MATH 656 HW 3

1. Prove that $\Delta u(x) = 0$ also implies that

$$\Delta(|x|^{2-n}u(x/|x|^2)) = 0$$

for $x/|x|^2$ in the domain of definition of u.

2. By Newton's law the gravitational attraction exerted on a unit mass located at $\xi \in \mathbb{R}^3$ by a solid Ω with density $\mu = \mu(x)$ is given by

$$F(\xi) = \gamma \iiint_{\Omega} \frac{\mu(x)(x-\xi)}{|x-\xi|^3} dx$$

 $(\gamma \text{ is the universal gravitational constant.})$

(a) Prove that $F = \nabla u$, where the "potential" u is given by

$$u(\xi) = \gamma \iiint \frac{\mu(x)}{|x - \xi|} \, dx$$

(b) Prove that the attraction $F(\xi)$ exerted by Ω on a far away unit mass is approximately the same as if the total mass of Ω were concentrated at its center of gravity

$$x^{0} = \frac{\iiint_{\Omega} \mu(x) x \, dx}{\iiint_{\Omega} \mu(x) \, dx}$$

(Hint: approximate $|x - \xi|^{-3}$ by $|x^0 - \xi|^{-3}$ for large $|\xi|$.)

(c) Calculate the potential u and attraction F of a solid sphere Ω of radius a with center at the origin and of constant density μ . Use here that u must have spherical symmetry, must be harmonic outside Ω , satisfy Poisson's equation in Ω , be of class C^1 everywhere, and vanish at ∞ .

3. Let n = 2 and Ω be the upper half plane. Prove that $\sup_{\Omega} u = \sup_{\partial \Omega} u$ for $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ which is harmonic in Ω under the additional assumption that u is bounded from above in $\overline{\Omega}$. (The additional assumption is needed to exclude examples like $u = x_2$) (Hint: take for $\epsilon > 0$, the function $u(x) - \epsilon \ln |x + (0, 1)|^2$ and apply Maximum Principle to a region $\Omega \cap B_R(0)$. Let $\epsilon \to 0, R \to \infty$.)

4. (Harnack's inequality) Let $u \in C^2(B_a(0)) \cap C(\overline{B_a(0)})$, and $u(x) \ge 0$, $\Delta u(x) = 0$ for $x \in B_a(0)$. Show that for |x| < a,

$$\frac{a^{n-2}(a-|x|)}{(a+|x|)^{n-1}}u(0) \le u(x) \le \frac{a^{n-2}(a+|x|)}{(a-|x|)^{n-1}}u(0).$$

5. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Show that the Green's function G(x, y) (for the Dirichlet problem of the Laplace equation for domain Ω) satisfies

(a)
$$G(y, x) \le 0$$
, $\forall x, y \in \Omega, x \ne y$.

$$\begin{split} & (\mathbf{b})\frac{\partial}{\partial n_y}G(y,x)\geq 0, \qquad \forall x\in\Omega, y\in\partial\Omega. \\ & (\mathbf{c})\,\int_{\partial\Omega}\frac{\partial}{\partial n_y}G(x,y)\,dS_y=1. \\ & \text{Here}\,\,n_y \text{ is the outward unit normal to }\Omega. \end{split}$$