MATH 451: EXAM I (Solution) Winter 2019

NAME: _____

Read all questions carefully. There are four problems. Show all your work. No work, no points. No book, no notes, no calculators, no electronics.

Problem	Points Possible	Points Earned
1	25	
2	25	
3	25	
4	25	
Total	100	

1. (25 points) (a)Prove that for any real numbers a, b, b

$$\left||a| - |b|\right| \le |a - b|.$$

Proof: By the triangle inequality, we have for any real numbers a and b,

$$|a+b| \le |a| + |b|.$$

 So

$$|a| = |a - b + b| \le |a - b| + |b|,$$

and this gives

$$|a| - |b| \le |a - b|.$$
 (1)

Replacing a by b, and b by a in (1) gives

$$|b| - |a| \le |b - a| = |a - b|.$$
(2)

Since

$$||a| - |b|| = \begin{cases} |a| - |b|, & \text{if } |a| \ge |b| \\ |b| - |a|, & \text{if } |b| \ge |a| \end{cases}$$
(3)

we have, by (1),(2) and (3),

$$\left||a| - |b|\right| \le |a - b|.$$

(b) Prove that for any real numbers a, b,

$$|a| - |b| \le |a+b|.$$

Proof: by the triangle inequality, we have

$$|a| = |a + b - b| \le |a + b| + |-b| = |a + b| + |b|$$

SO

$$|a| - |b| \le |a+b|.$$

2. (25 points) (a) Write the definition for the sequence $(a_n)_{n\in\mathbb{N}}$ to converge to a as n goes to ∞ .

We say a sequence (a_n) converges to a if for any $\epsilon > 0$, there is $N \in \mathbb{N}$, such that for all n > N,

$$|a_n - a| < \epsilon$$

(b) Let $a_n = \sqrt{n^2 - n} - n$. Does the sequence $(a_n)_{n \in \mathbb{N}}$ converge? Prove your assertion.

We have

$$a_n = \sqrt{n^2 - n} - n = (\sqrt{n^2 - n} - n)\frac{\sqrt{n^2 - n} + n}{\sqrt{n^2 - n} + n} = \frac{-n}{\sqrt{n^2 - n} + n} = \frac{-1}{\sqrt{1 - \frac{1}{n}} + 1}$$

Now we want to show $\lim_{n\to\infty} \sqrt{1-\frac{1}{n}} = 1$. We know

$$1 - \frac{1}{n} \le \sqrt{1 - \frac{1}{n}} \le 1$$
 for all $n \in \mathbb{N}$.

so by the Squeezing Lemma, we have, because $\lim_{n\to\infty}(1-\frac{1}{n})=1$, and $\lim_{n\to\infty}1=1$, $\lim_{n\to\infty}\sqrt{1-\frac{1}{n}}=1$. Now the limit Theorem implies that the sequence (a_n) converges and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{-1}{\sqrt{1 - \frac{1}{n} + 1}} = \frac{-1}{\lim_{n \to \infty} \sqrt{1 - \frac{1}{n} + 1}} = -\frac{1}{2}$$

(c) Let

$$b_n = 2^{(-1)^n}.$$

(c1)Write out the first 4 terms, b_1 , b_2 , b_3 and b_4 , of the sequence.

 $b_1 = 1/2, b_2 = 2, b_3 = 1/2, b_4 = 2.$

(c2) Does the sequence $(b_n)_{n \in \mathbb{N}}$ converge? Prove your assertion.

No. We know $b_n = 1/2$ for n odd and $b_n = 2$ for n even. If (b_n) converges, say to b, then for $\epsilon = 1/2 > 0$, there is a $N \in \mathbb{N}$, such that for all n > N, $|b_n - b| < 1/2$. Then for all odd numbers n > N, |1/2 - b| < 1/2, and for all even numbers n > N, |2 - b| < 1/2. This gives, by triangle inequality,

$$3/2 = |2 - 1/2| = |2 - b + b - 1/2| \le |2 - b| + |b - 1/2| < 1/2 + 1/2 = 1.$$

This is a contradiction. So (b_n) does not converge.

3. Assume that the sequence $(a_n)_{n\in\mathbb{N}}$ diverges to $+\infty$. Show that $(a_n)_{n\in\mathbb{N}}$ does not converge.

Proof. Since $(a_n)_{n\in\mathbb{N}}$ diverges to $+\infty$, so for any $M\in\mathbb{R}$, there is $N\in\mathbb{N}$, such that for all n>N,

 $a_n > M.$

This implies that (a_n) is not bounded.

Since we know any convergence sequence is bounded, so (a_n) does not converge.

4. Assume that $(a_n)_{n \in \mathbb{N}}$ is a bounded and monotone sequence. Show that $(a_n)_{n \in \mathbb{N}}$ converges.

Proof: Case 1. Assume that $(a_n)_{n \in \mathbb{N}}$ is increasing. That is, for all $n \in \mathbb{N}$,

 $a_{n+1} \ge a_n.$

Because (a_n) is bounded, there is M > 0, such that

$$-M < a_n < M$$
, for all $n \in \mathbb{N}$.

And by the Completeness Axiom, the least upper bound, $\sup\{a_n | \forall n \in \mathbb{N}\}$, exist in \mathbb{R} . Write

$$a := \sup\{a_n | \forall n \in \mathbb{N}\}.$$

Want to show a_n converges to a as n tends to ∞ . First we have

$$a_n \le a \qquad \text{for all } n.$$
 (4)

Now since a is the least upper bound, so for any $\epsilon > 0$, $a - \epsilon$ is not an upper bound. So there is $N \in \mathbb{N}$, such that $a_N > a - \epsilon$. Now since (a_n) is increasing, so for all n > N,

$$a_n \ge a_N > a - \epsilon. \tag{5}$$

Combining (4) and (5), we have shown for all n > N,

$$a - \epsilon < a_n \le a < a + \epsilon$$

Hence (a_n) converges to a.

Case 2: Assume that (a_n) is decreasing, then the sequence $(-a_n)$ is increasing, and since $(-a_n)$ is also bounded, the above argument in case 1 shows that $(-a_n)$ converges. By the limit Theorem, we also have (a_n) converges.