THE QUARTIC INTEGRABILITY AND LONG TIME EXISTENCE OF STEEP
WATER WAVES IN 2D
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ABSTRACT. It is known since the work of Dyachenko & Zakharov [52] that for the weakly nonlinear 2d
infinite depth water waves, there are no 3-wave interactions and all of the 4-wave interaction coefficients
vanish on the resonant manifold. In this paper we study this partial integrability from a different point
of view. We construct a sequence of energy functionals €;(t), directly in the physical space, that involves
material derivatives of order j of the solutions for the 2d water wave equation, so that %Gj (t) is quintic
or higher order. We show that if some scaling invariant norm, and a norm involving one spacial derivative
above the scaling of the initial data are of size no more than e, then the lifespan of the solution for the
2d water wave equation is at least of order O(¢~2), and the solution remains as regular as the initial data
during this time. If only the scaling invariant norm of the data is of size ¢, then the lifespan of the solution
is at least of order 0(875/2). Our long time existence results do not impose size restrictions on the slope
of the initial interface and the magnitude of the initial velocity, they allow the interface to have arbitrary
large steepnesses and initial velocities to have arbitrary large magnitudes.

1. INTRODUCTION

A class of water wave problems concerns the motion of the interface separating an inviscid, incompressible,
irrotational fluid, under the influence of gravity, from a region of zero density (i.e. air) in n-dimensional
space. It is assumed that the fluid region is below the air region. Assume that the density of the fluid is
1, the gravitational field is —k, where k is the unit vector pointing in the upward vertical direction, and at
time ¢ > 0, the free interface is 9§2(t), and the fluid occupies region Q(¢). When surface tension is zero, the
motion of the fluid is described by
vi+(v-V)v=-k—-VP on Q(t), t
divv =0, curlv =0, on Q(t), t
P =0, on 09(t)
(1,v) is tangent to the free surface (¢, 9§(t)),

(1.1)

where v is the fluid velocity, P is the fluid pressure. There is an important condition for these problems:

. - >
(12) 8n_0

pointwise on the interface, where n is the outward unit normal to the fluid interface 0Q(t) [41]; it is well
known that when surface tension is neglected and the Taylor sign condition (L2 fails, the water wave motion
can be subject to the Taylor instability [41] [13| [10] 23].

The study of water waves dates back centuries to Newton [34], Stokes [40], Levi-Civita [3I], and G.I.
Taylor [41]. Nalimov [33], Yosihara [50] and Craig [19] obtained early local in time existence and uniqueness
results for the 2d water wave equation (ILI]) for small and smooth initial data. In [44] [45], the author showed

that for dimensions n > 2, the strong Taylor sign condition

oP
(1.3) — 5o 2 >0
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always holds for the infinite depth water wave problem (L)), as long as the interface is in C**7, v > 0; and
the initial value problem of equation (1)) is locally well-posed in Sobolev spaces H*, s > 4 for arbitrary given
data. Since then, local wellposedness for water waves with additional effects such as the surface tension,
bottom and non-zero vorticity, under the assumption (I]:{I)H were obtained, c.f. [9, 14, 15| 27, B0, 32, 35,
37, [54]; local wellposedness of (LI) in low regularity Sobolev spaces, cf. [6l [7) 25 1], and in a regime
allowing for non-C! interfaces, cf. [29, 49, Bl 4] [5] were proved. Moreover the author [46] [47], Germain,
Masmoudi & Shatah [24], Tonescu & Pusateri [2§] and Alazard & Delort [8] obtained almost global and
global existence for two and three dimensional water wave equation ([LII) for small, smooth and localized
data; see [25] 206] 22| [42] 43 12| 38, B9, [65] 2] for some additional results.

The study of the 2d water wave equation (ITI)) in the Hamiltonian point of view began in [51], where
Zakharov discovered that the 2d equation (ILI]) can be written as a Hamiltonian system. In [52] Dyachenko
& Zakharov showed that there are no three-wave interactions in the Hamiltonian 2d water wave equation (L))
and all of the four-wave interaction coefficients vanish on the resonant manifold. Dyachenko & Zakharov [52]
and Craig & Wolfolk [20] derived a formal [ symplectic transformation that maps the Hamiltonian system
of the 2d water waves to its Birkhoff normal form of order 4; and mapping properties of the transformation
were studied in [21I]. Building on [52] 20} 21], Berti, Feola & Pusateri [I1] gave a rigorous construction of
a bounded and invertible (non-symplectic) transformation in a neighborhood of the origin in phase space,
mapping the 2d water wave equation (LI)) to its Birkhoff normal form up to order 4, and showed that for
sufficiently small and smooth periodic initial data of size e, the 2d water wave equation (L)) is solvable for
time of order O(¢~3). The global and almost global existence results in [46] 47, 24l 28, 8, 25| 26], 42| 2] are
consequences of the order 3 integrabilityH of the water wave system and the time decay properties of the
solutions with localized initial data, the assumption that the data is sufficiently localized is crucial for these
global existence results. [I1] is the first rigorous long time existence result taking full advantage of the quartic
integrability of the 2d water wave equation. The transformation in [I1] is constructed via composing several
paradifferential flow conjugations. The final resonant Poincaré-Birkhoff normal form system constructed in
[11] is not a priori explicit, and an important step in [I1] is a normal form uniqueness argument that allows
the authors to identify the Poincaré-Birkhoff normal form system of [11] with the Birkhoff normal form
system constructed in [52] 20], up to degree 4 of homogeneity.

In this paper, we study the quartic integrability of the 2d water wave equation (LLI]) from a different point
of view. We construct, directly in the physical space, explicit energy functionals that exhibit cancellations
up to order 4 as well as important algebraic structures that allow us to prove appropriate boundedness
properties. A consequence is that if some scaling invariant norm and a norm involving one order spacial
derivative above the scaling of the initial data are of size no more than ¢, then the lifespan of the solution
for the 2d water wave equation ([LI)) is at least of order O(e73); if only the scaling invariant norm of the
initial data is of size ¢, then the solution will exist up to order O(¢~%/2) Our long time existence results do
not impose size restrictions on the slope of the initial interface and the magnitude of the initial velocity, the

initial interface can have arbitrary large steepness, and the magnitude of the initial velocity can be arbitrarily

When there is surface tension, or bottom, or vorticity, (I3)) does not always hold, it needs to be assumed.

2That is, it is unbounded and non-invertible.

3Here we say an equation is integrable of order n if all the nonlinearities in the equation of order less than n can be removed
by some type of normal form transformation.

4No dispersive properties of equation (L)) is used in the proof of our long time existence results, Theorem [3.1]
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large. To the best of our knowledge, this is the first long time existence result assuming smallness only on a
scale invariant quantity at the initial time, and it is the first allowing steep initial interfaces.

The work here is a continuation of our work in [46], [47, 49], and we expect that the results in Section 2lon
the structure of the 2d water wave equation (1)) will have other consequences. We give rigorous statements

of our main results in §2 and §3l

1.1. Outline of the paper. We present our results on the algebraic aspect of the water wave equation,
namely the quartic integrability, and their proofs in §21 In §3] we state our long time existence Theorem, its
proof is given in §4. While notations and conventions will be introduced throughout the paper, a complete
list can be found in Appendix [Al Some of the basic equations and formulas derived in our earlier works
[441 [46] [49], as well as some additional identities that are used in the derivations in this paper are collected in
Appendix[Bl Appendix[C|contains the inequalities that are used for our proofs. In Appendix[D]we summarize
the estimates obtained in .31 and §4.3.2 for easy referencing.

1.2. Conventions. We consider solutions of 2d the water wave equation (ILII) in the setting where the fluid
domain Q(t) is simply connected in R?, with the free interface 9Q(t) := 9Q(t) being a non-self-intersecting

curve,
v(z,t) = 0, as |z| = oo

and the interface 9€2(t) tending to horizontal lines at infinity. We will primarily use the Riemann mapping

variable in this paper.

1.3. Acknowledgement. The author would like to thank Jeffrey Rauch for carefully going through the
first draft of the paper and for his helpful suggestions.

2. THE MAIN RESULTS ON THE STRUCTURE OF THE WATER WAVE EQUATION

In this section we construct a sequence of energy functionals &;(¢) which involves material derivatives of
order j of the solutions, such that %Q‘Sj(t) is quinticli The construction is based on a series of observations,
given in Lemma 2.7] through Proposition 2.6 and equations (220)-(221)), (Z31)-(Z32). One of the conse-
quences, presented in §3] of the results in this section is the long time existence of solutions for the 2d water
wave equation (L.

Let z = z+iy = z(a, t), a € R be the interface 9Q(t) in Lagrangian coordinate a, so z;(a, t) = v(z(a, t), )
is the velocity of the fluid particle on the interface, and zy (o, t) = (vi +v-Vv)(z(a, t),t) is the acceleration.
Let ® : Q(t) — Z_ be the Riemann mapping from the fluid domain Q(t) to the lower half plane &_,
satisfying lim, o, ®,(2) = 1 and ®(2(0,t),t) = 0; let h(a, t) := ®(2(a, t),t), b(c/, t) := hyoh™(a’, ). And let
Z( t) = X(a/, ) +i Y (o t) = z(h= Y/, 1), 1), Zi(a!,t) := 2z (h~1(a/,t),t) and Zy(a,t) := 2 (h (1), 1)

be the position, velocity and acceleration of the interface in the Riemann mapping variable o/. We know

5Tn all these works [46, [47, 241, 28], [8] 25}, [ 26] [42] 111 55 2], norms involving derivatives both above and below scaling are
assumed small. Such smallness can not be preserved after rescaling. Also in all works [46] [47 24 28} [ 25, [T} 26] 42} 1T}, 55l 2],
the slope of the initial interface is assumed small.
6The ?quintic” in §2 means it is a finite sum of terms homogeneous of degree 5 or higher of the unknown functions Zg,
1

—— — 1 and their derivatives. In §3] §4]we will show that after some further modifications it is in fact O(e%) with € as defined

i’ GD)-@ID).
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Dy := 9;+b0,, is the material derivative; for any function f = f(a,t), Di(foh™!) = (8;f)oh™!, 80 Z; = D; Z
and Zy = Dy Z;. And as derived in earlier work, cf. [44] 48] or §2.2 of [49], we have

Zt 715 Zt
2.1 b= I —H =P = P .
( ) Re( )<Z,o/> H<Z,a/>+ A<Z,o/)

Since the fluid is incompressible and irrotational, so v = V¢, where the velocity potential ¢ satisfies the

Bernoulli equation in the fluid domain Q(t):
(2.2) or+3IVelP +P+y=0, Ap=0, inQ),
' P =0, on 990(t).

Let ¢(a,t) := p(z(a, t),t) be the trace of the velocity potential on the interface. As was shown in Proposition
2.3 of [46], the quantity (I — $)y, where 9 is the Hilbert transform associated with the interface z, after a
suitable change of coordinates, satisfies an equation with no quadratic nonlinear termsﬂ This motivates us

to begin our analysis with the quantity

Q= (I +H)(Woh™) = 2Pu(oh~),
Lemma 2.1. We hcwﬁ@
(2.3) D;Q =i(Z — o)+ Pa (|Z:),

1 1 — 1
2.4 DPyD ) ——— 0 Q =1P Zi 1 — 7+ | = —1 .
24 FrDQ+ iz R =i A( < z,af)+ (z >)

Proof. By chain rule, (22 and the fact that V(z,t) = 2, on the interface z, we have

= Vo 2z, = — Liz)2,

(2.5) Y =@ + V-2 Y+ 5]z
Yo =V 24 =2t 2a-

Changing to the Riemann mapping variable o’ in the second equation yields 9/ (¢ oh™!) = Z, - Z , =

Re(ZiZ o), which in turn gives
(26) 80/@ = 7152,0/,
because the holomorphic quantities d,/@Q and Z;Z . have the same real parts. A change of variables in the
first equation in (ZF) yields Dy(¢p o h™) = =Y + 1|Z;|2.
We compute, by first commuting D; with H, then applying (2.]), Proposition Bl (A3]) and (2.6]), that
DyQ = (I +H)Dy( oh™") + [Dy, H](p o h™)
Zy

= (I+H)(—Y—|— %|Zt|2) + |:Z—Q/,H:| 8a/IP’H(¢ o h_l) + |:7Zt, ,H:| (%JP’A(w o h_l)

1 Z Ze . —
= ([ +H)(-Y + 5|Z,) +Pa <7;aa/c2> —Py (7;8&,@
=i(Z—-d)+Pa(|Z:)),

where (I +H)(-Y) = i(Z — o) because both of the holomorphic quantities (I +H)(-Y") and i(Z — o) have
the same real parts. This gives (23]

"Observe that the basic energy used in [46] (cf. Lemma 4.1 of [46]) is in fact coordinate invariant, this means the second
part of the transformation in [46]: the change of coordinates is less important if we directly work on energy functionals.

8Applying D, to both sides of (23] gives the first equation in the interface system (B)).

9Equation [3) was also derived in [25] using a slightly different approach.
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Observe that Py D,Q = i(Z — o') by 23). We further compute, by ([21)) and the fact that PoZ;, =

and P4 Z; = 0, that

Dif{i(Z o)} =i(Z—b) =

7 1 — 1
+1P Zel1— + 7|l =——1 .
Z,a’ i ( ! ( Zya') ! (Z,a/ >)

ZZ:, =1 \Z,ﬁao/Q by (Z8). This gives (Z4]).

Let
(2.7) 0 .=q@, eV .= (PyD)Q, and
. 1 ) .
(2.8) DPy DO 1 W&ﬁ@ =GV,

5

Zy

We know PG = 0 by [Z4). We would like to find a formula for PiG). To this end we derive a recursive

relation, which in turn gives the formula for Py G)

Proposition 2.2. 1. Let © be holomorphic i.e. P4© =0, and ©1 = ]P’HDtG Assume that

(2.9) D/Pyg DO +1i |ZO/|280/® G, and D{PyDO1+1 |ZO/|280/®1 Gi.
Then
(210) PyGy — Py D{PyG = l}P)H {_1 (< 7,5 i_l Dy®O >4 < —i— 1 , 2y, Do © >)}

2 Z. o ’ Z,a/ Da Zo' “ ,
where the cubic-form < -,-,- > 1is defined by

Chatim L [ U= IV N 1D
i (af = f3')?

2. We have

j—1
(2.11) Pu(GY) = (PyD,) (PH(GU*”) - ]PHDt]P’H(G(j*l*”)) ,

=0
where Py (GYV) — Py DiP(GU='7Y) is given by @ZI0) with © = U1~V

Proof. Let F =P4D{© and F} = P4 D;©;. We know by [2.1)) and the identity (A4) that

Z
(2.12) F=P,D,0 =P, (Zt aa/(a).
It is easy to check, by the definitions and the decomposition identity (A3]) that
1 1
DPyG — Gy = —DyP4G + D, F. Ou F + | Dy, i ———0,| ©:
tH 1 tPaG + Dy 1+Z|Zo/|2 +[ t |Z,o/|2 ]

using the definitions again yields

P F,+P
AG =F| + A< |Za|28 @)
SO

D{PyG — G1 = —DPy < |Za,|28 @)

this gives, by 1)), (A.4), (Z12) and (B.20), that

1
Py(DiPyG — Gy) = —P OaPa (i —500©
w(DEwG - ) = 2 (- 0uPa (175000

. 1 t . ba’ - 2R6DO/Z1§
+]P)H <Z maa/]P)A <Z—a/8a/@)> +’LPH ( |Za/|2 80/6) .

1
———0u F 4+ | Dy, i ——0u | ©;
|za/|2 % C Uz ]

(2.13)
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Now by identity (AZ4) and the definition of D,/© we can rewrite the first two terms in (ZI3)) as

Z, 1 1 = 1
_IED _—aa/P ] —aa/@ = _IED _—P Z 60/]P) ] _—DQ/G ;
(e (o)) = o (e (Foema i 700 )

o1 Zy 1 o1
P ——— 0P ———Ou =P —P P a (2D .
H (Z |Z,o/|28 4 (Z,o/a ®>> " (Z,o/ " (Z Z,o/a A( ' ®)>)

We use (BII) and the fact that Z; and »— are holomorphic to further rewrite

— 1 1 = .1
—]P)H <Zt8a/]P)A <’L 7 /Da/®>> = §]P)H |:Zt,’L 7—;Da/@:|

’
Lo Lo

and
PH <’L ! 80/]P)A (ZtDa/@)) = l]P)H |:—’L' L,ZﬁDw@] .
7 o 2 Z o
Replacing b, — 2Re Dy Z; in (213)) by (BI) and using part 2. of Proposition [B.] gives ([2.10).
It is easy to check (ZII) using the fact that Pz G©) = 0. O

We next present a new energy identity. The basic energy form, such as [9,0]* + aV,.0 0 da, is commonly
used in the proof of the local well-posedness of the water wave equations. In [46] we found that the energy

form
1 _
/a|a,ﬁ|2 + 00T da,
with the coefficient a moved to the first term and the Dirichlet-Neumann operator V,, replaced by i9, was
advantageous in the study of the quadratic and cubic cancellations in the energy functionals and proving
long time existence, see Lemma 4.1 of [46]. In the following Proposition we introduce yet another basic

energy form. We will see that this new energy form makes it easier for us to find the quartic correcting

functionals to cancel out the quartic terms in the time derivatives of the basic energies.

Proposition 2.3. Let ©1, O3 be holomorphic, i.e. P4©; = P405 = 0, smooth and decay fast at infinity.
Define

(2.14) E(t) = Re (/i@a,Gth®1da' —~ /i@a/G)lDtGQ do/> :
Then
(215) E/(t) = Re (/iaa/("jg(PHGl) dOél - /i@a,Gl(]P’HGg)da’) .

where Gy, := DiPy DO + i ﬁao,ek, fork=1,2.
Proof. We use (BI2) to compute F’(t). We have, after applying (B.I8) and cancelling out equal termsE

%E(t) = Re </i8a/®2Dt2®1 dO/ - /i@a/@lDEGQ do/)
(2.16)

1 1
= Re </ ) 6a/@2(Dt291 +1 Wﬁa@l) da’ - /i&a/(%l(Df@g + 4 W&y@g) da’) ]
it is clear that the terms inserted in the second step above sum up to zero. We now want to show

(217) Re/i@a/GQDtIP’ADt®1 dO/ :Re/iﬁa/(%lDtIP’ADt@g dO/.

100bserve that (216)) holds without the assumption that ©1, ©2 are holomorphic.
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We begin with the term on the left hand side. Using Cauchy integral formula to insert a Py gives
/i@a/GQDt]P’ADt®1 dOél = /iaa/®2PHDtPADt®1 dO/.

By @I) and [(A3), Py D;P4D;©; = ]P’H( Z: 80/]P’ADt® ), and using Cauchy integral formula again to
remove the Py and insert a P4, and then use (m) we get

(218) /i@a/@g]PHDt]P’ADt(al do/ = /180/627 &yPADt@l da =1 /]PADt@QaQ/PADt(al dO/.

,al
Exchanging roles between ©7 and 05 in (ZI8) gives us a similar identity for the right hand term in (ZI7),
a further integration by parts then yields [2I7). From (ZI8) and ([217), and using Cauchy integral formula
again to insert a Py gives (2.10). O

Let ©1 = 0, ©; = ©U*+Y and define
(2.19) Ej(t) = Re (/18 ,0UtDEUHD do/ — /z@a/@ )eUi+2) da>
From (Z10) we get,
E/(t) = Re (/i@o/@(jﬂ)mdo/ — /z@a/@ Wda) :
compute further by using (B.12), 2I1), (Z4) and Proposition [B.4l we obtain

d d
EEj(t): 7 /28 ODPLGH) do!

(2.20) +2Re Y {/i@a/(a(j) (P D) Py (G(J_l) - Dt]P’HG(J_l_”) do/}
=0

—i—Re{/z@a,@ Py (G<J+1> — DPyGU ) }

where
Py (G<H> _ Dt]}DHG(J'*lfl))
= Pyl (<Zi=r (G-i=1) - . Zy, Doy©U~1=1)
5 Pu {Z,a/ << 1 Z,a/ o' © >4 < = — Z,a t S > ,

for | = —1,0,...,5 — 1, by Proposition 2.2

Observe that %EJ— (t) is quartic with a few desirable features: 1. the integrands depend only on the spatial
derivatives of the quantities Z4, ZLQ/ and ©); 2. it has remarkable symmetries, with the order of derivatives
evenly distributed among the fac"cors: we note that Do©© = Z,. This should allow us to derive optimal
low regularity estimates. However our main interest here is to find a quartic correcting functional for E;(¢),
so that the time derivative of the corrected energy functional is quintic and can be controlled by the scaling
invariant norm HZLQ/ - 1”}‘{1/2 + [|Z4,ar]| ;- and norms involving only derivatives of orders higher than the
scaling and prove long time existence of the solutions. The feature of %Ej (t) allows us to do so, thanks to

a few additional observations on the structure of the water wave equation.
We note that by (B), —i 5~ +i = Zu + quadratic, and by 26), Dos©%) = DFZ, + quadratic. Le

(222) D=0 + b(Oél, t)aa/ + b(ﬁ/, t)(’?@,,

HObserve that for any function f = f(a',t), D+f = D¢ f and Pf = (D? +1i \Z ) f =: Bf, where P is defined in (B3).
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(2.23) Pi=22+ ’TZ(‘;“ l;) Do + i A|12(6 |;) 0.
And let

(2.24) 0:=7Z,(c,t) = Zu(B 1),

observe that

(2.25) 910 = DIZ,(/,t) — DIZ(B',t),  for j > 0.

So the quartic terms in

2Rez {/z@a/G (4) ]}DHDt)lJrl]P) (G(jfl) _ Dt]P’HG(j*l*l)) da’}

consists of

=V S N - (O R ) E IO 0T S
(2.26) L= ;ReZ//DtZt(a ,t) e dg’ do/.
1=0
Similarly the quartic terms in Re [ i 0o O Py (GUH) — Dt]P’HG(j)) do! are
| L @ (0,808 D) D6 B
(2.27) Ir; = %Re // D] Z,(d,t) o =3 dg’ do'.

We know it is possible to find quartic functionals C; ;, i = 1,2, so that £C; ;(t) = I, ; + quintic, based on

the following observations.

Lemma 2.4. Assume that f and G are smooth and decay fast at infinity. We have

dt//f@tg @fg dodf — // ng do/ dp’

o] (e oo 138300

Ai(a))  A(B)

/ Al(ﬁ/) |Z,a"2 o |Z,5’|2 7g / /
// Oer |Za,|2 )+ ZsP 2 w=F |-

([2:28) follows easily from (B.I3) and integration by parts. We omit the details.

Lemma 2.5. Let G = ghq. Then
(2.29) PG =29, (gh) Diq+ 29, (9D:h) ¢+ hqPg+ ghPq— gqPh.

The verification of ([Z29) is straightfoward. We omit the details.
To find the quartic functionals C; j, we will use Lemma 2.4 with G = ghq. From ([2.28), [2.29), we have

d [[[Dighe) —(®:f)gha , ., / I (gh) ©tq+f©t (99:h) ¢
(2.30) g7 / o — B do’dp’ = — )
provided Pf, Pg, Ph and Pq are quadratic. Observe that on the rlght hand side of (230) the operator Dy

acting on ¢ in the first term is moved to the second term, acting on k. And we know P@g@ = quadratic by

do’df’ + quintic,

(B4)). Instead of going through the straightforward but tedious process of finding the correcting functionals
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C; ;, we will directly give the results. Before doing so, we use Lemmas 2.4 and to write the following
equation. We have, for j, k,i,l,m > 0, and Dth = D‘ZZt(a’,t),

D 2,0, — D,(D] zt)) D (DO Dif DEO)
4!

do’ df’
(2.31) (o = p)?
D! Z,2m {D, (D09i0) D10 + D, (DL Di*10) DFo
:2// ttt{t(t t()/tﬂ/):‘ t(t t ) t}d dﬁ'i_R‘n;)k’
o —
where
// D}Z, [P, @m (239@;{?@?9) dol dg'
+// Dl Z,om {(P@i@)@ﬁ@f@ — DY (PDi) DO + DA DI (P@,’f@)} o ay
(8}
(a/ _ 61)2
(PDIZ,) D} (D0 D6 D)
(2.32) // o~ do’ df’
+// sy gHe) =) (D{Zti)t —@t(Dth)) o7 (D10 DG D) o
o’ B’ o — B (a/ _ 61)2 Q
Ai(e') A8 ; m 07
+z// A o AB) 2T T ZeF | DiZOT (D000950)
@ |Zﬁ/|2 o — ﬁ’ (o/ _ B’)Q :

It is clear that RE ) . 1s quintic.
We now give the correctmg functionals. Le‘.

11

=L 722// DiZ®, — D{“Zt) DLk (@f@ ?@{*He) e

27Tl 0 k=0 (of = )2
] =202 D 7,0, — D‘thZt) ©%+l9©i€§©z—l—2—k9
+ Ar Z // / 12 dp’ do’
(2.33) =0 =0 (o/ = ")
= 2J 2 J=1=-19 ~i—k—1p ~k+i+1p
1 // (0D — D:0) D} 93/3 0 D; edﬁ’da’
TS o (o = B1)?

1 4 . D egolte
+%;//tht gy 98,

and

-1 D ' 2,0, — DIt Z) g Drg DI+ 1g
1 t~t t t t
Cyj = 4—2 // (@ — B2 dp’ do’
k=

J
//Dﬂzt 9” S B do.

Proposition 2.6. Let j > 0. We have

(2.34)

d
(2.35) Il,j + IQJ' — a Re (Clyj + Czyj) = R]c_’j

12We define 3,y = 33,5 = 0. D}z = D] z:(o,t), D{*' 2 = DI Zy(o’ ) in @233) and @3).
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where
DiZ @J gty
RIC,j = — // (ba’ + blg/ — 2 ) L /)2 dOé dﬁ/
=
1 SN RUR) = V(RO ©
——Re( ZZ 7:k,0,j—1—1 Z Z (R3 1+0,k,j—1—2—k Rﬁ;jflfl,jfkfl,lJrkJrl)
(2.36) 1=0 k=0
b(a') —b(fB) iZt 933J9 0 ,
Re// (ba/ +bg —2 T (o — )2 do’ dp

1 (0)
T Arx Rez(_l) R?;O,E,j—k—l'

Observe that ©,D7Z, = DIt Z,. Tt is easy to prove Proposition 26 by (228)-(Z29) or (2.31)- (1232!).
(B13) and the symmetry. we omit the details.

Remark 2.7. It is clear from (2.30) that the remainder R;¢ ; is quintic.

We now sum up (2:20)-(221)-226)-(Z27) and Proposition [Z6], and present it in the following. Let

(2.38) @j(t) = Ej(t) — (/ Zaa/@ PHG(J) do/ + C; J( )+ CQJ(t)) .
Theorem 2.8. We have
d

(2.39) 7 (1) = 9y(0),
where

j—1

R, = (2 ReZ/iaa,@(ﬂ(]pHDt)mPH (G(jfz) _ Dt]pHc;(j—H)) do! —11,j>
(2.40) =0
+ (Re/i@a/@(j)PH (GU*D ~ DPLGY)) do’ ~ IQJ) + Ric;

18 quintic.

In particular for j = 0, equations (2:38))-(2Z.40) gives

(2.41) eo(t):/(ma,(z—a')(Z—a)+|Z| _ / 'Zt - BN 4 gy

13When computating %CL]‘, use the identity
oLk (@4@?95)@{*19 +D:(DF0 @ﬁ)@{*’*le) = pl-kt1 (i)t(@feé)@{*l*e) — ok (@4@5“9@)@{*“9) .

Also, when using (228)-(229) or 231)-(232) to compute, apply D; to the factors in the exact order given in the right hand
side of (229) or (Z31) to facilitate cancelations.

14By interchanging o/ with 3’ and use symmetry we have

[ Llenatel) — s )t N ale) ~ a8 gy g
(Oc’ _ B/)2

Nigla’) —g(B))(h(a') — h(B))(a(e’) —a(B)) , , .

// (o — )2 da' dp’.

(2.37)
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and
1 - 1-A) = 1-A —
%éo(t)zi/ZZt << Zt,i 7 I,Zt>+<—i Z I,Zt,Zt >) dOé/
(2.42) o o
1 b(e) —b(B)\ |Ze(e) = Z(B)]* | o
- — bor + bgr — 2 .
87 // < + B o — ﬁ/ (O/ _ B/)z do dﬁ

In our proof for the long time existence result, Theorem B we will only use (Z39)-(240) for 1 < j < 4.
Similar to (2.20))- 221]), equations (2:39)-(240) can be used to derive optimal low regularity results. However

our focus in this paper is on the long time existence of solutions to the water wave equation.

2.1. Scaling. The solutions for the 2d water wave equation (B))-(B.2) obey the following scaling law: If
(Z, Z) is a solution of (BI)-(B.2), then

(2.43) (7?, Zk) = (A—l/zz(m’, AV A1 Z(0, Al/zt)>

is also a solution of the equation (B)-(B.2). The following norms are scaling invariant for the water wave

equation (B)-(B2): Hzl } 1 Z ¢,

o

R’ and H

L2( Z o 1HL°°(R)'

H1/2(R)

3. THE MAIN RESULT ON THE LONG TIME EXISTENCE OF SOLUTIONS

We are now ready to present our main result on the long time existence of solutions to the 2d water wave

equation (LTI
Let
N . 1 .7
R O P icl R LI P AP IR 220 e

Theorem 3.1. 1. Let J > 2. Assume that the initial data (715(0), ZL/(O) — 1) € m%gngHs(R) x H*~2 (R).
Then there are constants mg > 0, and 0 < g9 < 1, such that for all 0<e < ey, if the data satisfies

1
Z o

(3.2) L(0) <

0) -1 <1, and  E1(0)E3(0) < m3,

Io°

&

there is a constant Ty > 0, depending only on my, so that the initial value problem for the water wave
equation (BI)-B2) or equivalently (LI) has a unique classical solution for the time period [0, %] During
this time, the solution is as regular as the initial data, L(t) < €, ZLGI(t) - 1HL<><> <1 and By (t)E3(t) < md.
2. If instead of [B2) the data satisfies

1
Z o

<1, and E;(0)E3(0) <m?,
LDO

(3.3) H <0)H | Zoaw O] gy < Hzl ©) -1

H1/2(R) o

804/%(0)”}11/2 and H@i/Zt(O)HLZ, so that the initial
value problem for the water wave equation (BI)-(B.2) or equivalently (L) has a unique classical solution

then there is a constant T1 > 0, depending on mg,

for the time period |0, Ssﬁ] During this time, the solution is as regular as the initial data.
Remark 3.2. Observe that F; (t)E5(t) is scaling invariant. The sole reason for the assumption on F1(0)E5(0)

is to control the evolution of the norm || -~

o

2 2 1
H (1) — 1HL2 +[|©@ ()| ;71,+ and Es(t) controls 1 HDQ,Z%a_'(t)

(t) — 1HL . We will show that for € small enough, E;(t) controls

Ja!

2
’ + H®(4) (t)Hzl/Q, see Proposition [4.4%
L2
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and the quantities ©(®)(t), @™ (t) are mainly related to the velocity Z;, see Step 1, Step 3 in §£3.20 We

know by Lemma [£.2] that, assuming |[1 — Zla, . < 1, there is a constant ¢ > 0, such that
2
(3.4) HZl -1 <c 7 -1 DO/L2 ,
o L>(R) o L2(R) o | L2 (R)

SO

1 4
(3.5) Z (t) —1 < 4B (t)Es(t).

Ne% Lo

We will show that the growth of Ej(t)E3(t) can be controlled for time of order O(¢~3), which in turn

gives control of HZL(t) - 1H for the same time period. The constants my > 0 is chosen so that
,o! Lo

‘ZL(O) - 1H < 1 Since HZL(O) - 1” can be arbitrarily close to 1, the slope of the (initial)
,al =S ol Lo
interface can be arbitrary large. Observe also that no assumption is imposed on the magnitude of Z;. So

the magnitude of the (initial) velocity can be arbitrary large.
Remark 3.3. Part 2 of Theorem B.I] is a direct consequence of part 1. Observe that the rescaled data
(Z;(0), Z=(0)) satisfies

1
/—Z8 ,

Oa (0) O

=&
L2

+|

0% Z;(0)|

. Z,la, (O)HHW AV
So by part 1, the assumption (3] implies that the lifespan of the rescaled solution (7?, Z¢) is of order
O(e™?), therefore the solution (Z;, Z) has a lifespan of order O(¢7°/2). In fact, the same scaling argument
shows that for data satisfying 3:3) and (Z:(0), ZLQ/(O) -1) € Q%SSSJHS x H*~/2 the life span of the

solution is at least of order 0(8_3-’_2]1*2 ), and the solution remains as smooth as the initial data during this

time.
By Remark [3.3] it suffices to prove part 1 of Theorem [3.1}

Remark 3.4. In part 1 of Theorem [3.]] the smallness assumption is only imposed on the scaling invariant
. 1 - . 1 2 & .
quantity H 7o (O)HHI/2(R) + | Zt (O)HL2(]R) and the quantity ‘ Do 7 (O)HH1/2(R) + Haa’Zt(O)Hm(R) which

involves one higher order derivative. In this paper we do not try to lower this higher than scaling derivative

to avoid technicality. We note that in all earlier works on long time existence [46] [47] 24 [8], 28] 22] 25| 26,
42| [T, [TT], smallness is assumed on norms involving derivatives both above and below the scaling, so the
smallness of the quantities can not be preserved after rescaling. And in all these earlier results, smallness is

assumed on the slope of the initial interface.

Remark 3.5. In the regime where H (1) — 1” < 1, the interface Z = Z(d/,t), o/ € R is a graph.
’ Loo

,a

4. THE PROOF OF THEOREM [3.1]

4.1. Some additional quintic correcting functionals. To prove Theorem [B.I], we need some additional

quintic correcting functionals to the energies €;(t), for j > 2. The goal is to have no loss of derivatives when

controlling the higher order energy growth, to not involve H and any norms of order lower

Zo 1HL°°(]R)
than scaling when bounding the cubic growth rates for the lower order energies, and to have proper control

on the growth of E(t)E5(t).

1

15 Assuming c is the optimal constant so that B3) holds, we choose mg such that m3 < 1z
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Let j > 2. Observe that the factors DJHZt and PDJZt in Rglzk of (232) have more derivatives than
are controlled by &;(t); we perform an ”integration by parts” in the time variable, moving one D; from the
factors Df 17, and PDg Z,; onto others, resulting in the following quintic correcting functional.

Let

DPHi—17 m (DY DGOk
// PDj ZtBD @/6‘33 10070) do'dp
(4.1) = J l ig ek
b(a) —b(B8)\ D] Z, D(D;0DL0D¢0)

Computing using (BI3) and (BI8) yields
7>D 7, + Dy, P] DI~ Zt) D (DLHDIGDEG)
- =

do'dp’

/ /
dt E (¢ dodp

/ PD T ZO (D0 Dig k)

(o B’)
PDI™ 1Zt©m(©l9©i§©§9)

+// <ba,+bﬁ,— > T do/dp
J+1 m i
(4.2) +// <ba/ b ,_ > pitlz, @ (OUDFDLY) , 1o

—B)?
o

D!z, @m“ DD DEO)
/ J m l gk
// (60/Dtb+ O Dib — 2Dtb(04 ) — Dtb(ﬁ )) D] Z, D7 (D090 D70) do’dp'

—p')?

o = (af = p')?
(o) = b(8")? (b(a’) = b(5")) D}Z, D (D0 D0DF) |,
6— —4(by + bgr)—————F= + 2by by do’dp';
+ // < a/ _ /)2 ( + B ) (a/ _ ﬁ/) + B (O/ _ B/)2 @ ﬂ
in the sum IL(";) k( )+ C‘litFj(rln) k( ) those terms containing the factors D{’HZt and ’PD{?t are all cancelled

out.

We also need the following correcting term for %Réi in Rrc,2, cf. [236)-232). Define

(4.3) Ds( // (Hbe (mt@@te@ do/ dB',  Ds(t) = Dy(t) = 0;
T 4r )
we have by (B13), (BIS),
9@ 09,09,6
4p / 8a/DtHb9© (mte/@t@d g’ +—/ Hbe, i )do/ B’
(4.4) @i’ b o =B
—b(8) 09,090,000 ., .
v Jf (o 2G5 e SRR a0
Now define

(4.5) N = Dy0Y (/1) — DO (Ft).

We next introduce

TN0TL NN 06 TGDI007 +DIFDITI0
we ::_Re<///\)\ +/\)\ s g — //@ ) +§)© d,dﬁ,>
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to deal with the derivative loss in the term
Jj—1 _ _ _
2R62/i8a/@(j)(PHDt)l+1PH (G(J*l) _ DtPHG(Jflfl)) do’ — T,

and to ensure the control of F;(t)E3(t). We compute by (BI3) and using the symmetry ([2.37) to get

J J j+1 741
d g =l <//Da/®()©tA 00 +D200 g - //Djztsa 999+©t 999d,dﬁ,>
s

(4.7) dt "= pB)? - p)?
where
) (|/\j|2 - |33{9|2) 00,8 + ((ﬁ)? - (33{5)2) 090
RH,j:—Re// - v da/ dp
j |2 Jig|2 2 4 J
1 o) — (@) (WP - 12167) 1o + (92 - 0iop) &
— bor +bgr — 2 do’ dp’.
+47TR6//< + bp o B o —p) o' df
Observe that in the sum I ; + HJ, the term
Jj+1 Jj+1p
—Re/ DJZtg 0994—;/)) 900da '

in I ; is replaced with

J 9 14 ige
_Re//Da/@ D\ +z/) 06
- B)?
which matches better with the corresponding term in 2Re [ i 9,0 (P D) Py (GM) da/, and the harmless

terms in Ry ;.

Let
1 j—=1 1 (=) 1 j—2j-1-2 © 1 j—1 ©
_ k k
(4.9) T om Z Firo T Z Z (=1) B ik T i Z(_l) kb1
1=0 k=0 1=0 k=0 k=0
(m) (. p(m) d o (m) (4.
(4.10) 737%“@‘) = Rj;l,i,k(t) + EFE;LM(”’
and define
5j(t) L= @j(t) — ReFj(t) +R€Dj(t) — Hj(t)

(4.11)

= E;(t) — Re </ 100 OPHGU) do! + Ch,i(t) + Co(t) + F;(t) — D;(t) + Hj(t)> )

By Theorem [Z8 and (£10), we have

d
(4.12) 261 =R;(t)
where
j—1 L d
R;(t) = (2 ReZ/i&a,@(j)(PHDt)lJrlPH (G(jfz) _ DtPHG(jflfl)) do/ — I, — EHj>

(4.13) =0

+ <Re/iaa/®(j)]P)H (G(j“> - DtPHG(j)) do’ — Iz,j> +Ric, + Rejt i (1),
and

d

(4.14) Ric,j = Ric; — - Re Fj(t)

dt
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(1—k) (0) (0)
is as given in ([2.30)), except that the quantities R~ kD1’ R§;1+1,E,j—l—2—k and }%,0 Fi_h_1 Are replaced
(I—k) (0) (0)
by 737k 0i—i—1’ R};lJrl,E,jflfok and 7?,3;07EJ_7]€71 respectlvely.

4.2. The main components in the proof of Theorem [3.11 We are now ready to prove Theorem [B.11
We begin with the following lemmas.

Lemma 4.1. Let 0 < 6 < 1. Assume that

-1

(4.15) H <1-4.

L= (R)

’
e

Then for any holomorphic function f, i.e. Py f = f, we have

= .
,af Hl/Q(R)
f—PHf—PHeg)+PH{f<1—7:,>}

Z,OL/ H1/2 ,Ot/ e

This gives ({10). O

Lemma 4.2 (Sobolev). Assume that

Proof. We know

1-—

‘1 — ﬁHLw <1, and ZLQ/ 1s sufficiently smooth. Then

2 1

2

’
e

-1

<18
L>(R)

1
(417) H —1 D.

Z o

’
o3

L2(R)

L?(R)
Proof. ([@I7) is essentially a Sobolev inequality. By Fundamental Theorem of Calculus and Cauchy-Schwarz

inequality, we know for any smooth complex valued function f tending to 1 at infinity,

1
FU ) = (P =) < 16 = ) 00t e <5 = 1 |20
On the other hand,

1 1 1 1 1
T ) =S (e = (-1 (—f2+—f+—).
It is easy to check that if [1 — f| < 1, then Re (12 + 6f +5) > 36, which implies

1 1
HOGEHEEGE EF TR

Replacing f by % yields (@I7). |
Part 1 of Theorem [B.1] follows from the following Propositions.

Proposition 4.3. Let 0 < < 1, and Ty > 0. Assume that

(4.18) sup
t€[0,To)

There is a constant 0 < eg(0) < 1, such that for all 0 < € < €o(d), we have 1.

(t)—1 <1-4, sup L(t) < 2e.

Lo te[0,To]

ol

(4.19) 2 < Zs ) < erL(t) v t € [0, To]
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where ¢1 and 02(5) are some positive constants. 2.
4 4
(4.20) D EM D E0)+€t, Ve 0,Ty
j=2 j=2

Proposition 4.4. Assume that the assumption of Proposition[{.3 holds. There is a constant 0 < €y(d) < 1,
such that for all 0 < € < €(0), we have 1.

(4.21) (1+8) B (1) < H z,la, (1) -1 2L n H®(2)(t)H;/2 <A+ OE{), Viel0,Ty):
2

(4.22) (14 6) By (t) < i DQ/Z%,@) + H®(4)(t)H;/2 <(1+0)Bs(t), Vtel0,T;

(4.23) (1+0) " E1(t)E3(t) < €1()&(t) < (1 +8)Ey(t)Es(t), vt €[0,Tp).

2. There is a constant c3(671) > 0, such that

(4.24) E1(1)E3(t) < €1(0)E5(0)e=® Dty ¢ e [0, Ty).

Let J > 2 and assume that the initial data satisfies (7,5(0), 7—(0) — 1) € ﬁégngHs (R) x H*~2(R). By
the local existence results [44) [6] 25] 4], we know there is a unique classical solution for the Cauchy problem
of the water wave equation (B)-(B.2) for some positive time period [0, 7], and the solution exists and is as

regular as the initial data for as long as L(t) and || Z o (t) remain finite.

Il oo
Now assume that the initial data satisfies (32). Let § > 0 be fixed, such that Hl - %(O)H <1-26,

Sl

C1

€ 1= max{l, C;—({;)}s, so L(0) < mim{l7 02_@)}6. Let Ty > 0 be the maximum time such that the

solution satisfies

(4.25) sup
t€[0,To)

(t) -1

<1-4, sup L(t) < 2e.

Zo Loo te[0,Ty)

By Proposition 4] there is a g = €g(d) > 0, such that for all € < e,

(4.26) Ey(H)Es(t) < (14 6)2E1(0)E5(0)e® Dt v 0<t< T
S0
)
2,2 = mi
By Lemma [£2 and [@21)), (£22), there is a constant ¢y such that
1 4
(4.28) H 7 (t)—1 < co(1+6)?Eq1(t)E5(t), V t €0, To).
af L= (R)
Let m3 = 53(1)(—12;5();; Then we have

4
<co(14+60)"mi=01+0)'1-20)"=(1-6-26%)1  Vtelo,T.
Lo (R)

(4.29) H L -1

’

By Proposition 3] there is €y = €y(d), such that for all € < ¢,

1
02(6)

1
(4.30) L(t)? < Ei(0)+et ]| <+ =0) ot < 2¢%, for all t € [0, T3],
2

4
j=2
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where Ty = min{Ty, 026(36) }. By the maximally of Ty we must have min{7y, T>} < Tp, so there is To = To(6) >

0, such that Ty > % This proves part 1 of Theorem [B.11
In the remainder of this paper we prove Propositions and IHI@ We assume that (£.I8) holds, namely
forsome 0 <d<1,0<e<1andTy>0,

(4.31) sup
t€[0,To]

(t)—1 <1-4, sup L(t) < 2e.

Lo° t€[0,T0]

Z

We assume ¢ € [0, Tp] in what follows.

4.3. The proof of Propositions [4.3] and [4.4l From definition 21), (28], and equations (2.6]), 23) we
know

Z
(4.32) 00 =q, oW=iz-a) 63 =_iPyb= Py L
= 1
(4.33) D0 =7, D0 =i (1 - Z > ) and
i 1 . .
(434) O = P (1 0,00) 4 Pa(G),  for =1
Therefore

E;j(t) = Re (/i@a@(”l)mda’ - /i&a/@(j)mdo/)
(4.35)

= Re (/i@a/G(jJrl)mda’ +/|Da,@<j>|2da’ +/ma,mPH(G<J‘>)da’) .
4.3.1. Quantities controlled by L(t), ||1 — Zl, L +Zell ga2» and || Zs o || g1)2 —i—‘ Ba/%HN. We begin with
deriving some basic estimates for the quantities involved in the proof of Propositions [4.3] 4l First note
that by assumption (£31)),

1

4.36
(4.36) sup 7.

te[0,To)

and by interpolation and Sobolev embedding (C.6l),

(t)

<2, sup [ Z,ar (t)l| e <071
oo tG[O,TQ]

1
(4.37) 12t e + 1 Ze.0r /2 + || Oar SL(t) <e
Z,O/ L2
We estimate, by (B,
_ A -1 1
Zu = —i (1
" ! Z,a' +z ( Z,a’) ,
[B2) and ([CI7), that
(4.38) A1 =2 S Zellgare 12002 S €1 Zell gy
1 1
(4.39) 1zl 5 1= | bt sfi- | ez
ol |12 o |2
by (C.18), (C.40), (B.2) that
(4.40) A 21 A = Y + [ Al S 1 ZearlZe S €

16We will be brief on straightforward but tedious details for the sake of a concise presentation. We suggest the reader get
familiar with the basic tools in Appendices [Bl [C] before continuing.
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by (C.3), (B.I) and [@.20),

1
(4.41) 1 Zstll e S 1 Zear 122 + HZ— o S6 N Zul- S5
o || fri/2
by (B6), (BD), ([C24) and (C:23) that
(4.42) DA e S 1 Zesar |21 Zecll grave + 12072 oo 2
(4.43) [bar —2Re Dov Zil[ 12 S 122,00 12 S e
ol || fri/2

this implies that
(4.44) [barllL> S 1 Zt.arllze

and by (#32) and (B4) that
(4.45) l0w0@| | se IPZ s D32, S 1 Zearllie + € S e

L2 ~

| Zearllre S e, and [|DeAq] . S €%

’
e

H1/2

In what follows we pay particular attention to the bounds ||das5— HL2 and || Zy,or || 1/2 in the estimates
for the sake of proving Proposition [£.4l We estimate, by (B.7), and (C.40), (C.I]),

1
(446) ||ba/ — 2ReDa/Zt||H1/2 + ||ba/ — 2R€DO/Z,5||LOO 5 ||Zt,o/||L2 (90/ S € (90/ N
Z,a/ L2 o || 1,2
so by (C4), (B.3),
1 1
(4.47) 1bar [l gr1/2 + || Dt S € |0 1 Ze,o | g1/
Z,a' EH1/2 Z,a L2
this gives, by using (£32) and (C4), that
1 1
I L I O PR 18
149) [0w0® + [P Sl lliss + 00 —|| erlis S €O z—| Nzl

and as a consequence of ([£40) and ({31), we also have

1

(4.49) [barllpoe S NZtarllze |00 ——1|  + 1200l S €

Z o || 2
and we record, by (B.S),

1
4.50 D <
(4.50) i s
Now by (B2), (CID), (CI9),
(4.51) 100 Arll e S 1 Zear g2 1 26,0l a2 S €1 Zesar e s
and by (B.I),
1 1

I P et PR L PR L P (X A P
We write
(4.53) [Zt, b; Et,a’} =— < Z, b, 7t,a’ > +7t,a’ (Zi,b;1],

estimating ||< Zi, b, Zt,ar >|| 1. by (C31), and the H'/2 norm of the second term by (C4) and (C.23),
([C29) yield

(4.54) 11265 Zear ]|l oo S W2l ggae bl 2 120l 2 + 120l 2 1 22| 2 1B e
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from (B.6)), further using (CAQ) gives

_ 1
(4.55) IDe A e SN Zearll 2 1 Zetsar o + || [ 22305 Ztar ]| e S € ||Oar 7 H te 1 Zt,00 | gr1/2 5
ot |l L
by (B4) and (C3), (C4), this gives
1
(4.56) | Zieell gra/e S €| O 7 + 12,00l g1/2 -
L2

We also record, by (B.4), (£46), ([A55), (@51) and other relevant earlier estimates that

— 1

(4'57) |‘PZt|‘H1/2 5 € 60/ 7 ’ +e€ ||Zt,o/||H1/2 .

o’ |12
By (B.), (CI3), (C21), (C42),

1
(4.58) IDeA | o S 2ol 2 | Zetar | 2 + 1 220 7 [1Bar [l 12 S €]|Our + el Zt,o ll gose s
Z
o |12
therefore by (B4), we also have
— 1

(4.59) |PZi]| . Se Dot H el Zoarll e

o’ |12
and
(4.60) 1Zitill poe S N Z0arll e + € S e
Now by (B.7), (B:34), and (C.I7), (CI19), (C23), (E41),

1 1
[Dt(bar —2Re Dav Zt)| 12 S 1 Zetll a2 || O 7 + 1 Zt,ar |l 2 DtZ—
a || 2 a || fi/2
(4.61) X ;
Zo ol va lborll 12 || < 0 Ze il
Wl olin o] seforgs] ezt

this gives, by (@52), (BI7), (B18), (C42) and earlier relevant estimates in this section that
1

~

(4.62) 1100 Debll 12 S 1De(bar — 2Re Dar Zy)l| 2 + [DeDar Zall 2 + b lI7s < ‘

O
Z

+ellZearllige -
L2

We estimate similarly, by (B.8), (B.34)), (B.31)), and (CI7), (CI9), (C23), (C27), (C42) and the estimates

above in this section to obtain

’
o3

1
(4.6 D241 S owg| + ezt
a || 12
this in turn gives, by (B.4), (B:21)), because PZy = DyPZ; + [P, Dy| Z;, that
_ _ 1
(4.64) |PZue|| 2 + [P, Dil Z4| 2 S € [0 ~ H + el Zoall gy s
o || 1,2
1
(4.65) | D} Zi]| - < ‘ aa,Z H 2 + el Ze,arll gy -
at L

We compute D7 +— starting from (B.8) and use (B:20), (C42) and the carlier estimates in this section and
get
1

(4:66) o2 slovz| + 1zt
o || 2 o |12
From (£I09) we estimate by 2.10), (C29), (C32) to get
1 1 1
(4.67) ‘ aa,@<3>H < ‘ Do + ‘ Do 1Zea 2 S ||Oar ;
L2 o |12 Z)a/ L2 Z,a' L2
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we compute by (B.I7) and the definition (27):
(4.68) DiDy0® = DyO® 4 Dy [Pa, b 00O — Do Z,D 0y ©P,

and using (CI7), (C20), (C42) and the earlier estimates we obtain

|PiDa0®?|| | <[00, +lbarlisse |00 | + 1121l [0
(4.69) X
S 804' + € Z ol 7 .
‘ Z,a’ L ” t, ||H1/2
Now by (B.2), (CI9), (C20),
1
(4.70) [0ar (bar —2Re Dov Zy)|| 12 S (1 Zt,or |l a2 + | Z,0r || oo ) || O ~ < || :
al 2 a2
therefore
1
(4.71) 10arbarl 2 1100 (bar = 2Re Do Z)l 2 + |1 Ze,aver 2 + 1 Zeiarll e ([0 ||
o |12
and we compute aa’Dt% by (B.8), and use (£70), [@46), [@37) to obtain
1
4.72 00 Di—| <1 Zorar D ——
(4.72) lowpi|| S0l o]
Now by (B.2), and (C.40),
(473) 100 Aull g2 S 1 Z0ll o | Zearar | o S €l Zrarall o
therefore by (B), (C4),
1 1
12t | a2 S 10ar Arll sz + || Ou 10ar At g2 + 141l oo {|O —— ||
(4.74) Zoor g2 Z.o || g2
~ (90/ +€ Z o’ o’ —|—62 aa/
for 7], et s o]

Starting from (B7), we use (B:34) to expand, and use the Sobolev inequality (C.0) to estimate the H'/2

norm of | 7=, b; Zy | and | Ze,b; 0 7= |, we have, by (C0), (C23), (C2), (C2), (C20) and (),

1
||Dt(ba’ - 2ReDa’Zt)||H1/2 5 60/Dt— ||Zt,a’||L2 + 80/ ||Ztt,a’||[,2
Z,a/ L2 Z,a/ L2
(4.75) +2<8 ! +1Zt0rarllpz + |0 ! >
. € o o' ol o
Z,a’ EH1/2 b L2 Z,a’ L2
1
5e( 00 " ||zt,a/a/||L2) T e[ ;
o || fri/2 o |12

therefore by (B17), (BIS), (C3), (C4),
10 Dibll 172 S I1De(bar — 2Re Do Z0)l| 1172 + || (bar)? | 112 + 1D Zatl| 51172 + || (D Z0)?|

(4.76) 1
,S On’ +€||Zt,a’a'||L2 +e€ 804’Z +€||Zt,0/||H1/2 ;
ol || fri/2 a || 1,2
we also have by (CI8]), (C26) that
1 1
||Dt(ba’ - 2ReDa’Zt)||L°° 5 60/Dt— ||Zt,a’||L2 + aa’— ||Ztt,a’||L2
Z o || 12 Za || 12
(4.77) )
ol 00 5| 1l €
ol || 12




THE QUARTIC INTEGRABILITY AND LONG TIME EXISTENCE OF STEEP WATER WAVES IN 2D 21

Compute D? -~ starting from (B), and use (B20), (C3), (C4), (@40), (@47), @52), @61), @E7) and
(&75), and Sobolev embedding (C.6)) to find

1 1
4.78 D? S Oy +el|Ztarar + € |0y =——
(4.78) e T 2t R L R PO
Now from (B.6)), using (C.19), (C20), and (C24)), (C21), (C25), we have
100 De Al 2 S 1 Zetorll 12 (12,0 ll oo + 1 Zt,c | 12
W) bl 1 Zetl o 1 Zeca oo + W 1 Ze 0 | Zar
1
/Se 80/ +|Z o || E );
(R I
therefore by (B.4),
1 1
(4-80) ||Zttt7a’||L2 < ||Zt,a’a’||L2 +€||0ar 7 ) + € ||Oa 7 +e ||Zt,a’||H1/2 .
ol [z o |12

We begin with (B.7), and use (B.32) to expand. By (C17), (CI19), (C20), (C23), (C27), (C42), (C.25),
and (C21]), we have
1

| D}(bor — 2Re Do Z1) || > < HD?Z—H (1Ze,0ll e + 11 Zt.orl 12 )
ol |12
1 1
o] 1zl Bl [ | 12wl 100 Dbl
o || fri/2 a2
1 ) 1
(1.8) o] Wttt + 2| 12l
;o |2 ,al || fri/2
1 1
+ ||Oar 1Zet,0ll 2 [1barll 12 + || O — | Zeeell g1/
ol |2 o || 12
Se(lowg—| 1wl + |owy—| +1Zuwl
€ o’ a’a’ o’ o’ || F ;
~ Z,a' 12 t, L2 Z,a’ L t, /2
therefore by (BIS), (B11),
(4.82) ||8OL/D?()||L2 5 ||Zt,a'o/||L2 + € |0y =— + € (90/2 + € ||Zt,a’||H1/2 .
ol || fri/2 ol || 12
Now begin with (B.8)), and use (BI7), we get
1
|t| St —2ReDp il D2 | DR~ 2Re D)
fles L2 L2
1 1
(483)  +IDe(bar —2ReDor Ze) |2 | De—||  + IDarZill e | DF | + || DD Ze)|
Z,a’ Lo Z,a’ L2
1 1
+||DtDa'Zt||L2 Dy—— SHZt,a’a/”Lz"'e 80/ +e€ aa/ +€||Zt,a/||H1/2-
Z,a’ Loo o || fri/2 Z,a’ L2

We compute D?A; by (B6), (B:34), (B:31), estimating the H'/2 norms of [Z44,0; Z1. ], [ 24,03 Zs,00] and
Dy [Z4,b;Z4,] by the Sobolev inequality (C.6), and estimating the H'/? norms of the remaining com-

mutators in the expansion of D?A; by (C40). We get, by further using (C:23), (C.24), (C25), (C21),
€27),

(4.84) D244 < (

1
On' 5—
Z

1
|

’
e

N Zuororll e + \

+ HZt,a’ ||H1/2> )
2

H1/2 L
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this gives, by (B) and the estimates above in this section,

1 1
(4-85) HD?ZttHHuz 5 O +e ||Zt,a'o/||L2 + |00 5— + ”Zt,o/HHlm :
Zya’ H1/2 Z,a’ 2
We also have, by (CI8) and (C27) that
(4.86) | D7 AL, S €.
We compute D} A; by (BE), (B:32), (B31)), and obtain, by using the inequalities in Appendix [C]
1
(4-87) HDfAlHLz 5 € Ou + ||Zt,a'o/||L2 + || 5— + ||Zt,o/||H1/2 5
Z,o/ EH1/2 Z,a L2
therefore by (B.4),
1 1
(4.88) HDthtHLz S ||Zt,a’a’||L2 el ||9 + |00 — + ||Zt,a’||H1/2 :
Z,o/ /2 Z)a/ L2
We note that (L8]] also gives
1
(4.89) | D7 (bar — 2Re Do Zy)|| 2 S € <‘ O Z + ||Zt,a,||H1/2> :
o |2
(@RY) is needed for the sake of estimating <-&5(t) and proving [@24). We claim that a similar estimate also
holds for HDt?’Al HL2, that is
1
(4.90) 1Dt S (ow ]|+ 1zl )
fyes L2

expanding D} A; via (B.6), (B:32), (B31), (@90) can be checked straightforwardly using the inequalities in
Appenddix[C] the only term in the expansion that needs some extra explanation is the term [Z;, D?b; Zy /]

Observe that by (B.I7), (B.I3),
Doy Db = D? (byy — 2Re Dy Zy) + 3bor Doy Db — 2(byr)?

(4.91) Zy

2Re 0y ,
>+ e 7

’
iy

— 2Re (3Da’ZtDa’Ztt — 2(Da/Zt)3) — 2Re <Zttt8a' 7

so we have, by [.89), (.62), (@.49), (47), @44), (C42), @37), @.52), E50),

Z 1
(4.92) ‘ Do (be —2Re t”) <e (‘ Do — + ||Zt,af||H1/z) .
o L2 a |l 2
We write
_ Tt — Tt —
(4.93) [Zt’D?b; Zt»‘l'] - [Zt’D?b_ 2Re Zttt§Zt»0‘,} " [Zt’2Re ZtttQZt,a']

and apply ([C:23) to the first term and (C24) to the second term, we get, by further using (C.4)),

1
. <é ( ; ||Zt,a/||,;,1/2) |
L2

Dot 7
This proves (£90). By (B4), (B21), (B24), (£39), ([E90) and the earlier estimates in this section, we

conclude

(4.94) H [Zt, thb§ 7t,o/]

e’

1
Oa
A

e

499 |PDEZ| o+ 100 P\ Zul o+ (D2 P 2l 5

+ ||Zt,a' ||H1/2) .
L2

Finally we consider PD}Z;. We write it as

PD}Z, = D}PZ; — [Dy, P| D}Z; — D; Dy, P] D; Z; — D? [Dy, P| Z;
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and use (B4), (B:2I) to compute. By the earlier estimates in this section, we have

2

(4.96) [De, P1 Zuwe|| 1> + | D2 [De. P) Zut|| o + || DF [De, P Z4) 0 S €%

we compute D} (bos — 2Re Do Z;) from (B.7), expanding by (B:32), (B31). We have, by (CI7), (CI9),

(4.97) | D} (bar —2Re Do Z4) || ;0 S

we compute by (B.IS),

(4.98) Dot D}b = D0oy D?b + b Doy Db

and use (BI7), (BI]), and (&A1) to expand, by (C.42) and earlier estimates in this section, we have
(4.99) O <D§b —2Re D?Z’f) < e

’
e’

L2
now we compute Dj A; from (B.6), expanding by (B32)), (B:31). Using a similar argument as that of ({Z93)

for the term [Zt, D3b; 7,5@/} and use the inequalities in Appendix [Clto estimate the remaining terms in D} A;

we get
(4.100) | Df A1 ,» S €.
This gives that

(4.101) |PD{Zy|,. <

4.3.2. The estimates for E1(t), €1(t) and E;(t), £;(t), 7 > 2. In this section we prove the inequalities ([Z.19)

and ([@21)), [@22), [@23) of Propositions (.3} 4.4
Step 1. We begin with E4(¢). From (£35), (@33),

1

— 2) 9,00 (1) /
Ei( H@ HH/ H1 7. —|—/18a 0P, (GM) da
and by Proposition 2.2} and (C29),
2 2
— 1 1
(4.102) ‘/i&a@(l)PH(G(l))da’ < H ~ 1 Zeor |32 < € :
ol |12 "2

so there is g = €¢(d) > 0, such that for all 0 < ¢ < ¢y, (£21)) holds. We note that by Lemma 1]

(4.103) VAP H@<2>HHU2.

Now we consider &;(t). We estimate, by (C.29)), (C.30) and (£39), (£45), (LI03) that
CLA)] + 1Coa (D] S 11 Zutll 72 1 Ze,er 2 + 1 Zatt | 12 1 Zt, | o 1 Zel o

1 2
<5 (le .+ - 2]).

so there is g = €p(d) > 0, such that for all 0 < € < ¢,
(4.104) (140)"Y2E1(t) < €(t) < (14 0)Y2E, (1).

Step 2. We next consider Fs(t) and &£>(t). By (@35),

2 -
(4.105) Ea(t) = [0 H +HDaf@(z)HL2+/i8af®(2)PH(G(2))da’

H1/2
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First we have by Lemma AT}, and (CI)), ([C3)

1 1 1
4.106 5 <Py (=— (1- < :
SIS o2 S 1Ol (ot )| I b
and from the identity
Ztoo 7y - 1 1 1=
Lo 9P — [Py, 7] O [ =— ) 4+ [Pa, = | Zs
Z,a’ HZ,Q/ [ " t} <Z,a/> |: 4 Z,a/:| b
and (£32) (CI7), (C19), that
7t,o/ 2 >
(4.107) H = —i0,0%| < ’  NZearlle SellZeor|l e s
Ne% L2 ;o |l fri/2
so by ([@30), there is €9 = () > 0, such that for 0 < € < ¢,
= 2) 2|7 2) =
(4108) 6] Zearlye S [00?| , S Zrwles 8 [Zrawlye S [D®? | S [Zr],s
Now by (£.33), ({.32),
1 1
4.109 0 =Py (= (1- Pr(GW);
(4.109) “\7. 7))t H(GY);

we estimate, by (ZI1), (.36), (.106) and (C3), (C.31), m to get

1 1
4110 H]P’ e H H P ( (1— ))H ,
( ) u(GY) i~ | Z || oo "\Z o Z. o e

and by M'mv mv mv mv mv m= m7 Gm) to yield

1 Zt,0r

||L2 ~ 5

1 1

@], < Wiz Vol +1lis | ]| (12 + || )

(4111) 1 ,Q H1/2 ,Q H1/2
2

+ 1203 | Dim <5 HDQ,@ >H

so there is g = €p(J) > 0, such that for 0 < € < e,
1 1 2
(4.112) (1+8) " Bay(t) < HIE”H <_ (1 - )) H n HD 0 2>H (1+ 6)Ea(t).
Z o Zo /2

Now we consider the terms Cj 5 + Ca2 + F» + Hz in E3(t). Observe that those terms with the factor D} Z,
in Cy 2, Ca.9 can be combined with those in F, with the factor PD;Z;, and we know
Ay
|Z a]?
So by (C29), (C.30), (C31), (C3), (C.27), (C37), we have
C1a + Cop + Fo + Ha| S (| Zudl 72 || 2, a'||2Lz + 1 Zesell g2 1 Zo, | 2 | Zetl 12

(4.113) —~D}Zy+PDyZy = —i-o—s00 Zit.

N Zeat P [ Zotl 10 (nzﬁnHuz

H | Z,ar |l g2

4.114
s 1 Zulls + [ DO 1202

2
) Bl [ Zeel g 11 Ze o
1 1 2
D,,0® H Py (— (1- ,
: ot (H L T Z o 2o H1/2
we also have by (C.30]),

1 1
(W115)  1Da(D)] S Mol | Zoeo g 1 2 s 5 S <HD o+ (= (1-5))

2
EH1/2

)
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By (£106), (£I08), there is g = €p(d) > 0, such that for 0 < e < €,

2 2

1
Z o

Z o

H1/2

(4.116) co(8) (Hl - + ||Zm/||i2> <& < (Hl — + ||Zt,a,||iz> )

EH1/2
for some constants ¢c; > 0 and ¢2(d) > 0.

Step 3. We now study Fs(t) and E3(t). By (£32), (@34), (£35), we know

2 2
_ lo® (3) .o =3 (3) /
(4.117) Eg(t)_HG HHUZJFHDQ@ HL2+/zaa,® Py (G®) d,

where

1 A
oW = _py <—8Q/PH7—t) +Py(G?), DO® =_D,Py (

e

1
W) + Do Py (GW).

1 1 1
Da/]P) —_— 60/ =
& (|Z,a/|2> Za 2 Z

(4.118) 1 1 1 1 1 1
= |—,Py| Oy —— Py, = | O =—— — |P4, —— | Ou ,
[Z,o/, H:| |Z,O/|2 * . Z,Qo/ Z,a/ [ 4 |Z>Ot’|2:| Zya,
so by (C17), ([C3), and ([@.36),
1 1 1 1 1 € 1 1
4.119 D, P — Ot —— < Opy —— < = |l =500 — )
( ) H " (|Z,a’|2> |Z,0/|2 Z,a/ L2 HZ,Q’ /2 Z,a’ L2 42 |Z,o/|2 Z,o/ L2
We estimate by (2.10), (C32)) and (C29), and get
1 9 €2 1 1
4120 ’aa/P G(l) H < ao/ Z a’ < = —aa/
( ) H( ) L2 ~ Z,O/ L2 || t’ ||L2 ~ 52 |Z,o¢’|2 Z,o/ L2
Now
Zt.o Zy - 1
4.121 Py —=— =0 Py=— — |Py, Z;| O =,
(4.121) g w2
and by Lemma 1] (C40) and (C.3]),
7 o’ 7 1
L I e o
! |l fri/2 o |l fri/2 o || 1,2

(4.122) ) > . . X

5 5 HDO/]P)H_—t + aa,— aa,PH_ : + ||Zt,o/||L2 ao/ )

5 o iz ol |l L2 Z,a’ L2 Z,a/ L2

using Lemma [L.1] again gives

Z 1 7
(4.123) s ’DO/IP’H_ i < H]P’H ( 5Oa Py = )H ,

o |l gz |Z,0/| Z,o/ /2
therefore

1 Z
(4124) 53 ||Zt,a’||H1/2 5 H]P)H ( 280/]?]—[_ t >H + €l 804/ ;
|Z>Ot’| Z,a’ /2 a2
on the other hand, by (C4), (£45) ,43) we also have
1 Z, 1

4.125 P O Py = < Our + | Zt.ar|| £ .
(4125) o (r HZ>HH/ Selogs] 12l
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We next estimate |Py (G®)| 51,.- By @ID)-EZD), (C3), (C3T), and ([C29),

(4.126)

[ (¢ = a0 5120001

1

Dot ——
Z

’
e

by [B.23), (B.28), (C.40), (C.32), ([C29), (C4), (C.30), (€21,

(4.127)

To estimate HDt < Zg,i%,?t >H

(4.128)

2
[PaDPR(@)||, | S el e 120

1
|z

+ HDt < Zyi

oo ()

2 2
S Mbarll 2 1260 2 10arll L2 [ 22,00 174

2
el

3
’
o3

EH1/2

-]

1
Do
Z

e’

+
H1/2

L

1
Dot ——
Z

’
e

)

L2

L2

2ol (126t 712
2

1
Dt < Zt,—ZZ—a,,Zt >

1
Zo

+ o

HH1/2

H1/2

1
Zo
1

e’

< €2

~

H1/2

H1/2

1
80/ )
o || 12
1Ze,0r 1172
1
O
o |l p2

and HDt < Zy,—ig—, Zy >H 1,y Ve use (B28)) to expand. We use
,o! H
Sobolev inequality (C.6) to estimate the following H'/? norm. By (C.27), (C42), we have

1

Z

1
Z g

)
1

0w

iy

2

H1/2

/

S 65 ||Zt,a' ||H1/2
L2

On

Z

For the H'/2 norm of the remaining term in D, < Z,, i%,?t >, we use (C3I). We get

(4.129)

Therefore

(4.130)

|

_ 1
Dy < Zyie—
t t Z

’
e

7715 >H
H1/2

[w ()

, 1|2

2 1/2

s @lzlift s
1

1 Zt,o | 2 1 Zetll g1/ || Ot 7
et

~

‘H1/2

< €2

1
O
Z

’
o3

L2

L2

+ €1 Zearll 12 -

+ 1 Zsor 72

1

We now consider the term [ ¢ (?a/@(s)IP’H(G(3)) do/ in @ITT). The estimate for [Py (G®)],
by using the formula @2I1)-(@221]), the expansions (B28) and (B29), (B-34), and the inequalities ([C.29),
(C30), (CI9), ([C20), (C27) and (C.42); observe that by (CI9), the estimates [EI126)-(ZI129) for (EI30)

can be used to treat the second term in the expansion by (B.25). We have

(4.131)

[Pt

< €2

9 N

< €2

~

O

1
Z)a/ L2
1
Zo L
1
Zo || 2

+ 62 ||Zt,o¢’||H1/2 + 62 ||Ztt,o¢’||L2 + 62

+ 62 ||Zt,a/ ||H1

/2

=

1

’
e

+ € |barll g1/ + € |00r Dibll 2 + € | Zuae | a2
2

Di7—

L2

EH1/2

, 18 as usual,

H1/2

so there is a €9 = €(d) > 0, such that for all 0 < € < ¢q, the inequality ([@.22) in Proposition £ holds. Finally
we can estimate the correcting terms C; 3 + Cy 3 + F3 + H3 as in Step 2 by combining the terms in Cj 3
and Cy 3 with the factor D}Z; with the terms in F3 with the factor PD?Z; and use (C:29), (C:30), (C27),
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(C31), (C4), and (CA2) to obtain
|C13+ Cas+ F5+ Hs| < HDtQZth 1 Zt,arll 12 ||Zttt||§'{1/2 + HD?ZtHi? ”Zﬁ»a’”i2
F1D20) o (12032 11DR20] o - 12l 1 2ot |DF 2] o 22 1 2l )
+ D32 o (Iberllys | D22 o 1 Z2cr 132 + Wbl o 1 Zesa o | Zat o 1 2 )

2
(4132) + ||Zt,a/||iz DQ/G(B)HLQ + ||Zttt||H1/2 (”Zt,a’”iz ||Zttt||H1/2 + ||Zt,a/||L2 ||Ztt,a’||L2 ||Ztt||H1/2)

A1 2 2

+ 1 Zset | 12 ||Oar 1Za (||Zt,a’||L2 1 Zettll 2 + 11 2,00l L2 ||Ztt||H1/z)
el L2

< L P 2 @ |

S I e

So there is €9 = €(d) > 0, such that for all 0 < € < €,
(4.133) (140)"Y2E3(t) < &(t) < (14 6)Y2E5(t).

This together with ([AI04) proves the inequality ([@23]) in Proposition 4l Moreover, there are constants
c1 > 0 and c2(d) > 0, such that for all 0 < € < ¢(9),

2 2
1 1
(4.134) ca(9) <‘ Bafza/ L + ||Zt,a/||f;1,2> <&(t) <a <‘ BafZ—a/ ., + ||Zt,ar||f;1,2> :
We also note that by (£125), (£I30),
1 2
(4-135) H9(4)"Hl/2 s ‘ Oa Z o + HZ’f»O"”Hl/2 Se
al |12
Because
(4.136) DO =0W L P,D,EO = 0W 4 [Py, b] 0,0,
4.137 D20 = 0W 4 [P4, 5] 0,0®) + D, [P4,b] 00 0P,
t
using the identity
(4.138) [b, b: aa,(a(?)} — — < b,b,000@ > 19,0 [b,b; 1],
we have, by (C40), (B.34), (C31), (C4), (C24), (C23),
2
1
(3) 29(2) .
(4.139) HDtG) HH/ n HDtG) HH/ < ‘ X 1Zeor |l 12 < e
Step 4. We now consider Fy4(t) and £4(¢). By [@35),
2 2 _
(4.140) Ey(t) = H®<5>H 4 HDQ/®<4>H + /i&a/®(4)PH(G(4))da’,
H1/2 L2
and by (4.34), (@109,
1
0¥ = _iPy (Waa,@@)) + Py (G®)
(4.141) .

1 1 1
=P O P —iPy | —— 0, P (GY Py (G®
ZH<|ZW|2 H|Zya,|2) ZH<|Z@,|2 2(GOY) 4+ P (G®),

1 A
(4.142) DoOW = —D, Py <—8Q/PH7—t) + Do Py(G?).

’
e
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Since
1 1 1
Py O P — —— O
(4143 (B )~ B 2
' 1 1 1 1 1 1
= — |Pgy, O P Py, Ot = — |Py, ———| Ou =
[ " |z,a/|2] ZaE " { " |Z,a/|2z,al 7o [ ! |z,a/|2z,J Z o
and by (C.40),
2
1
(4144) ||I||H1/2 S ’ BO/Z NEa22% )
a’ |12 "2
by (C4), (C5),
1 1 17
4.145 — Oy —=—— < ’ Ou + ’ Oot —— ,
( ) H|Z,o/|2z,a’ 2o /2 o || fri/2 o |12
2
1 1 1
T [ Y
( ) Z,a/ EH1/2 |Z,a’|227a’ Z,a' /2 "2
therefore
1 1
3
Pzl ezl 5l (Zmoemzim ),
(4 147) ,Q H1/2 e’ L2 e’ ,Q H1/2
' 1
‘aa’ - +e€ 80/ .
~ Z oy Z o
al || g1/2 ,al || 12
Also, we know IP’Hb—IP’H Zf —29(2 , and
1 Z, 1 Z,
Do P O Pr=—") — 0P
(4.148) H<|Z,a'|2 HZ,a/) Zo 2T
' 1 Z 1 Z
= ]P)H (aa/ﬂaa/]PHi—t> |:]P)A, |Z | :| aZ/PH7 ¢ 5
applying ([C.I4) on the second term, we get
1 7 . 7 1
(4149) ‘(%‘JPJH <Waa/PH7—a/) |Z |28a/PH7 L S ||b0‘/||L°° aa/Za, L 5 € 80/ o
now since
7 Ziow 1 — - 1 — 1
(4.150) 8§,PH7t —%’—:—[IP’A,7 :|5a/Zt7a/+2[PH,Zt)a/} O =— + [Pr, Z4] 0,
applying (C17), (C.19), (C.20) yields
Zt Zt oo’ ‘ 1
4.151 0P el < Oy Zi ol giye S €l|0ar :
(4151) ng =g oy 1l iy
therefore
1 1 Z
54 ||Zt,0/0¢/||L2_6 aa/Z ) SHDQIPH <WQQ/PH7_t)
(4.152) e “ o 2L

S ||Zt,a’a’||L2 + € (|0

’ L2
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We next consider H]P’H (ﬁﬁa/]}”g((}'(l)))H . By (21I0), and applying (C4), EI20), II), (C.27),

([C32), (C31) gives

H1/2

2
1 1
]P) —aa’]P) G(l) )H < ‘aa/]P) G(l) H . —+ ‘ aa,— Z o 2
H ; (|Z,a,|2 w&)| sk, +|ow | 1zl
1 1 % 1
(4153) 5 ‘ aa/ Z ”Zt,a’”iz + ‘ &w Z ”Zt,a/”iz + ||Zt,a’||H1/2 ”Zt,a’”Lz 8Q/Z—
Ne% H1/2 e L2 o L2
1 1
S 62 (90/ —+ 62 80/ .
Z,a’ H1/2 Z,a’ L2

We now estimate ||0o/Pg (G?)]| .. By @II)-E2I), using (B25), (B:28) to expand, then applying (C29),
(C.32), ([C.17), (C20), ([C.27), we get

1 1
/ 2) < , , Al , 112
Jowen (@), % |owgs]| Wtlis + Mol o= | 120
1 1 1
M llZwlliﬁHDtZ o I 2 I
(4.154) . o llne sl |l peo o 1L2
2
" ‘ Qe Z 1Zt,0rll 2 1 Zst,00 [l 2+ (1D [ oo 3a'Z 1 Zt,00 |72
o |12 o || 2
S é 1Zt,0varll g2 + e ||0ar ! + € || O L .
Z7a/ /2 Z,Ot’ L2

And we estimate HPH(G(3))HH1/2 by @II)-@21), expanding with (B25), (B29) and (B34)). Again the
estimate is straightforward but tedious. We use (C31)) to estimate [Py (G® — D,PrG®) and the

H/2 norm of the term

(e

dp

™

| 020 =287 (£ - 7))
_/ (of — B')2
in the expansion of D? < Z,, i%,?t >; we use Sobolev inequality (C.6) to estimate the H'/2 norms of

L and

the remaining terms in the expansion of D} < Z;,i—t—,Z; >, as well as HDt < Zpyig—, i >H »
ol ol ol H1/2
H [b, b, Ou {7,10/ < Zg,i%,?t >H Hgl/z Observe that we have [@I29), and the estimate in ([@I54) is

useful for the estimate of the second term in the expansion of Py D;Pr G by (B.25). We have

1 1

PG(?’)H S E Zeararll s + € ||0n + € ||0wD + € || D}
H H( ) Hl/?Ne ” tola ||L2 € @ Z,a' /2 ¢ “ tZ,a’ L2 ‘ tZ,a/ EH1/2

1

(4.155)  + ¢ |0 + | Zarll a2
,O/ L2
1
562 ||Zt,0/0¢’||L2 +€2 Ou +€2 Ow +€2 ||Zt,o/||H1/2-
2o H1/2 2o L2

We estimate H]P’H(G(‘D)HL2 by (ZII)-(Z21)), expanding with (B:25)-(B.26), (B:29), (B.32). The estimate is

routine, using the inequalities in Appendix[C]and the estimates in §4£.3.11 Going through the terms carefully,

we get

1
Ow’
Z

’
e

1
8O/Z +€2 +62 ||Zt,o/||H1/2 .

’
o3

(4.156) "PH(G(4))"L2 SN Zeararllys + €

H1/2 L2
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Finally the correcting terms C} 4 + C2 4 + Fy + Hy can be estimated similarly as in Step 2 by combining the
terms in C; 4 with the factor D} Z; with those terms in Fy with the factor PD}Z, and use the equation

— A
(4.157) —-DYZ,+PD3Z, = —iﬁ@a/Dth
and we have, by applying the inequalities in Appendix [C]
|C1 4+ Coq+ Fy + Hy|
(4.158) 1 1 2
< (1Zww O Oy —— Zi ol HDQ,@(AL)}
¢ (Izwal+org=]  +owgs| 12t + .

This together with (LI34) shows that there is a €9 = ¢¢(d) > 0, such that for all of 0 < e < ¢,

2 2

Dot + 1 Zearlline < c2(8) 7 (E3(t) + Ea(t)),

1
(4.159) E3(t) + E4(t) S | Zuwror 122 +‘ + w2

’
iy

a || fi/2 2
for some constant ¢3(d) > 0. Combining with (37, (£116) proves the inequality (£I9) in Proposition 3l

We also note that by (@I142), (£149), (@I51), EI54), (£141), E14D), (@I153), @EI55), (E109),

(4.160) ’

200+ 0] ]

aa/@@H <e

f1/2 g2 ™

Because
00 DO = 9,00 4+ 0, [Pa,b] 00O,

(4.161) D?0®) = 00®) 4 P4, 0] 0,,0W + Dy [P4,b] 00O,
DD,0® =D,D,O0® — D, 2Z,D,0®),

using the identity

(4.162) [b,b; aa/@@} = — < b,b,000® > +9,0® [b,b; 1],

we have by (CI7), (C:20), (C40), (B:34), (C.31), (C4), (C24), (C23),

(4.163) lowpie®@| +||p2e®|  +|piDae®|  <e
L2 H1/2 L2

4.3.3. The estimates for %€ (t), £&;(t), j > 2. In this section we prove the inequalities (Z.20) and (£24).
This requires us to estimate 4 €;(t), £&;(t), 2 < j < 4. We will use Theorem 28 for £ &, (t), and [@I2)-
[@I3)-(@Id) for £&;(t), 2 < j < 4. We refer the reader to Appendix [Dlfor a list of the quantities controlled
by e.

Step 5. In this step we want to use (2.39)-(2.40) to show that for 0 < € < €g(), where €y(d) is as in Steps
1-4,

€3

d
(4164) Eél(t) 5 ﬁ@l (t), for t € [O, To]

The prove for [@164) is quite straightforward. Observe that D, ©™) =i (1 -5 ) by ([@33), and by (B),

1
,CX/

— 1 A —1 Ay —1
(4.165) Ztt_z'<1—Za/>—i 2@/ =D,0W — éa/ ;

) )
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recall the notation (A1), (Z24), [227), we write

Re / 0, 0Py (G<2> - Dt]P’HG(l)) do/ — Ip 4

= —Re/ Da/G‘)(l Oé t Ztt( ))Qt(ee)?t dﬁ da !
(a/ = p')?
(4.166) DTN - D,6)

— Do0M (o, 1) =L '
—|—27TRe/ o (d,t) e dg’' da

1 e EEY 1-— Al 1 A -1 o1

— ,00) _ i A= 2 _ ’
+2Re/zDa@ (o )<< Z,i 7 ZZ@/ >+ <4 7 , Zy, ZZ@/ >> do’,

so by ([C29), and the estimates in §L.3.1]

‘Re/iaa’e)(l)PH (G(2) - Dt]PHG(l)) do’ — D1 | SN[ Ar = g2 1 Zeor | 2 1 Zetar 2 1 Zael 2

(4.167) 1A = 2 1 Zear |l 2

1
O —
Za

’ L2)

] @%wb+

1
1— —
Z,a' L2

1 2
se 1zt +|1-75| )
2Re/z’8a/®(1)]P’HDt]P’H (G<1> - Dt]P’HG(O)) do/ — I,

_%Re/Ztt<Dt/( g — /:Dt :otee dﬂ)

(4.168) +1Re [9,80 <]P’HDt]P’H LI Dt)/ De (99) dp’ do’
Q Z,a’ ( BI)

1 9)0
_ ,O1) /
—i—ﬁRe/(Da@ Ztt) /( - ,) g da
Zt>+<z

A -1 . —
+ Re/z@a@ DPy D Py { ( ; T Ty >>} da’;
now

(4.169) Py DPy (%f) Py (Zﬂ th) {Dt (72) f} — Py [b,Pa] O (%f) ;
so by (B.28), (B.23), (C27), (C29), (C.30), (C.3),
_ ) 1|
<5 <||ztllgl/2+H 7 LZ).

Now the estimates for all the terms in R;¢ 1 are straightforward, using (C.27), (C.29), (C.30), (C.35)), (C.34)),
([C33), ([C48), (C4]) and the estimates in §4.3.11 we have
2
L2) '

This together with (£I67), (A170), EI03), (A104), ([E2T)) proves (£I164).

In the remainder of this paper we will show that for 0 < € < €g(d), where €y(d) is as in Steps 2-4,

observe that D, ©© = Z,, we write

(4.170) ‘QRe/iaa,G)(l)IP’HDt]P’H (G<1> —DtIE”HG(O)> do/ — I 4

1
Z o

(4.171) |Rica| S € (||Zt||H1/2 + H
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d d
(4.172) —&1) <, =&)< é <||Z,5)O¢,||§Il/2 + ‘

dt dt Do

2
d
_ < 5
> , dtg4(t) ~ €.

Z,a' L2

this together with (@I64]), ({I134]) proves the inequalities (£20Q), (£24]) and finishes the proof for Proposi-
tions 3] [£4] as well as Theorem [B.1]

Step 6. We begin with those terms in the remainder Rrc,; + Re £D;(t), j > 2, (cf. (@I3)-@Id)) for
which the desired estimates can be directly derived from the inequalities in Appendix [C] keep in mind that

lower order norms such as Hl — Zl

, or | Z¢|| gr1/2 are NOT allowed, as they are not controlled by L(t);

P~

ﬁ - 1HL°° < 1L, || Zit]| pee S 1, we can involve HZ%I/ - 1HL°° and || Zy|| - only in sextic or higher

order terms, at most once.

and since ‘

We first consider the following type of terms
b(a!) = b(B')\ DIZ, D006 D
(4173) MlJ = // (ba/ + blg/ -2 o — ﬂ/ (O/ — [3/)2 do/dﬁ’

where | + i+ k = j. This type of terms appears in ([@.2)), [2.36) and 2.32), we use (C.37), (C36) and the
estimates in §4.3.1] to handle M; ;.

For j =2, (I,4,k) = (0,0,2),(0,1,1) and their permutations, so

2 2
(4174)  Mio| S | DRZ| o b (1202 D320l 2+ 1 2 g 1 Zual ) S €.
For j =3, (I,4,k) = (0,0,3),(0,1,2),(1,1,1) and their permutations, so

M4l S (D22 o Nbwr e (126 e D3 20 o+ 1 e 2 1 22 | D32 )

2
L2

For j =4, (I,4,k) = (0,0,4), (0,1, 3),(0,2,2),(1,1,2) and their permutations, so a similar argument also

gives

(4.175) 1

Ow’
Z o

+ D224l o ool o 1 Zet,cll o 1 Zetl 1 S €2 <||Zt,a/||§;u2 + ‘

(4.176) |My 4| S €°.

We next consider terms of the type

m7 Dl ig ok
(4.177) My = // PD; (Zoj,@_teﬂ/@)tf@teda’dﬁ’
where m + 1+ i+ k = 25 — 1. We discuss the following cases:

1.m=j—1,l4+i+ k=], as appeared in ([{2);

2.i=j,m+1l+k=j—1, as appeared in (2Z32)- (2.30);

3.i=0,m+1l+k=2j—1,0<m,l,k <j—1, as appeared in (2.32)-(2.30));

4. m=0,l+i+k=2j—1,0<l,i,k <j—1, as appeared in ([Z.32)-(2.30).

Observe that we can use the symmetry (Z37) to rewrite the corresponding terms in ([232) as (II77), and
vice versa. We use (C.29), (C30) and the estimates in §4.3.7] to obtain the inequalities ([EIT7]), IT9), and
([EIZ0) below.

For j = 2, we have the following cases: m = 1, (I,4,k) = (0,0,2),(0,1,1) and permutations; i = 2,
(m,l, k) = (0,0,1) and permutations; ¢ = 0, (m,l, k) = (1,1,1); m =0, (I,4,k) = (1,1,1). Tt is clear that by
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(C29), (C30) and the estimates in §3.1] we have
(4.178) |Mao| < €.

For j = 3, we have the following cases: m = 2, (I,4,k) = (0,0,3),(0,1,2),(1,1,1) and permutations;
1 =3, (m,l,k) = (0,0,2),(0,1,1) and permutations; i = 0, (m,l, k) = (1,2,2) and permutations; m = 0,

(I,4,k) = (1,2,2) and permutations. Observe that for the case where i = 3, we need to use the symmetry

(Z37) to rewrite Mo 3 as in (232). We have by (C.29), (C.30) and the estimates in §2.3.1]

2
L2

For j = 4, we have the following cases: m = 3, (I,4,k) = (0,0,4), (0,1, 3),(0,2,2),(1,1,2) and permuta-
tions; ¢ = 4, (m,l,k) = (0,0,3),(0,1,2),(1,1,1) and permutations; i = 0, (m,l,k) = (3,3,1),(3,2,2) and
permutations; m = 0, (I,i,k) = (3,3,1),(3,2,2) and permutations. Again we use the form in (Z32]) for the
case where ¢ = 4. We have quite straightforwardly that

(4.179) |Ma| < € <||Zt,a/||§;1/2 + ‘ Dot

’
e’

(4.180) |Ma 4| < €.
Observe that those terms
D!z, om {(P@é@) DiIGDFH — DLY (PDIY) DEO + Do Do (P@f@)}
// (a/ _ ﬁ/)Q
in (Z32), with m 41+ ¢+ k = j — 1 can be treated exactly in the same way as Ms ;, we do not specifically

do’ dp’

go over these terms.

71 m
Now we consider the terms [[ D:,P1D; (Zag_ﬂ()@ LRHEMD) do/dp’ in [@2). We use product rules and

complex conjugate to reduce it to the following form
Ma s = [Dtvp] Dg_l7t Qfﬁ@ie@f?
3.7 (o — B)?

(4.181) do’dp’,

where [ +i+k = j — 1. We know by (B21),
DAy

(4.182) [Dy, PI DI Z, =i + by —2Re Dy Zy | ——08, DI Zy,
A IZa/I2
so Mj ; is sextic; and we have, by (C3)) and the estimates in §L.3.1]
. Dy A Ay
M. »<HDJ 1ZH bor — 2Re Doy Z D'Z,,DiZ,.D 7, >
|Ms ;| S ||Di Ze me |\ A + e ZaT < Dz ty Dy 2t e

(4.183) < HDg'*lzt

L (IDeA ]| oo + [Ibar — 2Re Do Zi| ) |< DiZi, DiZ, Df Zy > || 10
DtAl (ba/ — ZRGDO/Zt)Al
H1/2 |Za/

_|_
I
we can also use (C4) to get

'71
n HD{

/) |< D20, DiZ, D\ 20 >,
H

Ml S | DI 2|

, (IDeA [y + [bar — 2Re Do Zi| o) || < DiZe, DiZe, Dy Ze > ||

i DtAl (ba/ —2Re Da/Zt)Al
D'z, H
+ H ¢ a2 \|||Z.a? |Z,o|?
For j = 2, we have (l,i,k) = (0,0,1) and permutations; for j = 3, we have (I,4,k) = (0,0,2),(0,1,1) and
permutations; for j = 4, we have (I,7,k) = (0,0,3),(0,1,2),(1,1,1) and permutations. We use ([{LI83)) for

(4.184)

4 ) |< D}Zy, DiZ1, Df Zy >|| . -
H!

H1
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Jj =2,3 and (£I84) for j = 4. By (C3), (C31), (C29), (C30) and the estimates in §L3.1] we get

2
(4.185) (M3 S € |Mss| S € <||Zt,a'||%n/2 + ‘ O ) ;[ Msa| S €
a || 2
Next we look at the terms of type
b(o!) —b(8)\ PDI 'Z, D0 Di0Dk0
(4.186) My ;= // <ba/ +by — 2= % . % _tﬁ,); L do/dp’
and
(b(a!) — b(B))? (b(a’) — b(B")) D!Z, 210019 Dk0
(4187) M57j = Gﬁ - 4(()0/ + b,@/)ﬁ + 2ba/b,@/ ¢ /t_ /t ) ¢ da/dﬁ/
(o/ = ) (o/ =) (o/ =)

in ([@2)), where [ + i+ k = j — 1. Observe that both terms are sextic, and we used product rules to reduce
the terms in ([@2]) to the forms of [@I80), (I8T). We take advantage of the fact that these terms are sextic

and use (C217), (C42) to deduce for m = 4,5,

2

1
Oa
A

’
iy

(4.188) | M2l S €, [Mng| S € <||Zt,a'||§yl/z +

> 9 |M’m,4| 5 65'

L2
Now we consider the term
D]Z; [P, D7 (DL D19 DFY) (B, D] (D0 D6 D%0) D76
4.189) Mg ; = do/ d do’ dp’
( =] (0~ B /i (@~ B o
in 232), where m+ 1+ i+ k = j — 1. Here we used the symmetry ([Z37)) to get the second equality above.
We expand [P, D}"| by (B.21), (B.24), and use (C.29) and the estimates in §L3.1] to obtain

2
(4.190) |Mgo| < €8, |Mes| < e <||Zt,a’||i(1/2 + ‘ Ou ) | Mea| < €°.
!’ L2
Now we treat the terms
Ai(a)) A8 : —
ZoZ  1Za2 \ DiZ(o) DD Dl
(4.191) My ; .—z// |ZB’|2 _2 - ﬁ/ﬁ ¢ o _tﬁ/); 9 ot g
and
Dib(a’) — Db(B)\ DI Z (o)) D0 D Dk0
@) M= [ (aﬁ/Dtb(ﬂ’)—2 t (O}_B,t( )> : t((a), el

where [ +i+k =7 — 1 in (232)-236) and (@2). Here we used the product rules to convert the terms in
(2:32) and (42) to the forms in (@I9), (£I192). We use (CA40) and (C48) and the estimates in §L3.1] to

obtain for m = 7,8,
2

1
(4.193) muﬂsé,MMﬂsg@@W@m+kbz >,Mhﬂﬁé
,O/ L2
(0) . o ) ) )
We also have the following terms from ]*Ll e where [ +i+k=2j—1,0<1,ik<j—1,in @32)-36),
b(a') —b(B)\ (Z:De — Zu) (DO DO DFO)
(4194 // (bal s =2 o = p' (of — B')2 do’ df'

we use the symmetry (2237) to rewrite it as

A ! 0 _ n l in Yk
(4.195) Mo =3 / / (ba, b, _2b(aa)/_;(/ﬁ)) (72, @(f) _(z;gi§2©t9@te) s
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and use product rules to expand. By (C.35]), (C.36) and the estimates in §3.1] we have
2
(Mog| S llball o 1 Zt.cll o (D5 2] o 1 Zatcar o | Zel 2+ N Zettl e 1 Zvae 2

2
)
L2

(4.196)

1
ey
Z

’
e’

+ [1ball o 1 Z2t,0r 172 1 Zate 72 S € (lth,a/lli';uz + ‘

and
(4.197) | Mg 4| < €°.
For j =2, (I,i,k) = (1,1,1), we have, by m

e i

SN Zeetll 2 12,0 g2 1 Zeel g2 lbar [l oo S €0

(4.198)

and by (C.37),

b(e/) — (') 940909090 .
(4199) ‘// <ba/ + bﬁ/ — 2 O/ — B/ (a/ — 61)2 !/ 5 ||b0£/||Loo ||Ztt||H1/2 S 6
SO

We can estimate the second and third term on the right hand side of ([@4]) similarly and obtain

) 9@9@9@9
//Ha, (02, )do/dﬁ’

4
S o || oo | Zet | 17172

(4.201) - p)?
+ [ Hba || 72 ||Zttt||Loo 1 Zetll31/2 11 Ztor Nl 2 S €7
b(a’) - b(ﬁ/) §©t9©t§©t9
(4.202) }// (bﬂ' R ke ey P

S H | 2 100 | e 122 12 1 bl 2 1 20| e S €.

Observe that the first two (non-zero) terms in R%;l)j,k’ I+i+k=2j—-1,0<l,i,k <j—1,cf. ([232)-236),
have been covered in Mj ;, there is one more term left, which is

Ai(@) _ Ai(B)

o) A(B) T2 T 1ZaP | Z:DL0DI0DE0
(4.203) // Do |Zo/|2 +aﬁ Za2 2 o — B - (of’ — [t3’)2 Lo do/ dp'.

We use symmetry (Z37) to rewrite it as
Ai(a) A (B)

o) A (8" Iz ,| Z .2 | 0DL0Di0Dk0

4.204 Mygj = = g -2 = do/ d
aaon g g ff |07 S 0 g ) e
By (C.27), (C42) and the estimates in §£3.T we have

112
(4.205) |Mios| S € <||Zt,a/||§;n/2 + |00 ) , o [Migal S €

,O/ L2
For j =2 and (I, 4, k) = (17 1,1), we have by (C.37) and Holder’s inequality,

A\ _
2 \Z /1?2 0900090 ! 1ot 3 Aq 5

4.206 i do dB'| < | ZuelPou e || s Ziwll o <60
ae) | [[ (2 gt el 43| S W Zulle | 2| 1l S
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Step 7. We have treated all the terms in RIC,j + Re %Dj(t) but the following two: the first is

DI Z,(a/) DL Dif DFO
(4.207) My ;= //ao/( |Za’|2 +Dtb( )) : t((a)/ _tﬂ/)zt : da’ dp’

where [ +1+ k=7 — 1,2 < j < 4; the second is for j = 2 only, from Re (%Rél) + dth( ))

(4208) M122 // (90/ ( |ZQ/|2 —i—DtHb(a’)) W do dﬁ N

here we used the symmetry (Z37) to rewrite the term from ([2.32)), and used product rules to arrive at the

term in (207).

By (B.39),
Ay _ . A —1 . M)y, s ©)
(4209) ]P)H Dtb+Z|Z |2 —1 :Z]P)H W +’LPH(G )+Z[b,PH] 80/6 3
using (B:22), (B38) gives
Ay Ay
Dillh+ ity =i = (D H]b+ 2i I Py (Dtb+z|Z i —i)
(4.210) “ A “
1=
= 2i Re Py (GY) + = [b, H] Db
i TG + 2 ReB(GY) 4 3 D H O
and we know for j > 2
(4.211) PuDIZ, = —i []P’A, % f|2] O DI *Z, + PAPDI 7,

so by (CI7), (CI19), (C20), (EI20) and the estimates in §L3.0] we have for 2 < j < 4,

A A
O (DHb+z ) 8a/]P’H<Db+z >
' |Zo/| ' |Zo/| L2

in particular for j = 3,

Ay
8Q/PH (Dtb +1 |Za |2>
by (C40), (C4), (EI53), and the estimates in §L£37] the following also holds,

Ay
o P Db
0 H( ' +Z|Za/|>

(4.212) + HPAD{Z ,

ENRY
L2

’
e’

<€

)

L2 ‘

(4.213) O

[PADIZ, < ¢ (nzt,a/ngm n \

< €2,

~

H1/2

(4.214)

Observe that Mz o is sextic. Applying (C.36) gives

(1.219 Miaal 5 o (D04 e )| Wil 2l Ve 5

We rewrite M1y ; as

D] Z,(/) DL Di0D%0
Mo = [[owen (15353 + Diter) ) 2ECTREDEO o g

=7
(o) N Pu (D{Zt) () DloDiIDf0
(4.216) + [ ours ( |za Rt Dble )) @) docdp
/8a/]P’A< % |2) + Dib(a )) [Py, < DiZ,,DiZy, Dy Z, > Py (D{Zt) (&) dd/

=1 +1I; +111;,
where in the last term we used the Cauchy integral formula to rewrite it as a commutator. We have for
j =2, (l,i,k) = (0,0,1) and permutations; j = 3, (I,4,k) = (0,0,2),(0,1,1) and permutations; j = 4,



THE QUARTIC INTEGRABILITY AND LONG TIME EXISTENCE OF STEEP WATER WAVES IN 2D 37

({,3,k) =(0,0,3),(0,1,2),(1,1,1) and permutations. Observe that the first two terms in (£210)), I;, I1;, are
sextic; we apply (C.27), (C.42) to obtain

2

L2> 7

(4.217) |Io| + |T1o] + | 14| + |T14| S €, |I3| + |13 < €8 <||Zt7a/||i{1/2 + ‘ Ou’

Z

applying (CI7), (C31) on I11; yields

12
(4.218) \IIL,)| + |11 <&, |I1I5] < € <||Zt,af||f;uz + ‘ Dot — ) :
o || 1,2
therefore
2
[Mie| + [Mia S €, [Mis| S € <||Zt,a/||§yl/2 + ‘ O 7 ) '
ol || 12
Sum up the estimates in Step 6 and Step 7 we have
d 5 3 2 ’
(4.219) Ric2 + Re EDQ(t) + |'R10,4| < e, |ch73| <e ||Zt,o/||H1/2 + {|0ar 7 .
ol || 12
Step 8. In this step we treat the remaining terms in (£13)), namely

Jj—1 _ d
(4.220) 2ReZ/i8a/®(j)(PHDt)l+1]PH (GU—” - DtJPHGU—l—”) do/ — I ; — i

1=0
(4.221) Re / 10,/80Py (GUH) - DPHGY) do — Iy,

Let
. N s {@t (9(a',ﬁ',t)9(a/,5',t)) @{—l—le(a',ﬁ',t)} .
(4.222) iy = E//Dgzt(a ) T 43 del,
By @2.26), 2.279),
7j—1
IlJ ZQRQZJLJ‘, Iz)j ZRGJ_LJ‘.
1=0
Because
1
Da,@(l) —i(1—
i(1-5-)
by (ZI0), @33) and the notations [Z24)) and @I)] we can write
; ; 1 1 (OAT + oA )Nt

4.223 Py (GO0 = DPyGUT D) = — Py | = / dg' | .
(4.223) " e H 2mi "\ Z. o (a/ — )2 p

17Observe that A0 = 6.
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and
Nij :=2m (/iao‘/m(PHDt)Hl Pr (G(jil) - DtPHG(jilil)) da’ — Jz,j>
S 1 1 (eﬁ_kg/\l)/\jflfl
I+1 I+1
= / aa/G)(J) {(PHDt) ]P)HZ — 70/ Dt+ }/ (o/ — ﬂ/)Q dﬁ/ dOé/
T, D I+1 T 1)\ j—I—-1
_ O3 + GA 11 ! ((9)\ +IANL)
+ [ D©W) Dl“/( d / dg' % do
/ t w—pyE " P p
(4.224) > o (e(ﬁ—gﬁ)v—l—w?(/\l—@tew—l—l) o
’ J
+/Do¢ @ / (O/—/B/)Q dﬁ dOé
o (DB -0 )
+/Dm®(J)/ @ ) dg’ da
, Dl (@ (09D 19)
j / /
+ / (P00 - D}2,) / BT dp do

= Nija+ Nijo+ Nijs+ Nija+ Nijs.
Observe that there is a derivative loss in N;_1 ;3 and N;_1 j 5 Because A’ = 6, so Nj_14 = 0. We
combine N;_1 ;3 + Nj_1j5 with —wL H;, cf. @7T), and write

d . . .
Re(Nj-1,3 + Nj-1,5) —7m—H; = Nj3+ Nja+ Nj5— 7Ry

dt
99 (@7» @tx) + 00 (@{F - @tﬁ)
—Re/D 67)/ - dg’ do’
(o ﬁ)

(4.225) o] (007 - 2:8)0 + T\ —D,0)6) — F0D](\' — D,0) — 092{(\T —D,7)

+Re / DiZ, B’ do’

=P
| D ((9F+9A1 9)-99@§A1—99©{F
j J / / .
+Re/ (Da/@(J) _DtZt)/ (O/ —[‘3/)2 dﬁ do —7TRH7J‘,

this cancels out the derivative lossing terms for j = 4, and enables us to get the desired estimates for j = 3.

We sum up the above decomposition:

T (2 RQZ/iaa/G(j)(PHDt)l+1PH (G(H) _ DtIP’HG(jflfl)) da! — L, — ih@(t))

dt
(4.226) I -
= Re <ZZNl,7,k+ZN7 1,5,k ) +ZNj,k_7TRH,j7
=0 k=1 k=3
and
—_— . . 5
(4.227) o (Re/iaa,(a(j)JPH (G<J+1> - Dt]P’HG(J)) do/ — 127j> =Re> N1

Observe that all the terms in ({.224), (£.225) are quintic.

18Namely Nj;_1,5,3 and N;j_1 ;5 contain factors that cannot be controlled by &;(t).
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Now we use (B:2G) to write

1
Py | (PyD) ' Py— — —
H (( H t) sza/ Zyo/
(4.228) ! 1 I+1 1
(P Dy)F Py [b,Pa] O DLF = P DFf'— ) DIk,
kZ:OHt 1 [0, Pa] toZ +Hz<k+1><t 7 t o

’
a Lo

1
DéJrl) _ ((]P)HDt)H-l]P)H _ PHDilerl) 7

’
o3

1
+ Py |:D,l5+1, = :|

because
— A —1
(4.229) Do®W ~Zpy =i ——,
by (B:4) we have
D0 — pi+17, — p,,el+) — pip,e® + DD, —Z,)
-1 -1
=Y (PuyD,)* |=—,Py|0.,D:0"® £ (PyD,) [P,—Da,le)Za,
- > e |5 P 0w > EnD) [P 7 t
1—1
1 A —1
+i Y DF[PA, b0y (PyDy) —1F +i Dt( L )
Z o Z o
k=0 ) 5
and
. j—2 1
Da®Y) = DIDw®W =3 Dy(PyDy)" [TJP’H] Do DO 1R
(4.231) _ k=0 ’ _
Jj—2 -2 ‘ 1
+kZ_ODt(]P)HDt) [PH,fD QU= ’ﬂ Zta/ﬂkZODk“ IP’A,b]aa/(IP’HDt)J_2_’“Z

We are now ready to do the estimates. We begin with N; ; 1. Observe that by the Cauchy integral formula,
we can insert a Py to write it as
— 1 1 (OAL + AN~
4.232 Niji= [ 000 Py { (PyDy) ' Py=—o — =— DI / B’ da’
( ) 11 / H {( D) 7.7 @ =B 5’ do
and it is clear that N_j ;1 = 0. We estimate |N; ;1| for 0 <1< j—1,2 < j < 4. By (£228) we need to
estimate, for 0 < k <,

_ 1 ONT 4+ AN —i-T
(4.233) Ap1j = |(PuDy)"Py [b,Pa] 0o Dy <7 / / : (o — ﬂ)’)z dp’ ;
P1ed L2
1 i [ O o)
— k+1 l—k
(4.234) B = |Px {(Dt Zo/) D, / (o — B')2 dp’ L

By (B29), (C29), (C30), (C27), we have, for k <lorl<j—1and2<j <4,

NE Nyl j—1—1
|Di_,€/(9A + AN .

~Y k)

(4.235) g’

(O/ _ B/)z

and by (I129) and (C.31), (C.32),

9» + 9)\1 )\1 OAT + GA1)N° 1
/2 « /2 o |2
(OAT + OA1)X° OAT 4+ GA1)AO 1
(4237) H/ 7[3)) dﬁ ~ 63, 60/ / W dﬁl S 62 60/ | )
/2 L2 L2
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therefore by (B23), (B32), (CI9), ([C20), (C23), (C21), ([C27), we have, except for the cases where
l=k=j—1forj=3,4,
1

(4238) Akﬁl)Q 5 64, Ak,l,B ,S 63 ( 80/ Z

+ ||Zt,a/||H1/2) s Ak,l,4 ,S 54-
[e% L2

We also have, by (B29), (C29), (C21), (C33), (C42), that except for the cases where [ = k = j — 1 for

2<j<4,

(4.239) B2 <€, BrizSe® <‘

1
ey
Z.q

+ ||Zt,a/||H1/2> s Bk,l,4 5 64-
’ L2
Now all the terms in Aj_1 j_1,, j = 3,4, after expanding by (B.25)), (B.32)), can be handled similarly, except
for one, namely

1 1 (OXT + OA N0
(4.240) Pi | D', Pa] 0 (7 — | =)
for this term, we write
; : DI7'z DI7'z
(4.241) DI ' =DJ 7' —2Re =L—=L 4 2Re L1

’ ’

e’

and use (£92) and ([@99) and (CI9) to estimate the first term and (C.I7) to estimate the second term,
- 1 OAT + OA1)N°
Py {Dg 1p, ]P’A} O (7 / ( h ) g’

e’

o (of = )2 Lo
. Di7'z 1 OXT + GAL)NO
(4.242) < |0 <Dg 'b—2Re t7t> — / ( ,+ ; )2 ap’
Z,o/ 2 Z,a’ (CY — ﬂ ) 172
DIz 1 OAT + OAL)AO
+ L i 80/ =3 / ( /+ ! )2 d/BI bl
Z,o/ /2 Z,a' (CY - ﬁ ) 2
and we get
1
(1.243) ta2a 5 (|owg | F1Zialin ). Araasd
,O/ L2

To estimate Bj_; j_1,; for 2 < j <4, we first compute using (B.g)),

i1 - 1 i 1
Dg_ = Di ! (_ (ba/ — QRQDO/Zt)> + |:Dg 1, —28a’:| Zt
Z o Z o |Z,O/|
(4.244) > >

1 ; 1
Jj—1 Jj—
+ |Za/|2a°‘/PHDt Zi+ |Zar|28a/PAD Zt,

and by (B20), we write

. 1 e —2ReDuy Z o
Jj—1 ol Lt j—2—k
(4:249) 2 ] 2 -2 (ot 2,

and using the fact Py Z; = 0 we write

Jj—2 j—2
(4.246) PyD] "' Zy = Df[Pu,Di DI > "2, = Df[Py,b) 0w DI > " 2
k=0 k=0

using the expansions in (£.244)), (m and M) and the estimates in §L31] we have,

(4.247) H —— _0PADI ' Z,|| <€, =24,

a’ |Z0t’|2 L2
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s
L2

1 (AL +OAHN
PH{<D57,QI>/ @ =5 dﬂ}

. . L 1 A9)\1))0
(4.249) =Py { <D§% _ #%/PADith) /w dﬁ’}

(4.248) H s 1 !

— — ——0,PaD?*Z
t Zﬁa/ |Zﬁa/|2 Ay Lt

1
Doy ——
Zall,

+ ||Zt,o/ ||H1/2> )
2

now we rewrite

|Z,a’|2 (a/ _61)2

]P)Hu

1 / (OAT + OA1)NO
|Z,a’|2 (O/ _ 6/)2

d@’] O PADI ' Z,,

by (C29), (C.32),

(ONT —|— 9)\1 )\O
(4.250) H/ B S Zearlis,
LDO
(OAT + OAT)NO 1
(4.251) /7) dB'|| SN Zew e |||
B ) e Z,a' L2
therefore by (C19), ([@247), [@24]), we have
1
(4.252) Byos <€ ( Ou 7 + ||Zt,a'||H1/z) ; Bii2+ Bsza St
,O/ L2
Sum up [@E232)-([E252) we conclude
INijal Se®, —1<i<j—1, j=2.4
(4.253) , 1 2
Miardl $€ (|| H1Zearlans) o —1<t52
o’ L2

Now we handle N; ;2. Observe that N_; ;2 = 0, so we work on the cases where 0 <1 < j —1. We use
(B29) to expand. The estimates are routine for all the terms after expansion, using (C46), (C48)), (C2T),

([C22), [C35), (CA9), except that when [ = j—1 for j = 3,4, we need to again decompose D? ™' by (@241,
and treat all the terms as usual, except

DTV Zu(B) (OAT +GAHNO
4.254 dp Re — g’
2 I
for which we first perform integration by parts, then apply (C:46), (C48) for b = Re 2.—2t. We have
|lej72|f\./€7 _1§l§j_17]:2747
(4.255) 5 1 2
|Nl>372| 56 (‘aa’z +||Zt,a’||H1/2) 5 _1§l§2
a’ |12

We consider the remaining terms in (£.226)-(@227). Using [@230) and the estimates in §43.1] §43.2]
(CID), [C20), [C19), [C23), [C2T) we have

W _p7 2
(4.256) HDQ,@ DtZtHHW <é
_ 1
(4.257) |Pa®® —DZ| se (‘ o P ||Zt,a/||H1/2> :
(4.258) HDi (Da,(a(j*l) - D{*ZZ) LS j=24,0<1<],
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_ 1
(4259) Dé (Da,®(3—l) - Dgith)’ 12 S € (‘ 80/ 7, + ”Zt,o/HHl/z) ) 0 S l S 3;
o || 12
and using (231]) we hav
. : 1

DiDw® - DDy 5 (‘ O =+ 1Z0ar] H/) . forj =23,
(4.260) L o |l e

D,D, 0" _ DfDa,G(l)H <2

L2

this gives, by (C29), (C30),

j—2 5 5
>3 Wil + 2| N+ Rmsl S € for j =24
l=—1k=3 k=3

j—2 5 5 . 1
IPILIEDY |+ 1R < € (Haa/z

l=—1k=3 O

(4.261)

2
+ ”Zt,a’”Hl/z) , forj=3.

’

L2

Sum up the results in Steps 6-8, we get

d s d 5 1 2
GEnranramse. a0 (|| iz
This together with ([@I64), (£134) gives the inequalities (£20) and [@.24]), and finishes the proof for Propo-

sitions [4.3] [£.4] and Theorem B.11

(4.262) O

APPENDIX A. NOTATIONS AND CONVENTIONS

We use the following notations and conventions throughout the paper: compositions are always in terms of
the spatial variables and we write for f = f(-,t), g = g(-,t), f(g(-,1),t) := fog(-,t) := Uy f(-,t). We identify
(z,y) with the complex number x+iy; Re z, Im z are the real and imaginary parts of z; Z = Re z—i Im z is the
complex conjugate of z. Q is the closure of the domain €2, 9Q is the boundary of Q, #_ := {2 € C : Im z < 0}
is the lower half plane. [A, B] := AB — BA is the commutator of operators A and B.

We use z = x + iy = z(a,t), 2t = zi(a, t) and zy(, t) to denote the position, velocity and acceleration
of the interface in Lagrangian coordinate «; Z = X +iY = Z(d/,t), Zy = Zi(d/,t) and Z(a/,t) denote the
position, velocity and acceleration of the interface in the Riemann mapping variable o/; h(o,t) = o’ is the
coordinate change from the Lagrangian variable a to the Riemann mapping variable o/ b = h; o h~!, and
the material derivative is D; = 9; + bd,. We write

Z,a’ = 60/Z(O/7 t)u Zt,o/ = ao/Zta Ztt,o/ = ao/Zttu etc.

Let H be the Hilbert transform associated with the lower half plane &2_:
1 1
Al Hf (') = —pv. | —— "Ydp'.
(A1) £0) = v, [ (845
We know H? = I, and a function f € LP(R), 1 < p < oo, is the boundary value of a holomorphic function
in &Z_ if and only if f = Hf. We define the projections to the space of holomorphic, and respectively,

anti-holomorphic functions in the lower half plane by

(A.2) Py = %(I—I—H), and Py := %(I—H).

19Again we use the decomposition E-ZAI) to treat the term []P’A, Dgflb] Ont Z;,
, O

2Oh(a, t) = ®(2(a, t); t), where ®(-,t) : @ — FP_ is the Riemann mapping satisfying ®(z(0,t);t) = 0 and lims 00 ®»(z,t) =
1.
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It is clear that the decomposition identity

(A.3) Pg+Psa=1
and the projection identity

(A4) PyPsa =PsPy =0

hold. We will often call a function f € LP, 1 < p < oo, that is the boundary value of a holomorphic function
in &Z_ simply by ”holomorphic”.

We define
(A5) Dar = o,
and
_ L U= fy)g) - g(y)(h(z) - hy))
(A7) < f,g,h>= E/ @) dy.
We use the following notations for functional spaces: H® = H®*(R) is the Sobolev space with norm

[ fllme = (S (1 + [€]2)*| £ (€)|> d€)'/?, H* = H*(R) is the homogeneous Sobolev space with norm | f|| 5. =
([ 1€12|£(€)|? d€)*/?, and we define

(A-8) s = 1 W2y = / iHO.f (2) (@ 2#// L @y ey

LP = LP(R) is the LP space with ||f|r» := ([ |f(@)[Pdz)'/? for 1 < p < oo, and f € L™ if ||f| = =
ess sup | f(z)| < co. When not specified, all the norms || f||g=, || f|l gss [ f]lr, 1 < p < o0 are in terms of
the spatial variable only, and || f{|r=(z), /[l g« () [fllzr(r), 1 < p < 0o are in terms of the spatial variable.
C7(X) is the space of j-times continuously differentiable functlons on the set X; CJ(R) is the space of j-times
continuously differentiable functions that decays at the infinity.

We use ¢, C to denote universal constants. c¢(ay,...), C(ai,...), M(a1,...) are constants depending on
ai, . ..; constants appearing in different contexts need not be the same. We write f < g if there is a universal
constant ¢, such that f < cg.

The following are some additional notations used in this paper:

Q := (I + H )y oh~!, where ¥ o h=! is the trace of the velocity potential on the interface; 0 := Q,
0U) = (PgD;)’Q, and GU) := DtPHDt(a(J‘) +i 7o 0a O,

We define 0 := Z,(o/,t) — Z4(8',t); N = Do©®U) (/1) — D:@W (B 1); Dy := 9y +b(c', )0 + (B, 1),
and P = D7 + "“;“42)6 +1 Al(ﬁ t) 0. Observe that when acting on a function independent of 3, i.e
f=F 1), Pf= (Dt+’|z |26’)f'

We denote by M(f) the Hardy-Littlewood maximum function of f.

APPENDIX B. EQUATIONS AND IDENTITIES

Here we give some basic equations and identities that will be used in this paper. First we recall some of

the equations and formulas derived in our earlier work, see [44] 48] or §2.2, §2.3 and §2.7 of [49].
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B.1. Interface equations. We know that the interface equations for the 2d water waves is given by

_ A
Tyt —i = —i
(B.1) 2w
7, — HZ,, ZL,—lzﬂ(Zl )

o

where the quantities A; and b satisfy

_ 1 _ Z
(B.2) Ay =1-Im[Z HZ1o =1~ 51m[Z,Z;1],  b=Re(l - H) (Z i ) .
Let
A
L 2 . 1
(B3) (B = Dt —+ 1 m@a/.

The quasi-linear equation for the water waves is

(B.4) PZ, = V7, = % oh™H(Zy — i)
where

D, A
(B.5) Y ooh 1= 28 Ly —92Re Dy Zi,

a 1
with

(B.6) DiAy = —Im ([Ze,H] Zt,or + (24, H] O Z4t — [Z4,b; Zo,or]) = —Im ([Z4, Zue; 1] = [Z4,b; Z1o0])

and?!

1 1 1] 1 1 1
(B?) ba/ —2R6DO/Zt = Re ({Z,H} Zt,o/ +[Zt,H] 60/%) = 5 |:Za ,Zt,1:| - 5 |:Zt,_7al,1:|
We also have
1 1 1 T
B.8 D = ———(bor — Do Zy) = =—(boy —2Re Dy Z —.
( ) t (Z7a/) Z7a/ ( t) Zﬁa/ ( e t) + |Z70¢/ |2

B.2. Basic identities. We give some basic identities that will be used in our calculations. We begin with

Proposition [B.I], which is a consequence of the fact that the product of holomorphic functions is holomorphic

and (A4).

Proposition B.1. Assume that f, g € L*(R).
1. Assume either both f, g are holomorphic: f =MHf, g = Hg, or both are anti-holomorphic: f = —Hf,
g = —Hg. Then

(B.9) £, Hlg =0.
2. If Paf =Pag =0, then P4(fg) =0; and if Puf =Prg =0, then Py(fg) =0.

Proposition B.2. 1. We have

(B.10) [f,9:h] = [f, H]Oar (gh) + g, H|0as (fh) = [f g, H]Oarh.
2. If h is holomorphic, i.e. Pah =0, then
(B.11) Pulf,g;h] = —2Pu(fO0uPa(gh)) — 2Pu(g0aPa(fh)).

21The second equality in (B.6) and (B.) are obtained by integration by parts.
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(BI0) is obtained by integration by parts. (B.I1) follows from (BI0), (A4) and (A3) .

We often use the following equalities to calculate the time and spatial derivatives to our energy functionals,

and the following version of the Cauchy integral formula to derive our equations and formulas.

Proposition B.3. For f, g smooth and decay fast at infinity,

(B.12) ﬁ/f(o/,t) da’:/(Dt+ba/)f(o/,t)da’;

(B.13) o // ' B t)ddp’ —/ (D + bar + bg)g(c, B, 1) da’dB;
(B.14) Dy [g(e 5,05 = [ @0+ bayglel, 5005

(B.15) 80// "Bt ap —/(8a/+3g/)g(a’,ﬂ’,t)dﬂ’.

(B12), (B13), (B14), (BIH) follow from the simple fact that [(bda + bar)fda’ = [Oas(bf)da’ = 0,
f(baﬁ/ + bg/)g dp’ = faﬁ/(bg) dp’ =0, and faglg dg’ = 0.

Proposition B.4 (Cauchy integral formula). For any © € L*(R), satisfying Pa© =0 or Pz© =0,

(B.16) /@ da’ = 0.

B.3. Commutator identities. We include here various commutator identities that are necessary for our

proofs. Some have already appeared in Appendix B.5 of [29] and Appendix B of [49]. We have

(B.17) [Dy, Dor] = — (Do Zt) Do
(B.18) [D¢, 0] = —boyOar-
By product rules,
1 1

(B.19) [Dt, Z—a/]f =Dy (Z,a/) I
From (B.§) and (BI8) it implies that

1 ba/ —2Re Da/Zt
(B.QO) |:Dt, Wao/} f = |Za/|2 ao/fa

. A DtAl Al
(B21) [Dt,m] f = |:Dt, |Z |28 :| f =1 ( A1 + ba’ 2ReDa/Zt> |Z |26 f
We also have
Zy Zy

(B.22) [Dy, H] = 2[Dy,Py] = [b,H|On = [—,H] Ou Py + [7 ,H] 0o P4,

where the last equality in (B:22) is a consequence of (Z.)), (A3]) and (B.9). In general, for operators A, B
and C,

(B.23) [A, BC] = [A, B]C + B[A,C].
We use the following identities in our computations. We have
m—1
(B.24) [P, D7) =Y D[P, DD,
k=0

(B.25) PyDPy =PyDy — Py DiPy =PuD, — Py [b,Pa] O,
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and we compute

l
(PHDt)H_lPH _ PHDéJrl + Z ((PHDt)k+1PHDé7k _ (PHDt)k]P)HDiJrlfk)
k=0
l l
=PyD;"' =Y (PuDy)*PyDiPaD; * =PuD{™ = (PuDy)*Py [b,Pa] 0o D",
k=0 k=0
SO
l
(B.26) (PuDy) Py =Py D[ = (PuDy)*Pp [b,Pa] 00 D} *.
k=0

A similar computation also gives

(B.27) (PyD,)"t'Py = DIF1Py ZDt [Pa,b] 8o (P D) FPy.

Let § := f(o) — f(8), g:= g(a’) — g(8") and b := h( )~ h(B'). We use (BI) and (BI) to get

(B.25) Di<fi g h>e m/%dﬁ L /aﬂ@t( ﬂ)fghdﬁ,

and by induction,

(8.29) D < . g,h>—— ( ) [onot (525 ) o Gamas.

Similarly,

(B30)  Dyf.g:h) = %;(2) oot (2 ) 2t (Ul = SN 0(e) ~ (@ DB a5
1) Diif g ot = 5 (1) [0 (L0 f((ﬂ,”_)(ﬁf)) (ﬂ/))>3ﬁ/D?kh(ﬂ/)dﬂ/;

@3 Dpls s = 230 (7) [ o (KO=EE0) o as

k=0 p
where
LN ) =B oL Dib(a’) = Did(B) ., (b(a) — b(B))?
(B33) Qt (O/ _ ﬂ/) - (O/ _ /8/)2 ) th ( ’_ B/) (O/ — [3’)2 + 2 (0/ — ﬂ/)g

in particular,
(B34) Dt [fa H]aa/g = [tha H]aﬂ/g + [fa H]aﬂ/Dtg - [fv ba ao/g]'

B.4. Some additional equations. We know by definition (7)), [28) and equation (2:3) that

(B.35) 00 =@, eW=iz-d), 6@ =_iPyb= —z]P’H_Zt
(B.36) QU+ — —z']P’H(|Z /IQ%/@ N +Pu(GY),  j>1.
This implies

B.37 D00 =7, DoyOW =i (1- LI

(B.37) : 7 )

(B.38) b=i0® —i0®@, Db=iDOP —iDO?,  and

, etc;
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(B.39) Py (Dtb+z|ZA B —i) =Py (’;__é) +iP(GD) + i [b,Py] 00 OD.

We compute, by (B:24)), (B:2I)) that

-1
[P.D}|Z: =) Di"'"* [P, D/ DfZ,
k=0

-1
D, A Ay
. I—1—k tA1 k
=—iY D} {( 1 +ba/—2ReDa/Zt) IZQIIQa“/D Zt}
k=0

1
and we have, by (B:23), (BI17) and (B27)), that

-1

(B.40)

D0 —Dip,0W =N (PyD,)* | —, Py | 00 DO
t kzo( H t) ZO/7 H t
(B.41) - o
+ Y (PuDy)*"Pu(Dar ZtDor®' ™M) = > " DF[P A, b]00r (P Dy) ™' F Doy O
k=0 k=0

APPENDIX C. BASIC INEQUALITIES

We will use the following equalities or inequalities in this paper. The first set: Lemma through
Proposition [C.14] are either classical results, or simple consequences of definitions and classical results, and
some have already appeared in Appendix A of [49]. Lemma [C.15] and Proposition [C.16] are from Section 5.1
of [49].

Lemma C.1. For any function f € H/?(R),
(C.1) 11572 = 1Pa Fll e + IPaf Nz s
(C.2) [ 01T ded = P = 1Paflre

Proposition C.2. Let f, g € CY(R). Then

(C.3) 1fgll iz S W llzoellgllgare + Nlgllzoell £l /s
(C4) 1 gl e S MFILoellgllgare + 1 22 llgll2s
(C.5) gl gire SN e (W Fgllgare + 1 2 llgl o).

is straightforward from the definition of H1/2 and Hardy’s inequalit . The remaining two are from
g y y g
Appendix A of [4.9]

Proposition C.3 (Sobolev inequality). Let f € C}(R). Then
(C.6) 1Az < 20f 2l f s W0 < UFNllf D e
Proposition C.4 (Maximum inequality). Let 1 < p < oo, Then for all f € LP,

(C.7) M) e S llze -

Proposition C.5 (Hardy’s inequalities). Let 1 < p < oo, f € CY(R), with f' € LP(R). Then

@) = f)P |
(C8) / y S 110
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and
1
(©9) [ L oy S 171

Let H € CY(R;RY), A; € CY(R), i =1,...m, and F € C®(R). Define

(C.10) Ci(Ar, .., A, f) () = pv./F (H(‘Ti = j(y)> Hﬁl((;“f“;));‘l‘i(y))

fy) dy.

Proposition C.6. There exist constants ¢1 = ¢1(F, ||[H'||L=), ca = co(F,||H'|| L), such that
1. Forany f € L?, Al e L™, 1<i<m,

(C.11) IC1(Ax, -, A, )z < el AL - Azl f] 22

2. Forany f € L™, Al e L>®, 2<i<m, A} € L?,

(C.12) IC1 (A1, A, )iz < col| ALl z2 [ Al oo - AJAG llzoe [[ fll e

(CI1) is a result of Coifman, McIntosh and Meyer [I8]. (C.I2) is a consequence of the Th Theorem, a
proof is given in [46].
Let H, A; F satisfy the same assumptions as in (CI0). Define
H(z) — H(y) | I, (Ai(x) — Ai(y))
C.13 CgA,fx:/F( = Oy f(y) dy
The following are consequences of Proposition and integration by parts.

Proposition C.7. There exist constants cs, ¢y and cs, depending on F and |H'||L~, such that
1. Forany f € L?, Al e L™, 1<i<m,

(C.14) 1C2(A, )llze < esl| Az - . JAG ool fll 2
2. Forany f e L™, A, € L>, 2<i<m, A} € L?

(C.15) 1C2(A, )llze < call AL r2l| Allzoe - . [JAG oo fll Lo
3. For any f' € L?, Ay € L™, AL e L>, 2<i<m,

(C.16) 1C2(A; )Lz < esllAxllzoel|AdllLoe - - [ Amy oo Lf ]l 2-

Proposition C.8. Assume that f,g,h are smooth and decay fast at infinity. Then

(C.17) I gl L2 S 1Az Mgl e

(C.18) 1L Hgl oo S N2 gl 25

(C.19) ILf, H)Oar gl L2 S S N 2 llgll s 5

(C.20) ILf, H)Oargll L2 S S W grare gl 5

(C.21) 1L 75 Oar gl Lo S NS Mo 1N e Mgl o e

(C.22) ILf, 73 O glll Lo S NS W 10 W oo gl o + 1 W e IR 2 Mgl s -

(C2Q) follows from integration by parts, Cauchy-Schwarz inequality and the definition ([(A.8]), and (C22])
follows from integration by parts, Cauchy-Schwarz inequality, Hardy’s inequality and the definition (A.g]).

The remaining inequalities are from Appendix A of [49].



THE QUARTIC INTEGRABILITY AND LONG TIME EXISTENCE OF STEEP WATER WAVES IN 2D 49

Proposition C.9. For any f, g, h smooth and decay fast at spatial infinity, we have

(C.23) L9 1l S NP N2 gl Pl e, 1< p <00y
(C.24) 11 g3 Bl 2 S W M w2 gl e 1Pl o 5

(C.25) ILF, 93 Wl L2 S Wi 19l oo NP1 2 5

(C.26) ILfs g5 Pl e S F N 22 gl oo NP 2 -

(C23) directly follows from Holder’s inequality and Hardy’s inequality. (C24)) and (C28) are direct
consequences of Cauchy-Schwarz inequality and the definition (AZg). (C26) is from Appendix A of [49).

Proposition C.10. Assume that f; € C1(R), with f! € LPi, g € L9, where

"1 1 1
Z;—Fa:]—j—Fl, 1<pi<oo, 1<g<oo, p>0.
Then
7 (fi(x) = fi(y))
(ca1) | [ RO gy | 1 17 ol
Lr

Observe that ‘%‘;(y)‘ < min{M(f")(z), M(f")(y)}. (C2D) is a direct consequence of the Maximum
inequality (C1)) and Holder’s inequality.

We also have the following inequalities for the cubic form < -, -, - >.

Proposition C.11. For any f, g, h smooth and decay fast at spatial infinity, we have

(C.28) I<fr9:h >N S U2 lgllpee Il 5

(C.29) I<f.gh >l SN2 gl 12l 1 <p < oo
(C.30) 1< fr9:h >l2 S W ez gl all g 5

(C.31) 1< fr9:h >Nge SN e 9/l Wl s

(C.32) I<fogh>lg S U2 g llpa 1AM 2 5

(C.33) 1< fo9:h >l SUF N2 (g lla Rl e + 1N 2 gl gr2) -

(C28), (C29), and (C32) are easy consequences of Holder’s inequality, Hardy’s inequality, and the
definition (A.8). (C30) and (C31) follow from interpolation; (C33)) follows from the inequality

100 < fr9: 0 >N pa < 1Mo (gl Wl gy + IR 2 g grare)

which in turn follows from Cauchy-Schwarz inequality and Hardy’s inequality.
Proposition C.12. Assume that f, g, h are holomorphic, i.e. f =Pyf, g=Pyg and h =Pgxh. Then
(C.34) 1< fi9,h >lpee SNF Nz2llg 2Nl e

Observe that for f, g holomorphic, [f, g;1] = 0. The same argument for (C33) gives (C.34).

Proposition C.13. Assume that f, g, h are smooth and decay fast at infinity, b = b(x,y) is bounded.
Then

- - h(x) —h
(C.35) H/b(x’y) (f(z) — fW)(g(x) — g(y))(h(x)

(¥))
dyl| S Pl qeey 111z 9"l 2 1B e
L

=
€30) | [ vty LN ZEDCDZROD | bl oy 1 s 1l
(z —y) L2
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(C35) follows from Cauchy-Schwarz inequality and Hardy’s inequality; (C36]) follows from interpolation.
Proposition C.14. Assume that fi € Hl/Q(R) k=1,2,3,4. Then

©37) [ gy < 1ty U e

Proof. Observe that by symmetry, we can write

()~ 60) L, (le) — )
[Pt =2 [ o [ SR s

By (C30), we have, for f, € H'(R), k =1, 2,

g _ T) — /
[ PO D i ) < e s U Wl

similarly we also have

I} _ x)— ,
R R T TP A PRA T P

then follows by interpolation. O
(C.37) y interp

The equality and inequalities in Lemma [C.15| and Proposition [C.16] are from Section 5.1 and Lemma 6.3
of [49].

Lemma C.15 (cf. Lemma 5.4, [49]). Assume that f, g, f1, g1 € H'(R) are the boundary values of some

holomorphic functions on &_. Then

(©39) [ auaGo)) s @7, () o’ =~ [ [ LEOZICNBEI LD 905, o1 o

Proposition C.16 (cf. Proposition 5.6, Lemma 6.3, [49]). Assume that f, g € H'(R). We have

(C.39) I ] gl e S g2 (gllzee + [Hgllze);
(C.40) IS ) gll e S 10 fll 2 llgll 2
(C.41) ILF H] Oargll g/ S N9l e (0 fll oo 4 [|Oas LS || Loe);
(C.42) £ S UF e 1N e -
Finally, we need the following inequalities for our proof. Let fmy b= fyz(fa;da. We have

Proposition C.17. Let b € BMO(R), f1,..., fn € C*(R) such that f{,..., f, € L*(R), and g € L*(R).
Then

2 .
(49 |/ ( D R e L S T P
(C.A1) H / o) B RO gy g 17 150
L oo
2 .
ca5) | [ (b + 2][ b) Pl gty 5 Wllpaso 1530 1530 Il
: i\¥) — Ji / /
(©.46) | / MDA = LN o) a4 < s 1Al 13 Nl
y) L2




THE QUARTIC INTEGRABILITY AND LONG TIME EXISTENCE OF STEEP WATER WAVES IN 2D 51

Y H3, 0 —Ju / ’ /
| f (b b - f b) B ay| < Wl 1o 152 515
H3 [ [ / / /
(©.19) H / D = RO 4| Wl N 185 1
and for n > 3,
Hn % %
casy | [ EDZROREED RO o)y | < Dol Ll 13l I D5

where M(f) is the Hardy-Littlewood mazimum function of f.

Remark C.18. Observe that H'/?(R) ¢ BMO(R), and ||b|| g0 S bl for all b € HY2. We will
primarily use Proposition [(C17 for b € H'/?(R). We sometimes also use Proposition [C17 for b € L>(R),
with the inequality [|b]| 510 S 1Bl 1o -

Proof. 1t suffices to prove for the case that fi1 = fa. We begin with the following lemmas.
Lemma C.19 (Schur test). Let
Ty(x) = / POK (z,)e"g(y) dy.
where b is a real valued measurable function, K is measurable on R?. Assume that
max{ sup/e2b(y)|K(:v,y)| dy, sup/e2b(z)|K(x,y)| dz} =M < .
x y

Then for any g € L?,
ITgll - < Mgl -

Let b € BMO(R) be real valued, and h(z) = [/ e®®) dy. We know there is a constant v > 0, such
that for any b € BMO(R) satisfying ||b| 1,0 < 70, €® is a Ay weight and U1 is a bounded map from
BMO(R) to BMO(R), with |[f o h™Y|| 5,0 < 2[Iflzaro for all f € BMO(R)E] And for any real valued
BMO function b with |[bl|pro < v <1, z(z) = [ €@ da defines a chord-arc curve, cf. [16} 7], with

(C.50) (I =Yz -yl <[2(z) —2(y)| < |z —y[,  forallz,y €R.
We have

Lemma C.20. Let b € BMO(R) be real valued with ||b|| g0 < 70/2, and h'(z) = @) For any f such
that f' € L*(R), there is a constant c(yo) > 0, such that

(C.51) sup / 2 | £@) = Fy)

h(z) = h(y)
Proof. We know

2
2
dy < c(v0) [1f'lI7z -

x h(x)
f(2) — () = / F(@) da = / e N ()4

hence

sup
xr

fi‘ <M (f oh™ (7)) (h(y))

22These are consequences of John-Nirenberg’s inequality and the theory of A, weights, cf. [16}[17].
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boh ™!

where M (g) is the Hardy-Littlewood Maximal function of g. Because e is a Ay weight, we have

2

( ) sup/e2b(y) % dy < /ezb(y)Mz (f/oh—l(h—l)/) (h(y)) dy
C.52 ®
= /eboffl(y)]w2 (f/ o }rl(hfl)/) (y)dy < /ebohﬂ(y) }f’ o hfl(h71)/|2 (y) dy = Hf/”i2 '
This proves Lemma [C.201 -

Now let b be a BM O function satisfying ||b]| 5,0 < 1, and z be a complex number in D := {|z| < min{$, 2} }.
Let h.(z) = [; e*®® do and

2
C.53 Ti(f,b;2)(x) : = /622b(y) <7f($) — /) dy,
(©53) (/b 2)() 2=

2
C.54 To(f,9,b;2)(x) : = /eZb(w)eZb(y) (7‘)0(96) — ) ) dy.
By Lemma [C20, and (C50Q), we have for all f satisfying f’ € L2,
(C.55) ITL(f,b52) || e < c(ro)llF 11225
and by Lemmas [C.19 [C:20] and (C50), we have for all f, g, satisfying f/, g € L?,
(C.56) 17,9, b5 2l gaay < (o) 1712019l oo
where c(79) > 0 is a constant depending only on 7g. Let q1 € L'(R), g2 € L*(R), and
(C57) Fi(2)i= [ a@)Ti(7,b:2)(a) da,
(C.58) Fa() = [ o) Ta(f,g.b:2)0) o

Then Fy, F5 are holomorphic functions in the domain D, satisfying

(C.59) 1) < cOolalle £z, [F2(2)] < cOo)llaallzell flI72llgllz2,  for all z € D.

And by Cauchy integral theorem, we have

(C.60) IF0)] < cOllaleellf 72, 1FO) < ctyo)llanllea 1 £117,
(C.61) and  [F3(0)] < c(yo)llazl 2l £'lI72llgll 2.

We compute FY(0), Fy'(0), and obtain

O < fo) e
(

dy dx

)2 - ]£y(b(a) —][my b)2da> dady.

1 and by Hardy’s inequality,

FY'(0) //ql @

Because sup, ,, ff ‘b fy b‘ da < ||

// @[ LE=5
[ (]{y@(a)—]{yb)?da) drdy| S oo

drdy < |||l f]|72

SO
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(C43) and (C44) then follow from (C.60) and (C.62). We compute
Y\ (@) - f)?
(©63) 70) = [[ o) (b +500) - 2 6) LEZTWE g0y

(z—y)
By (C.61) this gives us (C.43).

Now the Schur test, (C.44) and Hardy’s inequality yields

(C.64) H/ (b(y) —][my b) wg@) dy

This together with (C45) gives (C48]).
(C41), ([C48), and (C49) can be proved similarly by considering

2
S Ibllgaso 17122 N9l 2 -

L2

) o [ o#b(@) g2b(y) f@) =) \° @) - ()
(065) T3(fa f37b7 ) . / (hz(fE) _hz(y)> z—vy d’y,
) [ e#b(@) g2by) F@) = fy) \* s (fi(@) = fi(y)
(066) T4(f7 f37"'fnugub7 ) . / (hz(iE) —hz(y)) (x—y)n72 g(y)dy,

and using the fact that

FOZL0| < yigpw. 3<isn

We omit the details.

APPENDIX D. MAIN QUANTITIES CONTROLLED BY L(t) AND ‘ 80/%‘

o+ 1Zearlips

Assume that

1
Z o

1
L) = | Zear o + H—

1
Z,a/ EH1/2

Z

O -1 <1l-46<1.

I,o©

+ ||Zt,o/o/||L2 + ‘
H1/2

We have shown in §4.3.1] and §4.3.2] that the following quantities are controlled by e:

1
Z o

Ou

0003 ‘

1Ztall e s (12,00l 12 1D} 2| 2 Nbor o

2’

H N Zetll g s ol
L2

1
Z o
1

Df—Z ,

0 O©W }

1
(90/ th

‘ 1

Dy

s N Zuttll oo 5 110arbarll s s
LDO

) ||Ztt,o/||H1/27 ||ao/Dtb||Hl/27
L2

(D.1)

3
Dt A ’ ‘
,al L2

o200, D2 .
L2 H/2

e 1 Zust,r |l 2+ ||0ar DFY| 5

1D Zull s> |07 20| 2

‘DtDa/®(3)‘

o]

10|

L2 ’ H1/2 ’ H1/2 ’ ‘ L2 ’

the following quantities are controlled by €2:
AL =g s 1 Asll gz 1DeALl L2 s bar —2Re DarZyl 12, |PZe| e s
||aa’A1||Hl/2 ; 1D¢(bar — 2R6Da’Zt)||H1/2 s |1 De(bar — 2R6Da’Zt)||L°° )
D2 ||p2as D3| ([P P Ze| o s (|9 (D4 P Z0k]| o s || DF (D PV Z
D3Z _
Our (be_ 2Ret—t> H Dt .. |[PDIZ
Z,a/ L2

gz s 1PF 4|

| Df (bar —2Re Do Z4) || 1 » ‘
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the following quantities are controlled by ‘
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Ot 7|+ Nl

1
- ,02) ,02) , .
lnse |Peg] 0w PO Wl 1zl
1
(D-3) 0w Dbl 1D DarZillye, DI o | DF |
,O/ L2
« L2 ! @ L2 ’ H1/2 ’ H1/2 ! t H1/2 !
the following quantities are controlled by e (‘ (%/ZL + | Z¢ O‘,HHl/Q):
ol || 12 ’

||ba’ - 2ReDa’Zt||Hl/2 ) ”ba’ - 2ReDa’Zt||L°° ) ||6a’A1||L2 ) ||DtA1||H1/2 ) HPZtHH1/2 )

DAl e 5 [|PZ: |Di(bar —2Re Doy Zy) | 12, || D7 A PZul| 2, [[[P. D) Z,

(P Iz | Iz2

D4 7 —
( ) HDt2(b0/_2ReDa’Zt)HL25 HDEA1HL27 80/ <D3b_2Re Ztttl) 5 Hprthsz
o 2
H[Dt,P] ZttHL2 ’ || [D?vfp} ZtHLz ) ||aa/(ba’ - 2ReDa’Zt)||L2 ) ”aa/DtAle :
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