MATH 656 HW 4

1. Let $\Omega \subset \mathbb{R}^n$ be an open bounded domain, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a solution of the equation

$$
\Delta u + c(x)u = 0
$$

where $c(x) \leq 0$ in Ω . Show that $u = 0$ on $\partial\Omega$ implies $u = 0$ in Ω .

2. (a) Let $\mu > 0$ be a constant, $u = u(x, t)$ be a positive solution of class C^2 of

$$
u_t = \mu u_{xx}, \qquad \text{for } x \in \mathbb{R}, t > 0.
$$

Show that $\theta = -2\mu u_x/u$ satisfies the viscous Burgers' equation

(0.1)
$$
\theta_t + \theta \theta_x = \mu \theta_{xx}, \quad \text{for } x \in \mathbb{R}, t > 0.
$$

(b)For $\phi \in C_0^2(\mathbb{R})$ find a solution of (0.1) with initial data $\theta(x,0) = \phi(x)$, for which

$$
\lim_{t \to \infty} \theta(x, t) = 0.
$$

(The viscous term μu_{xx} prevents singularities that would occur, compares with Burgers' equation $\theta_t + \theta \theta_x = 0.$)

3. Write down an explicit formula for a solution of the initial value problem

(0.2)
$$
\begin{cases} u_t - \Delta u + cu = f, & (x, t) \in \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x), & x \in \mathbb{R}^n \end{cases}
$$

where $c \in \mathbb{R}$ is a constant.

4. Given $g : [0, \infty) \to \mathbb{R}$, with $g(0) = 0$, derive the formula for a solution of the initial boundary value problem

(0.3)
$$
\begin{cases} u_t - \Delta u = 0, & x > 0, t > 0 \\ u(0, t) = g(t), & t \ge 0 \\ u(x, 0) = 0, & x \in \mathbb{R}. \end{cases}
$$

(Hint: let $v(x, t) = u(x, t) - g(t)$ and extend v to $\{x < 0\}$ by odd reflection. Solution $u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{-\frac{x^2}{4(t-s)}} g(s) ds.$

5. (Duhamel principle) Let $P(D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_x^{\alpha}$ be a linear differential operator of order m, with coefficients independent of t. Assume that we know how to solve the homogeneous problem

(0.4)
$$
\begin{cases} (\partial_t - P(D))u = 0, & x \in \mathbb{R}^n, t > 0, \\ u(x, 0) = f(x). \end{cases}
$$

Find a solution formula for the inhomogeneous equation

(0.5)
$$
\begin{cases} (\partial_t - P(D))u = F(x, t), & x \in \mathbb{R}^n, t > 0, \\ u(x, 0) = 0, \end{cases}
$$

and check (prove) your assertion. (Hint: use the Duhamel principle for the heat equation to guess what the solution formula is.)