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ABSTRACT. Suppose g is a semisimple complex Lie algebra and h is a Cartan subalgebra of g. To the pair (g,h) one can
associate both a Weyl group and a set of Kac diagrams. There is a natural map from the set of elliptic conjugacy classes in the
Weyl group to the set of Kac diagrams. In both this setting and the twisted setting, this paper (a) shows that this map is injective
and (b) explicitly describes this map’s image.

INTRODUCTION

Suppose g is a semisimple complex Lie algebra and h is a Cartan subalgebra of g. To the pair (g,h) one can associate
both a Weyl group and a set of Kac diagrams. There is a natural map from the set of elliptic conjugacy classes in the Weyl
group to the set of Kac diagrams. In both this setting and the twisted setting, this paper (a) shows that this map is injective
and (b) explicitly describes this map’s image.

The map ψG. Let G denote a connected semisimple complex group such that the Lie algebra of G is g. Let A denote
the maximal torus in G such that the Lie algebra of A is h. Fix a pinning (A,B,{Xα ∣α ∈ ∆}) of G where B is a Borel
subgroup of G that contains A, ∆ is the set of simple roots of G with respect to A and B, and Xα is an element of the
Lie algebra of the root group corresponding to α ∈ ∆. Fix ϑ ∈ Aut(g) that stabilizes this pinning. The automorphism ϑ is
called a pinned automorphism and has the following properties: ϑ(A) = A, ϑ(B) = B, and ϑ permutes the elements of the
set {Xα ∣α ∈ ∆}. If H is a group on which ϑ acts, then for x, y ∈ H we say that x is ϑ-conjugate to y in H provided that
there exists h ∈H such that x = hyϑ(h)−1.

Let W̃ denote the Weyl group NG(A)/A. Since W̃ is generated by the simple reflections wα for α ∈ ∆, we have that ϑ
acts on W̃ . An element w ∈ W̃ is said to be ϑ-elliptic provided that the ϑ-conjugacy class of w in W̃ does not intersect any
proper subgroup of W̃ of the form W̃θ for θ ⊊ ∆ with ϑ(θ) = θ. Here W̃θ is the subgroup of W̃ generated by the simple
reflections wβ for β ∈ θ.

Suppose w1,w2 ∈ W̃ are ϑ-elliptic. Let nj ∈ NG(A) be a lift of wj . Since all lifts of wj into NG(A) are ϑ-conjugate
by an element of A (see, for example, [1, Lemma 1.1.3], [6, Remark 4.1], or [8, Theorem 1] for the general case and [16,
Lemma 1.3] or [23, Section 4.1] for the non-twisted case), we conclude that w1 is ϑ-conjugate to w2 in W if and only if n1
is ϑ-conjugate to n2 in NG(A). Moreover, both n1 ⋊ ϑ and n2 ⋊ ϑ have finite order in NG(A) ⋊ ⟨ϑ⟩. Thus, there exists a
function ψG from W̃ e

∼ , the set of ϑ-conjugacy classes of ϑ-elliptic elements in W̃ , to Gϑ−tor
∼ , the set of ϑ-conjugacy classes

of ϑ-torsion elements in G. An element g ∈ G is called a ϑ-torsion element provided that g ⋊ ϑ has finite order in G ⋊ ⟨ϑ⟩.
In Section 3 we prove

Theorem 3.1.3. The map ψG ∶ W̃ e
∼ → Gϑ−tor

∼ is injective.

Note that there is something to prove here. From the given we know that we have a well-defined map from W̃ e
∼ to the

ϑ-conjugacy classes of ϑ-torsion elements in NG(A). To prove the theorem, one needs to show that if n1, n2 ∈ NG(A) are
lifts of w1,w2 ∈ W̃ e such that n1 and n2 are ϑ-conjugate in G, then n1 and n2 are ϑ-conjugate in NG(A); this is false if
we don’t require both w1 and w2 to be ϑ-elliptic. The proof of Theorem 3.1.3 involves case-by-case checking.

Kac diagrams and the map χG. Reeder provides an absolutely beautiful treatment of Kac diagrams in [20]. Throughout
this paper we have tried to align our treatment of Kac diagrams with the treatment found there.

Let Φ = Φ(G,A) denote the set of roots of G with respect to A. The perfect pairing ⟨ , ⟩ ∶ X∗(A) × X∗(A) allows us
to regard α ∈ Φ as a linear function on V = X∗(A) ⊗ R. If S denotes the maximal compact torus in A, then the map
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exp ∶ V → S, defined by α(exp(v)) = e2πi⟨α,v⟩ for all α ∈ Φ, is a surjective map. The hyperplanes Hα,n in V defined by
the kernels of the affine roots v ↦ α(v)−n for α ∈ Φ and n ∈ Z produce a simplicial decomposition of V , and the connected
components in the complement of these hyperplanes are called alcoves. The affine Weyl group W̃ aff ∶= X∗(A) ⋊ W̃ acts
on V . This action preserves the hyperplane structure and W̃ aff acts transitively on the alcoves. Our pinning {Xα ∣α ∈ ∆}
determines a unique alcove C that contains the origin of V in its closure. By uniqueness, we have ϑ(C) = C. Let Aϑ (resp.
Gϑ) denote the connected component of the ϑ-fixed points of A (resp. G).

Suppose g is a finite order element of G, say of order m. Fix a primitive mth root of unity ξ. There exists h ∈ G
such that h−1gϑ(h) lives in the torus Aϑ (see, for example, Lemma 1.2.2). Thus, there exists λ ∈ X∗(Aϑ) such that
h−1gϑ(h) = λ(ξ). After conjugating λ(ξ) by an element of the group NGϑ(A) we may assume that λ/m belongs to the
closure of Cϑ, the alcove for Gϑ that contains the origin and intersects Cϑ nontrivially. A Kac diagram associated to g
encodes the location of λ/m via a labeling of the affine Dynkin diagram for Gϑ. See Section 4 for the technical details of
this labeling.

Let κ denote the set of Kac diagrams that arise as above, and we let κ∼ denote the equivalence classes in κ deter-
mined by automorphisms of the affine Dynkin diagram of Gϑ arising from the action of StabW̃ aff

ϑ
(Cϑ). Here W̃ aff

ϑ =
(projV ϑ X∗(A)) ⋊ W̃ ϑ is the affine Weyl group for Gϑ. This association between ϑ-torsion elements of G and Kac dia-
grams descends to a map χG ∶ Gϑ−tor

∼ → κ∼. It is known (see, for example, [13, Chapter X, Theorems 5.15 and 5.16], [14,
Chapter 8], [18, 7○ of Section 4 of Chapter 4], or [20, Theorem 3.7]) that this map is bijective when G is adjoint.

Under the assumption that g is simple, in Section 4 we give a complete description of the Kac diagrams associated to
ϑ-elliptic elements in W̃ .

The composition ζG = χG ○ ψG and applications. The composition ζG = χG ○ ψG ∶ W̃ e
∼ → κ∼ has been extensively

studied. For example, it is known to be independent of the isogeny type of G (see, for example, [1, comments following
Proposition 6.6] or [5, Remark 2.2.1, Lemma 3.3.6, and the fact that xn = xTn encodes the Kac diagram associated to n]),
so we will write ζ rather than ζG. It is also known that every equivalence class in the image of ζ is a singleton (see [1,
Proposition 6.8] or [5, Lemma 3.5.1]). The map ζ is known to be injective for groups of type An (there is only one elliptic
conjugacy class in W̃ ) as well as groups of types 2A2, Dm for 4 ≤ m ≤ 8, 3D4, En, 2E6, F4, and G2 (see the tabulations
in [1], [3], [16], [21], and [22]). Moreover, if we denote by resell-reg ζ the restriction of ζ to the set of regular (in the sense of
Springer [26]) ϑ-elliptic ϑ-conjugacy classes in W̃ , then resell-reg ζ is known to be injective [19, discussion in Section 2.1].

Since ζ is independent of the isogeny type of G and χG is a bijective map when G is adjoint, Theorem 3.1.3 implies

Corollary 2.1.1. The map ζ ∶ W̃ e
∼ → κ∼ is injective.

In Section 2 we show that Corollary 2.1.1 gives a new proof of the fact that every Weyl group is rational. In the context
of totally ramified tame tori in a group over a field with non-trivial discrete valuation and cohomological dimension less
than one, the Corollary implies that the point in the reduced building associated to such a torus completely determines the
torus up to conjugation. We believe that this latter fact will play a role in harmonic analysis on reductive p-adic groups.
Corollary 2.1.1 is also implicitly used in the proof of [1, Proposition 7.1].

Remark. If we replace C with any algebraically closed field, then the results of this paper still hold with very mild restric-
tions on p, the characteristic of the field. The theory of Kac diagrams goes through as long as one assumes that p does not
divide the order of the ϑ-torsion element under consideration [16, Section 2]. This restriction on p ensures that the roots of
unity, denoted by ξ in this paper, that arise in the constructions exist.

Remark. Since applications will often require that G be reductive rather than semisimple, we note that if G is reductive,
then one defines ζ to be ζG′ where G′ is the derived group of G.

Finally, this paper involves a fair bit of notational gymnastics. Although we independently derived our findings multiple
times and compared our findings to results in the literature, there are bound to be typos and more serious errors. So, be
cautious.
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1. NOTATION AND TWO WELL-KNOWN RESULTS

1.1. Notation. In addition to the notation introduced in the Introduction, we will need the following.
Let K denote the square matrix with ones on the anti-diagonal and zeroes elsewhere. The size of K will be evident from

context. For example, if we are working with G = SO2ℓ+1, then K is a (2ℓ + 1) × (2ℓ + 1) matrix.
If X is an n ×m matrix with entries in C, then XT denotes the transpose of X .
Suppose ℓ ∈ Z≥1 and ℓ⃗ = (ℓµ ≥ ℓµ−1 ≥ ⋯ ≥ ℓ1) is a partition of ℓ into µ parts. For 1 ≤ ν ≤ µ define ℓ′ν := ℓ1+ℓ2+⋯+ℓν−1.

Note that ℓ′1 = 0 and ℓ′µ + ℓµ = ℓ.
For the vector space Rn we let ei denote the ith standard basis vector for 1 ≤ i ≤ n. So e1 = (1,0,0, . . . ,0), e2 =

(0,1,0,0, . . . ,0), etc.
Suppose X is set. If τ is a function from X to X , then Xτ denotes the set of x ∈ X such that τ(x) = x. If X also has

the structure of a connected complex group and τ is an automorphism of X , then Xτ denotes the connected component
of the ⟨τ⟩-fixed points of X . If y ∈X and H is a group that acts on X , then Hy ∶= {h ⋅ y ∣h ∈H}.

1.2. Two known results. We begin by proving an elementary result from linear algebra.

Lemma 1.2.1. Suppose F is a field and U is a finite dimensional F -vector space. Let (u⃗1, u⃗2, . . . , u⃗m) be a basis for
U . Suppose j1, j2, . . . , jm ∈ Z and T ∶ U → U is a linear map such that T (u⃗k) = (−1)jk u⃗k+1 for 1 ≤ k < m and
T (u⃗m) = (−1)jm u⃗1. If Tm = ± IdU , then the characteristic polynomial of T is tm ∓ 1.

Proof. If Tm = IdU , then we conclude that ∑m
k=1 jk is even. If Tm = − IdU , then we conclude that ∑m

k=1 jk is odd. Since
the characteristic polynomial of T is

tm − (−1)∑
m
k=1 jk ,

the result follows. ∎

The next result is well known to experts, but we could not find a reference that did not place conditions on the isogeny
class of G.

Lemma 1.2.2. If g ∈ Gϑ−tor, then g is ϑ-conjugate in G to an element of Aϑ.

Proof. Recall that an automorphism of G is said to be quasi-semisimple if it preserves a Borel-torus pair in G.
Since ϑ is quasi-semisimple and g ⋊ ϑ has finite order, it follows that g ⋊ ϑ is quasi-semisimple [27, §7 and §9]. Hence,

g ⋊ϑ preserves a Borel-torus pair (A′,B′) in G. Since all Borel-torus pairs in G are conjugate, there exists h ∈ G such that
h(A,B) = (A′,B′). We then have

h(A,B) = (A′,B′) = g ⋅ ϑ(A′,B′) = gϑ(h) ⋅ ϑ(A,B) = gϑ(h)(A,B),

which implies that h−1gϑ(h) ∈ A. Thanks to [7, Lemma 7.2], we know A = Aϑ ⋅ (1 − ϑ)A. The result follows. ∎

2. AN APPLICATION OF THE INJECTIVITY OF ζ = χG ○ ψG

A finite group H is said to be rational provided that for any h ∈ H we have that hj is H-conjugate to h whenever j is
relatively prime to the order of h. There are many equivalent definitions of rationality, and the nomenclature is explained
by the fact [25, Corollary 2 of Section 13.1] that H is rational if and only if every irreducible character of H takes values
in Q.

It is known that every Weyl group is a rational group (see, for example, [15, Section 3 of Chapter 2 and Chapter 5]
or [26, Theorem 8.5]). In this section, we give another proof of this fact.

2.1. Weyl groups are rational. As noted in the Introduction, the fact that ζ is independent of the isogeny type of G
together with Theorem 3.1.3 implies

Corollary 2.1.1. The map ζ ∶ W̃ e
∼ → κ∼ is injective.

Using this, we show:

Lemma 2.1.2. Every Weyl group is rational.
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Proof. SupposeW is a Weyl group. We will prove this by induction. IfW is trivial, then there is nothing to prove. Suppose
then that W is not trivial and the statement is true for every parabolic subgroup of W .

Suppose w ∈ W . If the W -orbit of w intersects a proper parabolic subgroup W ′ of W , then without loss of generality
we may assume that w ∈W ′. Since the order of w in W ′ is equal to the order of w in W , by induction we have that if j is
relatively prime to the order of w in W , then wj is W ′-conjugate, hence W -conjugate, to w.

Suppose now that the W -orbit of w does not intersect a proper parabolic subgroup of W . That is, suppose w is elliptic
in W . It will be enough to show that if p is a prime that does not divide the order of w, then wp and w are W -conjugate.
Fix such a prime p.

Let H be a connected reductive group defined over Z with maximal Z-torus A such that NH(A)/A is W . Then H is a
Qp-split group where Qp denotes the p-adic completion of Q. Let Q̄p be an algebraic closure of Qp. Let Qun

p denote the
maximal unramified extension of Qp in Q̄p and let Qt

p denote the maximal tame extension of Qp in Q̄p. We have Qun
p ≤ Qt

p.
Fix a topological generator Fr for Gal(Qun

p /Qp) and a topological generator σ for Gal(Qt
p/Qun

p ) such that if Fr and σ also
denote lifts of these elements into Gal(Qt

p/Qp), then Fr−1σFr = σp.
Let W t denote the set of tame elements in W , that is, those elements w′ ∈W such that p does not divide the order of w′.

If w′ ∈W t, then there exists h ∈H(Qt
p) such that the image of h−1σ(h) in W is w′ and the map w′ ↦ H(Qun

p )(hA) defines
a bijective map φσ from W t

∼, the conjugacy classes of tame elements in W , to Ct, the set of H(Qun
p )-conjugacy classes of

Qun
p -minisotropic maximal Qun

p -tori in H [5, Lemma 3.4.1]. A Qun
p -torus T in H is said to be Qun

p -minisotropic provided
that X∗(T/Z(H))Gal(Q̄p/Qun

p ) is trivial.
Since H is Qp-split, we have that Fr and σ both act trivially on W . Thus, the commutative diagram of bijective maps

in [5, Lemma 5.1.2] becomes

W t
∼ W t

∼ W t
∼

Ct Ct Ct

(-)p

φσ

Id

φσp φσ

Id Fr

Since p does not divide the order of w ∈W t, the diagram implies Fr(φσ(Ww)) = φσ(W(wp)).
Fix a Fr-stable alcove D in the reduced Bruhat-Tits building of H(Qun

p ). From [5, Section 2.2] we know that φσ(Ww)
and Fr(φσ(Ww)) identify unique points, call them x and x′, in the closure ofD. Note that x′ = Fr(x). From [5, Section 3.5]
the barycentric coordinates of x are determined by ζ(Ww) and those of x′ by ζ(W(wp)). Since H is Qp-split, we have that
Fr fixes D pointwise. Thus, x′ = Fr(x) = x. Thanks to Corollary 2.1.1, we know that the map ζ is injective. Consequently,
wp is W -conjugate to w. ∎

3. THE MAP ψG IS INJECTIVE

The proof of Theorem 3.1.3 has two steps. In Section 3.1 we show that we may reduce to the case when G is isogenous
to a simple complex adjoint group. In Sections 3.2 to 3.8 we show that for a given simple complex adjoint group G′, the
map ψG is injective for some G that is isogenous to G′. The case-by-case work we carry out was made much easier thanks
to the clearly written material in [9, Sections 3 and 4], [10, Section 3.4], and [11, Section 2].

Remark 3.0.1. Note that the order of a lift of a ϑ-elliptic Weyl group element is independent of the lift. Thus, if w1 and w2

are ϑ-elliptic elements of W̃ that lift to n1 and n2 with n1 ⋊ ϑ and n2 ⋊ ϑ having different orders, then we have w1 is not
ϑ-conjugate to w2 in W̃ . On the other hand, it sometimes happens that n1 ⋊ ϑ and n2 ⋊ ϑ have the same order, yet w1 is
not ϑ-conjugate to w2 in W̃ . So looking at orders to establish injectivity will not work in general.

3.1. Reduction to the almost-simple case. We begin by showing that the injectivity of ψG is independent of the isogeny
type of G.

Lemma 3.1.1. Suppose H and I are semisimple complex groups that are isogenous to G. We have that the map

ψH ∶ W̃ e
∼ →Hϑ−tor

∼

is injective if and only if the map
ψI ∶ W̃ e

∼ → Iϑ−tor∼
is injective.
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Proof. Suppose ρ ∶ H → I is an isogeny. Let AH (resp. AI ) be a maximal torus in H (resp I) with ρ[AH] = AI . Fix
w1,w2 ∈ W̃ e. Choose nk ∈ NH(AH) and ṅk ∈ NI(AI) lifting wk.

Suppose first that ψH is injective. If there exists i ∈ I such that iṅ1ϑ(i)−1 = ṅ2, then there exists h ∈ H such that
hn1ϑ(h)−1 ∈ n2AH . Since all lifts of w2 ∈ W̃ e into NH(AH) are ϑ-conjugate by an element of AH , we may assume that
hn1ϑ(h)−1 = n2. Since ψH is injective, we conclude that w1 is ϑ-conjugate to w2 in W̃ . That is, ψI is injective.

Suppose now that that ψI is injective. If there exists h ∈ H such that hn1ϑ(h)−1 = n2, then by taking i = ρ(h) and
n′k = ρ(nk), we have in′1ϑ(i)−1 = n′2. Since all lifts of wk ∈ W̃ e into NI(AI) are ϑ-conjugate by an element of AI , we
may assume that iṅ1ϑ(i)−1 = ṅ2. Since ψI is injective, we conclude that w1 is ϑ-conjugate to w2 in W̃ . That is, ψH is
injective. ∎

Corollary 3.1.2. The map ψG is injective if and only if ψH is injective for every almost-simple factor H of G.

Proof. Since the injectivity of ψG is independent of the isogeny type ofG, we may assumeG is simply connected. SinceG
is simply connected, we may write [17, Theorem 21.51 and discussion in 24.a] the C-groupG as a product of almost-simple
simply connected complex groups: G = G1 ×G2 ×⋯ ×Gτ . The result follows. ∎

Theorem 3.1.3. The map ψG ∶ W̃ e
∼ → Gϑ−tor

∼ is injective.

Proof. Thanks to Corollary 3.1.2 it is enough to show that ψG′ is injective for G′ being an almost-simple complex group.
Thanks to Lemma 3.1.1, it is enough to show that ψG is injective for some G that is isogenous to G′. This is done on a
case-by-case basis in Sections 3.2 to 3.8. ∎

3.2. Injectivity of ψG for type Aℓ−1 with ℓ ≥ 3. In this situation there is only one elliptic conjugacy class in the Weyl
group. Thus, the injectivity of ψG is automatic. However, in the interest of establishing notation in a familiar setting, we
carry out a proof that has the same flavor as the proofs for the other root system types.

Let G = SLℓ = SLℓ(C) realized as the set of ℓ × ℓ matrices of determinant 1. The Lie algebra of G is then g, the set of
ℓ× ℓ matrices of trace zero. We take A to be the diagonal matrices in G and B to be the upper triangular matrices in G. For
a = Diag(a1, a2, . . . , aℓ) ∈ A ≤ SLℓ and 1 ≤ k < ℓ, we let αk(a) = ak/ak+1 be the simple roots of G with respect to A and
B.

Following Bourbaki [2, Planche I] we identify V with the hyperplane in Rℓ for which the sum of the coordinates is zero,
identify Φ with the vectors ei − ej with 1 ≤ i ≠ j ≤ ℓ, and identify ∆ with the roots αk = ek − ek+1 for 1 ≤ k < ℓ.

For 1 ≤ k < ℓ we define sk ∈ SLℓ to be the ℓ × ℓ matrix such that

(sk)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j and i /∈ {k, k + 1}
1 i = k and j = k + 1
−1 i = k + 1 and j = k
0 otherwise.

The image of the order four element sk in W̃ is the simple reflection corresponding to αk.
The Coxeter class is the only elliptic conjugacy class in W̃ , and it corresponds to the partition ℓ⃗ = (ℓ) of ℓ. Define

n(ℓ) =∏ℓ−1
j=1 sj . This is a lift of a Coxeter element in W̃ , and it has order 2ℓ if ℓ is even or ℓ if ℓ is odd.

Any element g ∈ SLℓ acts on Cℓ by matrix multiplication. The characteristic polynomial of g with respect to this action
is an SLℓ-conjugation invariant polynomial. Thanks to Lemma 1.2.1 the characteristic polynomial of n(ℓ) with respect to
this action is qn(ℓ)(t) = t

ℓ + (−1)ℓ.
Since any two lifts of an elliptic element in W̃ areA-conjugate and since there exists a unique conjugacy class of elliptic

elements in W̃ , we conclude that two elliptic elements of W̃ are W̃ -conjugate if and only if their lifts are SLℓ-conjugate.

3.3. Injectivity of ψG for type Bℓ with ℓ ≥ 2. Let G = SO2ℓ+1 = SO2ℓ+1(C) realized as those g ∈ SL2ℓ+1 such that
g = (Kg−1K)T . Recall that K denotes the (2ℓ+ 1)× (2ℓ+ 1) matrix with ones on the anti-diagonal and zeroes elsewhere.
Then g, the Lie algebra of G, is so2ℓ+1 realized as the Lie subalgebra of sl2ℓ+1 consisting of those matrices X for which
X = −KXTK. We take A to be the diagonal matrices in G and B to be the upper triangular matrices in G. For a =
Diag(a1, a2, . . . , aℓ,1, a−1ℓ , . . . , a

−1
2 , a

−1
1 ) ∈ A ≤ SO2ℓ+1, we let αℓ(a) = aℓ and αk(a) = ak/ak+1 for 1 ≤ k < ℓ be the

simple roots of G with respect to A and B.
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Following Bourbaki [2, Planche II] , we identify V with Rℓ, identify Φ with the set of vectors ±ei for 1 ≤ i ≤ ℓ and
±ei ± ej for 1 ≤ i < j ≤ ℓ, and identify ∆ with

α1 = e1 − e2, α2 = e2 − e3, . . . , αℓ−1 = eℓ−1 − eℓ, αℓ = eℓ.
We define tℓ ∈ SO2ℓ+1 to be the (2ℓ + 1) × (2ℓ + 1) matrix such that

(tℓ)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 1 ≤ i = j < ℓ or ℓ + 2 < i = j ≤ 2ℓ + 1
1 i ≠ j and i, j ∈ {ℓ, ℓ + 2}
−1 i = j = ℓ + 1
0 otherwise,

and for 1 ≤ k < ℓ we define sk ∈ SO2ℓ+1 to be the (2ℓ + 1) × (2ℓ + 1) matrix such that

(sk)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j and i /∈ {k, k + 1,2ℓ − k + 2,2ℓ − k + 1}
1 i ≠ j and i, j ∈ {k, k + 1}
1 i ≠ j and i, j ∈ {2ℓ − k + 1,2ℓ − k + 2}
0 otherwise.

The image of the order two element tℓ in W̃ is the simple reflection corresponding to αℓ while the image of the order two
element sk in W̃ is the simple reflection corresponding to αk. For 1 ≤ k < ℓ define tk ∈ SO2ℓ+1 by

tk = sk ⋅ sk+1 ⋅ sk+2 ⋅ ⋯ ⋅ sℓ−2 ⋅ sℓ−1 ⋅ tℓ ⋅ sℓ−1 ⋅ sℓ−2 ⋅ ⋯ ⋅ sk+1 ⋅ sk.
Note that the tk defined above is denoted by tk−1 in [10, §3.4].

The elliptic conjugacy classes are parameterized by the partitions of ℓ [12, 7.16]. Fix a partition ℓ⃗ = (ℓµ ≥ ℓµ−1 ≥ ⋯ ≥ ℓ1)
of ℓ. Recall that for 1 ≤ ν ≤ µ we define ℓ′ν = ℓ1 + ℓ2 + ⋯ + ℓν−1. We define nℓ⃗ to be the product c1 ⋅ c2 ⋅ ⋯ ⋅ cµ where
cν = sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν . Thus

nℓ⃗ =
µ

∏
ν=1
(sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν).

The image of nℓ⃗ in W̃ is an elliptic element belonging to the conjugacy class associated to ℓ⃗.

Remark 3.3.1. Since w ∈ W̃ is regular elliptic if and only if hw = {0} and ⟨w⟩ acts freely on Φ, the regular elliptic elements
of W̃ correspond to partitions of the form (d, d, . . . , d) where d ∈ Z≥1 divides ℓ.

Any element g ∈ SO2ℓ+1 acts on C2ℓ+1 by matrix multiplication. The characteristic polynomial of g with respect to this
action is an SO2ℓ+1-conjugation invariant polynomial. Using Lemma 1.2.1, one finds that the characteristic polynomial of
nℓ⃗ with respect to this action is

qnℓ⃗
(t) = (t − (−1)µ) ⋅

µ

∏
ν=1
(t2ℓν − 1).

If ℓ⃗ and ℓ⃗′ are two partitions of ℓ for which the associated elements nℓ⃗ and nℓ⃗′ of NG(A) are G-conjugate, then we have
qnℓ⃗
= qnℓ⃗′ . The only way this can happen is if ℓ⃗ = ℓ⃗′.

Since any two lifts of an elliptic element in W̃ are A-conjugate, we conclude that two elliptic elements of W̃ are
W̃ -conjugate if and only if their lifts are SO2ℓ+1-conjugate.

3.4. Injectivity of ψG for type Cℓ with ℓ ≥ 2. Recall that K denotes the ℓ × ℓ matrix with ones on the anti-diagonal and
zeroes elsewhere. Denote by J the product of K and Diag(1,1, . . . ,1,1,−1,−1, . . . ,−1,−1); here there are ℓ copies of 1
followed by ℓ copies of −1. We realize G = Sp2ℓ = Sp2ℓ(C) as those g ∈ SL2ℓ such that gTJg = J and we realize sp2ℓ
as those X ∈ sl2ℓ such that XTJ = −JX . We take A to be the diagonal matrices in G and B to be the upper triangular
matrices in Sp2ℓ. For a = Diag(a1, a2, . . . , aℓ, a−1ℓ , . . . , a

−1
2 , a

−1
1 ) ∈ A, we let αℓ(a) = a2ℓ and αk(a) = ak/ak+1 for 1 ≤ k < ℓ

be the simple roots of G with respect to A and B.
Following Bourbaki [2, Planche III] , we identify V with Rℓ, identify Φ with the set of vectors ±2ei for 1 ≤ i ≤ ℓ and

±ei ± ej for 1 ≤ i < j ≤ ℓ, and identify ∆ with the roots

α1 = e1 − e2, α2 = e2 − e3, . . . , αℓ−1 = eℓ−1 − eℓ, αℓ = 2eℓ.
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We define tℓ ∈ Sp2ℓ to be the 2ℓ × 2ℓ matrix such that

(tℓ)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 1 ≤ i = j < ℓ or ℓ + 1 < i = j ≤ 2ℓ
1 i = ℓ and j = ℓ + 1
−1 i = ℓ + 1 and j = ℓ
0 otherwise,

and for 1 ≤ k < ℓ we define sk ∈ Sp2ℓ to be the 2ℓ × 2ℓ matrix such that

(sk)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j and i /∈ {k, k + 1,2ℓ − k + 1,2ℓ − k}
1 i ≠ j and i, j ∈ {k, k + 1}
1 i ≠ j and i, j ∈ {2ℓ − k,2ℓ − k + 1}
0 otherwise.

The image of the order four element tℓ in W̃ is the simple reflection corresponding to αℓ while the image of the order two
element sk in W̃ is the simple reflection corresponding to αk. For 1 ≤ k < ℓ define tk ∈ Sp2ℓ by

tk = sk ⋅ sk+1 ⋅ sk+2 ⋅ ⋯ ⋅ sℓ−2 ⋅ sℓ−1 ⋅ tℓ ⋅ sℓ−1 ⋅ sℓ−2 ⋅ ⋯ ⋅ sk+1 ⋅ sk.

Note that the tk defined above is denoted by tk−1 in [10, §3.4].
Since the Weyl group of type Cℓ may be naturally identified with the Weyl group of type Bℓ, the elliptic conjugacy

classes in W̃ correspond to partitions ℓ⃗ = (ℓµ ≥ ℓµ−1 ≥ ⋯ ≥ ℓ1) of ℓ [12, 7.16]. Recall that for 1 ≤ ν ≤ µ we define ℓ′ν =
ℓ1 + ℓ2 +⋯ + ℓν−1. We define nℓ⃗ to be the product c1 ⋅ c2 ⋅ ⋯ ⋅ cµ where cν = sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν . Thus

nℓ⃗ =
µ

∏
ν=1
(sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν).

The image of nℓ⃗ in W̃ is an elliptic element belonging to the conjugacy class associated to ℓ⃗.

Remark 3.4.1. Since w ∈ W̃ is regular elliptic if and only if hw = {0} and ⟨w⟩ acts freely on Φ, the regular elliptic elements
of W̃ correspond to partitions of the form (d, d, . . . , d) where d ∈ Z≥1 divides ℓ.

Any element g ∈ Sp2ℓ acts on C2ℓ by matrix multiplication. The characteristic polynomial of g with respect to this action
is an Sp2ℓ-conjugation invariant polynomial. Using Lemma 1.2.1, one finds that the characteristic polynomial of nℓ⃗ with
respect to this action is

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν + 1).

If ℓ⃗ and ℓ⃗′ are two partitions of ℓ for which the associated elements nℓ⃗ and nℓ⃗′ of NG(A) are G-conjugate, then we have
qnℓ⃗
= qnℓ⃗′ . The only way this can happen is if ℓ⃗ = ℓ⃗′.

Since any two lifts of an elliptic element in W̃ are A-conjugate, we conclude that two elliptic elements of W̃ are
W̃ -conjugate if and only if their lifts are Sp2ℓ-conjugate.

3.5. Injectivity of ψG for type Dℓ with ℓ ≥ 3. Let G = SO2ℓ = SO2ℓ(C) realized as those g ∈ GL2ℓ such that
g = (Kg−1K)T and det(g) = 1. If we remove the determinant one condition, then g is an element of O2ℓ = O2ℓ(C).
Then g, the Lie algebra of G, is so2ℓ realized as the Lie subalgebra of sl2ℓ consisting of those matrices X for which
X = −KXTK. We take A to be the diagonal matrices in G and B to be the upper triangular matrices in G. For
a = Diag(a1, a2, . . . , aℓ, a−1ℓ , . . . , a

−1
2 , a

−1
1 ) ∈ A, we let αℓ(a) = aℓ−1 ⋅ aℓ and αk(a) = ak/ak+1 for 1 ≤ k < ℓ be the

simple roots of G with respect to A and B.
Following Bourbaki [2, Planche IV] we identify V with Rℓ, identify Φ with the vectors ±ei ± ej for 1 ≤ i < j ≤ ℓ, and

identify ∆ with the roots

α1 = e1 − e2, α2 = e2 − e3, . . . , αℓ−1 = eℓ−1 − eℓ, αℓ = eℓ−1 + eℓ.
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For 1 ≤ k ≤ ℓ we define tk ∈ O2ℓ to be the 2ℓ × 2ℓ matrix such that

(tk)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 1 ≤ i = j ≤ 2l and i, j /∈ {k,2ℓ − k + 1}
1 i ≠ j and i, j ∈ {k,2ℓ − k + 1}
0 otherwise.

For 1 ≤ k < ℓ we define sk ∈ SO2ℓ to be the 2ℓ × 2ℓ matrix such that

(sk)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j and i /∈ {k, k + 1,2ℓ − k + 1,2ℓ − k}
1 i ≠ j and i, j ∈ {k, k + 1}
1 i ≠ j and i, j ∈ {2ℓ − k,2ℓ − k + 1}
0 otherwise.

The image of the order two element sk in W̃ is the simple reflection corresponding to αk.
The elliptic conjugacy classes in W̃ correspond to partitions ℓ⃗ = (ℓµ ≥ ℓµ−1 ≥ ⋯ ≥ ℓ1) of ℓ where µ is even [12, 7.20].

Fix such a partition. Recall that for 1 ≤ ν ≤ µ we define ℓ′ν = ℓ1 + ℓ2 +⋯+ ℓν−1. We define nℓ⃗ to be the product c1 ⋅ c2 ⋅⋯ ⋅ cµ
where cν = sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν . Note that cν ∈ O2ℓ, but since µ is even we have that nℓ⃗ belongs to SO2ℓ. We
have

nℓ⃗ =
µ

∏
ν=1
(sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν).

Let Oℓ⃗ denote the conjugacy class in W̃ of the image of nℓ⃗ in W̃ . The correspondence ℓ⃗ ↔ Oℓ⃗ defines a bijective
correspondence between partitions of ℓ into an even number of parts and ϑ-elliptic ϑ-conjugacy classes in W̃ .

Remark 3.5.1. Since w ∈ W̃ is regular elliptic if and only if hw = {0} and ⟨w⟩ acts freely on Φ, the regular elliptic elements
of W̃ correspond to partitions of the form (d, d, . . . , d) where d ∈ Z≥1 divides ℓ and ℓ

d is even or (e, e, . . . , e, e,1) where
e ∈ Z≥1 divides ℓ − 1 and ℓ−1

e is odd.

Any element g ∈ SO2ℓ acts on C2ℓ by matrix multiplication. The characteristic polynomial of g with respect to this
action is an SO2ℓ-conjugation invariant polynomial. Using Lemma 1.2.1, one finds that the characteristic polynomial of nℓ⃗
with respect to this action is

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν − 1).

If ℓ⃗ and ℓ⃗′ are two partitions of ℓ for which the associated elements nℓ⃗ and nℓ⃗′ of NG(A) are G-conjugate, then we have
qnℓ⃗
= qnℓ⃗′ . The only way this can happen is if ℓ⃗ = ℓ⃗′.

Since any two lifts of an elliptic element in W̃ are A-conjugate, we conclude that two elliptic elements of W̃ are
W̃ -conjugate if and only if their lifts are SO2ℓ-conjugate.

3.6. Injectivity of ψG for type 2Aℓ−1 with ℓ ≥ 3. We adopt the notation of Section 3.2. In particular, we have G = SLℓ,
g = slℓ, and the roots in ∆ are αk ∶= ek − ek+1 for 1 ≤ k < ℓ.

We begin by defining an involution of G, and hence g. Let K denote the ℓ × ℓ matrix with ones on the anti-diagonal and
zeroes elsewhere. We define an order two element J as follows. If ℓ is odd, then J = K. If ℓ is even, then J is the product
of K with Diag(i, i, . . . , i, i,−i,−i, . . . ,−i,−i); here there are ℓ/2 copies of i followed by ℓ/2 copies of −i. In all cases we
have that det(J) = (−1)⌊

ℓ
2
⌋; that is, J has determinant 1 if ℓ is congruent to 0 or 1 modulo 4 and is −1 otherwise. We also

have that J , and hence Ad(J), always has order two. We define the involution ϑ on G by ϑ(g) = Ad(J)(g−1)T for g ∈ G.
We abuse notation and denote the resulting involution on g by ϑ as well. Note that ϑ(X) = −Ad(J)(XT ) = −JXTJ for
X ∈ g.

For 1 ≤ k < ℓ we have sk ∈ SLℓ as in Section 3.2 and we define s̃k ∈ GLℓ to be the ℓ × ℓ matrix

(s̃k)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j and i /∈ {k, k + 1}
1 i = k and j = k + 1
1 i = k + 1 and j = k
0 otherwise.
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The image of the order four element sk in W̃ is the simple reflection corresponding to αk.
Suppose ℓ⃗ = ℓµ ≥ ℓµ−1 ≥ ⋯ ≥ ℓ1 is a partition of ℓ for which each ℓν is odd. Recall that ℓ′ν = ℓ1 + ℓ2 + ⋯ + ℓν−1. For

1 < ν ≤ µ, set
cν = sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ sℓ′ν+3 ⋅ ⋯ ⋅ sℓ′ν+(ℓν−2) ⋅ sℓ′ν+(ℓν−1).

For 1 < ν ≤ µ, the element cν has order ℓν . If ℓ modulo 4 is 0 or 1, then define

c1 = s1 ⋅ s2 ⋅ s3 ⋅ ⋯ ⋅ s(ℓ1−2) ⋅ s(ℓ1−1)
and note that this element has order ℓ1. If ℓ modulo 4 is 2 or 3 and ℓ1 > 1, then define

c1 = s1 ⋅ s2 ⋅ s3 ⋅ ⋯ ⋅ s(ℓ1−2) ⋅ s̃(ℓ1−1).
If ℓmodulo 4 is 2 or 3 and ℓ1 = 1, then define c1 = Diag(−1,1,1,1, . . . ,1,1,1). Note that if ℓ is congruent to 2 or 3 modulo
4, then the order of c1 is 2ℓ1.

Define ñℓ⃗ = c1 ⋅ c2 ⋅ ⋯ ⋅ cµ. We have nℓ⃗ ∶= ñℓ⃗J ∈ SLℓ. Let wℓ⃗ denote the image of nℓ⃗ in W̃ and let Oℓ⃗ denote the ϑ-
conjugacy class of wℓ⃗ in W̃ . The correspondence ℓ⃗↔ Oℓ⃗ between partitions of ℓ into odd parts and ϑ-elliptic ϑ-conjugacy
classes in W̃ is a bijection [12, 7.14]. Moreover, nℓ⃗ is a lift of wℓ⃗ into NG(A).

Remark 3.6.1. Sincew ∈ W̃ is regular ϑ-elliptic if and only if hw⋊ϑ = {0} and ⟨w⋊ϑ⟩ acts freely on Φ, the regular ϑ-elliptic
elements of W̃ correspond to partitions of the form (d, d, . . . , d, d,1) where d ∈ Z≥1 is odd and divides ℓ−1 or (e, e, . . . , e)
where e ∈ Z≥1 is odd and divides ℓ

We wish to calculate the characteristic polynomial, qnℓ⃗
, of the linear map Tℓ⃗ ∈ Hom(slℓ, slℓ) defined by Tℓ⃗(X) =

Ad(nℓ⃗)ϑ(X) = −Ad(nℓ⃗J)(X
T ) = −Ad(ñℓ⃗)(X

T ). Since ϑ ○ Ad(g) = Ad(ϑ(g)) ○ ϑ for all g ∈ GLℓ, it follows that
qnℓ⃗
= qgnℓ⃗ϑ(g−1) for all g ∈ SLℓ.

Lemma 3.6.2. We have

qnℓ⃗
(t) = 1

t + 1
⋅ (

µ

∏
ν=1
(tℓν + 1)) ⋅ (

µ

∏
τ=1
(t2ℓτ − 1)(ℓτ−1)/2) ⋅

⎛
⎝ ∏
1≤ρ<σ≤µ

(t2 lcm(ℓρ,ℓσ) − 1)gcd(ℓρ,ℓσ)
⎞
⎠
.

Proof. By identifying the standard ordered basis of Cℓν with (eℓ′ν+1, eℓ′ν+2, . . . , eℓ′ν+ℓν−1, eℓ′ν+ℓν) we have an embedding of
GLℓν into GLℓ. Under this identification, we think of cν as being an element of GLℓν , and hence ñℓ⃗ ∈ ∏

µ
ν=1GLℓν . Note

that the image of cν in the Weyl group of GLℓν is a Coxeter element, hence has order ℓν in this Weyl group.
For 1 ≤ ρ, σ ≤ µ we define the block Bρ,σ to be the vector subspace of slℓ consisting of matrices X for which Xij ≠ 0

if and only if i ∈ {ℓ′ρ + 1, ℓ′ρ + 2, . . . , ℓ′ρ + ℓρ − 1} and j ∈ {ℓ′σ + 1, ℓ′σ + 2, . . . , ℓ′σ + ℓσ − 1}. We let S0 denote the sum of
diagonal blocks, that is S0 = ∑1≤ν≤µBνν . We identify S0 with the Lie algebra of the group of determinant one matrices in
∏µ

ν=1GLℓν . For 1 ≤ ρ < σ ≤ µ, we define the vector subspace Sρσ of slℓ by Sρσ = Bρσ +Bσρ. If we think of GLℓρ ×GLℓσ

as a subgroup of∏µ
ν=1GLℓν ⊂ GLℓ in the natural way, then Sρσ is a (GLℓρ ×GLℓσ) ⋊ ϑ′-module where ϑ′(X) = −XT .

Treating slℓ as a (∏µ
ν=1GLℓν) ⋊ ϑ′-module, we have

slℓ = S0 ⊕ ⊕
1≤ρ<σ≤µ

Sρσ.

The polynomial qnℓ⃗
is the product of the characteristic polynomials for the action of ñℓ⃗ ⋊ ϑ

′ on each of the (µ2 − µ)/2 + 1
summands above. We now calculate these characteristic polynomials.

The (GLℓρ ×GLℓσ) ⋊ ϑ′-module Sρσ is also an A-module and, as such, may be written as a direct sum of root
spaces. The image of cρcσ ⋊ ϑ′ in the twisted Weyl group of (GLℓρ ×GLℓσ) ⋊ ϑ′ acts freely on these roots, with or-
bits of size 2 lcm(ℓρ, ℓσ). Since the dimension of Sρσ is 2ℓρℓσ, there are gcd(ℓρ, ℓσ) of these orbits. Since the image of
(cρcσ)2 lcm(ℓρ,ℓσ) in A is trivial, it follows from Lemma 1.2.1 that the characteristic polynomial of Ad(cρcσ)⋊ϑ′, hence of
Ad(ñℓ⃗) ⋊ ϑ

′, acting on Sρ,σ is (t2 lcm(ℓρ,ℓσ) − 1)gcd(ℓρ,ℓσ).
We now calculate the characteristic polynomial for the action of ñℓ⃗ ⋊ ϑ

′ acting on S0. Since ñℓ⃗ ⋊ ϑ
′ fixes the center of

glℓν , this characteristic polynomial is equal to 1
t+1 times the product for 1 ≤ ν ≤ µ of the characteristic polynomials for the

action of cν ⋊ ϑ′ on glℓν . Since the transpose operation is trivial on dν , the set of diagonal elements in glℓν , the action of
cν ⋊ ϑ′ factors through to an action of wν ⋊ −1 where wν is a Coxeter element in W̃ν , the Weyl group of GLℓν . Thus the
characteristic polynomial for the action cν ⋊ ϑ′ on dν is (tℓν + 1). The image of cν ⋊ ϑ′ in W̃ν ⋊ ϑ′ acts freely on the roots
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of GLℓν with respect to A. Since the orbits for this action have 2ℓν elements and the dimension of gl2ℓν /dν is ℓ2ν − ℓν , there
are (ℓν − 1)/2 of these orbits. Since c2ℓνν is trivial, it follows from Lemma 1.2.1 that the characteristic polynomial for the
action cν ⋊ϑ′ on glℓν(C)/dν is (t2ℓν − 1)(ℓν−1)/2. Thus, the characteristic polynomial for the action of ñℓ⃗ ⋊ϑ

′ acting on S0
is 1

t+1∏
µ
ν=1(t

ℓν + 1)∏µ
τ=1(t

2ℓτ − 1)(ℓτ−1)/2. ∎

Lemma 3.6.3. If ℓ⃗ and ℓ⃗′ are two partitions of ℓ with qnℓ⃗
= qnℓ⃗′ , then ℓ⃗ = ℓ⃗′.

Proof. Recall that ℓ⃗ is a partition of ℓ into odd parts. List out all the roots of qnℓ⃗
and call the list S. The list S has dim(g)

entries. There exists an m ∈ N so that every element of S looks like ξν2m where ξ2m is a fixed primitive (2m)th root of
unity and ν ∈ N. Choose the largest odd h ∈ N for which there exists a primitive (2h)th root of unity, call it ξ, in S with the
property that every power of ξ occurs in S. For such a ξ remove one copy of each power of ξ from S – note, we are only
removing 2h elements from S. Continue this process until it cannot be repeated – that is, until the list S consists of roots
of unity ξ such that ξj is not in S for some j. The number of times this process can happen is equal to the number of times
one appears as a root of qnℓ⃗

.
There will be ℓ − 1 roots remaining, and these will be the roots of

(3.6.4) pℓ⃗(t) ∶=
1

t + 1

µ

∏
ν=1
(tℓν + 1).

That is, this algorithm recovers pℓ⃗ from qnℓ⃗
, and hence it recovers ℓ⃗. ∎

By construction, we have qnℓ⃗
= qxnℓ⃗ϑ(x−1) for all x ∈ G. Since any two lifts of a ϑ-elliptic element in W̃ to elements

in NG(A) ⋊ ϑ are ϑ-conjugate by an element of A, we conclude from Lemma 3.6.3 that two ϑ-elliptic elements of W̃ are
ϑ-conjugate in W̃ if and only if their lifts into NG(A) are ϑ-conjugate in SLℓ.

3.7. Injectivity of ψG for type 2Dℓ+1 with ℓ ≥ 2. Let G = SO2ℓ+2 and let g be so2ℓ+2 realized as in Section 3.5. We take A
to be the diagonal matrices in G and B to be the upper triangular matrices in G. We realize V , Φ, and ∆ as in Section 3.5.
In particular, the elements of ∆ are

α1 = e1 − e2, α2 = e2 − e3, . . . , αℓ−1 = eℓ−1 − eℓ, αℓ = eℓ − eℓ+1, αℓ+1 = eℓ + eℓ+1.

Let J be the (2ℓ + 2) × (2ℓ + 2) matrix such that Jii = 1 for i ≠ ℓ + 1, ℓ + 2, Jℓ+1,ℓ+2 = Jℓ+2,ℓ+1 = 1, and all other entries
are zero. Then J ∈ O2ℓ+2. We define an involution ϑ on g by ϑ(X) = JXJ .

For 1 ≤ k ≤ ℓ we define sk ∈ SO2ℓ+2 to be the (2ℓ + 2) × (2ℓ + 2) matrix such that

(sk)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j and i /∈ {k, k + 1,2ℓ − k + 3,2ℓ − k + 2}
1 i ≠ j and i, j ∈ {k, k + 1}
1 i ≠ j and i, j ∈ {2ℓ − k + 2,2ℓ − k + 3}
0 otherwise.

The image of the order two element sk in W̃ is the simple reflection corresponding to αk. For 1 ≤ k ≤ ℓ+1 define tk ∈ O2ℓ+2
by

tk = sk ⋅ sk+1 ⋅ sk+2 ⋅ ⋯ ⋅ sℓ−2 ⋅ sℓ−1 ⋅ sℓ ⋅ J ⋅ sℓ ⋅ sℓ−1 ⋅ sℓ−2 ⋅ ⋯ ⋅ sk+1 ⋅ sk.
Note that tℓ+1 = J .

The ϑ-elliptic conjugacy classes in W̃ correspond to partitions ℓ⃗ = (ℓµ ≥ ℓµ−1 ≥ ⋯ ≥ ℓ1) of ℓ + 1 where µ is odd [12,
7.20]. Fix such a partition. Recall that for 1 ≤ ν ≤ µ we define ℓ′ν = ℓ1 + ℓ2 + ⋯ + ℓν−1. We define ñℓ⃗ to be the product
c1 ⋅ c2 ⋅ ⋯ ⋅ cµ where cν = sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν . Thus

ñℓ⃗ =
µ

∏
ν=1
(sℓ′ν+1 ⋅ sℓ′ν+2 ⋅ ⋯ ⋅ sℓ′ν+ℓν−1 ⋅ tℓ′ν+ℓν).

Let Oℓ⃗ denote the ϑ-conjugacy class in W̃ of the image of nℓ⃗ = ñℓ⃗J in W̃ . The correspondence ℓ⃗↔ Oℓ⃗ defines a bijective
correspondence between partitions of ℓ + 1 with an odd number of parts and ϑ-elliptic ϑ-conjugacy classes in W̃ .
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Remark 3.7.1. Since w ∈ W̃ is regular ϑ-elliptic if and only if hw⋊ϑ = {0} and ⟨w ⋊ ϑ⟩ acts freely on Φ, the regular
ϑ-elliptic elements of W̃ correspond to partitions of the form (d, d, . . . , d) where d ∈ Z≥1 divides ℓ + 1 and ℓ+1

d is odd or
(e, e, . . . , e, e,1) where e ∈ Z≥1 divides ℓ and ℓ

e is even.

Any element g ∈ SO2ℓ+2 acts on C2ℓ+2 by matrix multiplication. The characteristic polynomial, call it qg, of gJ with
respect to this action is an SO2ℓ+2-conjugation invariant polynomial, hence qg = qxgϑ(x−1) for all g, x ∈ SO2ℓ+2. Using
Lemma 1.2.1, one finds that

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν − 1).

If ℓ⃗ and ℓ⃗′ are two partitions of ℓ for which the associated elements nℓ⃗ and nℓ⃗′ of NG(A) are ϑ-conjugate in G, then we
have qnℓ⃗

= qnℓ⃗′ . The only way this can happen is if ℓ⃗ = ℓ⃗′.
Since any two lifts of an elliptic element in W̃ ⋊ ϑ into NG(A) ⋊ ϑ are A-conjugate, we conclude that two ϑ-elliptic

elements of W̃ are ϑ-conjugate in W̃ if and only if their lifts into NG(A) are ϑ-conjugate in SO2ℓ+2.

3.8. Injectivity of ψG for the remaining types of groups. Suppose G is a simple adjoint group of type F4, G2, E6, E7,
E8, 3D4, or 2E6. An inspection of the tables in [1, Section 9] shows that the map ζ is injective. Since G is adjoint, we know
χG is bijective. Since ζ = χG ○ ψG, we conclude that ψG must be injective.

From Lemma 3.1.1 we conclude that ψG must be injective independent of the isogeny type of G. In particular, ψG is
injective when G is an almost-simple group of type F4, G2, E6, E7, E8, 3D4, or 2E6.

4. KAC DIAGRAMS FOR ϑ-ELLIPTIC CONJUGACY CLASSES IN W̃

In this section g is a simple complex Lie algebra and G is a semisimple complex group with Lie algebra g. Suppose the
pinned automorphism ϑ has order f .

4.1. Notation for Kac diagrams. We begin by recalling the setup of [20] for Kac diagrams.
Let (ω̌α)α∈∆ ⊂ V = X∗(A) ⊗ R be the fundamental coweights with respect to ∆. That is, ω̌α(β) = δαβ for α,β ∈ ∆.

Here δαβ = 1 if α = β and is zero otherwise.
For α ∈ Φ = Φ(G,A), define ᾱ = resV ϑ α and set γα = ∑ β̄ where the sum is over those β ∈ Φ such that β̄ ∈ R>0ᾱ. The

set Φϑ ∶= {γα ∣α ∈ Φ} is the reduced root system for Gϑ with respect to Aϑ. The set ∆ϑ = {γα ∣α ∈ ∆} is a basis for Φϑ

with respect to Gϑ, Bϑ, and Aϑ. If ϑ is nontrivial, then ∣∆ϑ∣ < ∣∆∣.
The Weyl group NGϑ(A)/Aϑ is W̃ ϑ, and V ϑ is the reflection representation for W̃ ϑ. As before we have an affine

simplicial decomposition of V ϑ, and the set of simple roots ∆ϑ determines a unique alcove Cϑ that contains the origin of
V ϑ. Note that Cϑ ∩Cϑ ≠ ∅, and it can happen that Cϑ is not Cϑ.

4.1.1. The constants bγ and cγ . Let γ̃0 denote the highest root in Φϑ with respect to ∆ϑ and write γ̃0 = ∑γ∈∆ϑ
cγγ for

cγ ∈ Z>0. The constants cγ may be found in [2, Planche I – IX].
For γ ∈∆ϑ choose α ∈∆ such that γ = γα. Let ∣γ∣ϑ denote the size of the ⟨ϑ⟩-orbit of α and set

µ̌γ =
1

f

f−1
∑
j=0

ϑjω̌α.

For γ ∈∆ϑ we define bγ ∈ Z>0 by requiring

µ̌γ(ρ) =
bγf

cγ ∣γ∣ϑ
δγρ

for all ρ ∈ ∆ϑ. If ϑ is trivial, then ∆ = ∆ϑ, f = 1, ∣γ∣ϑ = 1, and µ̌γ = ω̌γ for all γ ∈ ∆ϑ = ∆. It follows that bγ = cγ for all
γ ∈∆. If ϑ is not trivial, then the constants bγ may be found in, for example, [20, Table 2]. Whenever we need to know the
values of bγ , we will provide them.

If we define γ0 = 1− γ̃0, then ∆̃ϑ =∆∪ {γ0} is a basis with respect to Cϑ for the affine roots determined by Gϑ and Aϑ.
We set cγ0 = bγ0 = 1.
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4.1.2. Kac diagrams. As discussed in the introduction, if g ∈ G has order m, then g determines a point, call it xg, in the
closure of Cϑ. A Kac diagram is a labeling of the affine Dynkin diagram that encodes the location of this point. We explain
how this works.

Let (vγ ∣γ ∈ ∆̃ϑ) denote the vertices of Cϑ. We let vγ0 be the origin and then

vγ =
∣γ∣ϑ
bγf
⋅ µ̌γ

for γ ∈∆ϑ. Every element x in the closure of Cϑ may be written in barycentric coordinates as

x = ∑
γ∈∆̃ϑ

xγvγ

where∑xγ = 1 and xγ ≥ 0 for all γ. From, for example [20, Theorem 3.7], these conditions imply the existence of sγ ∈ Z≥0
such that

(4.1.1) xg =
f

m
∑

γ∈∆̃ϑ

sγbγ ⋅ vγ =
f

m
∑

γ∈∆ϑ

sγbγ ⋅ vγ =
1

m
∑

γ∈∆ϑ

sγ ∣γ∣ϑ ⋅ µ̌γ .

We will also have

(4.1.2) m = f ∑
γ∈∆̃ϑ

sγbγ .

The list (sγ ∣γ ∈ ∆̃ϑ) determines a Kac diagram attached to g as follows. First, remove any factors that are common
to all of the sγ so that we may assume that the sγ are relatively prime. Then label the node in the affine Dynkin diagram
corresponding to γ ∈ ∆̃ϑ with the corresponding non-negative integer sγ .

Remark 4.1.3. Suppose we are given a Kac diagram for Gϑ with labels (sγ ∣γ ∈ ∆̃ϑ). If we define m using Equation 4.1.2
and these sγ , then Equation 4.1.1 determines a point in Cϑ.

Remark 4.1.4. If G is adjoint, then the sγ are automatically relatively prime and constructing an element g from a given
Kac diagram is straightforward. However, if G is not adjoint, then the condition that the labels of the Kac diagram be
relatively prime is often too restrictive – there may not even be an element of order m = f ∑ sγbγ in G. In this case one
can first construct an element in the adjoint form of G and then lift this element into G.

Remark 4.1.5. In this paper we restrict our attention to finite order elements of G that normalize A and have ϑ-elliptic
image in W̃ . Let n be such an element, and assume it has order m. Let ξ be a primitive mth root of unity. In this case,
there exists λ ∈ X∗(Aϑ) such that n is ϑ-conjugate to λ(ξ) and the point xn ∈ Cϑ is equal to λ/m (see, for example, [5,
Lemma 3.5.1]). From Equation (4.1.1) we must have λ = ∑γ∈∆ϑ

sγ ∣γ∣ϑ ⋅ µ̌γ with sγ ∣γ∣ϑ ≥ 0. In terms of the explicit
realizations of G we have adopted, this means that this λ must look like

λ(t) = Diag(ta1 , ta2 , . . .)
for ai ∈ Z with a1 ≥ a2 ≥ ⋯.

Remark 4.1.5 will be used repeatedly in Sections 4.2 – 4.7.

4.2. How to create the Kac diagram for the elliptic conjugacy class in W̃ for Aℓ−1 with ℓ ≥ 2. We adopt the notation
of Section 3.2. As discussed earlier, there is only one elliptic conjugacy class in the Weyl group. We will show how to
construct the Kac diagram associated to this elliptic conjugacy class. We adopt the notation of Section 3.2.

Since ϑ is trivial, we have f = 1. We take the simple roots γ in ∆ϑ = ∆ to be the roots γk = αk for 1 ≤ k < ℓ. For
coweights we take µ̌i = e1 + e2 +⋯ + ei − i

ℓ(e1 + e2 +⋯ + eℓ) for 1 ≤ i < ℓ.
The affine Dynkin diagram is

γ0 γ1
⇐⇒

for ℓ = 2, and it is
γ1 γ2

. . .
γℓ−2 γℓ−1

γ0
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for ℓ > 2. We have bk = ck = 1 for 0 ≤ k < ℓ, so the bγ are given by the diagram

1 1⇐⇒

for ℓ = 2, and by the diagram
1 1 . . . 1 1

1

for ℓ > 2.
The elliptic-conjugacy class in W̃ corresponds to the partition (ℓ) of ℓ, and we constructed a representative n(ℓ) for

this conjugacy class in Section 3.2. The characteristic polynomial of n(ℓ) with respect to its natural action on Cℓ is
qn(ℓ)(t) = t

ℓ + (−1)ℓ. We need to consider two cases.

4.2.1. ℓ is even. Since ℓ is even we have qn(ℓ)(t) = t
ℓ + 1. Let m = 2ℓ and let ξ be a primitive mth root of unity. We have

qn(ℓ)(t) =
ℓ/2
∏
a=1
(t − ξ2a−1)(t − ξ−(2a−1)).

Guided by Remark 4.1.5 we create the length ℓ decreasing list (ℓ − 1, ℓ − 3, . . . ,3,1,−1,−3, . . . ,−(ℓ − 1)). Denote
by σi the ith item in this list to obtain a decreasing list (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ). The element d(ℓ) =
Diag(ξσ1 , ξσ2 , . . . , ξσℓ−1 , ξσℓ) in SLℓ has characteristic polynomial qn(ℓ) for its standard action on Cℓ.

Since the linear factors (t − ξσj) for 1 ≤ j ≤ ℓ must occur in qn(ℓ) , we conclude that, up to the action of W̃ , d(ℓ) is the
unique element of A that is G-conjugate to n(ℓ).

We can now read off the Kac diagram for n(ℓ) from d(ℓ). Note that d(ℓ) = λ(ℓ)(ξ) where

λ(ℓ) = 2µ̌1 + 2µ̌2 + . . . + 2µ̌ℓ−1.

Since ∣γ∣ϑ is 1 for all γ ∈∆ϑ and

λ(ℓ)/m =
1

m
[2µ̌1 + 2µ̌2 + . . . + 2µ̌ℓ−1],

from Equation 4.1.1 we conclude that the sγ are all 2 for γ ∈ ∆. In order to satisfy Equation 4.1.2 we must also have
sγ0 = 2. Dividing all terms by 2, we have:

Lemma 4.2.1. The Kac diagram for the elliptic conjugacy class in a group of type Aℓ−1 with ℓ ≥ 2 even is the same as the
diagram for bγ above.

Example 4.2.2. In Figure 1 for groups of type A1 we show the location of the vertices v0 and v1 of the fundamental alcove
as well as the point determined by λ(2)/4. The Kac diagram for n(2) is 1 1⇐⇒ .

v0 v1λ(2)
4

FIGURE 1. The location of the point determined by λ(2)/4 for groups of type A1

4.2.2. ℓ is odd. Since ℓ is odd we have qn(ℓ)(t) = t
ℓ − 1. Let m = ℓ and let ξ be a primitive mth root of unity. We have

qn(ℓ)(t) = (t − 1)
(ℓ−1)/2
∏
a=0
(t − ξa)(t − ξ−a).

Guided by Remark 4.1.5 we create the length ℓ decreasing list ((ℓ − 1)/2, (ℓ − 3)/2, . . . ,1,0,−1, . . . ,−(ℓ − 1)/2). De-
note the ith item in this list by σi to obtain a decreasing list (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ). The element d(ℓ) =
Diag(ξσ1 , ξσ2 , . . . , ξσℓ−1 , ξσℓ) in SLℓ has characteristic polynomial qn(ℓ) for its standard action on Cℓ.

Since the linear factors (t − ξσj) for 1 ≤ j ≤ ℓ must occur in qn(ℓ) , we conclude that, up to the action of W̃ , d(ℓ) is the
unique element of A that is G-conjugate to n(ℓ).
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We can now read off the Kac diagram for n(ℓ) from d(ℓ). Note that d(ℓ) = λ(ℓ)(ξ) where

λ(ℓ) = µ̌1 + µ̌2 + . . . + µ̌ℓ−1.
Since ∣γ∣ϑ is 1 for all γ ∈∆ϑ and

λ(ℓ)/m =
1

m
[µ̌1 + µ̌2 + . . . + µ̌ℓ−1],

from Equation 4.1.1 we conclude that the sγ are all 1 for γ ∈ ∆. In order to satisfy Equation 4.1.2 we must also have
sγ0 = 1. Thus, we have:

Lemma 4.2.3. The Kac diagram for the elliptic conjugacy class in a group of type Aℓ−1 with ℓ ≥ 3 odd is the same as the
diagram for bγ above.

Example 4.2.4. In Figure 2 for groups of type A2 we show the location of the vertices v0, v1, and v2 of the fundamental
alcove as well as the point determined by λ(3)/3. The Kac diagram for n(3) is 1 1

1

v0 v1

v2

λ(3)
3

FIGURE 2. The location of the point determined by λ(3)/3 for groups of type A2

4.3. How to create a Kac diagram for nℓ⃗ for Bℓ with ℓ ≥ 3. We adopt the notation of Section 3.3. Fix a partition ℓ⃗ of ℓ.
We will show how to construct the Kac diagram for nℓ⃗.

Since ϑ is trivial, we have f = 1. We take the simple roots γ in ∆ϑ = ∆ to be the roots γk = αk for 1 ≤ k ≤ ℓ. For
coweights we take µ̌i = e1 + e2 +⋯ + ei for 1 ≤ i ≤ ℓ.

The affine Dynkin diagram is
γ1 γ2 γ3

. . .
γℓ−2 γℓ−1 γℓ

⇒

γ0

We have bγk = cγk for 0 ≤ k < ℓ, so the bγ are given by the diagram

1 2 2 2 . . . 2 2 2⇒

1

A Kac diagram describes a diagonal matrix in SO2ℓ+1 that is G-conjugate to nℓ⃗. Thus, we want to find a diagonal matrix
in SO2ℓ+1 such that its characteristic polynomial for the standard action on C2ℓ+1 is

qnℓ⃗
(t) = (t − (−1)µ) ⋅

µ

∏
ν=1
(t2ℓν − 1).

Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ) and let ξ be a primitive mth root of unity. We have

qnℓ⃗
(t) = (t − (−1)µ) ⋅

µ

∏
ν=1
(t2ℓν − 1) = (t − (−1)µ) ⋅

µ

∏
ν=1
(t − 1)(t + 1)

ℓν−1
∏
aν=1
(t − ξmaν/2ℓν)(t − ξ−maν/2ℓν).
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Guided by Remark 4.1.5 we create a length ℓ decreasing list as follows: order the positive integers maν/2ℓν in decreasing
order, then pre-append ⌈µ/2⌉ copies of m/2 and post-append ⌊µ/2⌋ zeroes. We thus obtain a list (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥
σℓ−1 ≥ σℓ). The element dℓ⃗ = Diag(ξσ1 , ξσ2 , . . . , ξσℓ−1 , ξσℓ ,1, ξ−σℓ , ξ−σℓ−1 , . . . , ξ−σ2 , ξ−σ1) in SO2ℓ+1 has characteristic
polynomial qnℓ⃗

for its standard action on C2ℓ+1. Since the linear factors (t − (1)µ) along with (t − ξσj) and (t − ξ−σj) for
1 ≤ j ≤ ℓ must occur in qnℓ⃗

, we conclude that, up to the action of W̃ , dℓ⃗ is the unique element of A that is G-conjugate to
nℓ⃗.

We can now read off the Kac diagram for nℓ⃗ from dℓ⃗. Note that dℓ⃗ = λℓ⃗(ξ) where

λℓ⃗ = (σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 +⋯ + (σℓ−1 − σℓ)µ̌ℓ−1 + σℓµ̌ℓ.

Since ∣γ∣ϑ is 1 for all γ ∈∆ϑ and

λℓ⃗/m =
1

m
[(σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 +⋯ + (σℓ−1 − σℓ)µ̌ℓ−1 + σℓµ̌ℓ],

from Equation 4.1.1 we conclude that the sγℓ = σℓ and sγk = σk −σk+1 for 1 ≤ k ≤ ℓ− 1. From Equation 4.1.2 we conclude
that sγ0 = m − (σ1 + σ2). Remove any factors that are common to all of the sγ for γ ∈ ∆̃ and label the extended affine
Dynkin diagram with the resulting sγ .

We have proved:

Lemma 4.3.1. Fix a partition ℓ⃗ = (ℓµ, ℓµ−1, . . . , ℓ2, ℓ1) of ℓ ≥ 3. Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ). Append ⌈µ/2⌉ copies
of m/2 and ⌊µ/2⌋ copies of zero to the list (aνm/2ℓν ∣1 ≤ ν ≤ µ and 1 ≤ aν ≤ ℓν − 1) and then place the elements of the
resulting list in decreasing order: (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ). After removing any factors that are common to all of
the labels, the Kac diagram for nℓ⃗ in a group of type Bℓ with ℓ ≥ 3 is given by

σ
2
−
σ
3

σ
3
−
σ
4

σ
4
−
σ
5

. . .
σ
ℓ−

2
−
σ
ℓ−

1

σ
ℓ−

1
−
σ
ℓ

σℓ⇒

m − (σ1 + σ2)

σ1 − σ2

∎

Example 4.3.2. As an example, here is the diagram for n(5,4,4,1) in SO29.

0 4 1 0 3 2 0 2 3 0 1 4 0 0⇒

0

The results here agree with those found in the table in [19, Section A.3]. The partitions (in the notation of [19, Section
A.3]) for the Kac diagrams appearing there are (from top to bottom): (n), (n/2, n/2) for n even, (n/k,n/k,n/k, . . . , n/k,n/k)
for k > 2 even and k divides n, and (n/k,n/k,n/k, . . . , n/k,n/k) for k > 1 odd and k divides n. The final two partitions in
the previous sentence are identical and this correspondence between Kac diagrams and partitions agrees with [21, Table 12].
From Remark 3.3.1 these partitions correspond to the regular elliptic elements in a Weyl group of type Bn.

4.4. How to create a Kac diagram for nℓ⃗ for Cℓ with ℓ ≥ 2. We adopt the notation of Section 3.4. Fix a partition ℓ⃗ of ℓ.
We will show how to construct the Kac diagram for nℓ⃗.

Since ϑ is trivial, we have f = 1. We take the simple roots γ in ∆ϑ = ∆ to be the roots γk = αk for 1 ≤ k ≤ ℓ. For
fundamental coweights with respect to our basis we take µ̌i = e1 + e2 +⋯+ ei for 1 ≤ i < ℓ and µ̌ℓ = 1/2(e1 + e2 +⋯+ eℓ).
The affine Dynkin diagram is

γ0 γ1 γ2
. . .

γℓ−2 γℓ−1 γℓ
⇒ ⇐

We have bγk = cγk for 0 ≤ k < ℓ, so the bγ are given by the diagram

1 2 2 . . . 2 2 1⇒ ⇐
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A Kac diagram describes a diagonal matrix in Sp2ℓ that is G-conjugate to nℓ⃗. Thus, we want to find a diagonal matrix
in Sp2ℓ such that its characteristic polynomial for the standard action on C2ℓ is

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν + 1).

Let m = 4 lcm(ℓ1, ℓ2, . . . , ℓµ); this is the order of nℓ⃗. Let ξ be a primitive mth root of unity. We have

qnℓ⃗
(t) =

µ

∏
ν=1

ℓν

∏
aν=1
(t − ξ(2aν−1)m/4ℓν))(t − ξ−(2aν−1)m/4ℓν)).

Guided by Remark 4.1.5 we create a length ℓ decreasing list as follows: order the positive integers (2aν − 1)m/4ℓν for
1 ≤ ν ≤ µ and 1 ≤ a⃗ν ≤ ℓν in decreasing order. We thus obtain a list S = (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ).

The element dℓ⃗ = Diag(ξσ1 , ξσ2 , . . . , ξσℓ−1 , ξσℓ , ξ−σℓ , ξ−σℓ−1 , . . . , ξ−σ2 , ξ−σ1) in Sp2ℓ has characteristic polynomial qnℓ⃗

for its standard action on C2ℓ. Since the linear factors (t− ξσj) and (t− ξ−σj) for 1 ≤ j ≤ ℓ must occur in qnℓ⃗
, we conclude

that, up to the action of W̃ , dℓ⃗ is the unique element of A that is G-conjugate to nℓ⃗.
We can now read off the Kac diagram for nℓ⃗ from dℓ⃗. Note that dℓ⃗ = λℓ⃗(ξ) where

λℓ⃗ = (σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σℓ−1 − σℓ)µ̌ℓ−1 + 2σℓµ̌ℓ.

Since ∣γ∣ϑ is 1 for all γ ∈∆ϑ and

λℓ⃗/m =
1

m
[(σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σℓ−1 − σℓ)µ̌ℓ−1 + 2σℓµ̌ℓ],

from Equation 4.1.1 we conclude that sγℓ = 2σℓ and sγk = (σk − σk+1) for 1 ≤ k ≤ ℓ − 1. The coefficient sγ0 = m − 2σ1 is
derived using Equation 4.1.2. Remove any factors that are common to all of the sγ for γ ∈ ∆̃ and label the extended affine
Dynkin diagram with the resulting sγ .

We have proved:

Lemma 4.4.1. Fix a partition ℓ⃗ = (ℓµ, ℓµ−1, . . . , ℓ2, ℓ1) of ℓ ≥ 2. Let m = 4 lcm(ℓ1, ℓ2, . . . , ℓµ). Take the list ((2aν −
1)m/4ℓν ∣1 ≤ ν ≤ µ and 1 ≤ aν ≤ ℓν) and place the elements in decreasing order: (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ). After
removing any factors that are common to all of the labels, the Kac diagram for nℓ⃗ in a group of type Cℓ with ℓ ≥ 2 is given
by

m
−
2
σ
1

σ
1
−
σ
2

σ
2
−
σ
3

. . .

σ
ℓ−

2
−
σ
ℓ−

1

σ
ℓ−

1
−
σ
ℓ

2σℓ⇒ ⇐

∎

Example 4.4.2. As examples, here is the diagram for n(6,5,2) in Sp26

10 1 9 0 3 7 5 5 7 3 0 9 1 10⇒ ⇐

here is the diagram for n(2,1) in Sp6

2 1 1 2⇒ ⇐

and here is the diagram for n(3) in Sp6

1 1 1 1⇒ ⇐

Example 4.4.3. In Figure 3 for groups of type C2 we show the location1 of the vertices v0, v1, and v2 of the fundamental
alcove as well as the points determined by λℓ⃗/m. The Kac diagram for (2) is 1 1 1⇒ ⇐ and the Kac diagram for

(1,1) is 1 0 1⇒ ⇐ .

1Note that the (weighted) barycenter for C2 is different from that of 2A3 and 2D3 – see Figures 4 and 6.
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v0 v1

v2

λ(2)
8

λ(1,1)
4

FIGURE 3. The location of points determined by λℓ⃗ for groups of type C2

During the publishing process, a typo was introduced in the table in [19, Section A.4]. For the case k ∣ n and k > 1 the
Kac diagram should have a 1 on the γ0 node; that is, it should be

1 0 0 0 1 0 0 0 1 1 0 0 0 1⇒ ⋯ ⋯ ⋯ ⋯ ⇐

(k − 1) zeroes (k − 1) zeroes (k − 1) zeroes⋯

where there are n/k strings of k − 1 zeroes. With this change, the partitions (in the notation of [19, Section A.4]) for the
Kac diagrams appearing there are (from top to bottom): (n) and (n/k,n/k,n/k, . . . , n/k,n/k) with k > 1 and dividing n.
This correspondence between Kac diagrams and partitions agrees with [21, Table 13]. From Remark 3.4.1 these partitions
correspond to the regular elliptic elements in a Weyl group of type Cn.

4.5. How to create a Kac diagram for nℓ⃗ for Dℓ with ℓ ≥ 4. We adopt the notation of Section 3.5. Fix a partition ℓ⃗ of ℓ
with an even number of parts. We will show how to construct the Kac diagram for nℓ⃗.

Since ϑ is trivial, we have f = 1. We take the simple roots γ in ∆ϑ = ∆ to be the roots γk = αk for 1 ≤ k ≤ ℓ. For
fundamental coweights with respect to our basis we take µ̌i = e1+e2+⋯+ei for 1 ≤ i ≤ ℓ−2, µ̌ℓ−1 = 1/2(e1+e2+⋯eℓ−2+
eℓ−1 − eℓ), and µ̌ℓ = 1/2(e1 + e2 +⋯eℓ−2 + eℓ−1 + eℓ). The affine Dynkin diagram is

γ1 γ2 γ3
. . .

γℓ−3 γℓ−2 γℓ−1

γ0 γℓ

We have bγk = cγk for 0 ≤ k < ℓ, so the bγ are given by the diagram

1 2 2 . . . 2 2 1

1 1

A Kac diagram describes a diagonal matrix in SO2ℓ that is G-conjugate to nℓ⃗. Thus, we want to find a diagonal matrix
in SO2ℓ such that its characteristic polynomial for the standard action on C2ℓ is

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν − 1).

Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ) and let ξ be a primitive mth root of unity. We have

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν − 1) =

µ

∏
ν=1
(t − 1)(t + 1)

ℓν−1
∏
aν=1
(t − ξmaν/2ℓν)(t − ξ−maν/2ℓν).

Guided by Remark 4.1.5 we create a length ℓ decreasing list as follows: order the positive integers maν/2ℓν in decreasing
order, then pre-append µ/2 copies of m/2 and post-append µ/2 zeroes. We thus obtain a list (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥
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σℓ). The element dℓ⃗ = Diag(ξσ1 , ξσ2 , . . . , ξσℓ−1 , ξσℓ , ξ−σℓ , ξ−σℓ−1 , . . . , ξ−σ2 , ξ−σ1) in SO2ℓ has characteristic polynomial
qnℓ⃗

for its standard action on C2ℓ.
Since the linear factors (t− ξσj) and (t− ξ−σj) for 1 ≤ j ≤ ℓ must occur in qnℓ⃗

, we conclude that, up to the action of W̃ ,
dℓ⃗ is the unique element of A that is G-conjugate to nℓ⃗.

We can now read off the Kac diagram for nℓ⃗ from dℓ⃗. Note that dℓ⃗ = λℓ⃗(ξ) where

λℓ⃗ = (σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σℓ−2 − σℓ−1)µ̌ℓ−2 + (σℓ−1 − σℓ)µ̌ℓ−1 + (σℓ−1 + σℓ)µ̌ℓ.

Since ∣γ∣ϑ is 1 for all γ ∈∆ϑ and

λℓ⃗/m =
1

m
[(σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σℓ−2 − σℓ−1)µ̌ℓ−2 + (σℓ−1 − σℓ)µ̌ℓ−1 + (σℓ−1 + σℓ)µ̌ℓ],

from Equation 4.1.1 we conclude that sγℓ = σℓ−1 + σℓ and sγk = (σk − σk+1) for 1 ≤ k ≤ ℓ − 1. The coefficient sγ0 =
m− (σ1 +σ2) is derived using Equation 4.1.2. Remove any factors that are common to all of the sγ for γ ∈ ∆̃ and label the
extended affine Dynkin diagram with the resulting sγ .

We have proved:

Lemma 4.5.1. Fix a partition ℓ⃗ = (ℓµ, ℓµ−1, . . . , ℓ2, ℓ1) of ℓ ≥ 4 with µ even. Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ). Append µ/2
copies of m/2 and µ/2 copies of zero to the list (aνm/2ℓν ∣1 ≤ ν ≤ µ and 1 ≤ aν ≤ ℓν − 1) and then place the elements of
the resulting list in decreasing order: (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ). After removing any factors that are common to all
of the labels, the Kac diagram for nℓ⃗ in a group of type Dℓ with ℓ ≥ 4 is given by

σ
2
−
σ
3

σ
3
−
σ
4

σ
4
−
σ
5

. . .

σ
ℓ−

4
−
σ
ℓ−

3

σ
ℓ−

3
−
σ
ℓ−

2

σ
ℓ−

2
−
σ
ℓ−

1

m − (σ1 + σ2)

σ1 − σ2

σℓ−1 + σℓ

σℓ−1 − σℓ

∎

Example 4.5.2. As an example, here is the diagram for n(5,4,4,1) in SO28.

0 4 1 0 3 2 0 2 3 0 1 4 0

0 0

Many Kac diagrams for type Dℓ appear in the literature. The results here agree with those found in [3]. For 0 ≤ k ≤ ℓ/2
the Kac diagram of the conjugacy class of n(ℓ−k,k), which corresponds to the label Dℓ(ak−1) in the notation of [4], may
be extracted from [24, Appendix B], and our results agree with the results found there. They also agree with those found
in the table in [19, Section A.5]; the partitions (in the notation of [19, Section A.5]) for the Kac diagrams appearing there
are (from top to bottom): (n − 1,1), (n/2, n/2) for n even, (1,1,1, . . . ,1,1) for n even, (n/k,n/k,n/k, . . . , n/k,n/k)
for 2 < k < n even and dividing n, and ((n − 1)/k, (n − 1)/k, (n − 1)/k, . . . , (n − 1)/k, (n − 1)/k,1) for 1 < k < n − 1
odd and k dividing (n − 1). This correspondence between Kac diagrams and partitions agrees with [21, Table 14]. From
Remark 3.5.1 these partitions correspond to the regular elliptic elements in a Weyl group of type Dn.

4.6. How to create Kac diagrams for 2Aℓ−1 with ℓ ≥ 3. We adopt the notation of Section 3.6. Fix a partition ℓ⃗ of ℓ for
which all parts are odd. We will show how to construct the Kac diagram for nℓ⃗ ⋊ ϑ.

Note that ϑ acts on Rℓ by ϑ((x1, x2, . . . , xℓ)) = (−xℓ,−xℓ−1, . . . ,−x2,−x1). Thus, the fixed points in V are

(x1, x2, x3, . . . ,−x3,−x2,−x1).

If ℓ is odd, then the ((ℓ + 1)/2)th coordinate must be zero. In either case, we can restrict our attention to the first ⌊ℓ/2⌋
coordinates and identify V ϑ with R⌊ℓ/2⌋.
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4.6.1. How to create Kac diagrams for 2Aℓ−1 with ℓ = 2n ≥ 4. Suppose ℓ = 2n is even.
We have f = 2 and V ϑ = Rn. We can take the simple roots γ in ∆ϑ to be the roots γk = resV ϑ 2αk = 2(xk − xk+1) for

1 ≤ k < n and γn = resV ϑ αn = 2xn. The fundamental coweights with respect to our basis are µ̌i = 1
2(e1 + e2 +⋯ + ei) for

1 ≤ i ≤ n. For n ≥ 3, the affine Dynkin diagram is

γ1 γ2 γ3
. . .

γn−2 γn−1 γn
⇐

γ0

and the bγ are given by the diagram

1 2 2 2 . . . 2 2 1⇐

1

If n = 2, then A3 ≅D3 with ϑ acting by an automorphism of order two. In this case the affine Dynkin diagram is

γ0 γ2 γ1
⇐ ⇒

and the bγ are given by the diagram
1 1 1⇐ ⇒

Since each ℓν is odd and ℓ = 2n is even, we must have that µ is even. Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ), and let ξ be
a primitive mth root of unity. Create a length n list of positive odd integers by appending µ/2 copies of m/2 to the list
((2aν−1)m/2ℓν ∣1 ≤ ν ≤ µ, 1 ≤ aν < ℓν/2). Place the items on this length n list into decreasing order: (σ1 ≥ σ2 ≥ ⋯ ≥ σn).
We fix a square root ξ1/2 of ξ and consider the diagonal matrix

dℓ⃗ = Diag(ξσ1/2, ξσ2/2, . . . , ξσn/2, ξ−σn/2, ξ−σn−1/2, . . . , ξ−σ1/2).

Note that dℓ⃗ belongs to Aϑ.
In Lemma 4.6.5 we prove that dℓ⃗ is ϑ-conjugate to nℓ⃗. Assuming this, we now read off the Kac diagram for nℓ⃗ from dℓ⃗.

Note that dℓ⃗ = λℓ⃗(ξ) where

λℓ⃗ = (σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σn−1 − σn)µ̌n−1 + σnµ̌n.

Since ∣γn∣ϑ = 1, ∣γk∣ϑ = 2 for 1 ≤ k < n, and

λℓ⃗/m =
1

m
[2 ⋅ (σ1 − σ2)/2 ⋅ µ̌1 + 2 ⋅ (σ2 − σ3)/2 ⋅ µ̌2 + . . . + 2 ⋅ (σn−1 − σn)/2 ⋅ µ̌n−1 + σn ⋅ µ̌n],

from Equation 4.1.1 we conclude that sγn = σn and sγk = (σk − σk+1)/2 for 1 ≤ k ≤ n − 1.
Using Equation 4.1.2 we have that the coefficient sγ0 is (m − (σ1 + σ2))/2. Remove any factors that are common to all

of the sγ for γ ∈ ∆̃ and label the extended affine Dynkin diagram with the resulting sγ .
We have proved:

Lemma 4.6.1. Fix a partition ℓ⃗ = (ℓµ, ℓµ−1, . . . , ℓ2, ℓ1) of ℓ = 2n with ℓν odd for 1 ≤ ν ≤ µ and n ≥ 2. Let m =
2 lcm(ℓ1, ℓ2, . . . , ℓµ). Append µ/2 copies of m/2 to the list ((2aν − 1)m/2ℓν ∣1 ≤ ν ≤ µ and 1 ≤ aν < ℓν/2) and then place
the elements of the resulting list in decreasing order: (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σn−1 ≥ σn). After removing any factors that are
common to all of the labels, the Kac diagram for nℓ⃗ ⋊ ϑ in a group of type 2A2n−1 = 2Aℓ−1 is given by

(σ
2
−
σ
3
)/
2

(σ
3
−
σ
4
)/
2

(σ
4
−
σ
5
)/
2

. . .

(σ
n
−2
−
σ
n
−1
)/
2

(σ
n
−1
−
σ
n
)/
2

σn⇐

(m − (σ1 + σ2))/2

(σ1 − σ2)/2
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when n > 2 and by

(m
−
(σ

1
+
σ
2
))
/2

σ2

(σ
1
−
σ
2
)/
2

⇐ ⇒ .

when n = 2. ∎

Example 4.6.2. As an example, here is the Kac diagram for n(7,5,5,3) in (twisted) SL20.

0 15 6 0 9 5 7 0 3 15⇐

0

.

Example 4.6.3. In Figure 4 for groups of type 2A3 we show the location of the vertices v0, v1, and v2 of the fundamental
alcove as well as the points determined by λℓ⃗/m. The Kac diagram for (3,1) is 1 1 1⇐ ⇒ and the Kac diagram for

(1,1,1,1) is 0 1 0⇐ ⇒ .

v0

v1

λ(3,1)
6

v2 =
λ(1,1,1,1)

2

FIGURE 4. The location of points determined by λℓ⃗ for groups of type 2A3

The results of this section agree with those found in the table in [19, Section A.2]; the partitions (in the notation of [19,
Section A.2]) for the Kac diagrams appearing there are (from top to bottom): (2n − 1,1), (1,1,1, . . . ,1,1), (n,n,1) for
odd n, (d, d, d, . . . , d, d,1) with d odd appearing 2k − 1 times where d ⋅ (2k − 1) + 1 = 2n, and (d, d, d, d, . . . , d, d) with
d odd and appearing 2k times where kd = n. This correspondence between Kac diagrams and partitions agrees with [21,
Table 11]. From Remark 3.6.1 these partitions correspond to the regular ϑ-elliptic elements in a twisted Weyl group of type
2A2n−1.

4.6.2. A proof of Lemma 4.6.5. Recall that ℓ = 2n, so we are looking at 2A2n−1.
The proof involves a bit of notation. For 1 ≤ i, k ≤ ℓ let E(i, j) denote the ℓ× ℓ matrix in glℓ such that E(i, j)rc = δirδjc.

If either i ≤ n and j > n or i > n and j ≤ n, then ϑ(Eij) = Eℓ−j+1,ℓ−i+1. Otherwise, we have ϑ(Eij) = −Eℓ−j+1,ℓ−i+1.

Lemma 4.6.4. The characteristic polynomial of Ad(dℓ⃗) ○ ϑ acting on slℓ is

qnℓ⃗
(t) = 1

t + 1
⋅ (

µ

∏
ν=1
(tℓν + 1)) ⋅ (

µ

∏
τ=1
(t2ℓτ − 1)(ℓτ−1)/2) ⋅

⎛
⎝ ∏
1≤ρ<φ≤µ

(t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ)
⎞
⎠
.
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Proof. We have that ℓ = 2n, m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ), and ξ is a primitive mth root of unity. We first define a diagonal
element d′

ℓ⃗
that has the same entries as dℓ⃗, but is more amenable to computation.

d′
ℓ⃗
= Diag(ξ(ℓµ−2)(m/4ℓµ), ξ(ℓµ−4)(m/4ℓµ), . . . , ξ3(m/4ℓµ), ξm/4ℓµ ,

ξ(ℓµ−1−2)(m/4ℓµ−1), ξ(ℓµ−1−4)(m/4ℓµ−1), . . . , ξ3(m/4ℓµ−1), ξm/4ℓµ−1 ,

. . . ,

ξ(ℓ1−2)(m/4ℓ1), ξ(ℓ1−4)(m/4ℓ1), . . . , ξ3(m/4ℓ1), ξm/4ℓ1 ,

ξm/4,⋯, ξm/4, ξ−m/4, . . . , ξ−m/4,

ξ−m/4ℓ1 , ξ−3(m/4ℓ1), . . . , ξ−(ℓ1−4)(m/4ℓ1), ξ−(ℓ1−2)(m/4ℓ1),

. . . ,

ξ−m/4ℓµ−1 , ξ−3(m/4ℓµ−1), . . . , ξ−(ℓµ−1−4)(m/4ℓµ−1), ξ−(ℓµ−1−2)(m/4ℓµ−1),

ξ−m/4ℓµ , ξ−3(m/4ℓµ), . . . , ξ−(ℓµ−4)(m/4ℓµ), ξ−(ℓµ−2)(m/4ℓµ)).

In the middle of the matrix there are µ/2 copies of ξm/4 followed by µ/2 copies of ξ−m/4. Since d′
ℓ⃗

is W ϑ-conjugate to
dℓ⃗, it is enough to compute the characteristic polynomial of Ad(d′

ℓ⃗
) ○ ϑ acting on slℓ. Thus, it is enough to show that the

characteristic polynomial of Ad(d′
ℓ⃗
) ○ ϑ acting on glℓ is

(t + 1) ⋅ qnℓ⃗
(t) = (

µ

∏
ν=1
(tℓν + 1)) ⋅ (

µ

∏
τ=1
(t2ℓτ − 1)(ℓτ−1)/2) ⋅

⎛
⎝ ∏
1≤ρ<φ≤µ

(t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ)
⎞
⎠
.

For 1 ≤ i ≤ ℓ, define d′i by (d′
ℓ⃗
)ii = ξd

′
i . That is, the power of ξ appearing in the ith diagonal element of d′

ℓ⃗
is d′i. Note

that d′i = −d′ℓ−i+1.
For 1 ≤ i ≤ ℓ we have (Ad(d′

ℓ⃗
) ○ ϑ)E(i, ℓ − i + 1) = ξ2d′iE(i, ℓ − i + 1). Thus, the vector space Ua of anti-diagonal

elements in glℓ is (Ad(d′
ℓ⃗
) ○ ϑ)-stable and the characteristic polynomial for the action of Ad(d′

ℓ⃗
) ○ ϑ on Ua is

ℓ

∏
i=1
(t − ξ2d

′
i) = (t − ξm/2)µ ⋅

µ

∏
ν=1

(ℓν−1)/2
∏
i=1

(t − ξ(2i−1)(m/2ℓν))(t − ξ−(2i−1)(m/2ℓν)) =
µ

∏
ν=1
(tℓν + 1).

For 1 ≤ i ≤ n−µ/2 we have (Ad(d′
ℓ⃗
)○ϑ)E(i, i) = −E(ℓ−i+1, ℓ−i+1) and (Ad(d′

ℓ⃗
)○ϑ)E(ℓ−i+1, ℓ−i+1) = −E(i, i).

Thus, the vector space Ud spanned by

(E(i, i),E(ℓ − i + 1, ℓ − i + 1) ∣1 ≤ i ≤ n − µ/2)

in glℓ is (Ad(d′
ℓ⃗
) ○ ϑ)-stable, and the characteristic polynomial for the action of Ad(d′

ℓ⃗
) ○ ϑ on Ud is (t2 − 1)n−µ/2.

For pairs (i, j) where 1 ≤ i ≤ n and i < j ≤ ℓ − i we have

(Ad(d′
ℓ⃗
) ○ ϑ)E(i, j) = ±ξd

′
i−d′jE(ℓ − j + 1, ℓ − i + 1)

and
(Ad(d′

ℓ⃗
) ○ ϑ)E(ℓ − j + 1, ℓ − i + 1) = ±ξd

′
i−d′jE(i, j)

where the sign is positive if j > n and is negative otherwise. Similarly, for pairs (i, j) where 1 ≤ j ≤ n and j < i ≤ ℓ − j we
have

(Ad(d′
ℓ⃗
) ○ ϑ)E(i, j) = ±ξd

′
i−d′jE(ℓ − j + 1, ℓ − i + 1)

and
(Ad(d′

ℓ⃗
) ○ ϑ)E(ℓ − j + 1, ℓ − i + 1) = ±ξd

′
i−d′jE(i, j)

where the sign is positive if i > n and is negative otherwise. Let P denote the set of pairs (i, j) such that (exactly) one of
the following is true:

● 1 ≤ i ≤ n and i < j ≤ ℓ − i,
● 1 ≤ j ≤ n and j < i ≤ ℓ − j, or
● i = j and n − µ/2 < i ≤ n.
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Then, U , the span of the elements

(E(i, j),E(ℓ − j + 1, ℓ − i + 1) ∣ (i, j) ∈ P ),

is (Ad(d′
ℓ⃗
) ○ ϑ)-stable since the span of any pair (E(i, j),E(ℓ − j + 1, ℓ − i + 1)) occurring in the definition of U is

(Ad(d′
ℓ⃗
) ○ϑ)-stable. Moreover, U is a vector space complement in glℓ to the vector subspace Ua⊕Ud of glℓ. We are going

to break U into µ(µ+ 1)/2 smaller (Ad(d′
ℓ⃗
) ○ϑ)-stable subspaces, and evaluate the characteristic polynomial of the action

of Ad(d′
ℓ⃗
) ○ ϑ on each of these smaller spaces.

For 0 ≤ ν ≤ µ, define ℓ̃ν = (ℓν − 1)/2 and ℓ′′ν = ∑
µ
j=ν+1 ℓ̃j . Note that ℓ′′0 = n − µ/2 and ℓ′′µ = 0. For 1 ≤ ν ≤ µ, define the

length ℓν lists

Sr
ν = (ℓ′′ν + 1, ℓ′′ν + 2, . . . , ℓ′′ν + ℓ̃ν , n + µ/2 − ν + 1, ℓ − (ℓ̃ν + ℓ′′ν ) + 1, ℓ − (ℓ̃ν + ℓ′′ν ) + 2, . . . , ℓ − ℓ′′ν )

and
Sc
ν = (ℓ′′ν + 1, ℓ′′ν + 2, . . . , ℓ′′ν + ℓ̃ν , n − µ/2 + ν, ℓ − (ℓ̃ν + ℓ′′ν ) + 1, ℓ − (ℓ̃ν + ℓ′′ν ) + 2, . . . , ℓ − ℓ′′ν ).

Note that Sr
ν and Sc

ν differ only at the middle element. For 1 ≤ τ ≤ µ let Uτ denote the subspace of U spanned by

(E(i, j),E(ℓ − j + 1, ℓ − i + 1) ∣ (i, j) ∈ (Sr
τ × Sc

τ) ∩P ).

For 1 ≤ ρ < φ ≤ µ let Uρφ denote the subspace of U spanned by

(E(i, j),E(ℓ − j + 1, ℓ − i + 1) ∣ (i, j) ∈ (Sr
ρ × Sc

τ) ∩P).

We have the decomposition

U = (
µ

⊕
τ=1

Uτ)⊕
⎛
⎝ ⊕
1≤ρ<φ≤µ

Uρφ
⎞
⎠

of U into (Ad(d′
ℓ⃗
) ○ϑ)-invariant subspaces, and we will now compute the characteristic polynomial of Ad(d′

ℓ⃗
) ○ϑ on each

of these subspaces.
Fix τ with 1 ≤ τ ≤ µ. By examining “diagonals” that are parallel to the main diagonal, we see that the characteristic

polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on Uτ is

ℓτ−1
∏
k=1
(t2 − ξk(m/ℓτ ))(ℓτ−1)/2 = ((t

2ℓτ − 1)
t2 − 1

)
(ℓτ−1)/2

Now fix a pair (ρ,φ) with 1 ≤ ρ < φ ≤ µ. For (i, j) ∈ P ∩ (Sr
ρ × Sc

φ), we have that the characteristic polynomial for the
action of Ad(d′

ℓ⃗
)○ϑ on the span of the pair (E(i, j),E(ℓ−j+1, ℓ−i+1)) is t2−ξ2(d

′
i−d′j). Since the map (i, j)↦ ξ2(d

′
i−d′j)

from P ∩ (Sr
ρ × Sc

φ) to C× has both (a) fibers of the same cardinality and (b) the same image as the map µℓρ × µℓφ → C×

that sends (a, b) to a ⋅ b−1, we conclude that the characteristic polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on Uρφ is

∏
ζ∈µℓρ ,η∈µℓφ

(t2 − (ζµ)) =
⎛
⎜
⎝

∏
δ∈µlcm(ℓρ,ℓφ)

(t2 − δ)
⎞
⎟
⎠

gcd(ℓρ,ℓφ)

= (t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ).

We now put it all together. As an Ad(d′
ℓ⃗
) ○ ϑ-module, we have

glℓ = Ua ⊕Ud ⊕ (
µ

⊕
τ=1

Uτ)⊕
⎛
⎝ ⊕
1≤ρ<φ≤µ

Uρφ
⎞
⎠
.

Thus, the characteristic polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on glℓ is

(
µ

∏
ν=1
(tℓν + 1)) ⋅ (t2 − 1)n−µ/2 ⋅

⎛
⎝

µ

∏
τ=1
((t

2ℓτ − 1)
t2 − 1

)
(ℓτ−1)/2⎞

⎠
⋅
⎛
⎝ ∏
1≤ρ<φ≤µ

(t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ)
⎞
⎠

which, after simplifying, is (t + 1) ⋅ qnℓ⃗
. ∎

Lemma 4.6.5. dℓ⃗ is ϑ-conjugate to nℓ⃗.
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Proof. Recall that m is even.
If d′′ = Diag(εan , εan−1 , . . . εa1 , εan+1 , εan+2 , . . . , εa2n) where aj = −a2n+1−j for j ≥ n + 1, then the characteristic

polynomial of d′′ ○ ϑ acting on sl2n is

(t2 − 1)n

t + 1
⋅

n

∏
i=1
(t − ε2ai)(t − ε−2ai) ⋅ ∏

i<j≤2n−i
(t2 − ε2(ai−aj))(t2 − ε−2(ai−aj)).

Since the eigenvalues of an order m element must be mth roots of unity, from the above paragraph we see that any
element d′ ∈ Aϑ for which the order of d′ ⋊ ϑ is m can be chosen to look like

d′ = Diag(ξxn , ξxn−1 , . . . , ξx1 , ξxn+1 , ξxn+2 . . . ξx2n)

where ξ is our fixed mth root of unity, xj = −x2n+1−j for j ≥ n + 1, the xi ∈ 1
2Z satisfy m/2 ≥ x1 ≥ x2 ≥ ⋯ ≥ xn > 0, and

xi − xj is and integer for 1 ≤ i, j ≤ n. Fix a square root of ξ so that d′ can be written unambiguously. We will show that
d′ = dℓ⃗.

The characteristic polynomial of d′ ○ ϑ acting on sl2n is

(t2 − 1)n

t + 1
⋅

n

∏
i=1
(t − ξ2xi)(t − ξ−2xi) ⋅ ∏

i<j≤2n−i
(t2 − ξ2(xi−xj))(t2 − ξ−2(xi−xj)).

In the polynomial qnℓ⃗
every root is paired with its additive inverse, except for the roots that appear in pℓ⃗, the polynomial

described in Equation 3.6.4 that is associated to nℓ⃗. Thus, if d′ and nℓ⃗ are ϑ-conjugate, then we must have

∏n
i=1(t − ξ2xi)(t − ξ−2xi)

t + 1
= pℓ⃗ =

∏n
i=1(t − ξ2σi)(t − ξ−2σi)

t + 1
.

Thanks to Lemma 4.6.4, this implies that there is a bijective map f from the set {1,2, . . . n} to itself such that xj ∈
σf(j)/2 +mZ for all 1 ≤ j ≤ n. Since m/2 ≥ x1 ≥ x2 ≥ ⋯ ≥ xn > 0 and m/2 ≥ σ1 ≥ σ2 ≥ ⋯ ≥ σn > 0, we conclude that
xj = σj for 1 ≤ j ≤ n. ∎

4.6.3. How to create Kac diagrams for 2Aℓ−1 with ℓ = 2n + 1 > 2. Suppose ℓ = 2n + 1 is odd.
We can take the simple roots γ in ∆ϑ to be the roots γk = resV ϑ 2αk = 2(xk − xk+1) for 1 ≤ k < n and γn =

resV ϑ 2(αn+αn+1) = 4xn. The projections of the fundamental coweights ω̌i are then µ̌i = 1
2(e1+e2+⋯+ei) for 1 ≤ i ≤ n.

The affine Dynkin diagram is
γ0 γ1

for n = 2 and the diagram
γ0 γ1 γ2

. . .
γn−2 γn−1 γn

⇒ ⇒

for n > 2. The bγ are given by the diagram

1 2

for n = 2 and
1 2 2 . . . 2 2 2⇒ ⇒

for n > 2.
Since each ℓν is odd and ℓ = 2n + 1 is odd, we must have that µ is odd. Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ), and let ξ be a

primitive mth root of unity. Create a length n list of non-negative integers by appending (µ − 1)/2 copies of 0 to the list
((aνm)/(2ℓν) ∣1 ≤ ν ≤ µ, 1 ≤ aν < ℓν/2). Place the items on this list into decreasing order: (σ1 ≥ σ2 ≥ ⋯ ≥ σn). Consider
the diagonal matrix

dℓ⃗ = Diag(ξσ1 , ξσ2 , . . . , ξσn ,1, ξ−σn , ξ−σn−1 , . . . , ξ−σ1),
which is an element of Aϑ. In Lemma 4.6.10 we prove that dℓ⃗ is ϑ-conjugate to nℓ⃗. Assuming this, we now read off the
Kac diagram for nℓ⃗ from dℓ⃗. We have dℓ⃗ = λℓ⃗(ξ) where

λℓ⃗ = 2(σ1 − σ2)µ̌1 + 2(σ2 − σ3)µ̌2 + . . . + 2(σn−1 − σn)µ̌n−1 + 2σnµ̌n.
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Since ∣γ∣ϑ is 2 for all γ ∈∆ϑ and

λℓ⃗/m =
1

m
[2(σ1 − σ2)µ̌1 + 2(σ2 − σ3)µ̌2 + . . . + 2(σn−1 − σn)µ̌n−1 + 2σnµ̌n],

from Equation 4.1.1 we conclude that sγn = σn and sγk = (σk −σk+1) for 1 ≤ k ≤ n− 1. From Equation 4.1.2, we conclude
sγ0 = m/2 − 2σ1. Remove any factors that are common to all of the sγ for γ ∈ ∆̃, and label the extended Dynkin diagram
with the resulting sγ .

We have proved:

Lemma 4.6.6. Fix a partition ℓ⃗ = (ℓµ, ℓµ−1, . . . , ℓ2, ℓ1) of ℓ = 2n + 1 for n ≥ 2 with ℓν odd for 1 ≤ ν ≤ µ. Let m =
2 lcm(ℓ1, ℓ2, . . . , ℓµ). Append (µ − 1)/2 copies of zero to the list (maν/2ℓν ∣1 ≤ ν ≤ µ and 1 ≤ aν < ℓν/2) and then place
the elements of the resulting list in decreasing order: (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σn−1 ≥ σn). After removing any factors that are
common to all of the labels, the Kac diagram for nℓ⃗ ⋊ ϑ in a group of type 2A2n is given by

m
/2
−
2
σ
1

σ
1
−
σ
2

σ
2
−
σ
3

. . .

σ
n
−2
−
σ
n
−1

σ
n
−1
−
σ
n

σn⇒ ⇒

when n > 1 and by
m
/2
−
2σ

1

σ1

when n = 1. ∎
Example 4.6.7. As an example, here is the Kac diagram for n(9,5,5,3,3) in (twisted) SL25

5 2 0 3 0 0 5 1 0 4 5 0 0⇒ ⇒ .

Example 4.6.8. In Figure 5 for groups of type 2A2 we show the location of the vertices v0 and v1 of the fundamental

alcove as well as the points determined by λℓ⃗/m. The Kac diagram for (3) is 1 1 and the Kac diagram for (1,1,1)

is 1 0

v0 =
λ(1,1,1)

2
v1λ(3)

6

FIGURE 5. The location of points determined by λℓ⃗ for groups of type 2A2

The results here agree with those found in the tables in [19, Section A.1]. The partitions for the Kac diagrams appearing
in the first table are (from top to bottom): (3) and (1,1,1). This correspondence between Kac diagrams and partitions
agrees with [21, Table 9]. The partitions (in the notation of [19, Section A.1]) for the Kac diagrams appearing in the second
table are (from top to bottom): (2n+1), (1,1,1, . . . ,1,1), (d, d, d, . . . , d, d) where d is odd and appears 2k+1 times where
d(2k + 1) = 2n + 1, and (d, d, d, . . . , d, d,1) where d is odd and appears 2k times where dk = n. This correspondence
between Kac diagrams and partitions agrees with [21, Table 10]. From Remark 3.6.1 these partitions correspond to the
regular ϑ-elliptic elements in a twisted Weyl group of type 2A2n+1.

4.6.4. A proof of Lemma 4.6.10. Recall that ℓ = 2n + 1, so we are looking at 2A2n.
As in Section 4.6.2 for 1 ≤ i, k ≤ ℓ let E(i, j) denote the ℓ×ℓ matrix such that E(i, j)rc = δirδjc. Unlike in Section 4.6.2

we have ϑ(Eij) = −Eℓ−j+1,ℓ−i+1.

Lemma 4.6.9. The characteristic polynomial of Ad(dℓ⃗) ○ ϑ acting on slℓ is

qnℓ⃗
(t) = 1

t + 1
⋅ (

µ

∏
ν=1
(tℓν + 1)) ⋅ (

µ

∏
τ=1
(t2ℓτ − 1)(ℓτ−1)/2) ⋅

⎛
⎝ ∏
1≤ρ<φ≤µ

(t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ)
⎞
⎠
.
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Proof. We have that ℓ = 2n + 1, m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ), and ξ is a primitive mth root of unity. We first define a diagonal
element d′

ℓ⃗
that has the same entries as dℓ⃗, but is more amenable to computation. For 1 ≤ ν ≤ µ, define ℓ̃ν = (ℓν − 1)/2.

d′
ℓ⃗
= Diag(ξℓ̃µ(m/2ℓµ), ξ(ℓ̃µ−1)(m/2ℓµ), . . . , ξ2(m/2ℓµ), ξm/2ℓµ ,

ξℓ̃µ−1(m/2ℓµ−1), ξ(ℓ̃µ−1−1)(m/2ℓµ−1), . . . , ξ2(m/2ℓµ−1), ξm/2ℓµ−1 ,

. . . ,

ξℓ̃1(m/2ℓ1), ξ(ℓ̃1−1)(m/2ℓ1), . . . , ξ2(m/2ℓ1), ξm/2ℓ1 ,

ξ0,⋯, ξ0,1 = ξ0, ξ0 . . . , ξ0,

ξ−m/2ℓ1 , ξ−2(m/2ℓ1), . . . , ξ−(ℓ̃1−1)(m/2ℓ1), ξ−ℓ̃1(m/2ℓ1),

. . . ,

ξ−m/2ℓµ−1 , ξ−2(m/2ℓµ−1), . . . , ξ−(ℓ̃µ−1−1)(m/2ℓµ−1), ξ−ℓ̃µ−1(m/2ℓµ−1),

ξ−m/2ℓµ , ξ−2(m/2ℓµ), . . . , ξ−(ℓ̃µ−1)(m/2ℓµ), ξ−ℓ̃µ(m/2ℓµ)).

In the middle of the matrix there are µ copies of ξ0 centered around the 1 = ξ0 that occurs in the center of the matrix. Since
d′
ℓ⃗

is W ϑ-conjugate to dℓ⃗, it is enough to compute the characteristic polynomial of Ad(d′
ℓ⃗
) ○ ϑ acting on slℓ. Thus, it is

enough to show that the characteristic polynomial of Ad(d′
ℓ⃗
) ○ ϑ acting on glℓ is

(t + 1) ⋅ qnℓ⃗
(t) = (

µ

∏
ν=1
(tℓν + 1)) ⋅ (

µ

∏
τ=1
(t2ℓτ − 1)(ℓτ−1)/2) ⋅

⎛
⎝ ∏
1≤ρ<φ≤µ

(t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ)
⎞
⎠
.

For 1 ≤ i ≤ ℓ, define d′i by (d′
ℓ⃗
)ii = ξd

′
i . That is, the power of ξ appearing in the ith diagonal element of d′

ℓ⃗
is d′i.

For 1 ≤ i ≤ ℓ we have (Ad(d′
ℓ⃗
) ○ ϑ)E(i, ℓ − i + 1) = −ξ2d′iE(i, ℓ − i + 1). Thus, the vector space Ua of anti-diagonal

elements in glℓ is (Ad(d′
ℓ⃗
) ○ ϑ)-stable and the characteristic polynomial for the action of Ad(d′

ℓ⃗
) ○ ϑ on Ua is

ℓ

∏
i=1
(t + ξ2d

′
i) =

µ

∏
ν=1

ℓν

∏
i=1
(t + ξ2i(m/2ℓν)),

and we have
µ

∏
ν=1

ℓν

∏
i=1
(t + ξ2i(m/2ℓν)) =

µ

∏
ν=1

ℓν

∏
i=1
(t − ξ2i(m/2ℓν)+m/2) =

µ

∏
ν=1

ℓν

∏
i=1
(t − ξ(2i+ℓν)(m/2ℓν)) =

µ

∏
ν=1
(tℓν + 1).

Thus, the characteristic polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on Ua is

µ

∏
ν=1
(tℓν + 1).

For 1 ≤ i ≤ n− (µ−1)/2 we have (Ad(d′
ℓ⃗
) ○ϑ)E(i, i) = −E(ℓ− i+1, ℓ− i+1) and (Ad(d′

ℓ⃗
) ○ϑ)E(ℓ− i+1, ℓ− i+1) =

−E(i, i). Thus, the vector space Ud spanned by

(E(i, i),E(ℓ − i + 1, ℓ − i + 1) ∣1 ≤ i ≤ n − (µ − 1)/2)

in glℓ is (Ad(d′
ℓ⃗
) ○ ϑ)-stable, and the characteristic polynomial for the action of Ad(d′

ℓ⃗
) ○ ϑ on Ud is (t2 − 1)n−(µ−1)/2.

For pairs (i, j) where 1 ≤ i ≤ n and i < j ≤ ℓ − i we have

(Ad(d′
ℓ⃗
) ○ ϑ)E(i, j) = ξd

′
i−d′jE(ℓ − j + 1, ℓ − i + 1)

and
(Ad(d′

ℓ⃗
) ○ ϑ)E(ℓ − j + 1, ℓ − i + 1) = ξd

′
i−d′jE(i, j).

Similarly, for pairs (i, j) where 1 ≤ j ≤ n and j < i ≤ ℓ − j we have

(Ad(d′
ℓ⃗
) ○ ϑ)E(i, j) = ξd

′
i−d′jE(ℓ − j + 1, ℓ − i + 1)
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and
(Ad(d′

ℓ⃗
) ○ ϑ)E(ℓ − j + 1, ℓ − i + 1) = ξd

′
i−d′jE(i, j).

Let P denote the set of pairs (i, j) such that (exactly) one of the following is true:
● 1 ≤ i ≤ n and i < j ≤ ℓ − i,
● 1 ≤ j ≤ n and j < i ≤ ℓ − j, or
● i = j and n − (µ − 1)/2 < i ≤ n.

Then, U , the span of the elements

(E(i, j),E(ℓ − j + 1, ℓ − i + 1) ∣ (i, j) ∈ P ),

is (Ad(d′
ℓ⃗
) ○ ϑ)-stable since the span of any pair (E(i, j),E(ℓ − j + 1, ℓ − i + 1)) occurring in the definition of U is

(Ad(d′
ℓ⃗
) ○ϑ)-stable. Moreover, U is a vector space complement in glℓ to the vector subspace Ua⊕Ud of glℓ. We are going

to break U into µ(µ+ 1)/2 smaller (Ad(d′
ℓ⃗
) ○ϑ)-stable subspaces, and evaluate the characteristic polynomial of the action

of Ad(d′
ℓ⃗
) ○ ϑ on each of these smaller spaces.

For 0 ≤ ν ≤ µ, define ℓ′′ν = ∑
µ
j=ν+1 ℓ̃j . Note that ℓ′′0 = n − (µ − 1)/2 and ℓ′′µ = 0. For 1 ≤ ν ≤ µ, define the length ℓν lists

Sr
ν = (ℓ′′ν + 1, ℓ′′ν + 2, . . . , ℓ′′ν + ℓ̃ν , n + (µ − 1)/2 − ν + 2, ℓ − (ℓ̃ν + ℓ′′ν ) + 1, ℓ − (ℓ̃ν + ℓ′′ν ) + 2, . . . , ℓ − ℓ′′ν )

and
Sc
ν = (ℓ′′ν + 1, ℓ′′ν + 2, . . . , ℓ′′ν + ℓ̃ν , n − (µ − 1)/2 + ν, ℓ − (ℓ̃ν + ℓ′′ν ) + 1, ℓ − (ℓ̃ν + ℓ′′ν ) + 2, . . . , ℓ − ℓ′′ν ).

Note that Sr
ν and Sc

ν differ only at the middle element. For 1 ≤ τ ≤ µ let Uτ denote the subspace of U spanned by

(E(i, j),E(ℓ − j + 1, ℓ − i + 1) ∣ (i, j) ∈ (Sr
τ × Sc

τ) ∩P ).

For 1 ≤ ρ < φ ≤ µ let Uρφ denote the subspace of U spanned by

(E(i, j),E(ℓ − j + 1, ℓ − i + 1) ∣ (i, j) ∈ (Sr
ρ × Sc

τ) ∩P).

We have the decomposition

U = (
µ

⊕
τ=1

Uτ)⊕
⎛
⎝ ⊕
1≤ρ<φ≤µ

Uρφ
⎞
⎠

of U into (Ad(d′
ℓ⃗
) ○ϑ)-invariant subspaces, and we will now compute the characteristic polynomial of Ad(d′

ℓ⃗
) ○ϑ on each

of these subspaces.
Fix τ with 1 ≤ τ ≤ µ. By examining “diagonals” that are parallel to the main diagonal, we see that the characteristic

polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on Uτ is

ℓτ−1
∏
k=1
(t2 − ξk(m/ℓτ ))(ℓτ−1)/2 = ((t

2ℓτ − 1)
t2 − 1

)
(ℓτ−1)/2

Now fix a pair (ρ,φ) with 1 ≤ ρ < φ ≤ µ. For (i, j) ∈ P ∩ (Sr
ρ × Sc

φ), we have that the characteristic polynomial for the
action of Ad(d′

ℓ⃗
)○ϑ on the span of the pair (E(i, j),E(ℓ−j+1, ℓ−i+1)) is t2−ξ2(d

′
i−d′j). Since the map (i, j)↦ ξ2(d

′
i−d′j)

from P ∩ (Sr
ρ × Sc

φ) to C× has both (a) fibers of the same cardinality and (b) the same image as the map µℓρ × µℓφ → C×

which sends (a, b) to a ⋅ b−1, we conclude that the characteristic polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on Uρφ is

∏
ζ∈µℓρ ,η∈µℓφ

(t2 − (ζµ)) =
⎛
⎜
⎝

∏
δ∈µlcm(ℓρ,ℓφ)

(t2 − δ)
⎞
⎟
⎠

gcd(ℓρ,ℓφ)

= (t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ).

We now put it all together. As an Ad(d′
ℓ⃗
) ○ ϑ-module, we have

glℓ = Ua ⊕Ud ⊕ (
µ

⊕
τ=1

Uτ)⊕
⎛
⎝ ⊕
1≤ρ<φ≤µ

Uρφ
⎞
⎠
.
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Thus, the characteristic polynomial for the action of Ad(d′
ℓ⃗
) ○ ϑ on glℓ is

(
µ

∏
ν=1
(tℓν + 1)) ⋅ (t2 − 1)n−(µ−1)/2 ⋅

⎛
⎝

µ

∏
τ=1
((t

2ℓτ − 1)
t2 − 1

)
(ℓτ−1)/2⎞

⎠
⋅
⎛
⎝ ∏
1≤ρ<φ≤µ

(t2 lcm(ℓρ,ℓφ) − 1)gcd(ℓρ,ℓφ)
⎞
⎠

which, after simplifying, is (t + 1) ⋅ qnℓ⃗
. ∎

Lemma 4.6.10. dℓ⃗ is ϑ-conjugate to nℓ⃗.

Proof. If d′′ = Diag(εan , εan−1 , . . . εa1 , εan+1 , εan+2 , . . . , εa2n+1) where aj = −a2n+2−j for j ≥ n + 1, then the characteristic
polynomial of d′′ ○ ϑ acting on sl2n+1 is

(t2 − 1)n ⋅
n

∏
i=1
(t − ε2ai)(t − ε−2ai) ⋅ ∏

1≤i<j≤2n+1−i
(t2 − ε2(ai−aj))(t2 − ε−2(ai−aj)).

Note that an+1 = 0, and therefore for 1 ≤ i ≤ n the factor (t2 − ε2ai) = (t2 − ε2(ai−an+1)) occurs in the characteristic
polynomial of d′′ ○ ϑ acting on sl2n+1.

Since the eigenvalues of an order m element must be mth roots of unity, from the above paragraph we see that any
element d′ ∈ Aϑ for which the order of d′ ⋊ ϑ is m can be chosen to look like

d′ = Diag(ξxn , ξxn−1 , . . . , ξx1 , ξxn+1 , ξxn+2 . . . ξx2n+1)

where ξ is our fixed mth root of unity, xj = −x2n+2−j for j ≥ n+1, and the xi ∈ Z satisfy m/2 ≥ x1 ≥ x2 ≥ ⋯ ≥ xn ≥ xn+1 =
0. We will show that d′ = dℓ⃗.

The characteristic polynomial of d′ ○ ϑ acting on sl2n+1 is

(t2 − 1)n ⋅
n

∏
i=1
(t − ξ2xi)(t − ξ−2xi) ⋅ ∏

1≤i<j≤2n+1−i
(t2 − ξ2(xi−xj))(t2 − ξ−2(xi−xj)).

In the polynomial qnℓ⃗
every root is paired with its additive inverse, except for the roots that appear in pℓ⃗, the polynomial

described in Equation 3.6.4 that is associated to nℓ⃗. Thus, if d′ and nℓ⃗ are ϑ-conjugate, then we must have
n

∏
i=1
(t − ξ2xi)(t − ξ−2xi) = pℓ⃗ =

n

∏
i=1
(t − ξ2σi)(t − ξ−2σi).

Thanks to Lemma 4.6.9, this implies that there is a bijective map f from the set {1,2, . . . n} to itself such that xj ∈
σf(j) +mZ for all 1 ≤ j ≤ n. Since m/2 > x1 ≥ x2 ≥ ⋯ ≥ xn ≥ 0 and m/2 > σ1 ≥ σ2 ≥ ⋯ ≥ σn ≥ 0, we conclude that
xj = σj for 1 ≤ j ≤ n. ∎

4.7. How to create a Kac diagram for nℓ⃗ for 2Dℓ+1 with ℓ ≥ 2. We adopt the notation of Section 3.7. Fix a partition ℓ⃗ of
(ℓ + 1) with an odd number of parts. We will show how to construct the Kac diagram for nℓ⃗ ⋊ ϑ.

We have f = 2. We take the simple roots γ in ∆ϑ =∆ to be the roots γk = αk for 1 ≤ k < ℓ and γℓ = αℓ−1 +αℓ = 2eℓ. For
fundamental coweights with respect to our basis we take µ̌i = e1 + e2 +⋯+ ei for 1 ≤ i < ℓ and µ̌ℓ = 1/2(e1 + e2 +⋯eℓ−2 +
eℓ−1 + eℓ). The affine Dynkin diagram is

γ0 γ1 γ2
. . .

γℓ−2 γℓ−1 γℓ
⇐ ⇒

and the bγ are given by the diagram

1 1 1 . . . 1 1 1⇐ ⇒

A Kac diagram describes a diagonal matrix in SO2ℓ+2 that is ϑ-conjugate to nℓ⃗ in G. Thus, we want to find a diagonal
matrix dℓ⃗ in SO2ℓ+2 such that the characteristic polynomial of dℓ⃗ ⋊ ϑ for the standard action on C2ℓ+2 is

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν − 1).
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Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ) and let ξ be a primitive mth root of unity. We have

qnℓ⃗
(t) =

µ

∏
ν=1
(t2ℓν − 1) =

µ

∏
ν=1
(t − 1)(t + 1)

ℓν−1
∏
aν=1
(t − ξmaν/2ℓν)(t − ξ−maν/2ℓν)

Guided by Remark 4.1.5 we create a length ℓ decreasing list as follows: order the positive integers maν/2ℓν in decreasing
order, then pre-append (µ − 1)/2 copies of m/2 and post-append (µ − 1)/2 zeroes. We thus obtain a list (σ1 ≥ σ2 ≥ σ3 ≥
⋯ ≥ σℓ−1 ≥ σℓ). Define dℓ⃗ = Diag(ξσ1 , ξσ2 , . . . , ξσℓ−1 , ξσℓ ,1,1, ξ−σℓ , ξ−σℓ−1 , . . . , ξ−σ2 , ξ−σ1) in Aϑ. Then dℓ⃗ ○ ϑ acting on
C2ℓ+2 has characteristic polynomial qnℓ⃗

.
Since the linear factors (t − 1) and (t + 1) along with (t − ξσj) and (t − ξ−σj) for 1 ≤ j ≤ ℓ are exactly the linear factors

that must occur in qnℓ⃗
, we conclude that, up to the ϑ-conjugation in W̃ , dℓ⃗ is the unique element of A that is ϑ-conjugate

to nℓ⃗ in G.
We now read off the Kac diagram for nℓ⃗ from dℓ⃗. Note that dℓ⃗ = λℓ⃗(ξ) where

λℓ⃗ = (σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σℓ−1 − σℓ)µ̌ℓ−1 + 2σℓµ̌ℓ.
Since ∣γk∣ϑ = 1 for 1 ≤ k < ℓ, ∣γℓ∣ϑ = 2, and

λℓ⃗/m =
1

m
[(σ1 − σ2)µ̌1 + (σ2 − σ3)µ̌2 + . . . + (σℓ−1 − σℓ)µ̌ℓ−1 + 2σℓµ̌ℓ],

we have sγℓ = σℓ and sγk = (σk − σk+1) for 1 ≤ k ≤ ℓ − 1. The coefficient sγ0 = m/2 − σ1 is derived using Equation 4.1.2.
Remove any factors that are common to all of the sγ for γ ∈ ∆̃ and label the corresponding affine Kac diagram with the
resulting sγ .

We have proved:

Lemma 4.7.1. Fix a partition ℓ⃗ = (ℓµ, ℓµ−1, . . . , ℓ2, ℓ1) of (ℓ + 1) with µ odd and ℓ ≥ 2. Let m = 2 lcm(ℓ1, ℓ2, . . . , ℓµ).
Append (µ − 1)/2 copies of m/2 and (µ − 1)/2 zeroes to the list (maν/2ℓν ∣1 ≤ ν ≤ µ and 1 ≤ aν ≤ ℓν − 1) and then place
the elements of the resulting list in decreasing order: (σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σℓ−1 ≥ σℓ). After removing any factors that are
common to all of the labels, the Kac diagram for nℓ⃗ ⋊ ϑ in a group of type 2Dℓ+1 with ℓ ≥ 2 is given by

m
/2
−
σ
1

σ
1
−
σ
2

σ
2
−
σ
3

. . .

σ
ℓ−

2
−
σ
ℓ−

1

σ
ℓ−

1
−
σ
ℓ

σℓ⇐ ⇒ . ∎

Example 4.7.2. As an example, here is the Kac diagram for n(5,4,3) in (twisted) SO24.

0 12 3 5 4 6 6 4 5 3 12 0⇐ ⇒ .

Example 4.7.3. In Figure 6 for groups of type 2D3 we show the location of the vertices v0, v1, and v2 of the fundamental
alcove as well as the points determined by λℓ⃗/m. The Kac diagram for (3) is 1 1 1⇐ ⇒ and the Kac diagram for

(1,1,1) is 0 1 0⇐ ⇒ . Even though nothing else in their derivation agrees, since 2A3 ≅ 2D3 it is correct that the
location of the points in Figures 4 and 6 corresponding to the ϑ-elliptic ϑ-conjugacy classes in their respective Weyl groups
coincide.

During the publishing process, a typo was introduced to the table in [19, Section A.6]. For the case k even, k ∣ n, and
k > 2 the Kac diagram should have a 0 on the γ0 node; that is, it should be

0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0⇐ ⋯ ⋯ ⋯ ⋯ ⋯ ⇒

k/2 zeroes (k − 1) zeroes (k − 1) zeroes k/2 zeroes⋯

where there are (n/k−1) strings of (k−1) zeroes. With this change, the partitions (in the notation of [19, Section A.6]) for
the Kac diagrams appearing there are (from top to bottom): (n+1), (n/2, n/2,1) for n even, (n/k,n/k,n/k, . . . , n/k,n/k,1)
for 2 < k even and dividing n, and ((n + 1)/k, (n + 1)/k, (n + 1)/k, . . . , (n + 1)/k, (n + 1)/k) for 1 < k odd and dividing
n + 1. This correspondence between Kac diagrams and partitions agrees with [21, Table 15]. From Remark 3.7.1 these
partitions correspond to the regular ϑ-elliptic elements in a twisted Weyl group of type 2Dn+1.
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v0

v2

λ(3)
6

v1 =
λ(1,1,1)

2

FIGURE 6. The location of points determined by λℓ⃗ for groups of type 2D3

4.8. Kac diagrams for the remaining types of groups. As noted in Section 3.8, the Kac diagrams associated to ϑ-elliptic
conjugacy classes in W̃ for the remaining types of groups (G2, F4, E6, E7, E8, 3D4, or 2E6) are known. See [1, Section 9].
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