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Abstract. We construct a class of self-similar surface water waves and study its prop-
erties. This class of surface waves appears to be in very good agreement with a common
type of wave crests in the ocean.

1. Introduction

The focus of this paper is on understanding singularities of the self-similar type in 2-D

surface water waves.

The mathematical problem of n-dimensional water wave concerns the motion of the inter-

face separating an inviscid, incompressible, irrotational fluid, under the influence of gravity,

from a region of zero density (i.e. air) in n-dimensional space. It is assumed that the fluid

region is below the air region. Assume that the density of the fluid is 1, the gravitational

field is −gk, where g > 0, k is the unit vector pointing in the upward vertical direction, and

at time t ≥ 0, the free interface is Σ(t), and the fluid occupies region Ω(t). When surface

tension is zero, the motion of the fluid is described by










vt + v ·∇v = −gk−∇P on Ω(t), t ≥ 0,

divv = 0, curlv = 0, on Ω(t), t ≥ 0,

P = 0, on Σ(t),

(1.1)

where v is the fluid velocity, P is the fluid pressure. It is well-known that when surface

tension is neglected, the water wave motion can be subject to the Taylor instability [6, 27, 5].

Assume that the free interface Σ(t) is described by z = z(α, t), where α ∈ Rn−1 is the

Lagrangian coordinate, i.e. zt(α, t) = v(z(α, t), t) is the fluid velocity on the interface,

ztt(α, t) = (vt+v ·∇v)(z(α, t), t) is the acceleration. Let n be the unit normal pointing out

of Ω(t). The Taylor sign condition relating to Taylor instability is

−
∂P

∂n
= (ztt + gk) · n ≥ c0 > 0 (1.2)

point-wisely on the interface for some positive constant c0. In [29, 30], we showed that the

Taylor sign condition (1.2) always holds for the n-dimensional infinite depth water wave

problem (1.1), n ≥ 2, as long as the interface is non-self-intersecting; and the initial value

problem of the water wave system (1.1) is uniquely solvable locally in time in Sobolev

Financial support in part by NSF grants DMS-0800194, DMS-1101434.

1



2 SIJUE WU

spaces for arbitrary given data. Earlier work includes Nalimov [22] and Yosihara [33] on

local existence and uniqueness for small data in 2D. In [3, 12, 24, 28], rigorous justifications

of the KdV, KP, Boussinesq, shallow water, NLS and various other asymptotic models from

the full water wave equations were obtained, establishing in rigorous mathematical terms

the typical surface wave behaviors in corresponding regimes. In [31, 32], we proved that the

nature of the nonlinearity of the full water wave equation (1.1) is of cubic or higher orders,

we then showed that for data that are smooth and small in some generalized Sobolev spaces,

solutions of equation (1.1) remain small and smooth for almost global time in 2-D, and for

all time in 3-D. In [16], for the 3-D water wave equation (1.1), the authors constructed

a different class of smooth and small data, and showed that for these data the solutions

remain small and smooth for all time and scatter. There are much more work on water

waves recently [2, 9, 10, 17, 20, 21, 23, 25, 34]. Among them we mention the existence of the

so called splash singularities from smooth data for the 2-D and 3-D water waves [8, 7, 11];

and the local wellposedness in some low regularity Sobolev classes for the Cauchy problem

of the gravity waves [1].

Self-similarity is an important tool in mathematical physics and in the study of singu-

larities [4, 14]. In situations in which no explicit reference length appear, such as when the

boundary effect and external forces are negligible, typical phenomenon are often self-similar.

Self-similarity has been exploited for the water waves. In [26], a class of self-similar solutions

for a linear water wave equation was constructed; and in [15], it was done for a nonlinear

approximation of the water wave equation (1.1).

Indeed, for the full water wave equation (1.1), a similarity law holds. An even wider set

of similarity laws hold if the gravity is neglected (i.e. g = 0). In the next section, we will

discuss the similarity laws for water waves with or without surface tension or gravity. In

subsequent sections, we will construct a class of self-similar surface waves and study their

properties. The self-similar solutions we construct appear to be in very good agreement

with a common type of wave phenomena we observe (see 3).

In what follows we will focus on the two dimensional water waves.

2. Similarity Laws

We use complex variables and identify z = (x, y) with z = x + i y. z̄ is the complex

conjugate of z; Im z, Re z are respectively the imaginary and real parts of z. In this section,

we discuss similarity laws for water waves with or without surface tension or gravity.
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Let z = z(α, t), α ∈ R be the interface Σ(t) at time t in Lagrangian coordinate α. We

know its curvature is given by Im
z̄αzαα
|zα|3

. Let σ be the surface tension coefficient. The

equation describing water waves with surface tension is given by















vt + v ·∇v = −g i−∇P on Ω(t), t ≥ 0,

divv = 0, curlv = 0, on Ω(t), t ≥ 0,

P = σ Im
z̄αzαα
|zα|3

, on Σ(t),

(2.1)

where v is the fluid velocity, P is the fluid pressure. Notice that on the interface,

z̄α∇P (z(α, t), t) = ∂α{P (z(α, t), t)}+ i|zα|
∂P

∂n
.

Similar to [29, 31], we can rewrite equation (2.1) into the following equivalent nonlinear

evolution equation of the interface z = z(α, t), α ∈ R:






ztt + g i = −σ
zα

|zα|2
∂α(Im

z̄αzαα
|zα|3

) + i azα

z̄t is the boundary value of a holomorphic function on Ω(t)
(2.2)

where a = −
1

|zα|

∂P

∂n
. Notice that z̄t(α, t) = v̄(z(α, t), t). It is easy to check the following

similarity laws for (2.1) and (2.2):

If v = v(z, t), P = P (z, t) with interface Σ(t) : z = z(α, t) are solutions for equations

(2.1) and (2.2),

Case 1: if g = σ = 0, then for all s, all λ > 0,

vλ = λs−1v(λz,λst), Pλ = λ2(s−1)P (λz,λst) (2.3)

zλ = λ−1z(λα,λst), aλ = λ2s−1a(λα,λst) (2.4)

are also solutions of (2.1) and (2.2),

Case 2: if g %= 0, σ = 0, then the similarity laws (2.3) (2.4) hold for s = 1/2.

Case 3: if g = 0, σ %= 0, then the similarity laws (2.3) (2.4) hold for s = 3/2.

In the case when both g %= 0, σ %= 0, there are no similarity laws.

Now let z = z(α, t) be a solution of (2.2). Assume that a singularity occurs at (α, t) =

(0, 0) in a self-similar way. We blow-up z(α, t) by letting zε(α, t) = ε−1z(εα, εst), and assume

that as ε → 0 the limiting profile Z = Z(α, t) exists:

zε(α, t) = ε−1z(εα, εst) → Z(α, t), as ε → 0

and derivatives of zε approach the corresponding derivatives of Z. It is clear that Z = Z(α, t)

is self-similar:

Z(α, t) = λ−1Z(λα,λst), Zt(α, t) = λs−1Zt(λα,λ
st) for all λ > 0 (2.5)
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Let aε(α, t) = ε2s−1a(εα, εst) and assume

aε(α, t) → A(α, t) as ε → 0.

From the assumption that z = z(α, t) satisfies (2.2), we have






∂2
t z

ε + ε2s−1g i = iaε∂αzε − σε2s−3 ∂αzε

|∂αzε|2
∂α(Im

∂αz̄ε∂2
αz

ε

|∂αzε|3
)

z̄εt is the boundary value of a holomorphic function on Ωε(t)
(2.6)

where Ωε(t) is the rescaled fluid domain with boundary Σε(t) : zε = zε(α, t). We see that if

σ = 0, the gravity and the terms ∂2
t z

ε and iaε∂αzε achieve a balance when s = 1/2. If g = 0,

the surface tension term achieves a balance with terms ∂2
t z

ε and iaε∂αzε when s = 3/2. If

both surface tension and gravity are neglected, then Z(α, t) satisfies
{

Ztt = i AZα
Z̄t is the boundary value of a holomorphic function on domain D(t)

(2.7)

where D(t) is the limit domain of Ωε(t) with boundary Z = Z(α, t), α ∈ R. From the

self-similarity law (2.5), we know that at t = 0, the velocity Zt obeys the homogeneity

Zt(α, 0) = λs−1Zt(λα, 0) for all λ > 0.

Only when s = 1, Zt can be both nontrivial and bounded. For s = 1, we see that the gravity

term in (2.6) appears negligible. However one could not neglect the surface tension, except

where the derivative of the curvature is negligibly small. The role of surface tension will

only be clear when we know the profile Z = Z(α, t).

From now on we will focus on finding a profile Z, satisfying the gravity free, surface

tension free surface water wave equation (2.7) and the self-similarity law (2.5) with s = 1.

Notice that the self-similarity law for A in this case is

A(α, t) = λA(λα,λt) for all λ > 0. (2.8)

We want the Taylor sign condition hold, that is A ≥ 0. 1

3. Self-Similar Gravity Free Surface Tension Free Surface Water Waves

Let Z(α, t) = tζ(β), Zt(α, t) = W (β), Ztt(α, t) = t−1U(β) and A(α, t) = t−1a(β), where

β =
α

t
and a = a(β) ≥ 0 for all β ∈ R. Assume (Z,A) = (Z(α, t), A(α, t)) is a solution of

(2.7), then (ζ,W, U) must satisfy


















W (β) = ζ(β) − βζ′(β)

U(β) = −βW ′(β)

U(β) = ia(β)ζ′(β)

W is the boundary value of a holomorphic function on D

(3.1)

1We know this is true if the solution z = z(α, t) satisfies the Taylor sign condition. Using the same
argument as in [30], this can also be proved directly for solutions of equation (2.7) satisfying appropriate
assumptions at infinity.
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where D is the domain on the right as one walks in the direction of increasing β on its

boundary ∂D : ζ = ζ(β), β ∈ R. Notice that W = V ◦ ζ, where V is the profile of velocity

field in domain D. It is easy to derive from (3.1) that W ′(β) = −βζ′′(β), so

β2ζ′′(β) = ia(β)ζ′(β), (3.2)

and 2

ζ′(β) = ei{b(β)+φχ(β)} (3.3)

where b = b(β) is continuous and differentiable on R, and for β ∈ R,

b′(β) =
a(β)

β2
, χ(β) =

{

0, for β < 0

1, for β > 0
(3.4)

φ is a constant3. We take −π < φ ≤ 0 for surface water waves. Let ζ(0) = 0. Since

a = a(β) ≥ 0, b = b(β) is increasing on R. Therefore ζ = ζ(β),β ∈ R is a curve that as

β goes from −∞ to 0, concave upwards; at β = 0 turns downward by an angle of degree

|φ|; then continues concave upwardly as β goes from 0 to ∞. This appears to be in very

good agreement with a common type of wave crests we see in the deeper part of ocean.4

µπ

φ

νπ

Let

Φ : D → P−, with Φ(0) = 0

be a Riemann mapping from the fluid domain D to the lower half plane P−, and

h = h(β) := Φ ◦ ζ = Φ(ζ(β)) : R → R.

Then h(0) = 0; ζ ◦ h−1(x) = Φ−1(x) and

(ζ ◦ h−1)′ = (h−1)′ei(b◦h
−1+φχ) = (Φ−1)′(x), x ∈ R (3.5)

2Without loss of generality we take ζ = ζ(β) in arclength variable.
3It is easy to check ζ given by (3.3) is a weak solution of (3.2).
4The photo is from http://photos.surfline.com.
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are the traces on ∂P− of the holomorphic functions Φ−1 and ∂zΦ−1 respectively. Now by

(3.1), W is the trace on ∂D of the holomorphic function V on D, that is

W (β) = V(ζ(β)) β ∈ R.

We have W ◦ h−1(x) = V ◦Φ−1(x), x ∈ R is the trace on ∂P− of the holomorphic function

V ◦ Φ−1, therefore (W ◦ h−1)′ and (W ◦ h−1)′(ζ ◦ h−1)′ are respectively the traces on ∂P−

of the holomorphic functions ∂z(V ◦ Φ−1) and ∂z(V ◦ Φ−1)∂zΦ−1. Now W ′ = −βζ′′ =

−iβb′(β)ei(b+φχ), so

(W ◦ h−1)′(ζ ◦ h−1)′(x) = i(h−1)′h−1(b ◦ h−1)′(x), x ∈ R.

Let 0 < νπ ≤ π be the angle between the left and right branches of the interface ζ =

ζ(β),β ∈ R about β = 0; 0 < µπ ≤ 2π be the angle between the left and right branches of

the interface ζ = ζ(β),β ∈ R at β = ±∞, so

νπ − φ = π, b(+∞)− b(−∞) = (µ− ν)π. (3.6)

The Riemann mapping Φ : D → P− therefore satisfy5

Φ−1(z) ∼ zν, at z ∼ 0; Φ−1(z) ∼ zµ, at z ∼ ∞.

and (Φ−1)′(z) may be assumed to take the form

(Φ−1)′(z) = zν−1(z − i)µ−νeΨ(z) (3.7)

where Ψ is holomorphic and bounded on P−. Notice that the velocity field V is harmonic

in the fluid domain D. Since the fundamental solution of the Laplacian
1

2π
ln |z| satisfies

|∇(
1

2π
ln |z|)| !

1

|z|
, we assume the velocity field has similar behavior at infinity:

|∂zV (z)| ! |z|−1, at z ∼ ∞ (3.8)

We have then

|z∂z(V ◦ Φ−1)∂zΦ
−1| = |z∂zV ◦ Φ−1(∂zΦ

−1)2| !
∣

∣

z

Φ−1
(∂zΦ

−1)2
∣

∣ ∼ |z|µ−1, at z ∼ ∞

On the other hand, (b ◦ h−1)′ is integrable,6 so we require |x(W ◦ h−1)′(ζ ◦ h−1)′(x)| =

|x(h−1)′h−1(b ◦ h−1)′(x)| ! |x|2ν−1 in a neighborhood of zero. Now on ∂P−,

z∂z(V ◦ Φ−1)∂zΦ
−1

∣

∣

z=x
= x(W ◦ h−1)′(ζ ◦ h−1)′(x) = ix(h−1)′h−1(b ◦ h−1)′(x)

is pure imaginary. Therefore z∂z(V ◦ Φ−1)∂zΦ−1 = iκ for some constant κ,7 and we have

(b ◦ h−1)′(x) =
κ

x(h−1)′(x)h−1(x)
. (3.9)

5Here we use the notation f ∼ g at z ∼ 0 to indicate roughly f/g and g/f are bounded in a neighborhood
of 0, f ! g means f ≤ cg for some constant c.

6We want (b ◦ h−1)′ integrable, since wave phenomenon suggest surface water waves should not role up
infinitely near the crest.

7We are not considering unusual possibilities.
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We know κ > 0.8 Notice that

h−1(x) ∼ x|x|ν−1, (h−1)′(x) ∼ |x|ν−1 at x ∼ 0

h−1(x) ∼ x|x|µ−1, (h−1)′(x) ∼ |x|µ−1 at |x| ∼ ∞

In order for (b ◦ h−1)′ to be integrable on R, we must have

1/2 < µ, 0 < ν < 1/2.

The boundary value of the holomorphic function Ψ can be written as Ψ(x) = g(x) −

iHg(x)+ c, x ∈ R, for some real valued function g on R, where H is the Hilbert transform:

Hf(x) =
1

π
p.v.

ˆ

f(y)

x− y
dy,

c is a constant. Hence

(Φ−1)′(x) = |x|ν−1(x2 + 1)
µ−ν

2 ei(ν−1)π(χ(x)−1)ei(µ−ν) arctan
−1

x eg(x)−iHg(x)+c (3.10)

Sum up (3.9), (3.5), (3.10), (3.6), we arrive at the following equation for ζ′(x) = ei(b(x)+φχ(x)):

Let

1/2 < µ ≤ 2, 0 < ν < 1/2. (3.11)

For some real valued function g on R,










(b ◦ h−1)′(x) = κ
xh−1(x)(h−1)′(x)

(h−1)′(x) = |x|ν−1(x2 + 1)
µ−ν

2 eg(x)

g = H(b ◦ h−1(x) − (µ− ν) arctan −1
x )

(3.12)

where h−1(0) = 0, κ > 0 is the constant so that
ˆ ∞

−∞

κ

xh−1(x)(h−1)′(x)
dx = (µ− ν)π.

We prove the following results in this paper. We have

Theorem 3.1 (Apriori Estimate). Let 1/2 < µ ≤ 2, 0 < ν < 1/2. Let G(x) = g(x) +

1
2 (µ− ν) ln(x2 +1). Assume that G is even, increasing on [0,∞), and g ∈ C(R)∩L∞(R) is

a solution of the system (3.12). Then there exist x0 > 0, and a constant c(µ, ν), depending

only on µ, ν, such that

‖G(x)−
1

2
(µ− ν) ln(x2 + x2

0)‖L∞(R) ≤ c(µ, ν)

Remark 3.2. Basically, Theorem 3.1 states that the Riemann Mapping Φ has the property

that

(Φ−1)′(z) = zν−1(z − x0i)
µ−νeΨ(z)

8This is because (b ◦ h−1)′(x) ≥ 0.
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where x0 > 0 and Ψ is bounded by a universal constant c(µ, ν). Notice that for any λ > 0,

the rescaled function Φ−1
λ = Φ−1

λ (z) := Φ−1(λz) : z ∈ P− → D is also a Riemann Mapping.

From the proof, we will see that x0 > 0 is the number satisfying

b ◦ h−1(x0)− b ◦ h−1(−x0) = (
1

2
− ν)π.

Theorem 3.3 (Existence). Let 1/2 < µ ≤ 2, 0 < ν < 1/2. In C(R)∩L∞(R) there exists a

solution g of the system (3.12), such that the function G = G(x) = g(x)+ 1
2 (µ−ν) ln(x2+1) :

R → R is even and increasing on [0,∞). Moreover, xg′ ∈ L∞(R).

Remark 3.4. Given g ∈ L∞(R) ∩ C(R) a solution of the system (3.12), we can construct

a solution for system (3.1) and then the systems (2.7) and (1.1)(with g = 0) through the

following procedure. First we construct from (3.12) the homeomorphism h−1 : R → R with

h−1(0) = 0 and the increasing function b, satisfying b(∞) = (µ − ν) arctan −1
x

∣

∣

x=∞
.9 We

then obtain the curve ζ = ζ(β) satisfying ζ(0) = 0 and ζ′(β) = ei(b(β)+(ν−1)πχ(β)), for β ∈ R.

Let a(β) = β2b′(β). We know a(β) ≥ 0. Let W = ζ(β) − βζ′(β), U = −βW ′(β). It is easy

to check (ζ,W, U, a) satisfies the first three equations in system (3.1). Now let Ψ be the

bounded holomorphic function on P− taking boundary value g − iHg + (ν − 1)π, and let Ξ

be the holomorphic function on P−, with Ξ(0) = 0, and

Ξ′(z) = zν−1(z − i)µ−νeΨ(z).

Notice that Ξ′(z) %= 0 for z ∈ P−, therefore Ξ is conformal on P−. It is easy to check

Ξ′(x) = (ζ ◦ h−1)′(x). Therefore Ξ(x) = ζ ◦ h−1(x) for x ∈ R. It then follows from

the argument principle that Ξ is a Riemann Mapping from P− to the domain D. Now

W ′ = −βζ′′(β) = −iβb′(β)ei(b+(ν−1)πχ) therefore

(W ◦ h−1)′(x) =
iκ

xΞ′(x)
x ∈ R

so (W ◦ h−1)′ is the trace on ∂P− of the holomorphic function iκ
zΞ′(z) , consequently W ◦ h−1

is the trace on ∂P− of the antiderivative of iκ
zΞ′(z) , we name it Λ, which is also holomorphic

on P−. W is then the boundary value of the holomorphic function Λ◦Ξ−1 on D. This shows

that (ζ,W, U, a) constructed as above is a solution for the surface water wave system (3.1).

(Z,A) = (tζ(αt ), t
−1a(αt )), α ∈ R, t %= 0 is then a solution for (2.7). From the equivalence of

(2.7) and (1.1)(with g = 0), we have a self-similar solution for (2.7) and (1.1)(with g = 0).

Moreover this solution satisfies the Taylor sign condition. That is a ≥ 0 or −∂P
∂n ≥ 0 on the

interface.

9We can set b(∞) to equal to any number. The difference a different b(∞) makes is a rotation of the
interface.
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4. Discussion

Before we prove Theorems 3.1 and 3.3, we give a brief discussion on the self-similar

gravity free surface tension free surface water wave we found in section 3. First, we want

to understand the effect of the surface tension to this wave. Let Z = Z(α, t) = tζ(
α

t
),

α ∈ R, where ζ is the wave profile found in Theorem 3.3. Let β =
α

t
. We have Zα = ζ′(β),

Zαα = t−1i b′(β)ζ′(β), for β %= 0, and we calculate and find the surface tension term for Z

in equation (2.2) is

−σ
Zα

|Zα|2
∂α(Im

Z̄αZαα
|Zα|3

) = −σζ′(β)t−2b′′(β), for β %= 0.

Now we calculate b′′ from equation (3.12). We use the following notations. We write f - g

if 1/c ≤ f/g ≤ c for some positive constant c; we write f ! g if f ≤ cg for some positive

constant c. First we mention that from (5.4) in section 5, we have

h−1(x) - x(h−1)′(x), for x ∈ R (4.1)

We know

b′ ◦ h−1 =
(b ◦ h−1)′

(h−1)′
=

κ

xh−1(h−1)′2
,

therefore

b′ ◦ h−1(x) -

{

|x|1−3ν , for |x| ≤ 1

|x|1−3µ, for |x| ≥ 1.

Also

|b′′ ◦ h−1| =
∣

∣

1

(h−1)′
( (b ◦ h−1)′

(h−1)′
)′∣
∣ =

∣

∣

(b ◦ h−1)′

(h−1)′2
(−

1

x
−

(h−1)′

h−1
− 2

(h−1)′′

(h−1)′
)
∣

∣ !
(b ◦ h−1)′

|x|(h−1)′2

then

|b′′ ◦ h−1(x)| !
1

x2|h−1(x)|(h−1)′3
!

{

|x|1−4ν for |x| ≤ 1

|x|1−4µ for |x| ≥ 1.

Now from (4.1) and Theorem 3.3,

x = h(β) -

{

β|β|
1

ν−1 for |β| ≤ 1

β|β|
1

µ−1 for |β| ≥ 1

therefore

b′(β) -

{

|β|
1

ν−3 for |β| ≤ 1

|β|
1

µ−3 for |β| ≥ 1

|b′′(β)| !

{

|β|
1

ν−4 for |β| ≤ 1

|β|
1

µ−4 for |β| ≥ 1

We see the strength of the surface tension term is

∣

∣− σ
Zα
|Zα|2

∂α(Im
Z̄αZαα
|Zα|3

)
∣

∣ !

{

t2−
1

ν |α|
1

ν −4 for 0 < |α| ≤ t

t2−
1

µ |α|
1

µ−4 for |α| ≥ t
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and the acceleration

|Ztt| = |t−1U(β)| = |t−1β2b′(β)| -

{

t−
1

ν |α|
1

ν−1 for |α| ≤ t

t−
1

µ |α|
1

µ−1 for |α| ≥ t

Comparing with the acceleration Ztt and the term iAZα = t−1iaζ′(αt ), for t close enough

to zero, the effect from surface tension is negligibly small where |α| " t2/3−. The effect of

surface tension is significant where |α| ! t2/3.

Similarly, comparing with the acceleration Ztt, the gravity gi is negligible where |α| "

t
1

1−ν−, the gravity is important where |α| ! t
1

1−ν .

Nevertheless, this discussion and the heuristic one in section 2 deserve to be made rig-

orous. We plan to study the asymptotic stability of the surface water wave found in The-

orem 3.3 and the effect of gravity and surface tension in rigorous mathematical terms in

upcoming works.

We can also calculate the velocity profile W for the solution found in Theorem 3.3. First

we take b(0) = −φ
2 = − ν−1

2 π, so that the phase b + φχ of ζ′ is an odd function, and the

wave profile ζ = ζ(β), β ∈ R is symmetric about the vertical axis β = 0. It is easy to see

from W ′ = −iβb′(β)ei(b+φχ) that the horizontal velocity ReW is an odd function, and the

vertical velocity ImW is even. We have

βb′(β) -

{

β|β|
1

ν−3 for |β| ≤ 1

β|β|
1

µ−3 for |β| ≥ 1

and

b(∞)− b(β) - β
1

µ−2, for β ≥ 1.

So for β in any bounded interval, W is bounded and continuous. Notice that b(∞) + φ =

µ−1
2 π. For β > 1 We calculate

W (β) −W (1) = −iei(
µ−1

2
π)

ˆ β

1
γb′(γ)ei(b(γ)−b(∞)) dγ

and find that as β → ∞, W (β) asymptotically points in the direction −iei(
µ−1

2
π) and has

magnitude O(β
1

µ−1) if µ < 1. When µ = 1, the horizontal velocity ReW is bounded, the

vertical velocity points in the direction −i, and has magnitude O(ln β). For µ > 1, W is

bounded for all β ∈ R.10

10This photo is taken by the author at San Diego, CA.
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e−iµ−1
2 π

νπ

W
W

ei
µ−1
2 π

5. The Proof Of The Main Theorems

We prove Theorem 3.3 by Schaefer’s fixed point theorem. We use the following version,

which is a slight modification from the one stated in Chapter 9 of [13]. The same proof as

in [13] works for this one as well.

Theorem 5.1 (Schaefer’s Fixed Point Theorem). Let X be a Banach space, X1 be a convex

subset of X, and 0 ∈ X1. Suppose T : X → X is continuous and compact, and T : X1 → X1.

Assume further that the set

{u ∈ X1 |u = λT [u] for some 0 ≤ λ ≤ λ0}

is bounded. Here λ0 > 0 is a constant. Then T has a fixed point in X1.

Let µ > 1/2, 0 < ν < 1/2. Let

X = {g ∈ C(R) ∩ L∞(R) | lim
x→±∞

g(x) = 0},

with norm ‖g‖ = ‖g‖L∞(R) = ‖g‖∞. For g ∈ X , we define T [g] by:

T [g] = H(F − (µ− ν) arctan
−1

x
) (5.1)

where H is the Hilbert transform, h−1(0) = 0,






















F ′(x) = κ
xh−1(x)(h−1)′(x)

(h−1)′(x) = |x|ν−1(x2 + 1)
µ−ν

2 eg(x)

F (∞) = (µ− ν) arctan −1
x

∣

∣

x=∞

F (−∞) = (µ− ν) arctan −1
x

∣

∣

x=−∞

(5.2)

Notice that H1 = 0. For x ∈ R, let G(x) = g(x) + 1
2 (µ− ν) ln(x2 + 1),

X1 = {g ∈ X |G is even , 0 ≤ G(x) −G(y) ≤ (µ− ν)(ln
x

y
+ 2), for all 0 ≤ y ≤ x}

For I ⊂ R an interval, let
ffl

I g = 1
|I|

´

I g. In what follows we use the notations specified

above without further clarifying. c(µ, ν), c(µ, ν,M) etc. are constants depending on µ, ν or

µ, ν,M , they need not be the same in different contexts.
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5.1. The continuity and compactness of T . We have the following

Lemma 5.2. 1. Let g ∈ X. We have for all x ∈ R,

|h−1(x)| ≤
1

ν
|x|ν(x2 + 1)

1

2
(µ−ν)e‖g‖∞

|h−1(x)| ≥ e−(µ−1)|x|ν(x2 + 1)
1

2
(µ−ν)e

ffl x
0

g ≥ e−(µ−1)|x|ν(x2 + 1)
1

2
(µ−ν)e−‖g‖∞

(5.3)

2. Let g ∈ X1. We have for x ∈ R,

1

x
h−1(x) ≤

1

ν
|x|ν−1(x2 + 1)

1

2
(µ−ν)eg(x)

1

x
h−1(x) ≥ e1−ν−6(µ−ν)|x|ν−1(x2 + 1)

1

2
(µ−ν)eg(x)

(5.4)

Proof. The first inequalities in (5.3) and (5.4) are straightforward. We prove the second

inequalities using Jensen’s inequality. Let x > 0. We have

h−1(x) =

ˆ x

0
(h−1)′(y) dy ≥ xe

ffl x
0
((ν−1) ln |y|+ 1

2
(µ−ν) ln(y2+1)+g(y)) dy = xe

ffl x
0
((ν−1) ln |y|+G(y))dy

Using integration by parts, we get
ˆ x

0
((ν − 1) ln |y|+

1

2
(µ− ν) ln(y2 + 1)) dy = x{(ν − 1) ln |x|+

1

2
(µ− ν) ln(x2 + 1)}

−

ˆ x

0
(ν − 1 + (µ− ν)

y2

y2 + 1
) dy ≥ x{(ν − 1) ln |x|+

1

2
(µ− ν) ln(x2 + 1)}− (µ− 1)x

The second inequality in (5.3) therefore follows. For the second inequality in (5.4) and

g ∈ X1 we estimate

0 ≤

 x

x/2
G−

 x

0
G =

1

x

(

ˆ x

x/2
G(y1) dy1 −

ˆ x/2

0
G(y2) dy2

)

≤ (µ− ν){
1

x

(

ˆ x

x/2
ln y1 dy1 −

ˆ x/2

0
ln y2 dy2

)

+ 1}

≤ (µ− ν)(ln 2 + 1)

therefore
 x

0
G ≥

 x

x/2
G− (µ− ν)(ln 2 + 1)

≥ G(x/2)− (µ− ν)(ln 2 + 1) ≥ G(x) − (µ− ν)(2 ln 2 + 3)

The second inequality in (5.4) therefore follows. #

Lemma 5.3. Let g ∈ X. There exists a constant c(µ, ν) > 0, depending on µ, ν, such that

1

c(µ, ν)
e−2‖g‖∞ ≤ κ ≤ c(µ, ν)e2‖g‖∞

This is straightforward, we omit the proof.

Lemma 5.4. Let g ∈ X, f(x) = F (x) − (µ− ν) arctan −1
x . We have
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1.
|f(x)| ≤ c(µ, ν)e4‖g‖∞ |x|1−2µ + (µ− ν)|x|−1, for |x| ≥ 1

|f(x)| ≤ 2(µ− ν)π, for all x ∈ R

|f ′(x)| ≤ c(µ, ν)e4‖g‖∞
1

|x|2ν(x2 + 1)µ−ν
+ (µ− ν)

1

x2 + 1
, for all x

(5.5)

where c(µ, ν) is a constant depending on µ, ν.

2. Assume ‖g‖∞ ≤ M . Then

|T [g](x)| ≤ c(µ, ν,M)(|x|1/2−µ + |x|−1/2), for |x| ≥ 4 (5.6)

where c(µ, ν,M) is a constant depending on µ, ν,M .

Proof. (5.5) is straightforward, we omit the proof.

We use (5.5) to prove (5.6). Assume x ≥ 4. Notice that

T [g](x) = Hf(x) =
1

π

ˆ

|x−y|≤1

f(y)− f(x)

x− y
dy +

1

π

ˆ

|x−y|>1

f(y)

x− y
dy = I + II

we have

|I| ≤
1

π

ˆ

|x−y|≤1

1

|x− y|
|

ˆ y

x
f ′(γ) dγ| dy ≤ c(µ, ν,M)(|x|−2µ + |x|−2)

We further decompose

II =
1

π

ˆ

1<|x−y|≤x
2

f(y)

x− y
dy +

1

π

ˆ

|x−y|>x
2

f(y)

x− y
dy = II1 + II2

and we know |y| ≥ |x|− |x− y|, so

|II1| ≤ c(µ, ν,M)(|x|1−2µ + |x|−1) ln |x|

Now

II2 =
1

π

ˆ

y> 3

2
x,y<− 1

2
x

f(y)

x− y
dy +

1

π

ˆ

− 1

2
x<y< 1

2
x

f(y)

x− y
dy = II21 + II22

where since for y > 3
2x, y− x > 1

4y > 0, and for y < − 1
2x, we have y− x < y < 0, therefore

|II21| ≤ c(µ, ν,M)(|x|1−2µ + |x|−1)

For II22, we further decompose (notice that x1/2 ≤ 1
2x)

|II22| = |
1

π

ˆ

|y|≤x1/2

f(y)

x− y
dy +

1

π

ˆ

x1/2≤|y|< 1

2
x

f(y)

x− y
dy|

≤ C(µ, ν,M)(|x|−1/2 + |x|1/2−µ)

This proves (5.6) for x ≥ 4. The proof for x ≤ −4 is similar, we omit. #

The above three Lemmas is sufficient for the proof of the compactness of T : X → X .

We need the following Lemma for the continuity of T .

For i = 1, 2, let gi ∈ X , (h−1
i )′(x) = |x|ν−1(x2 + 1)

1

2
(µ−ν)egi(x),

F ′
i (x) =

κi

xh−1
i (x)(h−1

i )′(x)
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with h−1
i (0) = 0, Fi(∞) − Fi(−∞) = (µ − ν)π, Fi(∞) = (µ − ν) arctan −1

x

∣

∣

x=∞
, and

‖gi‖∞ ≤ M .

Lemma 5.5. We have

|F ′
1(x)− F ′

2(x)| ≤ c(µ, ν,M)‖g2 − g1‖∞
1

|x|2ν(x2 + 1)µ−ν
, for x ∈ R

|F1(x)− F2(x)| ≤ c(µ, ν,M)‖g2 − g1‖∞
1

|x|1−2µ
, for |x| ≥ 1

|F1(x)− F2(x)| ≤ c(µ, ν,M)‖g2 − g1‖∞, for x ∈ R.

(5.7)

Proof. We know

F ′
1(x) − F ′

2(x) =
κ1 − κ2

xh−1
1 (x)(h−1

1 )′(x)
+

κ2

xh−1
2 (x)(h−1

2 )′(x)

(h−1
2 (x)(h−1

2 )′(x)

h−1
1 (x)(h−1

1 )′(x)
− 1

)

Now
(h−1

2 )′(x)

(h−1
1 )′(x)

= eg2(x)−g1(x)

(h−1
2 )(x)

(h−1
1 )(x)

=
(h−1

2 )′(θ)

(h−1
1 )′(θ)

= eg2(θ)−g1(θ)

for some 0 < |θ| < |x|. Here we used the mean value Theorem. So

∣

∣

h−1
2 (x)(h−1

2 )′(x)

h−1
1 (x)(h−1

1 )′(x)
− 1

∣

∣ ≤ 2e2‖g2−g1‖∞‖g2 − g1‖∞

Therefore from
´∞
−∞(F ′

1(x)− F ′
2(x)) dx = 0 we have

|κ1 − κ2|

κ1
≤ 2e2‖g2−g1‖∞‖g2 − g1‖∞

and

|F ′
1(x)− F ′

2(x)| ≤ c(µ, ν,M)‖g2 − g1‖∞
1

|x|2ν(x2 + 1)µ−ν

for some constant c(µ, ν,M) depending on µ, ν,M . The second and last inequalities in (5.7)

follow by integration. #

We are now ready to prove

Proposition 5.6. T : X → X is compact and continuous.

Proof. Recall that for 1 < p < ∞, the Hilbert transform H : Lp(R) → Lp(R) is bounded.

Let g ∈ X , f = F − (µ − ν) arctan −1
x be as in Lemma 5.4. We know T [g] = H(f). Take

1 < r, q < ∞ so that (2µ− 1)r > 1 and 2νq < 1. From Lemma 5.4, we have f ∈ Lr(R), and

f ′ ∈ Lq(R). Define

Y (I) = {f ∈ Lr(I) | f ′ ∈ Lq(I)}

with norm ‖f‖Y (I) = ‖f‖Lr(I) + ‖f ′‖Lq(I). Therefore for g ∈ X , T [g] ∈ Y (R), and

‖T [g]‖Y (R) ≤ c(µ, ν, ‖g‖∞),
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and from Lemma 5.5, for g1, g2 ∈ X , with ‖gi‖∞ ≤ M ,

‖T [g1]− T [g2]‖Y (R) ≤ c(µ, ν,M)‖g1 − g2‖∞.

Now it follows from the same proof as for Sobolev embeddings (see [13]) that Y (R) ⊂ X

and the embedding is continuous. Therefore T : X → X is continuous. The same proof

for Sobolev compact embeddings (i.e. use Arzela-Ascoli Theorem, see [13]) also shows that

Y (I) is compactly embedded in C(I) for any bounded interval I ⊂ R. Using (5.6) and a

standard diagonal argument, we have that T : X → X is compact.

#

5.2. A priori estimate. First we have the following Lemma

Lemma 5.7. Let F ∈ C1(R). Assume F′ is even, nonnegative, and decreasing on [0,∞);

and F(∞) − F(−∞) = (µ − ν)π. Then the function G = HF(x) − HF(0) is even, and is

increasing on [0,∞). Moreover for y > x ≥ 0,

0 ≤ HF(y)−HF(x) =
1

π

ˆ y

x

F(γ)− F(−γ)

γ
dγ +R(x, y) (5.8)

where

−2(µ− ν) ≤ R(x, y) ≤ 2(µ− ν)

Proof. From the assumptions it is easy to show that the function G = HF(x) − HF(0) is

even, and is increasing on [0,∞). For y > x ≥ 0, we know

HF(y)−HF(x) =
1

π

ˆ ∞

0

F(y − γ)− F(y + γ)− F(x− γ) + F(x+ γ)

γ
dγ

=
1

π

ˆ y

0

F(y − γ)− F(y + γ)

γ
dγ −

1

π

ˆ x

0

F(x− γ)− F(x+ γ)

γ
dγ

−
1

π

ˆ y

x

F(x− γ)− F(x+ γ)

γ
dγ

+
1

π

ˆ ∞

y

F(y − γ)− F(y + γ)− F(x− γ) + F(x+ γ)

γ
dγ

Now
ˆ ∞

y

F(y − γ)− F(y + γ)− F(x− γ) + F(x+ γ)

γ
dγ

=

ˆ ∞

y

1

γ
(

ˆ y

x
F′(τ − γ) dτ −

ˆ y

x
F′(τ + γ) dτ) dγ

and

0 ≤

ˆ ∞

y

1

γ

ˆ y

x
F′(τ − γ) dτ dγ ≤

1

y

ˆ y

x

ˆ ∞

y
F′(τ − γ) dγ dτ ≤

µ− ν

2
π

similarly

0 ≤

ˆ ∞

y

1

γ

ˆ y

x
F′(τ + γ) dτ dγ ≤

µ− ν

2
π
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Also,

0 ≤

ˆ y

0

F(y + γ)− F(y − γ)

2γ
dγ =

ˆ y

0
(

 y+γ

y−γ
F′) dγ ≤

ˆ y

0
F′(y − γ) dγ ≤

µ− ν

2
π

Now we further rewrite

1

π

ˆ y

x

F(x− γ)− F(x+ γ)

γ
dγ =

1

π

ˆ y

x

F(−γ)− F(γ)

γ
dγ

+
1

π

ˆ y

x

F(x− γ)− F(−γ)− F(x+ γ) + F(γ)

γ
dγ

and we have

0 ≤

ˆ y

x

F(x− γ)− F(−γ)

γ
dγ =

ˆ y

x

1

γ

ˆ x

0
F′(τ − γ) dτ dγ

≤
1

x

ˆ x

0
(F(τ − x)− F(τ − y)) dτ ≤

µ− ν

2
π

similarly

0 ≤

ˆ y

x

F(x+ γ)− F(γ)

γ
dγ ≤

µ− ν

2
π

Sum up the above calculation we have (5.8)

#

Notice that H(arctan −1
x )−H(arctan −1

x )(0) = 1
2 ln(x

2 + 1). Therefore

T [g](x)− T [g](0) +
1

2
(µ− ν) ln(x2 + 1) = HF (x)−HF (0)

and from Lemma 5.7, we have

T : X1 → X1.

We use the following notations: we use R to indicate a function that satisfies

c1(µ, ν) ≤ R ≤ c2(µ, ν)

for some constants ci(µ, ν) depending only on µ, ν. eR indicates a function that is bounded

above and below by two positive constants depending only on µ, ν. We often do the following

calculation: Assume c1(µ, ν) ≤ R ≤ c2(µ, ν). For a function f ∈ C1(I), satisfying f ′ ≥ 0 on

interval I, we know for x1 < x2, x1, x2 ∈ I,

c1(µ, ν)(f(x2)− f(x1)) ≤

ˆ x2

x1

eR(x)f ′(x) dx ≤ c2(µ, ν)(f(x2)− f(x1)),

we therefore simply write
ˆ x2

x1

eRf ′(x) dx = eR(f(x2)− (f(x1)).

The two R’s are not necessarily the same. In general, R’s and eR’s appearing in different

contexts need not be the same.

We have the following a priori estimate for T : X1 → X1.
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Proposition 5.8. Suppose g ∈ X1 satisfies

g = λT [g], for some 0 < λ ≤ min{
1− 2ν

2(µ− ν)
,
2µ− 1

2(µ− ν)
}. (5.9)

Then ‖g‖∞ ≤ c(µ, ν), where c(µ, ν) is a constant depending only on µ, ν.

Proof. Let x > 0, and 0 < λ ≤ min{ 1−2ν
2(µ−ν) ,

2µ−1
2(µ−ν)}. Let g ∈ X1 and F be defined by (5.2).

Notice that F satisfies the assumption of Lemma 5.7. Therefore

HF (x)−HF (0) =
1

π

ˆ x

0

F (y)− F (−y)

y
dy +R.

Let

u(x) =
1

π

ˆ x

0

F (y)− F (−y)

y
dy (5.10)

Then

T [g](x) = T [g](0)−
1

2
(µ− ν) ln(x2 + 1) + u(x) +R (5.11)

Assume g satisfies (5.9). Then

g(x) = λ(T [g](0)−
1

2
(µ− ν) ln(x2 + 1) + u(x) +R) (5.12)

Now from (5.10), we have

xu′(x) =
1

π
(F (x) − F (−x)), (xu′(x))′ =

2

π
F ′(x) (5.13)

where by (5.4)

F ′(x) =
κeR

e2λT [g](0)|x|2ν(x2 + 1)(1−λ)(µ−ν)e2λu(x)

We rewrite

F ′(x) =











κeR1

e2λT [g](0)x2νe2λu(x)
, 0 < x ≤ 1

κeR2

e2λT [g](0)x2ν+2(1−λ)(µ−ν)e2λu(x)
, x ≥ 1

(5.14)

where Ri are bounded above and below by constants depending only on µ, ν.

From (5.13) we know 0 ≤ xu′(x) ≤ µ − ν. Since 0 < λ ≤ 1−2ν
2(µ−ν) , we have 1 − 2ν −

2λxu′(x) ≥ 0. Therefore

( x

x2νe2λu(x)
)′

=
1

x2νe2λu(x)
(1− 2ν − 2λxu′(x)) ≥ 0

and for 0 < x ≤ 1,

2

π

κeR1

e2λT [g](0)

( x

x2νe2λu(x)
)′

=
2

π
F ′(x)(1 − 2ν − 2λxu′(x))

= (xu′(x))′(1− 2ν − 2λxu′(x))

(5.15)

Let 0 < y ≤ 1. Integrating both sides of (5.15) from 0 to y we get

κeR

e2λT [g](0)

y

y2νe2λu(y)
= yu′(y)(1 − 2ν − λyu′(y))

But
1− 2ν

2
≤ 1− 2ν − λyu′(y) ≤ 1− 2ν
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So we have

yu′(y) =
κeR

e2λT [g](0)

y

y2νe2λu(y)
for 0 < y ≤ 1

and

e2λu(y)u′(y) =
κeR

e2λT [g](0)
y−2ν .

By integrating from 0 to x we get

e2λu(x) − 1 = 2λ
κeR

e2λT [g](0)
x1−2ν for 0 < x ≤ 1 (5.16)

Substitute (5.16) into (5.14), we obtain

F ′(x) =
κeR1x−2ν

e2λT [g](0)(1 + 2λ
κeR

e2λT [g](0)
x1−2ν)

, for 0 < x ≤ 1

Therefore for 0 < x ≤ 1,

F (x)− F (0) =
1

2λ
eR ln(1 + 2λ

κeR

e2λT [g](0)
x1−2ν).

This implies for 0 < x ≤ 1

0 <
κeR

e2λT [g](0)
x1−2ν =

1

2λ
(e2λ(F (x)−F (0))e−R

− 1) ≤ c(µ, ν)

for some constant c(µ, ν) > 0 depending only on µ, ν. Going back to (5.16), we obtain

0 ≤ u(x) ≤
1

2λ
ln(1 + 2λc(µ, ν)) ≤ c(µ, ν) for 0 < x ≤ 1. (5.17)

For x ≥ 1 the discussion is similar. Notice for 0 < λ ≤ 2µ−1
2(µ−ν) , 1− 2ν− 2(1−λ)(µ− ν)−

2λxu′(x) ≤ 1− 2ν − 2(1− λ)(µ− ν) ≤ 0. Therefore
( x

x2ν+2(1−λ)(µ−ν)e2λu(x)
)′

=
1

x2ν+2(1−λ)(µ−ν)e2λu(x)
(1 − 2ν − 2(1− λ)(µ− ν)− 2λxu′(x)) ≤ 0

and for x ≥ 1,
2

π

κeR2

e2λT [g](0)

( x

x2ν+2(1−λ)(µ−ν)e2λu(x)
)′

=
2

π
F ′(x)(1 − 2ν − 2(1− λ)(µ − ν)− 2λxu′(x))

= (xu′(x))′(1− 2ν − 2(1− λ)(µ − ν)− 2λxu′(x))

(5.18)

Integrating (5.18) from ∞ to y, and notice that

lim
x→∞

xu′(x) = µ− ν, lim
x→∞

x

x2ν+2(1−λ)(µ−ν)e2λu(x)
= 0,

we get for y ≥ 1,

κeR

e2λT [g](0)

y

y2ν+2(1−λ)(µ−ν)e2λu(y)

= (yu′(y)− µ+ ν){(1− 2ν − 2(1− λ)(µ − ν))− λ(yu′(y) + µ− ν)}

Now
1− 2µ ≤ 1− 2ν − 2(1− λ)(µ− ν)) − λ(yu′(y) + µ− ν)

= 1− 2µ+ λ(µ− ν)− λyu′(y) ≤
1

2
(1− 2µ)
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Therefore

µ− ν − yu′(y) =
κeR

e2λT [g](0)

y

y2ν+2(1−λ)(µ−ν)e2λu(y)

and

e2λu(y)−2λ(µ−ν) ln y(
µ− ν

y
− u′(y)) =

κeR

e2λT [g](0)
y−2µ (5.19)

Now xu′(x)− µ+ ν ≤ 0, so u(x)− (µ− ν) lnx is decreasing on [0,∞). Let

lim
x→∞

(u(x)− (µ− ν) lnx) = U∞

U∞ is either finite or −∞. If we recall (5.11), Lemma 5.7 and that limx→∞ T [g](x) = 0,11

we know U∞ must be finite and in fact

−2(µ− ν) ≤ U∞ + T [g](0) ≤ 2(µ− ν)

Integration (5.19) from x ≥ 1 to ∞, we obtain

e2λu(x)−2λ(µ−ν) ln x − e2λU∞ = 2λ
κeR

e2λT [g](0)
x1−2µ (5.20)

Substitute into (5.14), we get for x ≥ 1,

F ′(x) =
κeR2x−2µ

e2λT [g](0)(e2λU∞ + 2λ
κeR

e2λT [g](0)
x1−2µ)

Integrating from y ≥ 1 to ∞, we obtain

F (∞)− F (y) =
1

2λ
eR ln(1 + 2λ

κeR

e2λ(T [g](0)+U∞)
y1−2µ)

Therefore for x ≥ 1,

0 ≤
κeR

e2λ(T [g](0)+U∞)
x1−2µ =

1

2λ
(e2λ(F (∞)−F (y))e−R

− 1) ≤ c(µ, ν)

for some constant c(µ, ν) depending only on µ, ν. Going back to (5.20), we have

0 ≤ u(x)− (µ− ν) ln x− U∞ ≤
1

2λ
ln(1 + 2λc(µ, ν)) ≤ c(µ, ν) for x ≥ 1 (5.21)

Now from (5.17), we know 0 ≤ u(1) ≤ c(µ, ν), and from (5.21), 0 ≤ u(1) − U∞ ≤ c(µ, ν).

Then U∞, consequently T [g](0) must be bounded from above and below by two constants

that depend only on µ, ν. Combining (5.17) and (5.21), we have

‖u−
1

2
(µ− ν) ln(x2 + 1)‖L∞[0,∞) ≤ c(µ, ν)

for a constant c(µ, ν) depending only on µ, ν. Now from (5.12), because g ∈ X1 is even, we

get

‖g‖∞ ≤ c(µ, ν)

where c(µ, ν) is a constant depending only on µ, ν. This proves Proposition 5.8.

#

11Because T [g] ∈ X.
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We can now conclude from Schaefer’s fixed point Theorem that the system (3.12) has

a solution g ∈ X1. This proves the first part of Theorem 3.3. To prove that the solution

g satisfies xg′ ∈ L∞(R), we notice that from the equation g = H(F − (µ − ν) arctan −1
x ),

where F is as defined in (5.2), we have

xg′ = H(xF ′ − (µ− ν)
x

x2 + 1
), (xg′)′ = H((xF ′ − (µ− ν)

x

x2 + 1
)′)

Using the Lp Boundedness of the Hilbert transform H , it is quite straightforward to check

that xF ′ − (µ − ν) x
x2+1 ∈ Lr(R) for r > 1

2µ−1 , and (xF ′ − (µ − ν) x
x2+1 )

′ ∈ Lq(R) for

1 < q < 1
2ν . Therefore we have xg′ ∈ Y (R). This implies xg′ ∈ L∞(R), and finishes the

proof of Theorem 3.3.

The proof for the a priori estimate in Theorem 3.1 is very much the same as for Propo-

sition 5.8. We just give some main steps. First let g ∈ X , F be defined as in (5.2), and

G(x) = g(x) + 1
2 (µ − ν) ln(x2 + 1). Assume g is a fixed point of the mapping T defined by

(5.1)-(5.2). Then

G(x) = G(0) +HF (x)−HF (0)

Assume G even, and increasing on [0,∞). It is easy to check that F satisfies the assumption

of Lemma 5.7, therefore in fact g ∈ X1, and (5.4) holds. Moreover we have from Lemma 5.7,

HF (x)−HF (0) = u(x) +R for x > 0

where

u(x) =
1

π

ˆ x

0

F (y)− F (−y)

y
dy

and for x > 0,

xu′(x) =
1

π
(F (x) − F (−x)), (xu′(x))′ =

2

π
F ′(x)

where

F ′(x) =
κeR

x2νe2G(x)
=

κeR

e2G(0)

1

x2νe2u(x)

Now

(
x

x2νe2u(x)
)′ =

1

x2νe2u(x)
(1− 2ν − 2xu′(x))

Notice that xu′(x) = 1
π (F (x) − F (−x)) is strictly increasing for x > 0, xu′(x)

∣

∣

x=0
= 0,

limx→∞ xu′(x) = µ− ν > 1/2− ν. Let x0 > 0 be such that 2x0u′(x0) = 1− 2ν. Then

1− 2ν − 2xu′(x) > 0, for 0 < x < x0, 1− 2ν − 2xu′(x) < 0, for x > x0.

Now follow very much the same argument as in the proof of Proposition 5.8 on 0 < x ≤ x0

and x ≥ x0. We arrive at the result of Theorem 3.1.
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