′η dα′ + i

∫ 2π

0
uζ α′dα′ =

∫ 2π

0
uα′η dα′

which can be bounded by the right hand side of (5.20). Finally for the first term of (5.22)
we write zt = F(t, z) for an anti-holomorphic function to get

ztt = Ft + Fzzt = Ft +
ztαzt
zα

, zttt = Ftt +
zttα
zα

zt +
(zttαzt + ztαztt )zα − ztαztαzt

z2α
.

Since Ftt is anti-holomorphic, it follows that

∫ 2π

0
(∂t + b∂α′)wζα′dα′ =

∫ 2π

0
wα′u dα′ +

∫ 2π

0

(wα′u + uα′w)ζα′ − uα′uα′u

ζ α′
dα′

which can be bounded by the right hand side of (5.20). This completes the proof of
(5.20) and hence of the lemma. ��
Corollary 5.13. If M0 in (4.6) is sufficiently small then for all j ≤ � and with 
 = χ

or v

∫ 2π

0

∣
∣
∣
∣
1

A

at
a

◦ k−1
∣
∣
∣
∣

(
|(∂t + b∂α′)∂ j

α′
|2 + π |∂ j
α′
|2

)
dα′ ≤ CE2.

Proof. This is a direct corollary of the definition of E, Lemma 5.12, Proposition 4.6,
and Corollaries 4.4 and 4.11. ��

The last step before stating the main result of this section is to obtain an expression
for the time derivative of b and then estimates for it.

Proposition 5.14. Suppose that k is given as in Remark 3.21 and that it is increasing.
Then ktt = (∂t + b∂α)b ◦ k satisfies

(I − H)ktt = −i(I − H)
zttε + ztεt

z
+ i(I − H)

z2t ε

z2

− i[zt , H ] (log(ze
ik))tα + iktα
zα

+ i[zt , H ] 1
zα

∂α

(
ztε

z

)

− i[ztt , H ] (log(ze
ik))α

zα
− 1

π

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

(log(zeik))βdβ

and

ReAV(∂t kt ) = Im

2π

∫ 2π

0

(
ztβ z − zt zβ

z2

)

ktdβ

+
Re

2π
∂t

∫ 2π

0

ztε

|z|2 zβdβ +
Re

2π
∂t

∫ 2π

0
(log(zeik))β

zt
z
dβ.
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Proof. Differentiating the first formula in Proposition 3.18 with respect to time, we
obtain

(I − H)ktt = ∂t (I − H)kt + [zt , H ]ktα
zα

= −i∂t (I − H)
ztε

z
− i∂t [zt , H ]

(
log(zeik)

)

α

zα
+ [zt , H ]ktα

zα
=: I + I I + I I I.

Direct computations imply that

I = −i(I − H)
zttε + ztεt

z
+ i(I − H)

z2t ε

z2
+ i[zt , H ] 1

zα
∂α

(
ztε

z

)

I I = −i[zt , H ]
(
log(zeik)

)

tα

zα
− i[ztt , H ]

(
log(zeik)

)

α

zα

− 1

π

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2 (
log(zeik)

)

β
dβ.

Putting all these together, the first formula in the proposition follows. The second
formula follows from differentiating the last formula in Proposition 3.20 with respect to
time. ��

We are finally ready to prove the main result of this section.

Proposition 5.15. If M0 in (4.6) is sufficiently small then with Rk as in Lemma 5.5
∑

k≤�

(Eχ
k (t) + E ṽ

k (t)) �
∑

k≤�

(Eχ
k (0) + E ṽ

k (0))+
∑

k≤�

(Eχ
k (t) + E ṽ

k (t))
3
2 +

∑

k≤�

(Eχ
k (t) + E ṽ

k (t))2

+
∑

k≤�

∫ t

0
(Eχ

k (s) + E ṽ
k (s))2 ds.

Proof. By Corollary 5.10 we only need to estimate the nonlinear term Rk . Here Rk is
defined in Lemma 5.5 and G j is given in (5.5) as

G j=∂
j
α′G−

j∑

i=1

∂
j−i
α′

(
bα′(∂t+b∂α′)∂ iα′
+b2α′∂ iα
+(∂t+b∂α′)

(
bα′∂ iα′


)
+ i Aα′∂ iα′


)
.

(5.23)

It follows from Corollary 5.13 that we only need to consider the first integral in the
expression for Rk in Lemma 5.5. In particular we need to show that

‖G j‖2L2
α′

� E3. (5.24)

We begin with the contribution of ∂
j
α′G. When 
 = χ this is already dealt with in

Propositions 4.8 and 5.6 and Corollaries 4.11 and 5.13.When
 = ṽ we use the equation
derived for ṽ in Proposition 5.11. But then in view of Proposition 4.8, the contribution
of ∂

j
α′G when 
 = ṽ is also handled by similar arguments as before using Lemmas 2.6,
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2.5, 2.4, Propositions 2.2, 2.3, 4.1, 5.6, and Corollaries 4.3, 4.11. We omit the details.
To estimate the contribution of the second term on the right hand side of (5.23) we note
that

(∂t + b∂α′)bα′ = ∂α′(∂t + b∂α′)b − b2α′

and use Proposition 5.14 to express (∂t + b∂α′)b in terms of quantities we can already
control. Here we also use the observation that

(log(zeik))α′ = η

ζ

and that ∂tη = uα′ −iu.The proof of the proposition can now be completed by appealing
to Propositions 4.7, 4.10, 5.6 and Corollary 4.11. ��

6. Long Time Well-Posedness

In this final section we prove long-time existence for solutions of the system
{

ztt + iazα = −π
2 (I − H)z, zt = Hzt

z(0, α) = z0(α), zt (0, α) = z1(α)
, (6.1)

with small initial data. More precisely we will complete the proof of Theorem 6.2. This
section is divided into two parts. To use the energy estimates from the previous section
we need to transfer the smallness of the data for Eq. (6.1) to the initial smallness of the
quantities appearing in the bootstrap assumption (4.6) and the initial energy defined in
the previous section. This will be accomplished in Sect. 6.1. Then in Sect. 6.2 we will
establish Theorem 6.2, by showing long-time existence of solutions to (6.1) assuming
that initially the bootstrap assumptions (4.6) hold and that the energy defined in the
previous section is sufficiently small.

6.1. A discussion for initial data. We consider initial data z0(α) = eiα + ε f (α) and
z1(α) = εg(α) for the system (6.1) such that z0 is a simple closed curve containing the
origin in the interior, parametrized counterclockwisely, and such that ( f, g) ∈ Hs

α ×
Hs

α, s ≥ 15. Furthermore, we assume

sup
α �=β

|z0(α) − z0(β)| ≥ λ|eiα − eiβ |

for some λ > 0.We let H0 be the Hilbert transform associated to the initial domain�(0)
bounded by z0 and k0(α) = k(0, α) be defined according toRemark 3.21.UsingEq. (6.1)
we can now uniquely determine initial values z2 and a0 for ztt and a respectively. Here
to get the initial value for a one can for instance use the Riemann mapping formulation
of the problem as discussed in Sect. 7. Alternatively one could use the double-layered
potential as in [40], see also [23,24] and [37]. More precisely, let us write (3.1) as

i(a − π)zα = ztt − iπ(zα + i z) − π

2
(I + H)z. (6.2)

Applying (I − H) on both sides we obtain

i(I − H) ((a − π)zα) = (I − H)ztt − iπ(I − H)(zα + i z). (6.3)
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Using the holomorphicity of zt and multiplying both sides of (6.3) by −i zα|zα | then taking
the real part, we get

(I + K ∗) ((a − π)|zα|) = −Re

{
i zα
|zα|

(

[zt , H ] ztα
zα

− π i(I − H)(zα + i z)

)}

. (6.4)

Note that zα = ieiα + ε fα(α). An argument similar to the proof of Lemma 5.12 using
(6.2) and (6.4) implies that

‖a − π‖L2
α

� ‖zα − i z‖L2
α
+ ε‖zt‖L2

α
(6.5)

if ε is small enough. The Hs
α estimate for (a − π) can be derived similarly:

‖(a − π)|zα|‖Hs
α

� ‖zα − i z‖Hs
α
+ ε‖zt‖Hs

α
. (6.6)

As for a the initial value for ztt can be determined and estimated using the Eq. (3.1)

ztt = i(a − π)zα + π i(zα + i z) +
π

2
(I + H)z. (6.7)

Finally we let k1(α) = ∂t k(α, 0), where k is extended using Theorem 3.2 and
Remark 3.21.

Our goal in this subsection is to prove the following proposition.

Proposition 6.1. Let z0, z1, f, g, z2, k0, k1, a0, and H0 be defined as above and let
M0 > 0 and � ∈ N, � ≤ s − 2 be fixed constants. Then there exists ε0 > 0, depending
only on ‖ f ‖Hs

α
and ‖g‖Hs

α
, such that if ε < ε0 then k0 is a diffeomorphism and

‖k0,α − 1‖L∞
α

≤ 1

2
, ‖kα − 1‖Hs−1

α
� ‖zα − i z‖Hs−1

α
. (6.8)

Moreover, if ε < ε0 and we define

ζ0 := z0 ◦ k−1
0 , η0 := ∂αζ0 − iζ0, u0 := z1 ◦ k−1

0 , w0 := z2 ◦ k−1
0 , (6.9)

then
∑

j≤�

(
‖∂ j

αη0‖L2
α
+ ‖∂ j

αu0‖L2
α
+ ‖∂ j

αw0‖L2
α

)
≤ M0

2
, |ζ0|2 ≥ 1

2
. (6.10)

Finally if we extend z0, z1 to a local-in-time solution (z, zt ) of (6.1), with the corre-
sponding Hilbert transform H, and we define b0 := k1 ◦ k−1, A0 =: (a0∂αk0) ◦ k−1

0 ,

and

ε := |z|2 − 1, δ := (I − H)ε0, χ := δ ◦ k−1, v = δt ◦ k−1, ṽ = (I − H)v,

then if ε < ε0

E(0) :=
∑

j≤�

(∫ 2π

0

((∂t + b0∂α)∂
j
αχ)|t=0

A0
dα +

∫ 2π

0

((∂t + b0∂α)∂
j
α ṽ)|t=0

A0
dα

)

≤ R0ε
2,

(6.11)

for a fixed R0 > 0 independent of ε.
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Proof. Let the F(·) be the holomorphic function with the boundary value z0eik0 . Dif-
ferentiating the equation (I − H0)(z0eik0) = 0 with respect to α we get

(I − H0)k0,α = i(I − H0)
z0,α + i z0

z0
− i[z0,α − i z0, H0]∂α(log F)

z0,α
. (6.12)

On the other hand, for the initial data we have

‖z0,α − i z0‖Hs
α
, ‖z1‖Hs

α
, ‖z2‖Hs

α
≤ C0ε. (6.13)

In fact, the first two estimates are straightforward from the construction of z0 and z1 and
the last one follows from (6.6) and (6.7). Equation (6.13) together with the relation

kα − 1 = i zα − z

z
− i∂α (log F) (6.14)

implies that

AV(kα − 1) � ‖zα − i z‖H1
α
. (6.15)

Here we used the fact that ‖ log F‖L∞
α
is bounded by an absolute constant, which follows

from the definition of F . Therefore writing k0,α in terms of Re (I − H0)k0,α gives the
desired estimate (6.8) for kα . The other statements of the proposition follow from (6.8),
the relation

∂α

(
f ◦ k−1

)
= fα ◦ k−1

kα ◦ k−1 , (6.16)

and arguments similar to those in Sect. 5 ��

6.2. Completion of the proof. In view of Proposition 6.1 the proof of long-time well-
posedness will be complete once we prove the following theorem.

Theorem 6.2. Let z0, z1 be as in Proposition 6.1 and denote by z(t, α) the local-in-time
solution of (6.1). Then there exist constant M0, c, and ε1 such that if (6.10) and (6.11)
hold with ε < ε1 then (6.1) has a unique classical solution in [0, c

ε2
].

Proof. Let T ∗ > 0 be the maximal time of existence guaranteed by Theorem 3.2. We
want to show that T ∗ ≥ c

ε2
for some c independent of ε. Let T ≤ T ∗ be defined as

T := sup

{

t ∈ [0, T ∗) | kα(t, α) >
1

100
, ∀α ∈ [0, 2π ]

}

.

In particular k is a diffeomorphism and continuous in time for all t ≤ T . Moreover, the
energy E(t) defined in (5.17) is continuous in [0, T ]. Next, define TM0 ≤ T as

TM0 := sup

⎧
⎨

⎩
t ≤ T |

∑

j≤�

(
‖∂ j

α′η‖L2
α′ + ‖∂ j

α′u‖L2
α′ + ‖∂ j

α′w‖L2
α′

)
≤ M0

⎫
⎬

⎭
,

and Tε ≤ T as

Tε := sup
{
t ≤ T | E 1

2 (t) ≤ 2CR0ε
}

,

where C is the constant in Proposition 5.15.
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Step 1. We show that Tε ≤ TM0 , provided ε1 is sufficiently small. Indeed, if this is not
the case then by Corollary 4.11 for all t ∈ [0, TM0 ]

∑

j≤�

(
‖∂ j

α′η‖L2
α′ + ‖∂ j

α′u‖L2
α′ + ‖∂ j

α′w‖L2
α′

)
≤ C1(M0)R0ε,

and choosing ε1 ≤ M0
2C1(M0)R0

we get a contradiction with the maximality of TM0 .

Step2. Weshow that there exists a constant c1 = c1(M0, R0) such that if ε1 is sufficiently
small and T ≤ T0 := c1

ε2
then Tε = T, and hence by the previous step TM0 = Tε = T .To

see this, assume the contrary and first let ε1 be so small that the conclusion of the previous
step holds. Then we can apply Proposition 5.15 with t = c1

ε2
≤ Tε, and conclude that if

ε1 and c1 are sufficiently small then E 1
2 (t) ≤ 2CR0ε proving the claim by contradiction.

Here note that since t ≤ Tε the last integral in the statement of Proposition 5.15 can be
bounded by 16c1R4

0C
4ε2 < 4C2R2

0ε
2 if c1 is sufficiently small.

Step 3. We show that there exists c2 = c2(M0, R0) such that if ε1 is sufficiently small
and T1 := c2

ε2
≤ T0 then kα ≥ 1

100 for all t ∈ [0,min{T ∗, T1}). Suppose ε1 is small
enough that the conclusions of the previous two steps hold. From the definition of b

∂t kα = (bα′ ◦ k) kα,

and hence

kα(t, α) = kα(0, α)e
∫ t
0 (bα′ ◦k)(s,α)ds ≥ kα(0, α)e

− ∫ t
0 ‖bα′ ‖L∞

α′ ds . (6.17)

But then by Proposition 4.10 and Corollary 4.11 if t ≤ min{T1, T ∗} and c2 is sufficiently
small it follows that

kα(t, α) ≥ kα(0, α)e−c2C2(M0) ≥ 1

100
.

Step 4. Finally we show that T ∗ ≥ c
ε2

for a sufficiently small constant c. By Theorem

3.2 it suffices to show that if T ∗ < c
ε2

the H10
α norms of zt and ztt remain bounded for

t < T ∗ and

sup
0≤t<T ∗

sup
α �=β

∣
∣
∣
∣

eiα − eiβ

z(t, α) − z(t, β)

∣
∣
∣
∣ < ∞. (6.18)

Let ε1 be small enough that the conclusions of the previous steps hold, and let c = c2
be as in Step 3. Then if T ∗ < c2

ε
, it follows from the previous three steps that Tε =

TM0 = T = T ∗. By Corollary 4.2, |ζα′(t, α)| ≥ 1
2 for all t ≤ T ∗ and all α ∈ [0, 2π ],

and therefore combining with the fact that kα ≥ 1
100 we get (6.18). Moreover, from the

definition of TM0 the H10
α′ norms of u and w are bounded up to T ∗, so by the chain

rule, we only need to prove that the derivatives of k up to order 10 remain bounded for
t ∈ [0, T ∗). But this follows from Proposition 4.10 and successive differentiation of the
first identity in (6.17). ��
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7. Riemann Mapping Coordinates and Local Well-Posedness

In this sectionwe outline the proof Theorem 3.2 by investigating the quasilinear structure
of the equation

ztt − iazα = −π

2
(I − H)z = −π z +

π

2
(I + H)z. (7.1)

More precisely, we find a quasilinear equation whose well-posedness implies that of
Eq. (7.1). This is achieved by differentiating (7.1) with respect to time and exploiting the
holomorphicity of various quantities. Once the equivalent quasilinear system is found,
the proof of well-posedness is standard and follows for instance from the vanishing-
viscosity method in [38]. To avoid repetition we only prove the equivalence of (7.1)
with a quasilinear equation and refer the reader to [38] for the details of the vanishing-
viscosity method.

To get a quasilinear equation we differentiate (7.1) with respect to time, noting that
(I + H)z is the boundary value of a holomorphic function in �(t), to get

zttt − iaztα = iat zα +
π

2
[zt , H ] zα

zα
, Hzt = zt . (7.2)

Even though the proof of local existence for (7.2) can be carried out in these coordinates,
the structure of the equation will be more clear in Riemann mapping coordinates which
wenow introduce. Sincewe are interested in local existence,wefix a point x0 ∈ �(0) and
define the Riemannmapping for t such that x0 ∈ �(t). For such t we define the Riemann
mapping �(t.·) : �(t) → D using the normalization �(t, x0) = 0 and �z(t, x0) > 0
(in particular �z(t, x0) is real). To � we associate the coordinate change h : R → R

defined by eih(t,α) = �(t, z(t, α)). Alternatively let χ1(·) = z(0, ·) : [0, 2π ] → ∂�(0)
be the parametrization of the initial boundary and extend the definition of χ1(·) to R

periodically. Similarly let X (t, ·) : �(0) → �(t) denote the flow of the velocity vector
field, that is, Ẋ(t, ·) = v(t, X (t, ·)). Finally let χ2(·) := −i log(·) : ∂D → R be
the inverse parametrization of the boundary of the unit disc. In this notation h is the
composition change of variables h := χ2 ◦ � ◦ X ◦ χ1,

R ∂�(0) ⊆ �(0) �(t) D ⊇ ∂D R

h(t,·)

χ1(·):=z(0,·) X (t,·) �(t,·) χ2(·)=−i log(·)

and the new unknowns in Riemann mapping coordinates are

Z(t, α′) := z(t, h−1(t, α′)), Zt (t, α
′) := zt (t, h

−1(t, α′)),
Ztt (t, α

′) = ztt (t, h
−1(α′)), Zttt (t, α

′) := zttt (t, h
−1(t, α′)).

To avoid confusion we separate the subscripts corresponding to partial differentiation
by a comma, so for instance Z,α′(t, α′) = ∂α′ Z(t, α′). We denote by H the Hilbert
transform on the circle which can be written as
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H f (α′) := p.v.

π i

∫ 2π

0

f (β ′)
eiβ ′ − eiα′ ie

iβ ′
dβ ′

= p.v.

2π i

∫ 2π

0
f (β ′) cot

(
β ′ − α′

2

)

dβ ′ + 1

2π

∫ 2π

0
f (β ′)dβ ′

= H̃ f (α′) + Av( f ), (7.3)

where

H̃ f (α′) := p.v.

2π i

∫ 2π

0
f (β ′) cot

(
β ′ − α′

2

)

dβ ′, Av( f ) := 1

2π

∫ 2π

0
f (β ′)dβ ′.

For notational convenience we also introduce the following new variables and operators
in Riemann mapping coordinates:

A := (ahα) ◦ h−1, G := π

2
((I + H)z) ◦ h−1

and

H f (α′) := p.v.

π i

∫ 2π

0

f (β ′)
Z(t, β ′) − Z(t, α′)

Z,β ′(t, β ′)dβ ′.

With this notation, precomposing with h−1(t, ·) we can rewrite Eqs. (7.1) and (7.2) as

Ztt − iAZ ,α′ = −π Z + G (7.4)

and

Zttt − iAZt,α′ = i
at
a

◦ h−1AZ ,α′ +
π

2
[Zt ,H] Z ,α′

Z,α′
, HZt = Zt . (7.5)

Note that if we let

B := ht ◦ h−1

we can rewrite (7.5) as

(
(∂t + B∂α′)2 − iA∂α′

)
Zt = i

at
a

◦ h−1AZ ,α′ +
π

2
[Zt ,H] Z ,α′

Z,α′
. (7.6)

To understand the quasilinear structure of this equation we need to compute A, B, and
at
a ◦ h−1 in terms of the unknowns. We begin with A, where in addition we verify that
A is in fact a positive quantity so that the Taylor sign-condition holds.

Proposition 7.1. A1 := A|Z,α′ |2 is positive and is given by

A1 = Im [Zt , H̃]Zt,α′ + π Im [Z , H̃]Z,α′

= 1

8

∫ 2π

0
|Z(t, β ′) − Z(t, α′)|2 csc2

(
β ′ − α′

2

)

dβ ′

+
1

8π

∫ 2π

0
|Zt (t, β

′) − Zt (t, α
′)|2 csc2

(
β ′ − α′

2

)

dβ ′ > 0.
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Proof. Multiplying (7.4) by Z,α′ we get

iA1 = iA|Z,α′ |2 = Ztt Z,α′ + π Z Z,α′ − GZ,α′ . (7.7)

Note that since �(t, Z(t, α′)) = eiα
′
and �z is non-vanishing,

Z,α′ = ieiα
′

�z(t, Z)

is holomorphic inside D. Moreover writing zt = F(t, z) where F is holomorphic inside
�(t) we get

ztt = Ft (t, z) + Fz(t, z)zt = Ft (t, z) +
ztαzt
zα

,

and hence

Ztt = Ft (t, Z) +
Zt,α′ Zt

Z,α′
.

Therefore we can apply (I − H) to (7.7) to get

i(I − H)A1 = (I − H)(Zt,α′ Zt ) + π(I − H)(Z Z,α′).

Taking imaginary parts of the two sides, keeping in mind that A1 is real, yields

A1 − Av(A1) = Im [Zt ,H]Zt,α′ + π Im [Z ,H]Z,α′ . (7.8)

Note that from (7.7)

Av(A1) = −iAv(Zt,α′ Zt ) − π iAv(Z Z,α′). (7.9)

Also

[Z ,H]Z,α′ = ZH̃Z,α′ + ZAv(Z,α′) − H̃(Z Z,α′) − Av(Z Z,α′)

= [Z , H̃]Z,α′ − Av(Z Z,α′)

and

[Zt ,H]Zt,α′ = [Zt , H̃]Zt,α′ − Av(Zt,α′ Zt ).

Using the fact that Av(Z Z,α′) andAv(Zt,α′ Zt ) are purely imaginary, these computations
and (7.8) combine to give

A1 = Im [Zt , H̃]Zt,α′ + π Im [Z , H̃]Z,α′ .

To see that the right hand side above is positive note that

Im ([Z , H̃]Z,α′) = − 1

2π
Re

∫ 2π

0

(
Z(t, α′) − Z(t, β ′)

)
cot

(
β ′ − α′

2

)

∂β ′
(
Z(t, β ′)

−Z(t, α′)
)
dβ ′
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= 1

4π

∫ 2π

0
cot

(
β ′ − α′

2

)

∂β ′ |Z(t, β ′) − Z(t, α′)|2dβ ′

= 1

8π

∫ 2π

0
|Z(t, β ′) − Z(t, α′)|2 csc2

(
β ′ − α′

2

)

dβ ′ > 0

and

Im [Zt , H̃]Zt,α′ = − 1

2π
Re

∫ 2π

0

(
Zt (t, α

′)−Zt (t, β
′)
)
cot

(
β ′−α′

2

)

∂β ′
(
Zt (t, β

′)−Zt (t, α
′)
)
dβ ′

= 1

4π

∫ 2π

0
∂β ′ |Zt (t, β

′) − Zt (t, α
′)|2 cot

(
β ′ − α′

2

)

dβ ′

= 1

8π

∫ 2π

0
|Zt (t, β

′) − Zt (t, α
′)|2 csc2

(
β ′ − α′

2

)

dβ ′ > 0.

��
The computation for at

a ◦h−1 ismore involved. In order to state the result we introduce
the notation

Dα := 1

zα
∂α, Dα′ := 1

Z,α′
∂α′ (7.10)

We also define

[Zt , Zt ; Dα′ Zt ] := −[Z2
t ,H]∂α′ Dα′ Zt + 2[Zt ,H]∂α′((Dα′ Zt )Zt )

= − ieiα
′

π

∫ 2π

0

(
Zt (t, β ′) − Zt (t, α′)

eiβ ′ − eiα′

)2 eiβ
′

Zβ ′(t, β ′)
Zt,β ′(t, β ′)dβ ′.

With this notation we state our next proposition.

Proposition 7.2.

at
a

◦ h−1 − 1

A1
Av

(
A1

at
a

◦ h−1
)

= 1

A1
Im

{

− π

2

[

[Zt ,H] Z ,α′

Z,α′
,H

]

Z,α′ − π

2
[(I +H)Z ,H]Zt,α′

+ 2[Zt ,H]Ztt,α′ + 2[Ztt ,H]Zt,α′ − [Zt , Zt ; Dα′ Zt ]
}

,

and

Av
(
A1

at
a

◦ h−1
)

= −2iAv
(
Zt∂α′(Ztt−(Dα′ Zt )Zt )

)−iAv
(
Ztt∂α′ Zt

)−iAv
(
Z2
t ∂α′ Dα′ Zt

)

− iAv
(
Zt,α′ Ztt

)
+

π i

2
Av

(
Zt,α′(I +H)Z

)
+

π i

2
Av

(

Z,α′ [Zt ,H] Z ,α′
Z,α′

)

.
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Proof. Multiplying (7.5) by Z,α′ gives

Z,α′

(

Zttt − iAZt,α′ − π

2
[Zt ,H] Z ,α′

Z,α′

)

= iA1
at
a

◦ h−1. (7.11)

In order to understand the holomorphicity properties of Zttt we recall that

zt (t, α) = F(t, z(t, α)),

ztt (t, α) = Ft (t, z(t, α)) + Fz(t, z(t, α))zt (t, α),

zttt = Ftt (t, z(t, α)) + 2Ftz(t, z(t, α))zt (t, α)

+ Fz(t, z(t, α))ztt (t, α) + Fzz(t, z(t, α))z2t (t, α),

ztα = Fz(t, z(t, α))zα(t, α). (7.12)

With the notation introduced in (7.10),

Ft ◦ z = ztt − (Dαzt )zt , Fz ◦ z = Dαzt , Fzz ◦ z = D2
αzt ,

Ftz ◦ z = Dα(ztt − (Dαzt )zt )

where the lasts identity follows form differentiating the first with respect to α. Substi-
tuting back into the equation for zttt we get

zttt = Ftt ◦ z + 2zt Dα(ztt − (Dαzt )zt ) + ztt Dαzt + z2t D
2
αzt .

We now precompose with h−1 to get

Zttt = Ftt ◦ Z + 2Zt Dα′(Ztt − (Dα′ Zt )Zt ) + Ztt Dα′ Zt + Z2
t D

2
α′ Zt . (7.13)

We will substitute this into (7.11) and apply (I − H). To this end we first note that if f
is holomorphic then since Z,α′ is also holomorphic, (I −H)(Z,α′ f ) = 0, which allows
us to compute

(I − H)(Z,α′Ftt ◦ Z) = 0, (I − H)(Z,α′ Zt ) = 0,

(I − H)(Zt∂α′(Ztt − (Dα′ Zt )Zt ) = [Zt ,H]∂α′(Ztt − (Dα′ Zt )Zt ),

(I − H)(Ztt∂α′ Zt ) = [Ztt ,H]∂α′ Zt ,

(I − H)(Z2
t ∂α′ Dα′ Zt ) = [Z2

t ,H]∂α′ Dα′ Zt ,

so

(I−H)(Z,α′ Zttt ) = 2[Zt ,H]∂α′(Ztt−(Dα′ Zt )Zt ) + [Ztt ,H]∂α′ Zt+[Z2
t ,H]∂α′ Dα′ Zt .

In view of (7.4) and holomorphicity of Z Zt,α′ ,

−i(I − H)(AZt,α′ Z,α′) = (I − H)
(
Zt,α′(Ztt + π Z − G)

)

= [Ztt ,H]Zt,α′ − [G,H]Zt,α′ .

Moreover using Lemma 3.7,

−π

2
(I − H)(Z,α′∂t (I − H)Z) = π

2

[

[Zt ,H] Z ,α′

Z,α′
,H

]

Z,α′ .
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Putting these together and using the notation introduced before the proposition we get

i(I − H)(A1
at
a

◦ h−1) = −π

2

[

[Zt ,H] Z ,α′

Z,α′
,H

]

Z,α′ − π

2
[(I +H)Z ,H]Zt,α′

+ 2[Zt ,H]Ztt,α′ + 2[Ztt ,H]Zt,α′ − [Zt , Zt ; Dα′ Zt ].
The first statement of the proposition now follows by taking imaginary parts on both
sides of this equation. The second statement follows from taking the averages of the two
sides of (7.11) and using (7.13) and (7.4) as well as the facts that by the holomorphicity
of F and Ftt

Av(Z,α′Ftt ◦ Z) = 1

2π

∫

∂�

Fttdz = 0

and

Av(Zt,α′ Z) = − 1

2π

∫ 2π

0
Zt Z,α′dα′ = 1

2π

∫

∂�

Fdz = 0.

��
Finally we turn to B := ht ◦ h−1.

Proposition 7.3. Suppose theRiemannmapping� satisfies�(t, x0) = 0,�z(t, x0) > 0
for all t ≤ T, where T is such that x0 ∈ �(t) for t ≤ T . Then B satisfies

B − Av(B) = Re

([
Zt

eiα′ ,H

]
eiα

′

Z,α′

)

,

and

Av(B) = 1

2π
Re

∫ 2π

0

Zt

Z,α′
dα′.

Proof. Differentiating the equation �(t, Z(t, α′)) = eiα
′
with respect to t gives

0 = �t ◦ Z + �z ◦ Z(Zt − BZ,α′) = �t ◦ Z +
ieiα

′
(Zt − BZ,α′)

Z,α′

which can be rearranged as

B = �t ◦ Z

ieiα′ +
Zt

Z,α′
.

Since �(t, x0) = 0 for all t ∈ [0, T ], applying (I − H) gives

(I − H)B = (I − H)

(
Zt

Z,α′

)

=
[
Zt

eiα′ ,H

]
eiα

′

Z,α′
.

Taking the real parts on both sides of above gives

B − Av(B) = Re

([
Zt

eiα′ ,H

]
eiα

′

Z,α′

)

.
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Note that

1

2π i

∫ 2π

0

�t (t,�−1(t, eiα
′
))

ie2iα′ ieiα
′
dα′ = 1

i
�t z(t, x0)(�−1)w(t, 0)

is purely imaginary by our choice of normalization for the Riemann mapping. Since B
is real, it follows that

Av(B) = 1

2π
Re

∫ 2π

0

Zt

Z,α′
dα′.

��
Summarizing the computations above, we get the following corollary of (7.4), (7.6),

and Propositions 7.1, 7.2, and 7.3.

Corollary 7.4. If z is a solution to (7.1) and theRiemannmapping� is defined according
to the normalization above, then Z := z ◦ h−1 satisfies

⎧
⎨

⎩

(∂t + B∂α′)2Zt − iA∂α′ Zt = i
at
a

◦ h−1 A1

Z,α′
+

π

2
[Zt ,H] Z ,α′

Z,α′
:= g

Zt = HZt

, (7.14)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A =
|Ztt +

π

2
(I − H)Z |2
A1

, Ztt = (∂t + B∂α′)Zt

1

Z,α′
=

Ztt +
π

2
(I − H)Z

iA1

, (7.15)

and A1,
at
a

◦ h−1, and B are given in Propositions 7.1, 7.2, and 7.3 respectively.

Remark 7.5. The significance of (7.15) is that in proving local well-posedness for (7.14)
we will use (7.15) as the definition of A and 1

Z,α′ . As we will discuss below, we will

separately show that the resulting solution is a solution of the original system (7.4).

We have now seen how to go from the original system to
⎧
⎨

⎩

(∂t + B∂α′)2V +A|D|V = at
a

◦ h−1L +
π

2
[V ,H]Wα′

Wα′
=: g

(∂t + B∂α′)W = V
, (7.16)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B − Av(B) = Re
[

V
eiα′ ,H

]
eiα

′
L

iA1
,

Av(B) = 1
2π Re

∫ 2π
0

V L
iA1

dα′,

A =
|(∂t + B∂α′)V +

π

2
(I − H)W |2

A1
,

L = (∂t + B∂α′)V + π
2 (I − H)W ,

(7.17)
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andA1 and
at
a ◦h−1 are defined in Propositions 7.1 and 7.2 with Z , Zt , and Ztt replaced

by W, V, and (∂t + B∂α′)V respectively. Here W = Z , V = Zt , |D| =
√

−∂2
α′ and

we have used the fact that if u is the boundary value of a holomorphic function in the
disc, then |D|u = −i∂α′Hu = −i∂α′u. We next discuss how to go back to the original
system from (7.16)–(7.17).

Proposition 7.6. Suppose (W, V ) is a solution to (7.16) and (7.17) on some time interval
J extending from t = 0 such that x0 ∈ �(t) for all t ∈ J. Then the following statements
hold.

(1) W and V are boundary values of holomorphic functions and L− iA1
Wα′ = 0, if initially

W and V are boundary values of holomorphic functions and L − iA1
Wα′ = 0.

(2) If h is the solution to

dh

dt
= B(h, t), h(0, α) = α,

then z := W ◦ h satisfies (7.1).

Proof. (1) We will derive a linear differential system for the quantities (I − H)V , (I −
H)W and iA1

Wα′ − L for which uniqueness of solutions holds. Since these quantities
are zero initially, they must be zero during the evolution. In this process, we will use
R to denote linear terms in these quantities, whose exact definition may change from
line to line. If we want to make the dependence precise, we use expressions such as
R((I − H)V, (I − H)W, . . .). We start with the equation for W . Applying (I − H)

on both sides we get

∂t ((I − H)W ) + B∂α′ ((I − H)W ) = −[B,H]Wα′ + (I − H)V

= −[B,H] (I +H)Wα′

2
+ (I − H)V +R1

= −
[
I − H

2
B,H

]
(I +H)

2
Wα′ + (I − H)V +R1

= (I − H)V −
[
I − H

2
Re [Ve−iα′

,H] e
iα′

Wα′
,H

]
I +H

2
Wα′ +R1 +R2

= (I − H)V −
[
I − H

2
Re [Ve−iα′

,H] eiα
′

I+H
2 Wα′

,H

]
I +H

2
Wα′ +R1 +R2 +R3

= (I − H)V −
[
I − H

2

(
V

I+H
2 Wα′

)

,H

]
I +H

2
Wα′ +R1 +R2 +R3

= (I − H)V −
[

V
I+H
2 Wα′

,H

]
I +H

2
Wα′ +R1 +R2 +R3

= R1 +R2 +R3. (7.18)
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where

R1 = −[B,H] (I − H)

2
Wα′ ,

R2 = −
[
I − H

2
Re [Ve−iα′

,H]eiα′
(

L

iA1
− 1

Wα′

)

,H

]
I +H

2
Wα′ ,

R3 = −
[
I − H

2
Re [Ve−iα′

,H]
(
eiα

′

Wα′
− eiα

′

I+H
2 Wα′

)

,H

]
I +H

2
Wα′ . (7.19)

Note that in view of Lemma 2.8,

‖R j‖Hs
α′ ≤ C

(∥
∥
∥
∥L − iA1

Wα′

∥
∥
∥
∥
L2

α′
+ ‖(I − H)W‖L2

α′

)

. (7.20)

To derive an equation for (I − H)V , we introduce the notation P := (∂t + B∂α′)2 +
A|D|. Then the first equation in (7.16) can be written as

P
(
I − H

2
V

)

= − P
(
I +H

2
V

)

+ e−iα′ ieiα
′

I+H
2 Wα′

A1
at
a

◦ h−1+
π

2
[V ,H]Wα′

Wα′
+R4

(7.21)

where

R4 =
(

(∂t + B∂α′)

(
I − H

2
V

)

+π
I − H

2
W +

π

2
(H̃ − H)W

)
at
a

◦ h−1

+ e−iα′
(
L̃eiα

′

iA1
− eiα

′

I+H
2 Wα′

)

iA1

(at
a

◦ h−1
)

.

(7.22)

Here

L̃ = (∂t + B∂α′)

(
I +H

2
V

)

+
π

2

(
I +H

2

)

W − π

2
(I + H̃)W ,

(H̃ f )(α′) := p.v.

π i

∫ 2π

0

f (β ′)
(
I+H
2

)
W (β ′) −

(
I+H
2

)
W (α′)

(
I +H

2

)

Wβ ′(β ′)dβ ′.

Note that

(H̃ − H) f = R((I − H)W, (I − H)Wα′),

L − L̃ = R((I − H)V, (I − H)W, (I − H)Wα′ , (∂t + B∂α′)(I − H)V ).

Claim 7.7. Given any f ∈ Hs
α′ , there is a constant C = C

(
‖ f ‖Hs

α′

)
, such that

∥
∥
∥
∥
∥
(I − H) f

(
L̃eiα

′

iA1
− eiα

′

I+H
2 Wα′

)∥
∥
∥
∥
∥
Hs

α′

≤ C
(∥
∥L − iAWα′

∥
∥
L2

α′
+‖(I − H)V ‖Hs

α′+‖(∂t + B∂α′ )(I − H)V ‖L2
α′+‖(I − H)W‖Hs

α′

)
.
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Proof of Claim 7.7. First we compute

A1(I − H)

(
L̃eiα

′

A1

)

= (I − H)(eiα
′
L̃) + [H,A1]

(
L̃eiα

′

A1

)

= (I − H)(∂t + B∂α′)eiα
′
(
I +H

2
V

)

− (I − H)

(

i Beiα
′ I +H

2
V

)

+ π(I − H)eiα
′
W + [H,A1]

(
ieiα

′

I+H
2 Wα′

)

+R

= [B,H]
(

eiα
′ I +H

2
Vα′

)

+ π(I − H)eiα
′
W −

[
i(I − H)

2
A1,H

](
eiα

′

I+H
2 Wα′

)

+R

=
[
I − H

2
B,H

](
I +H

2
Vα′ · eiα′

)

+ π(I − H)eiα
′ I +H

2
W

− 1

2

[

(I − H)

(
I +H

2

)

V

(
I +H

2

)

Vα′ ,H

](
eiα

′

I+H
2 Wα′

)

− π

2

[

(I − H)

(
I +H

2

)

W

(
I +H

2

)

Wα′ ,H

](
eiα

′

I+H
2 Wα′

)

+R

=
⎡

⎣

(
I+H
2

)
V

(
I+H
2

)
Wα′

,H

⎤

⎦

(

eiα
′
(
I +H

2

)

Vα′
)

−
[(

I +H

2

)

V

(
I +H

2

)

Vα′ ,H

](
eiα

′

I+H
2 Wα′

)

+R = R.

Therefore since A1 is bounded away from zero

(I − H) f

(
L̃eiα

′

iA1
− eiα

′

I+H
2 Wα′

)

= [ f,H]
(
I +H

2

)(
L̃eiα

′

iA1
− eiα

′

I+H
2 Wα′

)

+R

= [ f,H]
(
I +H

2

)(
eiα

′
L

iA1
− eiα

′

Wα′

)

+R.

and the claim follows from Lemma 2.8. ��
Applying (I − H) to both sides of (7.21) and with

S := iA1
at
a

◦ h−1 −
(
I +H

2

)

Wα′

(

P
(
I +H

2

)

V − π

2
[V ,H]Wα′

Wα′

)

we obtain

(I − H)P
(
I − H

2
V

)

=
[
e−iα′S,H

] eiα
′

I+H
2 Wα′

+ (I − H)R4

= 1

2

[
e−iα′

(I − H)S,H
] eiα

′

I+H
2 Wα′

+
1

2

[
[e−iα′

,H]S,H
] eiα

′

I+H
2 Wα′

+ (I − H)R4.

(7.23)
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To see that the first two terms in the last line are linear in (I − H)V, (I − H)W,

and iA1
Wα′ − L , we want to mimic the proof of Proposition 7.2, for which we need to

introduce the Riemann mapping. First let h be the function on R defined by

dh

dt
= B(h, t), h(α, 0) = α. (7.24)

Since h is a diffeomorphism at t = 0 and hα′ satisfies the linear ODE

dhα

dt
= Bα′hα,

h is a diffeomorphism at least for a short time and ∂t ( f ◦h) = (∂t + B∂α′) f ◦h for all
time. Let �̃−1(t, ·) be the holomorphic function with boundary value �̃−1(t, eiα

′
) =(

I+H
2 W

)
(t, α′). Since �̃−1

w (0, ·) is never zero on the disc D, the same is true

for �̃−1
w (t, ·) for small t by the Cauchy integral formula for the derivative of a

holomorphic function. Therefore �̃−1(t, ·) has an inverse, which we denote by
�̃(t, ·) : �̃−1(t,D) → D. Note that with this definition �̃(t, I+H

2 W (t, α′)) = eiα
′
.

It follows that if f is the boundary value of a holomorphic function on D, i.e.,
f (α′) = F(eiα

′
) for a holomorphic function F on D, then f ◦ h is the boundary

value of the holomorphic function G = F ◦ �̃ on �̃−1(t,D). Introducing the vari-
able

z̃ := I +H

2
W ◦ h

we can write

I +H

2
V ◦ h = F̃(t, z̃).

Now the same argument as in the proof of Proposition 7.2 implies that (I −H)S and
[e−iα′

,H]S = 2e−iα′
Av(S) are linear in (I − H)V, (I − H)W, and iA1

Wα′ − L . Next
we compute the left hand side of (7.23).

(I − H)P
(
I − H

2
V

)

= (∂t + B∂α′)2 ((I − H)V )

+ (∂t + B∂α′)[B,H]∂α′
(
I − H

2
V

)

+ [B,H]∂α′(∂t + B∂α′)

(
I − H

2
V

)

= (∂t + B∂α′)2 ((I − H)V ) +R.

Similarly,

(I − H)A|D|
(
I − H

2
V

)

= A|D|(I − H)V

+ [A,H]|D|
(
I − H

2
V

)

= A|D|(I − H)V +R.
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Combining these observations with (7.23), we get

P
(
I − H

2
V

)

= R. (7.25)

Note that by Claim 7.7 and (7.20), to bound, say, the H2
α′ norms of (I − H)V and

(I − H)W , we only need to use the L2
α′ norm of L − i A1

Wα′ . Therefore to derive the

equation for L − i A1
Wα′ , we can write terms involving derivatives of (I − H)V and

(I − H)W asR. To derive this equation for L − iA1
Wα′ . we first note that

(∂t + B∂α′)(I − H)W = [V ,H]Wα′

Wα′
+ (I − H)V = [V ,H]Wα′

Wα′
+R,

where for the last equalitywehave used the fact thatH f −H̃ f = R.This computation
and the fact that |D|V = −i∂α′V + |D|(I −H)V allow us to write the first equation
in (7.16) as

(∂t + B∂α′)
(
L − iA∂α′W

) = i

Wα′

(
A1

at
a

◦ h−1

−A1
at
a

◦ h−1
)

− A|D|(I − H)V +R. (7.26)

Here we have used the notation

a := A ◦ h

hα

so in particular since A = LL
A1

A1
at
a

◦ h−1 = L(∂α + B∂α′)L

A +
L(∂t + B∂α′)L

A − (∂t + B∂α′)A1 − A1Bα′ .

(7.27)

Towrite (7.26) as a homogeneous linear equation in (I−H)V, (I−H)W, and L− iA1
Wα′

we need to study the right hand side of (7.27) more carefully. Since by (7.16) and
with the notation Lt := (∂t + B∂α′)L the quantity L(Lt +A|D|V ) − π

2 L(H̃−H)V
is purely real,

LLt

A +
LLt

A = 2
L(Lt +A|D|V )

A − L|D|V − L|D|V +R

= 2
L

A (Lt +A|D|V ) − L|D|V − L|D|V +R

= 2A1
at
a

◦ h−1 − L|D|V − L|D|V +R,

which means

A1
at
a

◦ h−1 = 2A1
at
a

◦ h−1 − L|D|V − L|D|V − (∂t + B∂α′)A1 − A1Bα′ .
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Together with (7.26) and (7.27) this gives

(∂t + B∂α′)
(
L − iA∂α′W

) = i

Wα′

(
−A1

at
a

◦ h−1 + L|D|V + L|D|V
+(∂t + B∂α′)A1 +A1Bα′) +R

=: i

Wα′
T +R. (7.28)

Since T is purely real,

T = Im (iT ) = Im ((I − H)iT ) + Av(T ).

First we compute

L|D|V + L|D|V = L|D|V − iAWα′ |D|
(
I − H

2

)

V−iAWα′ |D|
(
I+H

2

)

V+R

=
(

(∂t + B∂α′)
I − H

2
V

)

|D|V +

(

(∂t + B∂α′)
I +H

2
V +

π

2
(I − H)W

)

|D|V

− iAWα′ |D|
(
I +H

2

)

V +R

=
(

(∂t + B∂α′)
I +H

2
V +

π

2
(I − H)W

)

|D|V − iAWα′ |D|
(
I +H

2

)

V +R.

Therefore

i

Wα′
(I − H)

(
L|D|V + L|D|V )

= i

Wα′
(I − H)

((

(∂t + B∂α′)
I +H

2
V +

π

2
(I − H)W

)

|D|V

− iA
(
I +H

2

)

Wα′ |D|
(
I +H

2

)

V

)

+R. (7.29)

With the notation U := (∂t + B∂α′) I+H2 V + π
2 (I − H)W

U |D|V = U |D|
(
I +H

2

)

V + U |D|
(
I − H

2

)

V

= U i∂α′
I − H

2
V +R = iU∂α′

(
I − H

2
(∂t + B∂α′)W

)

+R

= iU∂α′(∂t + B∂α′)

(
I − H

2

)

W +
i

2
U∂α′ [B,H]Wα′ +R

= 1

2
iU∂α′ (R1 +R2 +R3) + iU∂α′(∂t + B∂α′)

(
I +H

2

)

W

− iU∂α′
(
I +H

2

)

V +R

= iUBα′
(
I +H

2

)

Wα′ + i(∂t + B∂α′)

(

U
(
I +H

2

)

Wα′
)
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− i

(
I +H

2

)

Wα′(∂t + B∂α′)U +R. (7.30)

Combining (7.28)–(7.30) we get

(I − H)(iT ) = i(I − H)
(
−A1

at
a

◦ h−1 + L|D|V + L|D|V + (∂t + B∂α′ )A1 +A1Bα′
)

= −(I − H)

(

UBα′
(
I +H

2

)

Wα′
)

− (I − H)

(

(∂t + B∂α′ )

(

U
(
I +H

2

)

Wα′
))

+ (I − H)

((
I +H

2

)

Wα′
(

(∂t + B∂α′ )U +A|D|
(
I +H

2

)

V

)

− iA1
at
a

◦ h−1
)

+ i(I − H) ((∂t + B∂α′ )A1 +A1Bα′ ) +R

= −(I − H)

(

UBα′
(
I +H

2

)

Wα′
)

− (I − H)

(

(∂t + B∂α′ )

(

U
(
I +H

2

)

Wα′
))

+ i(I − H) ((∂t + B∂α′ )A1 +A1Bα′ ) +R.

To compute the second term, we first note that

U = (∂t + B∂α′)

(
I +H

2

)

V + π

(
I +H

2

)

W − π

2
(I + H̃)W +R := Ũ +R.

By a computation similar to Proposition 7.1 it follows that

− (I − H)

(

(∂t + B∂α′)

(

U
(
I +H

2

)

Wα′
))

= −(∂t + B∂α′)

(

(I − H)

(

U
(
I +H

2

)

Wα′
))

− [B,H]∂α′
(

U
(
I +H

2

)

Wα′
)

= −(∂t + B∂α′)

(
[
V ,H

]
(
I +H

2

)

Vα′ + π
[
W ,H

]
(
I +H

2

)

Wα′
)

− [B,H]∂α′
(

U
(
I +H

2

)

Wα′
)

+R.

Therefore

Im ((I − H)iT ) = −(∂t + B∂α′ )Im
(
[
V ,H

]
(
I +H

2

)

Vα′ + π
[
W ,H

]
(
I +H

2

)

Wα′
)

− Im [B,H]∂α′
(

U
(
I +H

2

)

Wα′
)

+ (∂t + B∂α′ )A1 − ∂tAv(A1) +A1Bα′ +R

− Im (I − H)

(

UBα′
(
I +H

2

)

Wα′
)

= −Im [B,H]∂α′
(

U
(
I +H

2

)

Wα′
)

+A1Bα′ − Im (I − H)

(

UBα′
(
I +H

2

)

Wα′
)

+R

= −Im [B,H]∂α′
(

Ũ
(
I +H

2

)

Wα′
)

+A1Bα′ − Im (I − H)

(

ŨBα′
(
I+H

2

)

Wα′
)

+R.

(7.31)
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We compute

− [B,H]∂α′
(

Ũ
(
I +H

2

)

Wα′
)

− (I − H)

(

ŨBα′
(
I +H

2

)

Wα′
)

= −Bα′(I − H)

(

Ũ
(
I +H

2

)

Wα′
)

− ∂α′ [B,H]
(

Ũ
(
I +H

2

)

Wα′
)

.

Note that

−Im

(

Bα′(I − H)

(

Ũ
(
I +H

2

)

Wα′
))

= −A1Bα′ + Av(A1)Bα′ +R

and

−Im

(

∂α′ [B,H]
(

Ũ
(
I +H

2

)

Wα′
))

= −Im (∂α′ [B,H](iA1)) +R

= −Im (∂α′ [B,Av](iA1)) +R
= −Av(A1)Bα′ +R.

Combining these observations with (7.31) we obtain

(∂t + B∂α′)(L − iAWα′) = R.

(2) This is a direct consequence of the fact that L = iA1
Wα′ and the definition of h. ��

The proof of Theorem 3.2 now follows from local the well-posedness of (7.16)–
(7.17):

Proof of Theorem 3.2. By Proposition 7.6 it suffices to show local well-posedness of
(7.16)–(7.17). The proof of local well-posedness for the system (7.16)–(7.17) is almost
identically the same as the proof of Theorem 5.10 in [38] where the vanishing viscosity
method us used. In fact the only difference is that unlike in [38], here we also need to
control W = Z . But by (7.16) W satisfies a transport equation and therefore control of
W follows from control of V by integration. We refer the reader to [38] Section 5, and
leave the necessary routine modifications to the reader. ��

Appendix A. The Hilbert Transform

In this appendix we recall some facts about the Hilbert transform. If � is a bounded
domain in C with C2

t,α boundary and f is a function defined on ∂� then the Hilbert
transform H f of f with respect to � is defined as

H f (z0) := lim
ε→0+

1

π i

∫

γε

f (w)

w − z0
dw,

where γε is the portion of ∂� obtained by removing a segment of ∂� which lies within
a circle of radius ε centered at z0 ∈ ∂�.Given a C2

t,α parametrization z : [0, 2π ] → ∂�

of ∂� we identify 2π -periodic functions on R with functions on ∂�, and for any such
function f we write

H f (α) := p.v.

π i

∫ 2π

0

f (β)

z(β) − z(α)
zβ(β)dβ.

The relevant results from this appendix are summarized in the following proposition.



234 L. Bieri, S. Miao, S. Shahshahani, S. Wu

Proposition A.1. Suppose that � is a bounded domain in C with C2 boundary ∂�. Let
f be a Lipschitz continuous function on ∂� and H f be its Hilbert transform. Then
H f = f if and only if f is the boundary value of a holomorphic function in � and
H f = − f if and only if f is the boundary value of a holomorphic function F in �c

satisfying F(z) → 0 as |z| → ∞.

Proof. Suppose that � is a bounded domain in C and γ := ∂� has C2
t,α . Let f be a

continuous function defined on ∂�. The following Cauchy integral

C f (z) := 1

2π i

∫

γ

f (w)

w − z
dw (A.1)

defines a holomorphic function when z/∈γ . In this subsection, we will introduce the
Hilbert transforms associated to � and �c by considering the limit of C f (z) as z
approaches z0 from � and �c where z0 is a point on ∂�. Here all integrals are under-
stood as counterclockwise, unless otherwise stated. Let us first consider the limit from
the inside.

lim
z→z0

1

2π i

∫

γ

f (w)

w − z
dw= lim

z→z0

1

2π i

∫

γε+ξε

f (w)

w − z
dw= lim

ε→0+
lim
z→z0

1

2π i

∫

γε+ξε

f (w)

w − z
dw,

(A.2)

where γε is the portion of γ obtained by subtracting the segment ξε about z0 which lies
within the circle of radius ε centered at z0. We recognize the limit over γε as one half of
the Hilbert transform of f associated to �:

1

2
H f (z0) = lim

ε→0+

1

2π i

∫

γε

f (w)

w − z0
dw = lim

ε→0+
lim
z→z0

1

2π i

f (w)

w − z
dw. (A.3)

On the other hand,

lim
ε→0+

lim
z→z0

∫

ξε

f (w)

w − z
dw = lim

ε→0+
lim
z→z0

(∫

ξε

f (w) − f (z0)

w − z
dw +

∫

ξε

f (z0)

w − z
dw

)

= lim
ε→0+

lim
z→z0

∫

ξ0

f (z0)

w − z
dw.

Now with Cε denoting the part of the circle of radius ε centered at z0 which lies within
� we have

lim
ε→0+

lim
z→z0

∫

ξε

dw

w − z
= lim

ε→0+
lim

ε→0+

∫

ξε+Cε

dw

w − z
− lim

ε→0+

∫

Cε

dw

w − z0

= 2π i − lim
ε→0+

∫ 2π+O(ε)

π+O(ε)

iεeiθ

εeiθ
= π i.

(A.4)

Combining this with (A.2) and (A.3) we get

H f (z0) = 2 lim
z→z0

C f (z) − f (z0).

Since C f is a holomorphic function inside �, and limz→z0 C f (z) = f (z0) if f can be
extended to a holomorphic function inside �, we conclude that f is the boundary value
of a holomorphic function inside � if and only if H f (z0) = f (z0) for all z0 ∈ ∂�.
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The computation is similar for the case where z → z0 from the outside (i.e. z ∈ �c).
In this case in (A.4) we define Cε to be the part of the circle of radius ε centered at z0,
parametrized clockwisely, which lies in �c. It then follows that

∫

ξε+Cε

dw

w − z
= −2π i,

and hence

H f (z0) = 2 lim
z→z0

C f (z) − 3 f (z0),

where now the limit is understood to be from the outside. Now notice that from the
definition (A.1) of the Cauchy integral that C f is holomorphic in �c and decays like 1

|z|
as |z| → ∞. Therefore if f if H f = − f then f is the boundary value of a holomorphic
function in �c decaying like 1

|z| as |z| → ∞. Conversely, if f is the boundary value of

such a holomorphic function, then defining U = { 1z s.t. z ∈ �c} ⊆ C, we have

lim
z→z0
z∈�c

C f (z) = lim
z→z0
z∈�c

∫

∂�

f (w)

w − z
dw = lim

z→1/z0
z∈U

1

z

∫

∂U

f (1/u)
u

u − 1
z

du = f (z0),

and therefore H f (z0) = − f (z0). ��

Appendix B. The Case of Constant Vorticity

As mentioned in the introduction Theorem 1.1 can be extended to allow for constant
vorticity. In this appendix we provide the details of this extension. The equation under
consideration is now

⎧
⎪⎨

⎪⎩

vt + (v · ∇)v = −∇P − ∇φ in �(t), t ≥ 0,
div v = 0, curl v = 2ω0 ∈ R in �(t), t ≥ 0,
P = 0 on ∂�(t),

(B.1)

where the self-gravity Newtonian potential satisfies

{
�φ = 2πχ�(t),

∇φ(x) = ∫∫

�(t)
x−y

|x−y|2 dy.
(B.2)

Note that applying the curl operator to the first line in Eq. (B.1) implies that the vorticity
ω := curl v satisfiesωt +v ·∇ω = 0, and therefore if v(0) has constant vorticity 2ω0, the
same holds for v(t) for all times at which the latter is defined, that is curl v = 2ω0. As in
the rest of the paper and without loss of generality we fix the normalization |�| = π.We
also assume that ω2

0 < π. As we will show below this is necessary to ensure the validity
of the Taylor sign-condition which is necessary for local well-posedness. Note that the
vector field v0 := ω0(y,−x) satisfies curl v0 = 2ω0 and div v0 = 0, and therefore
v := v − v0 is curl and divergence free. Using complex variable notation it follows that
zt + iω0z is the boundary value of an anti-holomorphic function in �, or in other words
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(I − H)(zt + iω0z) = 0. It follows that with the same notation as in the rest of the paper
the system (B.1) reduces to the following system on the boundary ∂� :

{
ztt + iazα = −π

2 (I − H)z
H(zt − iω0z) = zt − iω0z

. (B.3)

Note that z(t, α) = e−iω0t+iα is a solution to (B.3) with a = π − ω2
0. It follows that for

the Taylor sign-condition ∂P
∂n < 0 to hold we need to impose the condition ω2

0 < π. The
following theorem is the main result of this appendix.

Theorem B.1. Let �0 be a bounded simply-connected domain inC with smooth bound-
ary ∂�0 satisfying |�0| = π, and denote the associated Hilbert transform by H0. Sup-
pose z0(α) = eiα + ε f (α) is a parametrization of ∂�0 and z1(α) = v0 − iω0eiα + εg(α)

where f and g are smooth, H0(z1 − iω0z0) = z1 − iω0z0, v0 ∈ C is a constant, and
ω2
0 < π . Then there is T > 0 and a unique classical solution z(t, α) of (B.3) on [0, T )

satisfying (z(0, α), zt (0, α)) = (z0(α), z1(α)). Moreover if ε > 0 is sufficiently small
the solution can be extended at least to T ∗ = cε−2 where c is a constant independent
of ε.

We introduce the notation z(t, α) = eiω0t z(t, α) and note that Hzt = zt . Note that
since the factor eiω0t is independent of α one can replace z by z in the definition of the
Hilbert transform, and in particular the conclusions of Lemma 3.7 remain valid with z
replaced by z. The system (B.3) is written in terms of z as

{
zt t + iazα = −π

2 (I − H)z + 2iω0zt + ω2
0z

Hzt = zt
. (B.4)

We first show the validity of the Taylor sign-condition provided ω2
0 < π, from which

localwell-posedness follows as inSect. 7.Let �̃(t)be thedomainwith ∂�̃(t)parametrized
by z(t, ·). We introduce the Riemann mapping �(t, ·) : �̃(t) → D, the function
h : R → R such that

eih(t,α) = �(t, z(t, α)), (B.5)

and the new unknowns in the Riemann mapping coordinates:

Z(t, α′) = z(t, h−1(t, α)), Zt (t, α
′) = zt (t, h

−1(t, α)),

Zt t (t, α
′) = zt t (t, h

−1(t, α)), Zt t t (t, α
′) = zt t t (t, h

−1(t, α)).
(B.6)

The new unknowns satisfy the following system on the unit circle
{

Zt t + iAZ,α′ = −(π − ω2
0)Z + G,

HZt = Zt .
(B.7)

where A ◦ h = ahα , H is the Hilbert transform associated to the unit circle, and G is
given by

G = π

2
((I + H)z) ◦ h−1 − 2ω0izt ◦ h−1.

Note that G is the boundary value of an anti-holomorphic function in the unit disc, and
therefore a similar argument as the proof of Proposition 7.1 gives the following result.
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Proposition B.2. A1 := A
∣
∣Z,α′

∣
∣2 is positive and is given by

A1 := 1

8π

∫ 2π

0

∣
∣Zt (t, β

′) − Zt (t, α
′)
∣
∣2 csc2

(
β ′ − α′

2

)

dβ ′

+
π − ω2

0

8π

∫ 2π

0

∣
∣Z(t, β ′) − Z(t, α′)

∣
∣2 csc2

(
β ′ − α′

2

)

dβ ′ > 0.

We next turn to the proof of long-time existence for small initial data. Note that zt
is now the small quantity corresponding to zt in the irrotational case. The key point for
the proof of Theorem B.1 is that δ := (I − H)ε, where ε := |z|2 − 1 = |z|2 − 1, still
satisfies an equation without quadratic nonlinear terms. The following proposition is the
analogue of Proposition 3.15.

Proposition B.3. The quantities δ and δt = ∂tδ satisfy

(∂2t + ia∂α − π − 2ω0i∂t )δ = Ñ1

:= π

2
(I − H)E(ε) +

π

2
[E(z), H ]εα

zα
− 2[zt , H 1

zα
+ H

1

zα
]∂α(zt z)

− 1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

εβ(β)dβ, (B.8)

and

(∂2t + ia∂α − π − 2ω0i∂t )δt = Ñ2

:= −iat∂αδ +
π

2

(

(I − H)∂t E(ε) − [zt , H ]∂αE(ε)

zα

)

+
π

2
[∂t E(z), H ]εα

zα

+
π

2
[E(z), H ]∂t

(
εα

zα

)

+
π

2
E(z)[zt , H ]

∂α

(
εα

zα

)

zα
− π

2
[zt , H ]

∂α

(
E(z) εα

zα

)

zα

+
2

π i
∂t

∫ 2π

0

(zt (α) − zt (β))∂β(zt (β)z(β))z(α)z(β)
(

ε(α)
z(α)

− ε(β)
z(β)

)

|z(β) − z(α)|2 dβ

− 1

π i
∂t

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

εβ(β)dβ, (B.9)

Remark B.4. We note that the vorticity 2ω0 gives the extra linear terms −2ω0i∂tδ in
(B.8) and −2ω0i∂tδt in (B.9).

Proof. Using (B.4), we write the equation satisfied by ε as

(∂2t + ia∂α)ε = π

2

(
z(I − H)z − z(I − H)z

)
+ 2ω0i∂tε + 2(zt z)t ,

which implies

(I−H)(∂2t + ia∂α)ε = π

2
(I−H)

(
z(I − H)z−z(I−H)z

)
+2ω0i∂tδ+2[zt , H ] (zt z)α

zα
.
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Arguing as in Proposition 3.15 and using Lemma 3.7 we get

(∂2t + ia∂α − 2ω0i∂t )δ = π

2
(I − H)

(
z(I − H)z − z(I − H)z

)
+

π

2
[(I − H)z, H ]εα

zα

− 2[zt , H 1

zα
+ H

1

zα
]∂α(zt z) − 1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2
εβ(β)dβ.

Exactly the same computation as in the proof of Proposition 3.15 now shows that

π

2
(I − H)

(
z(I − H)z − z(I − H)z

)

+
π

2
[(I − H)z, H ]εα

zα
= πδ +

π

2
(I − H)E(ε) +

π

2
[E(z), H ]εα

zα
.

Combined with the previous identity this gives Eqs. (B.8), and (B.9) follows from
differentiating (B.8) and using Lemma 3.7. ��

To show that at does not contribute quadratic terms to the nonlinearity in the equation
for δt we record the following analogue of Lemma 3.16.

Lemma B.5. Let K ∗ denote the formal adjoint of K := Re H = 1
2 (H + H). Then

(I + K ∗)(at |zα |) = Re

[−izα
|zα |

{
2[zt , H ] zt tα

zα
+ 2[zt t , H ] ztα

zα
− [eit ga, H ] ztα

zα
+ 2ω0i[zt , H ] ztα

zα

+
1

π i

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2
ztβ(β)dβ +

π

2
([zt , H ]∂αgh

zα
)
}]

.

Proof. The proof is the same as that of Lemma 3.16. The only modification is that
differentiating (B.4) in the time variable we get the following equation for zt :

zt t t − iaztα = iat zα +
π

2
[zt , H ] zα

zα
+ zt − 2ω0izt t .

The only new term compared to the equation for zt in Lemma 3.16 is the last term on the
right hand side. For this note that if F(t, z) is the holomorphic function with boundary
value zt then

zt t = Ft +
ztαzt

zα
= Ft +

ztαzt

zα
.

Since zt and z have the same holomorphicity properties as zt and z in the irrotational
case, the rest of the proof is exactly the same as that of Lemma 3.16. ��

We now define the change of coordinates k similarly to Remark 3.21 and show
that in the new coordinate α′ = k(t, α) the equations for δ and δt have no quadratic
nonlinearities. The precise identities are given in the following proposition.

Proposition B.6. Suppose z(t, ·) is a simple closed curve containing the origin in its
simply connected interior for each t ∈ I, where I is some time interval, and let k be as
defined in Remark 3.21, but with z replaced by z, that is (I − H)(log(zeik)) = 0. Then
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(I − H)kt = −i(I − H)
ztε

z
− i[zt , H ]

(
log(zeik)

)

α

zα
,

(I − H)ktt = −i(I − H)
zt tε + ztεt

z
+ i(I − H)

z2t ε

z2

− i[zt , H ] (log(ze
ik))tα + iktα
zα

+ i[zt , H ] 1
zα

∂α

(
ztε

z

)

− i[zt t , H ] (log(ze
ik))α

zα
− 1

π

∫ 2π

0

(
zt (β) − zt (α)

z(β) − z(α)

)2

(log(zeik))βdβ,

(I − H)(akα) = [zt , H ] (zt z)α
zα

− [zt , H ]zt

− (I − H)
(zt t + 2ω0izt )ε

z
+ (I − H)

e−i t ghε

z

+ [zt t − 2ω0izt − eit ga, H ]
(
log(zeik)

)

α

zα
.

Moreover if F is a holomorphic functionwith boundary value zeik and satisfies F(t, 0) ∈
R+ for all t ∈ I, then with the notation AV( f ) := 1

2 [z, H ] f
z ,

AV(ε) = 0,

AV(akα) = −(π − ω2
0) +

ω0

π

∫ 2π

0

ztεzβ

|z|2 dβ

+
1

2π i

∫ 2π

0
zt ztβdβ +

1

2π i

∫ 2π

0

(zt t − e−i t gh)εzβ
|z|2 dβ,

− 1

2π i

∫ 2π

0

(
zt t − 2izt − eit ga

z

)

∂β log Fdβ,

ReAV(kt ) = Re

2π

∫ 2π

0

ztε

|z|2 zβdβ − Re

2π

∫ 2π

0
log F

(
zztβ − zt zβ

z2

)

dβ,

ReAV(ktt ) = Im

2π

∫ 2π

0

(
ztβz − zt zβ

z2

)

ktdβ +
Re

2π
∂t

∫ 2π

0

ztε

|z|2 zβdβ

+
Re

2π
∂t

∫ 2π

0
(log(zeik))β

zt

z
dβ.

Proof. The proof is the same as those of Propositions 3.18, 3.20, and 5.14. Indeed
for the identities involving kt and ktt it suffices to note that zt and z have the same
holomorphicity as zt and z in the irrotational case and the derivation does not rely on the
first equations in (B.3) and (B.4). The second identity follows from the same argument
as in Proposition 3.18. The only difference is that instead of−π z+ga , the right hand side
of the first equation in (B.4) can be written as−(π −ω2

0)z+e
it ga+2izt . The computation

of the averages follows from similar modifications of the proof of Proposition 3.20. ��
Note that the computations forAV(akα) and for the static solution in the introduction

show that a is close toπ−ω2
0,whereas the “negative Klein-Gordon” term in the equation

for δ is still −πδ. This can be simply rectified by introducing the new unknown
δ̃ := e−ω0i tδ.
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With this definition δ̃ satisfies

(∂2t + ia∂α − (π − ω2
0))δ̃ = M̃1 := e−ω0i tÑ1,

(∂2t + ia∂α − (π − ω2
0))δ̃t = M̃2 := e−ω0i t (Ñ2 + iÑ1).

(B.10)

With the same notation as the rest of the paper and with Ñ j = M̃ j ◦ k−1, j = 1, 2, we
rewrite the equations for χ := δ̃ ◦ k−1 and v = (∂t δ̃) ◦ k−1 as

(∂t + b∂α′)2χ + i A∂α′χ − (π − ω2
0)χ = Ñ1,

(∂t + b∂α′)2v + i A∂α′v − (π − ω2
0)v = Ñ2.

(B.11)

We can now prove Theorem B.1.

Proof of Theorem B.1. Since Eq. (B.11) has the same form as the equation studied in
the proof of Theorem 1.1 the energy estimates are exactly the same. In view of Proposi-
tions B.3 and B.6 and Lemma B.5 the right hand sides of the equations in (B.11) contain
no quadratic terms. Similarly, the identity for ktt in Proposition B.6 shows that the con-
tributions of (∂t +b∂α′)bwhich arise in the higher energy estimates as in Proposition 5.15
do not contain quadratic terms. Therefore the only remaining step in the proof is to verify
that ṽ := (I −H)v also satisfies an equation with no quadratic nonlinearities, analogous
to the equation derived in Proposition 5.11. The computation here is similar and we only
present the necessarymodifications.We use the same proof as in Proposition 5.11 replac-
ing z by z throughout. In the first step in the commutator [∂2t + ia∂α − (π − ω2

0), H ]δ̃t
we get the extra term 2ω0i[zt , H ] δ̃tα

zα
. This can be written as

[zt , H ] δ̃tα
zα

= −ω0i[zt , H ] δ̃α

zα
+ [zt , H ]e

−ω0i t∂α(I − H)εt

zα
− [zt , H ]e

−ω0i t [zt , H ] εα

zα

zα
.

The last term is already cubic. To see that [zt , H ] δ̃α

zα
is also cubic note that

eω0i t δ̃ = (I − H)ε = (I + H)ε − (H + H)ε = (I + H)ε − z[ε, H ]εα

zα
+ E(ε).

The contribution of −z[ε, H ] εα

zα
+ E(ε) to [zt , H ] δ̃α

zα
is clearly cubic and for (I + H)ε

note that

[zt , H ]e
−ω0i t∂α(I + H)ε

zα
= [zt , H 1

zα
+ H

1

zα
]e−ω0i t∂α(I + H)ε,

which is cubic. The contribution of [zt , H ] e−ω0i t∂α(I−H)εt
zα

is shown to be cubic in a similar
way. The only other computation which is different from the proof of Proposition 5.11 is

that of the term I I := −2[zt , H ] ∂α(ia∂αδ̃)
zα

in (5.18), where we use Eq. (B.4) for z instead
of the equation for z. Here the extra terms we get are

−2ω0i[zt , H ]∂α

zα

(
zt δ̃α

zα

)

− ω2
0[zt , H ]∂α

zα

(
zδ̃α

zα

)

.

The first term is already cubic and the second term is identical, up to a multiplicative
constant, to one of the terms already computed in the calculation of I I in (5.18). This
shows that the equation for ṽ contains no quadratic nonlinearities which completes the
proof of Theorem B.1. ��
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Notations

For the reader’s convenience we give the definitions of some of the symbols used com-
monly in this work.

H f (t, α) = p.v.

π i

∫ 2π

0

f (t, β)

z(t, β) − z(t, α)
zβ(β)dβ.

H f (t, α) = p.v.

π i

∫ 2π

0

f (t, β)

z(t, β) − z(t, α)
zβ(β)dβ, z(t, ·) = z(t, j (t, ·)),

j (t, ·) : [0, 2π ] → [0, 2π ] a diffeomorphism.

H f (t, α′) = p.v.

π i

∫ 2π

0

f (t, β ′)
eiβ ′ − eiα′ ie

iβ ′
dβ ′,

H̃ f (t, α) = p.v.

2π i

∫ 2π

0
f (t, β) cot

(
β − α

2

)

dβ.

AV( f ) := 1

2π i

∫ 2π

0

f (α)

z(t, α)
zα(t, α)dα, Av( f ) = 1

2π

∫ 2π

0
f (α)dα.

K f = Re H = 1

2
(H + H) f, K f = ReH f = 1

2
(H +H) f, f real valued.

K ∗ f = −Re

{
zα
|zα|H

|zα|
zα

f

}

, K∗ f = −Re

{
zα

|zα|H
|zα|
zα

f

}

, f real valued.

a = − 1

|zα|
∂P

∂n
, n unit exterior normal.

Let h be as defined in Figure 7 and k as defined in Remark 3.21.

Z(t, α′) = z(t, h−1(t, α′)), ζ(t, α) = z(t, k−1(t, α)).

Zt (t, α
′) = zt (t, h

−1(t, α′)), Ztt (t, α
′) = ztt (t, h

−1(t, α′)),
Zttt (t, α

′) = zttt (t, h
−1(t, α′)).

B = ht ◦ h−1, b = kt ◦ k−1.

A = (ahα) ◦ h−1, A1 = A|Z,α′ |2, A = (akα′) ◦ k−1.

G = (I +H)Z .

Dα = 1

|zα|∂α, Dα′ = 1

|Z,α′ |∂α′ .

[Zt , Zt ; Dα′ Zt ] = ieiα
′

π i

∫ 2π

0

(
Zt (t, β ′) − Zt (t, α′)

eiβ ′ − eiα′

)2 eiβ
′

Zβ ′(t, β ′)
Zt,β ′(t, β ′)dβ ′.

P = (∂t + b∂α)2 + ia∂α − π.

ε = |z|2 − 1, μ = ε ◦ k−1, δ = (I − H)ε, χ = δ ◦ k−1, η = ζα − iζ.

u = zt ◦ k−1, w = ztt ◦ k−1, v = δt ◦ k−1.
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