18 I The Single First-Order Equation

Relation (6.22) implies for any a,b,y the “conservation law”

0= ["RuG)dx+ 5B -SE@n). (629

Conversely (6.22) follows from (6.24) for any u&€ C'. Now (6.24) makes
sense for more general u and can serve to define “weak” solutions of
(6.22). In particular we consider the case where u is a C'-solution of (6.22)
in each of two regions in the xy-plane separated by a curve x =£(y), across
which the value of u shall undergo a jump (“shock™). Denoting the limits
of u from the left and right respectively by ¥~ and u*, we find from (6.24)
fora<{(y)<b

0=S(u(b,y))— S(u(a,y))+ %(LeR(u)dx+j;bR(u)dx)

=S (u(b,y))—S(u(ay))+§R(u")—&R(u")

£3S bas
-f (w) dx—f W) 4
; 9x A dx

=—(R(u*)-R(u™)Eg-Su7)+Su").
Hence we find the relation (“shock condition™)

d¢  S(u')-S(u’)

& R(u")-R(u")
connecting the speed of propagation d§/dy of the discontinuity with the
amounts by which R and § jump. We observe that (6.25) depends not only
on the original partial differential equation (6.12) but also on our choice of

the functions R(u), S(u) satisfying (6.23). [Compare with Burgers’ equation,
p. 214.]

(6.25)

PROBLEMS

1. Solve the following initial-value problems and verify your solution:
(a) u,+u,=u? u(x,00=h(x)
/ (b) u,=xuu,, u(x,0)=x
(Answer: x =ue~”* implicitly.)
y(©) xu, +yu, +u,=u, u(x,y,0)=h(x,y)
(d) xu, ~yu, =u, u(x,0)=h(x)
(Answer: u=h(\/ x*+? Yerretan(y/x)

2. (Picone). Let u be a solution of
‘ a(x,yyu, +b(x,y)u,=—u

of class C' in the closed unit disk @ in the xy-plane. Let a(x,y)x+b(x,y)y >0
on the boundary of Q. Prove that u vanishes identically. (Hint:' Show that

max ¥ < 0, min v > 0, using conditions for a maximum at a boundary point.)
Q €1
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3. Let u be a C'-solution of (6.12) in each of two regions separated by a curve

x={(p). Let u be continuous, but u, have a jump discontinuity on the curve.
Prove that

d§

—_— =y

dy

and hence that the curve is a characteristic. (Hint: By (6.12)
(" —w7)+u(u’ —u;)=0.

Moreover u(£(y).y) and (d/dy)u(é(y),y) are continuous on the curve.)
4. Show that the function u(x,y) defined for y > 0 by

=—3(y+V3x+y?) fordx+y?>0
u=0 fordx+y2<0
is a weak solution of (6.22) for the choice R(u)=u,S (u)=1u,

5. Define a weak solution u(x,y) of (6.22) as a function for which the relation
ff(R(u)rpy + 8 (u)d,)dxdy=0 (6.26)

holds for any function ¢(x,y) of class Cg° (Relation (6.26) follows formally from
(6.22) by integration by parts.) Show that this definition of weak solution also
leads to the jump condition (6.25).

6. Show that the solution u of the quasi-linear partial differential equation

u, +a(u)u, =0 6.27)
with initial condition u(x,0)=h(x) is given implicitly by
u=h(x—-a(u)y) (6.28)

Show that the solution becomes singular for some positive y, unless a(k(s)) is a
nondecreasing function of s.

7. The General First-Order Equation for a Function
of Two Variables

The general first-order partial differential equation for a function z=
u(x,y) has the form

F(x,y,z,p,q)=0, (7.1)

where p=u,,g=u,. We assume that F where considered has continuous
second derivatives with respect to its arguments x,y,z,p,q. Surprisingly
enough the problem of solving the general equation (7.1) reduces to that of
solving a system of ordinary differential equations. This reduction is
suggested by the geometric interpretation of (7.1) as a condition on the
integral surface z=wu(x,y) in xyz-space determined by a solution u(x,y).



