MATH 656 HW 3

1. Prove that $\Delta u(x) = 0$ also implies that

$$
\Delta(|x|^{2-n}u(x/|x|^2)) = 0
$$

for $x/|x|^2$ in the domain of definition of u.

2. By Newton's law the gravitational attraction exerted on a unit mass located at $\xi \in \mathbb{R}^3$ by a solid Ω with density $\mu = \mu(x)$ is given by

$$
F(\xi) = \gamma \iiint_{\Omega} \frac{\mu(x)(x - \xi)}{|x - \xi|^3} dx
$$

 (γ) is the universal gravitational constant.)

(a) Prove that $F = \nabla u$, where the "potential" u is given by

$$
u(\xi) = \gamma \iiint \frac{\mu(x)}{|x - \xi|} dx.
$$

(b) Prove that the attraction $F(\xi)$ exerted by Ω on a far away unit mass is approximately the same as if the total mass of Ω were concentrated at its center of gravity

$$
x^{0} = \frac{\int \int \int_{\Omega} \mu(x) x \, dx}{\int \int \int_{\Omega} \mu(x) \, dx}.
$$

(Hint: approximate $|x-\xi|^{-3}$ by $|x^0-\xi|^{-3}$ for large $|\xi|$.)

(c) Calculate the potential u and attraction F of a solid sphere Ω of radius a with center at the origin and of constant density μ . Use here that u must have spherical symmetry, must be harmonic outside Ω , satisfy Poisson's equation in Ω , be of class C^1 everywhere, and vanish at ∞ .

3. Let $n = 2$ and Ω be the upper half plane. Prove that $\sup_{\Omega} u = \sup_{\partial \Omega} u$ for $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ which is harmonic in Ω under the additional assumption that u is bounded from above in $\overline{\Omega}$. (The additional assumption is needed to exclude examples like $u = x_2$) (Hint: take for $\epsilon > 0$, the function $u(x) - \epsilon \ln|x + (0, 1)|^2$ and apply Maximum Principle to a region $\Omega \cap B_R(0)$. Let $\epsilon \to 0$, $R \to \infty$.)

4. (Harnack's inequality) Let $u \in C^2(B_a(0)) \cap C(\overline{B_a(0)})$, and $u(x) \geq 0$, $\Delta u(x) = 0$ for $x \in B_a(0)$. Show that for $|x| < a$,

$$
\frac{a^{n-2}(a-|x|)}{(a+|x|)^{n-1}}u(0) \le u(x) \le \frac{a^{n-2}(a+|x|)}{(a-|x|)^{n-1}}u(0).
$$

5. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Show that the Green's function $G(x, y)$ (for the Dirichlet problem of the Laplace equation for domain Ω) satisfies

(a)
$$
G(y, x) \leq 0
$$
, $\forall x, y \in \Omega, x \neq y$.

(b) $\frac{\partial}{\partial n_y} G(y, x) \ge 0$, $\forall x \in \Omega, y \in \partial \Omega$. (c) $\int_{\partial\Omega} \frac{\partial}{\partial n_y} G(x, y) dS_y = 1.$ Here n_y is the outward unit normal to Ω .