
IX I The Single First-Order Equation 

Relation (6.22) implies for any a,b,y the "conservation law" 

d fb 0= dy a R (u(x,y))dx+ S(u(b,y))- S(u(a,y)). (6.24) 

Conversely (6.22) follows from (6.24) for any u E C 1• Now (6.24) makes 
sense for more general u and can serve to define "weak" solutions of 
(6.22). In particular we consider the case where u is a C 1-solution of (6.22) 
in each of two regions in the xy-plane separated by a curve x = ~(y), across 
which the value of u shall undergo a jump ("shock"). Denoting the limits 
of u from the left and right respectively by u- and u +, we find from (6.24) 
for a < ~(y) < b 

O=S(u(b,y))-S(u(a,y))+: (J€R(u)dx+ lbR(u)dx) 
[Y a t 

= S(u(b,y))- S (u(a,y)) + f R (u-) -f R (u+) 

- fqs(u) dx- (b oS(u) dx 
ax J ax 

a t 

= -(R (u+)- R (u-))f- S (u-)+ S (u+). 

Hence we find the relation ("shock condition") 

d~ S(u+)- S(u-) 

dy = R(u+)-R(u-) 
(6.25) 

connecting the speed of propagation dU dy of the discontinuity with the 
amounts by which RandS jump. We observe that (6.25) depends not only 
on the original partial differential equation (6.12) but also on our choice of 
the functions R(u), S(u) satisfying (6.23). [Compare with Burgers' equation, 
p. 214.] 

PROBLEMS 

I. Solve the following initial-value problems and verify your solution: 

(a) u .. +u_y=u2, u(x,O)=h(x) 
J (b) u_y=xuu .. , u(x,O)=x 

(Answer: x=ue-Y" implicitly.) 
~_,,(c) xu .. +yu_y+uz=u, u(x,y,O)=h(x,y) 

(d) xu_y-yu .. =u, u(x,O)=h(x) 
(Answer: u=hCYx2+y2 )earctan(y/xl.) 

2. (Picone). Let u be a solution of 

a(x,y )u_. + b(x,y)u_y =- u 

of class C I in the closed unit disk !l in the xy-plane. Let a(x,y)x + b(x,y)y > 0 
on the boundary of n. Prove that u vanishes identically. (Hint:· Show that 
max u <;;; 0. min u ;;. 0, using conditions for a maximum at a boundary point.) 
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3. Let u be a C 1-solution of (6.12) in each of two regions separated by a curve 
x=~(y). Let u be continuous, but u .. have a jump discontinuity on the curve. 
Prove that 

d~ 
dy =u 

and hence that the curve is a characteristic. (Hint: By (6.12) 

( u_y+- u_y-) + u(u..,+- u .. -) =0. 

Moreover u(~(y),y) and (d/dy)u(~(y),y) are continuous on the curve.) 

4. Show that the function u(x,y) defined for y ~ 0 by 

u=-i(y+\hx+y2 ) for4x+y 2>0 

u = 0 for 4x + y 1 < 0 

is a weak solution of (6.22) for the choiceR (u)= u,S(u)= tu2. 

5. Define a weak solution u(x,y) of (6.22) as a function for which the relation 

J J (R (u)<Py + S (u)<fl .. )dxdy=O (6.26) 

holds for any function <P(x,y) of class Co'X> (Relation (6.26) follows formally from 
(6.22) by integration by parts.) Show that this definition of weak solution also 
leads to the jump condition (6.25). 

6. Show that the solution u of the quasi-linear partial differential equation 
/ 

uy + a(u)u .. =0 (6.27) 

with initial condition u(x,O)=h(x) is given implicitly by 

u=h(x-a(u)y) (6.28) 

Show that the solutiqn becomes singular for some positive y, unless a(h(s)) is a 
nondecreasing function of s. 

7. The General First-Order Equation for a Function 
of Two Variables 

The general first-order partial differential equation for a function z = 
u(x,y) has the form 

F(x,y,z,p,q)=O, (7.1) 

wherep=u .. ,q=zs_. We assume that F where considered has continuous 
second derivatives with respect to its arguments x,y, z,p, q. Surprisingly 
enough the problem of solving the general equation (7.1) reduces to that of 
solving a system of ordinary differential equations. This reduction is 
suggested by the geometric interpretation of (7.1) as a condition on the 
integral surface z = u(x,y) in xyz-space determined by a solution u(x,y). 


