
GREEN’S FUNCTION FOR LAPLACIAN

The Green’s function is a tool to solve non-homogeneous linear equations. We will illus-

trate this idea for the Laplacian ∆.

Suppose we want to find the solution u of the Poisson equation in a domain D ⊂ R
n:

∆u(x) = f(x), x ∈ D

subject to some homogeneous boundary condition. Imagine f is the heat source and u is the

temperature. The idea of Green’s function is that if we know the temperature responding

to an impulsive heat source at any point x0 ∈ D, then we can just sum up the result with

the weight function f(x0) (it specifies the strength of the heat at point x0) to obtain the

temperature responding to the heat source f(x) in D. Mathematically, one may express

this idea by defining the Green’s function as the following:

Let u = u(x), x = (x1, x2, . . . xn) be the solution of the following problem:
{

∆u(x) = f(x), x ∈ D

u satisfies some homogeneous boundary condition along the boundary ∂D
(0.1)

Define the Green’s function G = G(x,x0) to be the solution of
{

∆G(x,x0) = δ(x − x0), x ∈ D

G(x,x0) satisfies the same homogeneous boundary condition as in (0.1)
(0.2)

here x0 ∈ D is a fixed point. Then

u(x) =

∫

D

G(x,x0)f(x0) dx0 (0.3)

should be the solution of the boundary value problem (0.1). We can check this statement

for the Dirichlet boundary value problem:
{

∆u(x) = f(x), x ∈ D

u(x) = 0 x ∈ ∂D
(0.4)

We define the Green’s function G with Dirichlet BC by
{

∆G(x,x0) = δ(x − x0), x ∈ D

G(x,x0) = 0 x ∈ ∂D
(0.5)

Applying ∆ =
∑n

i=1 ∂2
xi

to both sides of (0.3), we get

∆u(x) =

∫

D

∆G(x,x0)f(x0) dx0 =

∫

D

δ(x − x0)f(x0) dx0 = f(x)

and for x on the boundary of D, we have u(x) = 0 because G(x,x0) = 0 by the definition

of G in (0.5). Verification of (0.3) for u and G satisfying Neumann or Robin conditions can

be done similarly.

Now let’s see how to find the Green’s function for some particular domains.
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To simplify the discussion, we will be focusing on D ⊂ R
2, the same idea extends to

domains D ⊂ R
n for any n ≥ 1, and to other linear equations. In what follows we let

x = (x, y) ∈ R
2.

0.1. The fundamental solution. We first look for the function Γ(x) in the whole space

R
2 so that

∆Γ(x) = δ(x) for x ∈ R
2

Since Γ(x) is the responding temperature to the point heat source at the origin, it must be

radially symmetric, that is

Γ(x) = Γ(r), r = |x| =
√

x2 + y2

We know the Laplacian in polar coordinates gives

∆Γ(r) = Γ′′(r) +
1

r
Γ′(r)

we want ∆Γ(x) = δ(x), therefore

Γ′′(r) +
1

r
Γ′(r) = 0 for r > 0 (0.6)

Solving (0.6), we get

Γ(r) = c1 ln r + c2

for some constants c1 and c2. We take c2 = 0. We now want to determine c1 so that

∆Γ(x) = δ(x). We use Divergence Theorem.

Recall divergence theorem states that for any vector field F(x) = (F1(x, y), F2(x, y))

defined on a domain D ⊂ R
2, we have
∫∫

D

∇ · F (x) dx =

∫

∂D

n · F (x) dS (0.7)

here divF (x) = ∇ · F (x) = ∂xF1(x, y) + ∂yF2(x, y), n is the unit outward normal to the

boundary of the domain D,
∫

∂D
. . . dS is the line integral along the boundary curve ∂D.

Now applying the divergence theorem to F(x) = ∇u(x) = (∂xu(x, y), ∂yu(x, y)). Since

∆u = ∇ · ∇u, we have
∫∫

D

∆u(x) dx =

∫

∂D

n · ∇u(x) dS

We want ∆Γ(x) = δ(x). Therefore, we want for any disk B(0, R) centered at the origin

with radius R,

1 =

∫∫

δ(x) dx =

∫∫

∆Γ(x) dx =

∫∫

B(0,R)

∆Γ(x) dx =

∫

∂B(0,R)

n · ∇Γ(x) dS

Notice that the normal derivative of Γ along the circle ∂B(0, R) is the same as the derivative

of Γ in the radial direction evaluated at R:

n · ∇Γ(x) = Γ′(R) for |x| = R

and Γ′(R) is a constant along the circle ∂B(0, R), therefore
∫

∂B(0,R)

n · ∇Γ(x) dS =

∫

∂B(0,R)

Γ′(R) dS = 2πRΓ′(R)
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finally we arrive at

1 = 2πRΓ′(R)

this gives that Γ′(R) = 1
2πR

, therefore Γ(R) = 1
2π

lnR. In other wards, an application of

divergence theorem also gives us the same answer as above, with the constant c1 = 1
2π

.

Now we find that the function

Γ(x) =
1

2π
ln r, where r = |x| =

√

x2 + y2

satisfies

∆Γ(x) = δ(x)

We call this function Γ(x) the fundamental solution of the Laplacian in R
2. It is clear that

for any point x0 ∈ R
2, ∆Γ(x − x0) = δ(x − x0).

0.2. Green’s function for bounded domains. We can construct Green’s function for a

bounded domain D ⊂ R
2 using the fundamental solution Γ(x − x0).

For example if we want to find the Green’s function G with Dirichlet BC on D ⊂ R
2:

{

∆G = δ(x − x0) x ∈ D

G(x,x0) = 0 for x ∈ ∂D
(0.8)

here x0 ∈ D is a fixed point, we can construct G as the follows

G(x,x0) = Γ(x − x0) + v(x,x0) (0.9)

In order for G to satisfy (0.8), v must satisfy

{

∆v(x,x0) = 0 x ∈ D

v(x,x0) = −Γ(x − x0), for x ∈ ∂D
(0.10)

In other wards, v should be a solution of the Laplace equation in D satisfying a non-

homogeneous boundary condition that nullifies the effect of Γ on the boundary of D. Sim-

ilarly we can construct the Green’s function with Neumann BC by setting G(x,x0) =

Γ(x− x0) + v(x,x0) where v is a solution of the Laplace equation with a Neumann bound-

ary condition that nullifies the heat flow coming from Γ.

In what follows we construct the Green’s functions for the upper half plane and for the

unit disk.

We point out that for a general domain D, it is usually difficult to solve explicitly for v,

therefore difficult to find an explicit expression for G. Nevertheless, (0.9) is an important

expression from which we can draw qualitative informations about the Green’s function and

therefore the solution of the Poisson and Laplace equations.

We call a solution u of the Laplace equation ∆u(x) = 0 for x ∈ D a harmonic function

in D.
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0.3. Green’s function for the upper half plane {y > 0}. We first construct the Green’s

function in the upper half plane with the Dirichlet boundary condition:
{

∆G(x,x0) = δ(x − x0) x = (x, y), y > 0

G(x, 0,x0) = 0 x ∈ R
(0.11)

here x0 = (x0, y0) is a fixed point in the upper half plane, i.e. y0 > 0.

We know Γ(x − x0) = Γ(x − x0, y − y0) is the temperature response to the single heat

source δ(x − x0) placed at the point x0. However Γ(x − x0, y − y0) 6= 0 at the boundary

{y = 0}. In order to construct the temperature response G so that G is zero on the boundary

{y = 0}: G(x, 0, x0, y0) = 0, we place another heat source −δ(x − x∗
0) of negative strength

at the image point x∗
0 = (x0,−y0) and consider the temperature response to both of the

heat sources at x0 and x∗
0:

G(x,x0) = Γ(x − x0) − Γ(x − x∗
0) (0.12)

We claim G as defined in (0.12) is the Green’s function satisfying (0.11).

First we know

∆G(x,x0) = ∆(Γ(x − x0) − Γ(x − x∗
0)) = δ(x − x0) − δ(x − x∗

0) for x ∈ R
2

However x∗
0 is a point in the lower half plane, and we know δ(x − x∗

0) = 0 for all x 6= x∗
0,

therefore

∆G(x,x0) = δ(x − x0)

for x in the upper half plane. And it is easy to check that on the boundary {y = 0} of the

upper half plane,

G(x, 0,x0) = Γ(x−x0,−y0)−Γ(x−x0, y0) =
1

2π
(ln

√

(x − x0)2 + (−y0)2−ln
√

(x − x0)2 + (y0)2) = 0

Therefore we have constructed the Green’s function for the Dirichlet BC in the upper half

plane:

G(x,x0) =
1

2π
(ln |x − x0| − ln |x − x∗

0|) =
1

4π
ln

(x − x0)
2 + (y − y0)

2

(x − x0)2 + (y + y0)2

Similarly we can construct the Green’s function for the upper half plane with the homo-

geneous Neumann BC. Notice that for the upper half plane, the outward normal derivative

at the boundary is in the negative y direction:

∂G

∂n
= −

∂G

∂y

So what we look for next is the G satisfying
{

∆G(x,x0) = δ(x − x0) x = (x, y), y > 0
∂G
∂y

(x, 0,x0) = 0 x ∈ R
(0.13)

here x0 = (x0, y0) is a fixed point in the upper half plane.

Now we want to make sure the heat sources are placed in such a way that the flux through

the boundary {y = 0} is zero. This can be achieved by placing another heat source δ(x−x∗
0)



GREEN’S FUNCTION FOR LAPLACIAN 5

with the same strength at the image point x∗
0 = (x0,−y0). We claim the Green’s function

for (0.13) is

G(x,x0) = Γ(x − x0) + Γ(x − x∗
0) =

1

4π
ln{((x − x0)

2 + (y − y0)
2)((x − x0)

2 + (y + y0)
2)}

We leave the checking of this claim to the readers.

0.4. Green’s representation formula. Now that we have constructed the Green’s func-

tion for the upper half plane. Before we move on to construct the Green’s function for the

unit disk, we want to see besides the homogeneous boundary value problem (0.1), what

other problems can be solved by the Green’s function approach.

First we derive the Green’s identity from the divergence theorem.

Let u, v be smooth functions defined on a domain D ⊂ R
2. Let F = u∇v − v∇u, and

we apply the divergence theorem to F. Notice that

∇ · F = ∇u∇v + u∆v −∇v∇u − v∆u = u∆v − v∆u

we get
∫∫

D

(u(x)∆v(x) − v(x)∆u(x)) dx =

∫

∂D

(un · ∇v − vn · ∇u) dS (0.14)

where n is the unit outward normal to ∂D. (0.14) is called the Green’s identity.

Let G be the Green’s function defined in (0.8) satisfying the Dirichlet BC. A quick

application of the Green’s identity to u = G(x,x1) and v = G(x,x2) gives the symmetry of

G:

G(x1,x2) = G(x2,x1)

We now apply the Green’s identity to u and v = G(x,x0), where G is the Green’s function

defined in (0.8). We have
∫∫

D

(u(x)∆G(x,x0) − G(x,x0)∆u(x)) dx =

∫

∂D

(u(x)
∂G(x,x0)

∂n
− G(x,x0)

∂u(x)

∂n
) dS

(0.15)

Therefore

u(x0) =

∫∫

D

G(x,x0)∆u(x) dx +

∫

∂D

u(x)
∂G(x,x0)

∂n
dS

Interchange the notations x with x0, we have

u(x) =

∫∫

D

G(x,x0)∆u(x0) dx0 +

∫

∂D

u(x0)
∂G(x,x0)

∂n0
dS0 (0.16)

In other words,

u(x) =

∫∫

D

G(x,x0)f(x0) dx0 +

∫

∂D

h(x0)
∂G(x,x0)

∂n0
dS0

is the solution formula for the solution of the following non-homogeneous boundary value

problem:
{

∆u(x) = f(x) x ∈ D

u(x) = h(x), x ∈ ∂D
(0.17)

(0.16) is called the Green’s representation formula.
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As we know G(x,x0) is the influence function for the source term f(x), while ∂G(x,x0)
∂n0

is

the influence function for the nonhomogeneous boundary condition. We know

∂G(x,x0)

∂n0
= lim

ǫ→0

G(x,x0 + ǫn0) − G(x,x0)

ǫ

1
ǫ
G(x,x0 + ǫn0) is the response to the source located at x0 + ǫn0 with strength 1

ǫ
, while

− 1
ǫ
G(x,x0) is the response to the source located at x0 with strength − 1

ǫ
. So the influence

function for the non-homogeneous Dirichlet boundary condition is a response to a dipole

source distributed along the boundary ∂D.

0.5. Green’s representation formula for upper half plane. We now apply Green’s

representation formula (0.16) for the solution of the following Dirichlet problem on the

upper half plane:
{

∂2
xu(x, y) + ∂2

yu(x, y) = 0 −∞ < x < ∞, y > 0

u(x, 0) = h(x) −∞ < x < ∞
(0.18)

We know the Green’s function in the upper half plane with homogeneous Dirichlet BC is

G(x,x0) =
1

2π
(ln |x − x0| − ln |x − x∗

0|) =
1

4π
ln

(x − x0)
2 + (y − y0)

2

(x − x0)2 + (y + y0)2

The outward unit normal to the boundary of the upper half plane is in the −y direction.

So we calculate

∂G(x, y, x0, y0)

∂y0
=

1

4π
(

2(y0 − y)

(x − x0)2 + (y − y0)2
−

2(y0 + y)

(x − x0)2 + (y + y0)2
)

and
∂G(x, y, x0, 0)

∂n0
= −

∂G(x, y, x0, 0)

∂y0
=

1

π

y

(x − x0)2 + y2

So the solution of (0.18) is given by

u(x, y) =
1

π

∫

y

(x − x0)2 + y2
h(x0) dx0 (0.19)

The solution formula (0.19) is called the Poisson integral formula and can also be found

using the Fourier transform. 1
π

y
(x−x0)2+y2 is called Poisson kernel.

0.6. Green’s function for the unit disk. Let D = {|x| < 1} be the unit disk. For any

fixed x0 ∈ D, we want to construct the Green’s function satisfying the Dirichlet BC:
{

∆G(x,x0) = δ(x − x0) x ∈ D

G(x,x0) = 0 for |x| = 1
(0.20)

As it turns out, there is an image point x∗
0 = x0

|x0|2
on the prolonged line segment from 0 to

x0, satisfying that for any x on the unit circle, i.e. |x| = 1,

|x − x0|
2 = |x0|

2|x − x∗
0|

2 (0.21)

We can check this assertion easily. We have, for any x such that |x| = 1,

|x−x∗
0|

2 = |x|2+|x∗
0|

2−2x·x∗
0 = 1+|x0|

−2−2x·x0|x0|
−2 = |x0|

−2(|x0|
2+1−2x·x0) = |x0|

−2|x−x0|
2



GREEN’S FUNCTION FOR LAPLACIAN 7

We can now use the fact (0.21) to construct the Green’s function for the unit disk with

Dirichlet BC:

G(x,x0) =
1

2π
(ln |x − x0| − ln |x − x∗

0| − ln |x0|)

in polar coordinates, it can be written as

G(r, θ, r0, θ0) =
1

4π
ln

r2 + r2
0 − 2rr0 cos(θ − θ0)

r2r2
0 + 1 − 2rr0 cos(θ − θ0)

From here we can use the Green’s representation formula (0.16) to find the solution formula

for the following Dirichlet boundary value problem in the unit disk D:
{

∆u = 0 0 ≤ r < 1, −π ≤ θ ≤ π

u(1, θ) = h(θ) − π ≤ θ ≤ π
(0.22)

We need to find ∂G(x,x0)
∂n0

along the unit circle. We know the unit normal to the circle is in

the radial direction, so for x0 = (1, θ0) on the unit circle,

∂G(x,x0)

∂n0
=

∂G(r, θ, 1, θ0)

∂r0
=

1

2π

1 − r2

r2 + 1 − 2r cos(θ − θ0)

From the Green’s representation formula, we know that the solution of problem (0.22) is

u(r, θ) =
1

2π

∫ 2π

0

1 − r2

r2 + 1 − 2r cos(θ − θ0)
h(θ0) dθ0

This recovers the Poisson integral formula we derived using separation of variables.
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