
MATH 451: Exam II

Winter 2019

NAME:

Read all questions carefully.
There are four problems, plus a bonus problem.

You should make sure that you have finished the main part of the exam before working
on the bonus problem.

Show all your work. No work, no points.

No book, no notes, no calculators, no electronics.

Problem Points Possible Points Earned

1 25

2 25

3 25

4 25

Total 100

Bonus 25
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1. (25 points) a) Consider the sequence

(

1, 0,
1

2
,
1

2
,
1

3
,
2

3
, . . . ,

1

n
, 1−

1

n
, . . .

)

Find its set of subsequential limits. What are its lim sup and lim inf ?

Solution: Observe that there are exactly two converging subsequences: s2n−1 = 1
n
,

s2n = 1− 1
n
. So the set of sub-sequential limits is S = {1, 0}.

lim sup sn = 1, lim inf sn = 0.

b) Assume that there is a real number b and a natural number N0, such that for all
n > N0, we have sn ≤ b. Show that lim sup sn ≤ b.

Proof: Let vN = sup{sn |n > N}. By definition, we know

lim sup sn = lim
N→∞

vN .

By the assumption, we have

vN0
= sup{sn |n > N0} ≤ b.

Since vN is a decreasing sequence, so for all N ≥ N0, vN ≤ b. Let N → ∞, we get

lim
N→∞

vN ≤ b.

This proves that lim sup sn ≤ b.
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2. (25 points) True or false? If the statement is true, give a brief argument to justify
your answer. If it is false, give a counterexample.

(a) Assume that for all n ∈ N, an < bn, and limn→∞ an, limn→∞ bn exist. Then
limn→∞ an < limn→∞ bn.

False. Let

an = 0, bn =
1

n
for all n ∈ N.

Then
an < bn for all n,

but
lim
n→∞

an = lim
n→∞

bn = 0.

(b) If limn→∞ xnyn = 0, then either limn→∞ xn = 0 or limn→∞ yn = 0.

False. Let

xn =

{

0 n even

1 n odd
yn =

{

1 n even

0 n odd

Then xnyn = 0 for all n ∈ N, so

lim
n→∞

xnyn = 0,

but lim xn, lim yn do not exist.
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3. (25 points) (a) Let sn =
∑

n

k=1
1
k2
. Is the sequence (sn)n∈N Cauchy? Prove your

assertion.

Yes. Let n > m. We know 1
k2

< 1
k(k−1)

= 1
k−1

− 1
k
, for k > 1, so

0 < sn − sm =

n
∑

k=m+1

1

k2
≤

n
∑

k=m+1

(
1

k − 1
−

1

k
) =

1

m
−

1

n
<

1

m
.

Therefore

|sn − sm| ≤
1

m
.

Let ǫ > 0, and N = 1
ǫ
. We have, for any n > m > N ,

|sn − sm| ≤
1

m
< ǫ.

This shows that (sn) is a Cauchy sequence.

(b) Consider the series
∑

∞

n=2
n+1
n3−2

. Is it convergent? Prove your assertion.

Yes. Observe that

0 <
n+ 1

n3 − 2
≤

n+ n
1
2
n3

=
4

n2
, for n ≥ 2.

Since
∑

1
n2 is convergent, by the comparison test, we know

∑

∞

n=2
n+1
n3−2

is also con-
vergent.
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4. (25 points) Assume that (sn)n∈N is a bounded sequence. Give a step by step con-
struction of a converging subsequence of (sn)n∈N.

Assume that for all n ∈ N, sn ∈ [a, b] for some a, b ∈ R.

Step 1: subdivide the interval [a, b] by the midpoint m = a+b

2
into 2 equal length

subintervals [a,m] and [m, b]. Since there are infinitely many sn
′s in [a, b], at least

one of the subintervals [a,m] or [m, b] contains infinitely many sn
′s. We choose

one of the subintervals containing infinite many sn
′s and name it [a1, b1]. Continue

this process, we get a sequence of subintervals [ak, bk], k = 1, 2, . . . , n . . . , with the
properties that each [ak, bk] contains infinite many sn

′s, and

[ak+1, bk+1] ⊂ [ak, bk], for k ∈ N, (1)

bk − ak =
1

2
(bk−1 − ak−1) = · · · =

1

2k
(b− a), for k ∈ N. (2)

Step 2: Since there are infinitely many sn
′s in [a1, b1], we choose an arbitrary sn1

∈
[a1, b1]. Assume that we have chosen sn1

, . . . snk
, such that sni

∈ [ai, bi], and n1 <

n2 · · · < nk. Since there are infinitely many sn
′s in [ak+1, bk+1], and there are at

most nk terms of sn
′s before the term snk

, we can choose snk+1
∈ [ak+1, bk+1], such

that nk+1 > nk.

Continue this process for k = 1, 2, . . . , n . . . , we obtain a subsequence (snk
)k∈N.

Step 3: We know ak ≤ snk
≤ bk for k = 1, 2, . . . , n . . . . By (1), for all m, k ≥ N ,

snk
, snm

∈ [aN , bN ]; and by (2),

|snk
− snm

| ≤ bN − aN =
1

2N
(b− a).

Therefore (snk
) is a Cauchy sequence,1 hence it converges. This gives a converging

subsequence of (sn).

Remark: The constructional proof for the existence of a subsequence converging to
lim sup sn, or the constructional proof for the existence of a monotonic subsequence
will also be valid here.

1For any ǫ > 0, there is N ≥ b−a

ǫ
, such that for all k,m ≥ N , |snk

− snm
| ≤ bN − aN = 1

2N
(b − a) ≤

1

N
(b− a) ≤ ǫ.

5



5. Bonus. (25 points) Let an, bn ∈ R for all n ∈ N, and assume that the intervals
[an, bn] satisfy

[an+1, bn+1] ⊂ [an, bn], for all n ∈ N.

Assume further that
lim
n→∞

(bn − an) = 0.

Show that there is exactly one real number c, satisfying

c ∈ [an, bn], for all n ∈ N.

(Hint: plot the intervals [an, bn] on the real line, and think what could be the real
number c that is in all the intervals [an, bn].)

Proof. Because
[an+1, bn+1] ⊂ [an, bn], for all n,

we have
an+1 ≥ an, bn+1 ≤ bn, ∀n,

so (an) is an increasing sequence, (bn) is a decreasing sequence, and both sequences
are bounded below by a1 and bounded above by b1. So (an) and (bn) are convergent
sequences. By the assumption that

lim
n→∞

(bn − an) = 0,

we have
lim
n→∞

an = lim
n→∞

bn.

Let c = limn→∞ an = limn→∞ bn. Now since (an) is increasing, we know lim an =
sup{an |n ∈ N}, and since (bn) is decreasing, we know lim bn = inf{an |n ∈ N}.
Therefore we have

an ≤ c ≤ bn, for all n.

This shows that there is at least one real number c, such that

c ∈ [an, bn], for all n ∈ N.

Now we want to show that there is no more than one real number c satisfying
an ≤ c ≤ bn for all n. If not, assume that there are c1 and c2, satisfying

c1, c2 ∈ [an, bn] for all n

then
|c1 − c2| ≤ |bn − an| for all n

Because
lim
n→∞

(bn − an) = 0,

we have |c1 − c2| = 0. This implies c1 = c2. So there can be no more than one real
number c satisfying c ∈ [an, bn] for all n.
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