TOTALLY RAMIFIED MAXIMAL TORI AND BRUHAT-TITS THEORY

STEPHEN DEBACKER, WITH APPENDICES BY RAM EKSTROM AND MITYA BOYARCHENKO, STEPHEN DEBACKER, ANNA SPICE,
LOREN SPICE, & CHENG-CHIANG TSAI

ABSTRACT. Suppose k is a nonarchimedean local field, K is a maximally unramified extension of k, and G is a connected
reductive k-group. If T is a K -minisotropic maximal k-torus in G, then we use Bruhat-Tits theory to describe the stable classes
in the G-orbit of T, the rational classes in the G-orbit of T, and the k-embeddings, up to rational conjugacy, into G of T. We
also provide, via Bruhat-Tits theory, a complete and explicit description of: the rational conjugacy classes of K-minisotropic
maximal tame k-tori in G; the stable classes of K -minisotropic maximal tame k-tori in G; and the k-embeddings, up to rational
conjugacy, into G of a K-minisotropic maximal tame k-torus of G.

INTRODUCTION

Suppose k is a nonarchimedean local field, K is a maximally unramified extension of k, and G is a connected reductive
k-group. If T is a maximal k-torus in G, then T, the maximal K -split torus in T, is defined over k and T is a maximal
K -minisotropic k-torus in L = Cg (T, the centralizer in G of TX. The group L is an unramified twisted Levi subgroup
of G; thatis, L is a k-group that occurs as the Levi component of a parabolic K -subgroup of G. Consequently, an approach
to parameterizing the rational conjugacy classes of maximal tori in G is to

e parameterize the rational conjugacy classes of unramified twisted Levi subgroups of G and
e for each unramified twisted Levi subgroup L of G parameterize the L(k)-conjugacy classes of K -minisotropic
maximal k-tori in L.

This paper takes up the latter problem. The former problem is the subject of [13]. Future work will take up the problem of
parameterizing, via Bruhat-Tits theory, the rational classes of tame tori in a connected reductive k-group.

In an attempt to improve the exposition, we will assume in this introduction that G is semisimple and k-split.

Recall that a K'-torus T in G is called K -anisotropic provided that X*('T') does not contain non-trivial characters that are
defined over K. Such tori are sometimes also referred to as totally ramified K -tori. Let G denote the group of K -rational
points of G.

We begin by studying the set of (G-conjugacy classes of K -anisotropic maximal K -tori in G. Whereas unramified tori
interact very nicely with Bruhat-Tits theory (for example, the apartment of a maximal unramified torus in G is always an
affine subspace of the building of G which decomposes as a union of facets for (5), the same is very much not true for
totally ramified tori. However, as shown in Section 2, we can always associate to T, a totally ramified maximal K -torus
in G, a unique point x7 in the reduced Bruhat-Tits building of G. Moreover, this point 27 has the remarkable property
that its G-orbit intersects the closure of each alcove in the reduced building of G exactly once. We then combine results of
Haines and Rapoport [17] and Kottwitz [27, Section 7] to establish the following fundamental fact: the stabilizer in G of
T can be written as the product of 7" and the parahoric subgroup attached to x7.

Without some assumptions on k£ and G, we cannot say much about z outside of groups of type A,,. However, under
the assumption that the characteristic of f does not divide the order of the Weyl group, in Section 3 we explicitly describe
the point attached to our totally ramified maximal K-torus T of G. This can be done because, under these tameness
assumptions, the G-conjugacy classes of totally ramified maximal K -tori are parameterized by the elliptic conjugacy
classes in the Weyl group. On the other hand, elliptic conjugacy classes in the Weyl group have unique (normalized) Kac
coordinates, and these coordinates determine, up to (G-conjugacy, the point 7 (see Lemma 3.5.1).

Having described, albeit under modest tameness assumptions, the complete set of G-conjugacy classes of totally ramified
maximal K -tori, in Section 4 we turn to the question of when such a G-conjugacy class contains a torus that is defined over
k. We show that this will happen if and only if Or, the G-conjugacy class of T, is stable under the action of Gal( K /k).
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In Section 5 we again invoke a tameness assumption and use the parameterization of Section 3 to convert the criterion
described above into an easy to check condition about Weyl group conjugacy classes. We then use this condition to show
that (when G is k-split) every G-orbit of totally ramified K -tori in G contains a torus which is defined over k. See
Corollary 5.4.4 for the precise statement.

When we assume that our totally ramified maximal torus T is defined over k, we can prove several results about OF.,
the set of tori in Or that are defined over k. In particular, in Section 6 we establish natural parameterizations of both the
k-stable classes in (’)% and the rational classes in (’):]}. We also establish a natural parameterization of the k-embeddings,
up to rational conjugacy, of T into G. Recall that a k-embedding of T into G is a k-morphism f: T — G for which there
exists g € G such that f(t) = gtg~" for all t € T. Along the way to establishing these results, in Section 6.3 we show that
there is a natural identification of a quotient of T with the €2 group of G. Recall that the §2 group of G is the quotient of the
stabilizer of an Iwahori subgroup by the Iwahori subgroup.

Our main result is Theorem 7.1.1; it provides a complete accounting of the rational classes, k-stable classes, and k-
embeddings of all tame totally ramified maximal k-tori in G. We also work out several examples in Section 7. In particular,
up to GF"-conjugacy, we enumerate all of the tame totally ramified k-tori in G and describe all of their k-embeddings into G
for G being SL,,, unramified SU,,, Sp,, G2, or ramified SU3. These calculations are quite challenging (for me). Although
I’ve done all of the calculations multiple times, I am sure that errors remain. So, be cautious.

Motivated by the examples discussed above, in Section 8 we look at how the parameterizations introduced in Section 6
behave under certain isogenies.

Finally, in Section 9 we establish the existence of a totally ramified torus for which the associated point in the building
is the barycenter of an alcove. We call such a torus a K -minisotropic Coxeter torus, and we explore some of its properties.

The results of Sections 2 and 3 hold under less restrictive hypotheses on k; see the discussion at the start of each of these
sections.
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1. NOTATION, THE TITS GROUP, AND SOME FACTS ABOUT TORI

Suppose k is a local field with non-trivial discrete valuation v and residue field f of characteristic p and cardinality q. Let
G denote a connected reductive k-group. Let W denote the absolute Weyl group of G. Let G’ denote the derived group
of G, Gy, the simply connected cover of G’, and G ,q the adjoint group of G. Let : Gg. — G denote the composition of
the k-maps Gg. » G’ and G’ = G. Let Z denote the center of G.

1.1. Basic notation. Let k denote a fixed separable closure of k, let ~ denote the unique extension of v to k, and let @ € k
be a uniformizer. Let K denote the maximal unramified extension of k in &, and let § denote the residue field of K it
is an algebraic closure of f. Let Rx denote the ring of integers in K. Let I = Gal(k/K) denote the inertial subgroup of
Gal(k/k). Let Fr be a topological generator for Gal( K /k) = Gal(k/k)/I, which we identify with Gal(F/f). We suppose
that Fr~!(x) = 29 for all z € §. Choose a lift of Fr to an element, which we will also call Fr, of Gal(k/k). Let L denote
the completion of K, and let Ry, denote the ring of integers in L.

Let A denote a maximal K -split k-torus in G that contains a maximal k-split torus of G; such a torus exists and is
unique up to rational conjugacy (see [34, Theorem 6.1] or in [13, Theorem 3.4.1] take an unramified torus corresponding
to a pair of the form (F,T) € I" with F' an alcove). Since G is K-quasi-split, there exists a Borel K -subgroup B that
contains A, and hence A* = Cg(A) is a maximally K-split k-torus in G that is contained in B. Let ® = ®(G, A) denote
the set of roots of G with respect to G and A and IT = TI(G, A, B) the set of simple roots with respect to G, A, and B.
Similarly, let ® = ®(G, A*) denote the set of roots of G with respect to G and A* and II = II(G, A*, B) the set of simple
roots with respect to G, A*, and B.

Let K denote the splitting field over K of A*.



TOTALLY RAMIFIED MAXIMAL TORI AND BRUHAT-TITS THEORY 3

If H is an algebraic K-group, then we let H denote the group of K-points of H, and we let H denote the group of K
points of H. If H is an §-group, we will often denote the group of F-points of H by H as well.

We let k; denote the maximal tame extension of & in &, and we let o denote a topological generator of Gal(ky/K).

If G is a group and z,y € G, then %y = xyx~!. If 7 is an automorphism of G, then two elements z,y € G are said to be
T-conjugate (in G) provided that there exists g € G such that g~'z7(g) = y.

If X and Y are sets, f: X — Y isafunction, A c X, and B c Y, then f[A] c Y denotes the image of A under f while
fY[B] c X denotes the preimage of B.

If F' is a field, H is an F-group, and 7 is an F-automorphism of H, then we let Fix,(H) denote the 7-fixed points in
H and we let H” denote Fix,(H)°, the connected component of Fix,(H). Both Fix,(H) and H" are F'-groups. An
F-homomorphism between reductive F-groups H and H' is called an isogeny provided that it is surjective with finite
central kernel.

1.2. Notation for Bruhat-Tits theory. Let ¥ = U(G, A, K,v) denote the set of affine roots of G with respect to A,
K, and v. For ¢ € U we let ¢) € ® denote its gradient. The elements of ¥ define the facet structure on the apartment
A(A) = A(A, K). Fix a Fr-stable alcove C' in A(A) and let A = A(G, A, K,v,C) denote the set of simple affine roots
in U determined by C. Without loss of generality, we assume that IT = II(G, A, B) is a subset of {¢|1) € A}.

For each facet H in the Bruhat-Tits building B(G) = B(G, K) of G we let G denote the parahoric subgroup attached
to H and we let G o+ denote the pro-unipotent radical of G/ 9. The quotient G o/Gp o+ is the group of F-points of a
connected reductive §-group which we denote by Gy.

Suppose H is a facet in A(A, K) such that H c C. Let A = Ag denote the torus in Gz corresponding to the image
of the parahoric subgroup Ag = An Ggo of Ain Gg. (We may drop the subscript H since these tori are independent of
the choice of H in A(A, K).) Let B% denote the Borel subgroup of Gy corresponding to G o/G,o+. Note that A is a
maximal f-torus in B, and hence in Gy;. Note that X*(A) may be canonically identified with X*(Ag).

Let Fy denote the unique facet contained in the closure of C' such that (a) Fy is special and (b) the set of simple roots
determined by Gg,, A, and Bgo corresponds to II. See [35, Section 2.10] and [36, Section 7.1] for the existence of such
a facet when G is absolutely simple and simply connected; since the existence of such a minimal facet is independent of
isogeny class, the general case follows by considering the almost simple factors of G. The uniqueness of such a facet
follows from condition (b). Note that F{y will be a special facet over the splitting field of A#, and so is absolutely special in
B(G, K); see [18, Section 5] or [24, Appendix G] for more about absolutely special facets.

1.3. A realization of the Tits group. Recall that K denotes the splitting field of A* over K. Set I = Gal(f( /K) and
G = G(K), A# = A*(K), and B = B(K). We may and do identify T with N (A#)/A# For a facet F' c B(G), let Gp
denote the connected reductive §-group whose group of §-rational points is G F, 0/ G ro+. Let A* denote the §-torus in G Fy
whose group of §-points coincides with the image of the parahoric subgroup A# A n G Fp,0 Of A*in G 7, (&). Similarly,
Let B denote the Borel F-group in G, whose group of §-points coincides with the image of B G, ¢ in Gp, (§). Choose
a pinning (G, A*, B, {X,} ;) thatis I-stable and compatible with Fy. When we say the pinning is compatible with Fp,
we mean that X, € Lie(ép0 ) for all @ € IT and if X, denotes the image of X, in Lie(Gr,), then (G, , A*,B, {Xa}pert)
is a pinning of (Gg,, A¥, B).

For a € II we let G, denote the K- subgroup of G generated by the root groups U, and U_, in G and set A? =
G, n A*. Since for all nontrivial u € Uy (K), the intersection wU_, (K)un N, Gu(R) (A%) has cardinality one, the pinning
(G,A”,B,{X,} i) uniquely identifies an element n, € NGa(f()(Aa) < Ng(A*). We have n2 = a(-1) € A* where
a e X, (A#) is the coroot associated to a. Suppose 7 < A* denotes the elementary abelian two-group generated by
{a( 1)|a € I} and W denotes the (finite) subgroup of N & (A") generated by {ng|a € IT}. Note that since our pinning is
I-stable, we have that T acts on both 7 and W. If 7: N (A#) — TV denotes the usual projection, then thanks to [47] we
have an exact sequence

l—w7—W-5W-—1.
of finite groups with I-action. Note that T is a subgroup of G Fy,0» and, since our pinning is compatible with Fp, we have
that W is also a subgroup of G F»,0- The group W is called the Tits group (with respect to our chosen pinning).

Remark 1.3.1. Since the root groups U, for a € IT belong to G’, we conclude that W< G%O 0 <G
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1.4. Facts about tori. We recall some facts about tori that will be used later. Recall that every K-torus in G splits over a
separable extension [30, Corollary 12.19].

1.4.1. On the structure of parahoric subgroups of tori. Suppose T is a k-torus. Since T is abelian and any two maximal
K -split tori in T are T = T(K )-conjugate, there is a unique maximal K -split K -torus, TX, in T. Since it is unique and
T is a k-torus, TX is a k-torus as well. Recall that Ry denotes the ring of integers in /. The maximal bounded subgroup
of TX is TOK = TK(Rg), and TOK is the parahoric subgroup of TX.

Let Tj) denote the parahoric subgroup of 7" and let T+ denote its pro-unipotent radical. The quotient Ty/Tp+ is isomor-
phic to the §-points of an f-torus T. Moreover, TOK =Ty nT¥ and the image of TOK in Ty /Tp+ may be identified with the
F-points of T. From this we conclude that Tj) = TOK To+.

Since Tp, T4, and Tp+ are Fr-stable and H* (Fr, T 0 Tp+) is trivial, we have T¢" = (T4 ) T

Remark 1.4.1. Let t denote the Lie algebra of T. If G is K-split, we can (canonically) write t = t & t* where t is the Lie
algebra of TX and t* = (Cy(t))’ n't, where (Cy(t))’ denotes the derived Lie algebra of Cy(t). If G is not K-split, then
we need to replace t with the center of Cy(t).

1.4.2. Splitting fields of tori in quasi-split groups. Suppose F is a field and H is an F-quasi-split group. Let (B, S) be a
Borel-torus pair for H; so B is a Borel F'-subgroup of H and S is a maximal F'-torus of H that is contained in B.

Lemma 1.4.2. Suppose T is a maximal F-torus in H. If E is the splitting field of T, then S is E-split.

Proof. Since T is E-split, there exists a Borel E-subgroup B’ of H such that T < B’. Since all Borel E-subgroups of G
are H(E)-conjugate [5, Theorem 20.9 (i)], there exists h € H(E) such that "T < B. Since "T and S are maximal E-tori
in B, they are B(E')-conjugate [5, Proposition 20.5]. Consequently, since S is H( F')-conjugate to the E-split torus T, we
conclude that S is E-split as well. [

2. POINTS IN THE REDUCED BUILDING ATTACHED TO K -MINISOTROPIC MAXIMAL TORI

In this section we loosen our restrictions on k: it can be any complete field with nontrivial discrete valuation v and
perfect residue field § such that K is strictly Henselian and has cohomological dimension < 1.

Recall from §1.2 that C is an alcove in the apartment A(A) in B(G). Let C’ denote the image of C' in B"4(G), the
reduced building of G Similarly, A’( A) will denote the image of A(A) in B4(G).

Definition 2.0.1. A K-torus T in G is said to be K -minisotropic provided that X* (T/ Z)Gal(’;/ K) is trivial.

In this section we show that to every K -minisotropic maximal torus in G we can associate a unique point in the closure
of the alcove C’. We then describe the stabilizer of this point in Lemma 2.3.1 (see also Remark 2.3.3).
Under the assumption that the torus splits over a tame extension, we describe this point explicitly in Section 3.

2.1. Results on G-conjugacy. An element y € G (k) is called semisimple provided that it belongs to a maximal torus in
G. The element + is said to be strongly regular semisimple provided that there exists a maximal torus T in G such that

o Y€ T(ZI),

e ay)#1foralle (G, T), and

e the stabilizer of v in the Weyl group of T is trivial.
The set G™*%(k) of strongly regular semisimple elements in G (k) is both dense and open. In fact, for any maximal k-torus
T of G the set T(k) n G*™%(k) of strongly regular semisimple elements in T'(k) is both dense and open. Since T is
unirational, this implies that T(k) contains a strongly regular semisimple element. If v € G*5(k), then the centralizer
of ~ is a maximal torus in G. An element that satisfies the first two conditions, but not the third, is said to be regular
semisimple.

Lemma 2.1.1. Suppose H is a connected reductive K-group. Two elements of H"*® = H5( K') are H-conjugate if and
only if they are H(k)-conjugate.

Proof. Suppose x,y € H = H(K) are strongly regular semisimple. It will be enough to show that if there exists g € H(k)
for which 9% = y, then there exists h € H for which "z = y. Since x is strongly regular semisimple, its centralizer is a
maximal K -torus in H, call it T. For all v € Gal(k/K) we have 7@ 9% = z, hence g 'v(g) € T(k). Thanks to [6,
Section 8.6], we have that H! (K, T) is trivial. Hence there exists ¢ € T(k) such that y(gt) = gt for all y € Gal(k/K). Set
h = gt. [
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Remark 2.1.2 (Loren Spice). Suppose that £¥2/k is an algebraic closure of k. Two semisimple elements v and 7' of G (k)
are G (k¥#)-conjugate if and only if they are G (k)-conjugate. Indeed, since every k-torus is k-split [30, Corollary 12.19],
we may, and do, assume, after conjugating by an element of G (k), that both v and +' belong to the group of k-points of a
k-split, maximal torus S in Gz. Suppose that g € G (k%) satisfies Int(g)~ = 7. Since both S and Int(g~!)S are maximal
k¥2-split tori in H := Cq(7)°, there exists h € H(k¢) such that Int(g~!)S = Int(h)S. Then Int(gh)Sue = Sy, so that
gh belongs to Ng(S)(k¥2). Since Ng(S) is smooth with identity component Cg(S) = S, we have that there is some
n € Ng(S)(k) whose image in the Weyl group (Ng(S)/S) (k) is the same as the image of gh; i.e., so that n belongs to
ghS(k¥¢). In particular, Int(n)~ equals Int(gh )~y = Int(g)y = 7.

Definition 2.1.3. Suppose T; is a maximal K-torus in G. We say that Ty is K -stably conjugate to Ty in G provided that
there exists h € G(k) such that Ad(h): Ty — T2 is a K-morphism.

Corollary 2.1.4. Suppose H is a connected reductive K-group. Two maximal K -tori in H are H-conjugate if and only if
they are K-stably-conjugate in H.

Proof. If T is a maximal K-torus in H, then 7" contains a strongly regular semisimple element. The result follows from
Lemma 2.1.1. u

Corollary 2.1.5. Two maximal K-tori in G are G-conjugate if and only if the corresponding maximal K-tori in G, are
G .-conjugate. Here * is either sc or ad.

Proof. The canonical k-maps G - G,q and Gy, - G,q establish natural bijective correspondences among (a) the set of
maximal K-tori in G, (b) the set of maximal K -tori in G,q, and (c¢) the set of maximal K -tori in (g¢.. Moreover, under
these correspondences two maximal K -tori in G are K -stably-conjugate if and only if the corresponding maximal K -tori
in G, are K-stably-conjugate. Here » is either sc or ad.

The result follows from Corollary 2.1.4. [

If we assume that K has characteristic zero, then there are similar results on the Lie algebra level.

Lemma 2.1.6. Suppose K has characteristic zero. Suppose H is a connected reductive K-group with Lie algebra by. Two
regular semisimple elements of W(K) are H-conjugate if and only if they are H(k)-conjugate.

Proof. The proof is nearly identical to that of Lemma 2.1.1. [

Let g denote the Lie algebra of G, and denote by g’ the Lie algebra of G’ the derived group of G. When K has
characteristic zero, we may and do identify the Lie algebras of Gy and G,q with g’.

Corollary 2.1.7. Suppose K has characteristic zero. Suppose X1, X5 € g'(K) are regular semisimple. The following are
equivalent:

o X is G-conjugate to Xo.

o X is Gg.-conjugate to Xo.

o X is Gyq-conjugate to Xo. [

Since, in characteristic zero, every maximal k-torus in G or G.. arises as the centralizer of a regular semisimple element
of g’(k), we have that a maximal k-torus T in G corresponds to the maximal k-torus T, in G provided that there exists
a regular semisimple X € g’(k) such that T = Cg(X) and T, = Cg,(X). This correspondence is well defined since
Ca(Cy(X))=Cqa(X")and Cg,(Cy (X)) = Cg, (X') for all regular semisimple X' belonging to the Cartan subalgebra
Cy (X )(K). Thus, in characteristic zero Corollary 2.1.7 gives another proof of Corollary 2.1.5.

2.2. Points in the reduced building associated to K -minisotropic maximal tori of G. Suppose T is a K-minisotropic
maximal torus in G.

Let T' = T(K). We may associate to T a point 7 in the reduced building of G as follows: if E is a Galois extension
of K over which T splits and .A’ denotes the apartment of T in B*¢(G, E), then the set of Gal(E/K)-fixed points of A’
in B*Y(G, F) is a point. If E/K is not tame, it is possible that this point may not lie in B°4(G'). However, thanks to the
non-positive curvature of buildings, there is a unique closest point, zr, in B*4(G) = B"4(G, K) to the Gal( E/K )-fixed
point of A’. Moreover, thanks to uniqueness, the point z7 € B4(G) is fixed by T. Let F denote the facet in the building
of G whose image under the projection to the reduced building contains 7.
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Remark 2.2.1. Since B™4(G) is independent of the isogeny type of G/, we have B'*4(G) = B(Gy.) = B(Gaq). Thanks to
Corollary 2.1.5, the G-orbit of x is equal to the G .-orbit of z1 where * is either sc or ad. That is, the subset G - z in
B4(@) is independent of the isogeny type of G'.

Lemma 2.2.2. The set G - xp 0 C" has cardinality one.

Proof. Thanks to Corollary 2.1.5, the G-orbit of a7 is equal to the Gg.-orbit of 2. Since C’ is a fundamental domain for
the action of G, on B(Gy), the result follows. [ ]

2.3. Some consequences of results of Haines and Rapoport and of Kottwitz. In [27, Section 7] Kottwitz shows that
there is a functorial surjective homomorphism rg:G — X*(Z(G)'). Here I denotes Gal(k/K), and Z(G) de-
notes the center of the dual group of G. If m1(G); denotes the I-coinvariants of the fundamental group of G, then
X*(Z(G)') 2 m1(G); and we have a functorial surjective homomorphism r¢: G — 71(G) (see [23, Section 3.3]). In
[17, Proposition 3] Haines and Rapoport show that for any facet F” in B(G) the restriction of k¢ to Stabg (F") has kernel
G F'.0-

These results have many interesting consequences. As an example, which can be vastly generalized as in [23, Corol-
lary 3.3.1], we have [ (Gsc)z,0] < Ga,0 where 1: Ggc - G denotes the composition Ggc > G’ = G and x is any point in
B(Gs) = B(G") = B4(G). In this section, we record some additional consequences.

The following result plays a fundamental role throughout the remainder of this paper.

Lemma 2.3.1. Suppose T is a K-minisotropic maximal torus in G. Let xp denote the point in the reduced building of G
attached to T, and recall that F' denotes the facet in the building of G whose image under the projection to the reduced
building contains xp. We have

Stabg(F) = TGFp.

Remark 2.3.2. Recall that the building of 7" does not always embed into that of G. In the proof below we use that F' is
T-stable.

Proof. For any maximal K-torus S in G, the map 7;(S); - 71(G); is surjective. Consequently, we have that for all
g € Stabg(F) there is a t € T such that kg(g) = t(k7(t)). We then have t"'g € ker(xg). Thus, t™'g € Stabg(F) n
kel"(lig) = GRO' |

Remark 2.3.3. This result can be restated as:
Stabg(z1) = TGy -
Corollary 2.3.4. The map T — Stabg(F')/GF is surjective with kernel n[Ts.|Ty. Here Ty is the torus in Gy corre-
sponding to T
Proof. The surjectivity of the map follows from Lemma 2.3.1. Since taking coinvariants is right exact, the exact sequence
1 — X, (Ts) LR X (T) —m(G) —1

yields

Xi(Tse)1— X (T); — m(G); — 1.
Using the results of Kottwitz and Haines and Rapoport discussed above and the fact that 7 (S) = X, (S) for any K-torus
S, we conclude that we have an exact sequence

T/ (Tue)o — T /Ty —> Stabg(F)/Gro — 1.
The result follows. []

Lemma 2.3.5. Suppose g € G" and y € B(G") is special. If g € Stabgr(y), then g € G} .

Proof. Let g denote the image of g in G54 and let Aj 4 denote the maximal k-torus in G,q corresponding to A*. We first
show that g € (Gaq)y,0- Since g € Stabg, ,(v), it is enough to show that Stabe,, (y) ¢ (Gad)y,0- Suppose h € Stabg, ,(y).
Since (Gad)y,0 acts transitively on the apartments that contain y, there exists k& € (Gaq)y,0 such that khAﬁ 4 = A7 ; that
is, kh € Ng,,(A” ). Since y is special, there exists j € (Gaq)y,0 that has the same image in W as kh. Thus j~'kh e
A#

* N Stabg,, (y). However, from [10, Propositions 4.4.3 and 4.4.16] we have A" | n Stabg, ,(y) = (A% ,)0 < (Gad)y.0-
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Since (Gad)y,0 is the kernel of the restriction to Staby (Gaq) of ke, G;,o is the kernel of the restriction to Stab, (G")

of k¢, and the map from X*(Z(G")!) to X*(Z(Gnq)?) is injective, by functoriality we conclude that since g € (Gad)y,0
we must have g € Gy . |

Remark 2.3.6. Suppose H and L are connected semisimple k-groups and p: H — L is an isogeny. Suppose x € B(H) =
B(L). We have that p carries Fixy () into Fixy (z) and (resy p) ![Fixy ()], the preimage of Fixy (x) under resy p,
is a subgroup of Fixy (). Moreover, since the map from X*(Z(H)!) to X*(Z(L)") is injective, using the results of
Kottwitz and Haines-Rapoport, we conclude that (resy p) '[ L, 0] is Hy 0. Thatis, for all h € Staby (z) we have h € Hyo
if and only if p(h) € L, 0.

3. POINTS IN THE REDUCED BUILDING ATTACHED TO TAME MAXIMAL K -TORI OF G

As in Section 2, we loosen our restrictions on k: it can be any complete field with nontrivial discrete valuation v and
perfect residue field f such that either (a) f is finite or (b) k is strictly Henselian and quasi-finite. Note that in the latter case
we have that k£ = K. In either case, we have that Gal(k/K) has a topological generator o, K is strictly Henselian, and
K has cohomological dimension < 1 (see [42, I1.3.3.c)] for case (a) and [44, XIII, Props. 3 and 5] for case (b)). If f has
characteristic zero, then we set p = 0.

A K-torus T of G will be called tame provided that T is k¢-split. A main result of this section is the explicit identifica-
tion, up to G-conjugacy, of the point x attached to a tame K -minisotropic maximal torus of G.

3.1. Tame elements in Weyl groups. We let 2y € C’ denote the image of Fy in B"Y(G). (The facet Fy c C was
introduced in Section 1.2.)

If G contains a tame maximal torus, then from Lemma 1.4.2 we know that A* splits over a tame extension. Thus, in this
section we assume that K, the sphttlng field of A* over K, is a tame extension of K. Under this assumption there exists
' € 7, such that K = X = K, and T is the cyclic group Gal(k;/K)/Gal(k;/K). We let & denote the image of o
in this quotient. Denote by Aut(H) the automorphism group of the Dynkin diagram associated to IT and let 75 denote the
image of & in Aut(II).

Definition 3.1.1. An element w € W is called tame provided that p does not divide the order of (w,75) in W x Aut(II).
An element n € W will be called tame provided that its image, under the projection map W — W, is tame.

Remark 3.1.2. Since the order of Aut(H) always divides the order of W, we conclude from Cauchy’s theorem that every
element of W is tame if and only if p does not divide the order of V.

Lemma 3.1.3. Suppose n € W. We have n is tame if and only if p does not divide the order of nG in W x T.

Proof. Recall that K is a tame extension of K. The kernel of the projection map from WxT toW % Aut(H) is of the
form 7 (03) where 7 ¢ A* is an elementary abelian two group and j divides the order of . Since p does not divide the
order of I" and two divides the order of every nontrivial Weyl group, the result follows. [

Definition 3.1.4. Suppose n € W is tame, and let £ denote the order of ng in W x I. Since p does not divide £, we can
form the tame degree ¢ extension K, = k:t"(Z of K: note that K < K,.

3.2. On the o-conjugacy classes of tame elements of ). The results of this section will feel familiar to those who have
studied conjugacy classes in disconnected groups. I was influenced by the presentation in [31].
Let A# denote the parahoric subgroup of A* and A#+ its pro- unipotent radical. Slmllarly, let A# denote the parahoric

subgroup of A* and Aﬁ+ its pro-unipotent radical. Since A* is K-split, we have A# A* n Gxo,o.

Lemma 3.2.1. If n ¢ W is tame, then there exists a K -Borel-torus pair (A',B’) such that

e no(A',B’) = (A’",B’) and

® I € AI(A,, K)
Remark 3.2.2. Since the automorphism no fixes a Borel-torus pair, it is an example of a quasi-semisimple (or quass)
automorphism.
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Proof. Recall that K s a tame extension of K. o

Choose tame 7 € W. Let £ denote the order of n& in YWWxI'. Define the continuous 1-cocycle 7 € Z!(Gal(ki/K), G(kt))

by

7(0?) = Nj(n) = na(n)aQ(n)---JJ_z(n)a]_l(n).
Since the surjection Gal(k/K) — Gal(k;/K) yields H!(Gal(k/K),G) = H(Gal(k;/K),G(k;)) (see [42, 1.5.8] and
use the fact that k; has cohomological dimension < 1), the 1-cocycle 7 defines a twisted K -group, which we denote by ., G.
In fact, since K has cohomological dimension < 1, the groups G and G are isomorphic as K-groups.
Since (Ad(n) o 0)! = of, we have G(K,) = G(K,), -G(K) = G(K,)", and G(f() = G(Kn)ﬁ"g where
= T(O'Z) (Recall that K = k;’ .) Since n € Gm0 0, we have n € G,m o. In fact, since "°n = 7, we conclude that
€ Stab_g (k) (o). From Remark 1.3.1 we have that n, and hence 7, belongs to G'(K,) = ;G'(K,) and hence
n € .G'(K). From Lemma 2.3.5 we conclude that 71 € ;G'(K)z,.0 < G (K ).0-

Since z¢ € B*YG, K,) = B*Y(,G, K,) is fixed by both o and n, it is fixed by no. Since ;G is K-quasi-split,
we can choose a maximally K-split K-torus ;A in G and a Borel K-subgroup B’ of .G containing A’ such that
zoe A/ (A K) = A (;A', K,,)"? and the topologically semisimple element 72 € ;G (K ), o belongs to ; A’ (K).

Since no,A’ = A’ and 71 € ;A'(K), we have 0* A’ = 7~ (no)" A’ = . A’. Similarly, since no,B’ = ;B’ and
ne,A'(K)<,B'(K), wehaveag B =7 (no)’ B’ = B, )

Thus, there is a K-Borel-torus pair (A’,B’) in G such that A’ (K) = A/(K) and B'(K) = ,B'(K). Note that
no(A’,B") = (A’ B ) and zg e A'(;A',K) c A/(;A",K) = A'(A', K). ]

puil 31

Corollary 3.2.3. If n € W is tame, then n is o-conjugate by an element of éa:o,() to an element of flﬁ.

Proof. Recall that K is a tame extension of K.

Thanks to Lemma 3.2.1 we can find a K-Borel-torus pair (A’,B’) in G such that no(A’,B’) = (A’,B’) and 7 ¢
A'(A*, K)nA'(A’, K). Choose h € G, o such that h(A*,B) = (A’,B’). Since 0 (A*,B) = (A#*,B) and no (A’,B’) =
(A’,B’), we then have

h~'no(h)(A*,B) = h 'noh(A*,B) = h 'no(A',B') = "1 (A", B') = (A*,B).
Thus h™tno(h) € A* 0 Gyyo = AL, n
Lemma 3.24. Ifn e W is tame, then n is o-conjugate by an element of éxo,O to an element of A#Sflﬂ = AgA?,.

Proof. Recall that K is a tame extension of K.

From Corollary 3.2.3 we know that there exists h € CNJIO,O such that h™lno(h) € fﬁé.

We identify A in G, by A < G, = Cgo < G,,. Note that A* equals Cémo (A) and A has finite index in Fix, (A*).

The map x — &(z) defines a finite order automorphism of A#. Since A has finite index in Fixy(A#) and H!(T', A)
Hom(T',A) is finite, we conclude that Fix,(A#/A) is finite. Thus, by [46, Theorem 10.1], we conclude that the map
a ~ &(a)'a from A*/A to itself is surjective. Consequently, there exists € A* such that, modulo A, 7(7)'7 is
congruent to the image of h™'na(h) in A*. Let y be an element of A7 that lifts §. Since A* is abelian, we may replace h
by hy to conclude that h™'na(h) € Ag AL, n

112

Lemma 3.2.5. Suppose n € V~\Z is tame and nG has order £ in W x L. If € is a primitive {™ root of unity in K, then n is
o-conjugate by an element of G, o to an element of Ag of the form \(§) where X € X, (A).

Proof. Recall that K is a tame extension of K.

Let & be a primitive /™ root of unity in K& and let £ denote the image of £ing.

From Lemma 3.2.4 we can choose h € G,JUO o such that A~ na(h) € A0A0+

Choose a sequence 0 < r1 < rg < --- such that for all s > 0 we have GIO s * GIO s+ if and only if s = r; for some j.
Here GIO s and Gwo s+ are Moy-Prasad subgroups [32, 33] of G. For s > 0 set A# = A* n Gch s fls = A*n Gwo o+ and
As ot = A#/A# Similarly, define A% = A* n G, s, As+ = A" NGy, s+, and AS ot = A#/AS+

For every j > 1 the linear map 3 — (1 - &)y from the §-vector space A# / A# . toitself is an isomorphism. Thus for
J

every element x € flﬁj there exists y € flﬁj such that & (y) 1oy € A fli.
i
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Applying this to h™'no(h) € AgA?, = AgA* ,» we conclude, using the fact that A* is abelian, that there exists y; € flﬁl
such that if k1 = hy; we have hi'no(hy) € AgAf, A%, . We may repeat this process to conclude that there exists y; € Aﬁfj
such that if h; = (h;-1)y;, then hflna(h ;) € 141()141#+141ﬁ],+ .- Letting j go to infinity we conclude tl~1at there isNan heo €

G (L), 0 such that hi no(heo ) € A#(L)o = AgA¥(L)g+. Here L denotes the completion of K and L = L ® x K denotes

the completion of K note that & extends (continuously) to an automorphism of L whose fixed point set is L.
Choose a € AgA*(L)o+ such that h;!no(he ) = a. Since the order of ng in W x I is £, we have

N7 (n) = n (n)a*(n)—a"*(n)a" " (n) =

Thus, since a = aj(a) for all j € Z31 and O'é(h(x,) = heo, We have
-1 -1 )
a’ =[]o%(a) =[]0/ (hdno(heo)) = Bt NE (n)o" (hoo) = 1.
3=0 3=0

Let @ denote the image of a in A. Since a‘ = 1, there exists A € X, (A) such that @ = A(§). Since X, (A) = X, (A), we
may and do think of ) as an element of X, (A). Thus, a = A(£)a where @ € A#*(L)g+. Since 1 = a* = a* and £ is coprime
to p, we conclude that @ = 1. Thus, a = A\(§) € Ap.

If k # K, in which case L may not be K, we need to show that we can take ho € éxo 0- We proceed as follows. Choose
finite extensions k' < k' of k with k' < K and k" < K such that Gal(k'/k") is isomorphic to Gal(K/K), A is a maximal &’
split torus in G, A* is a maximal &’-split torus in G, zo € B(G, k'), we have h,n € G(k'), 0. € € k', etc. The entire proof
above goes through with A* replaced by A*(k'), A* replaced by A*(k'), etc. Since &’ is complete, we conclude that we
have ho, € G(k: )z0,0 < Gxo 0- [

By taking the reductive quotient, we recover a very special version of the known general result that if g € G such that go
has finite order coprime to p, then g is o-conjugate in G to an element of A:

Corollary 3.2.6. Suppose n € W is tame and nG has order £ in W x T. Let 7i € NG (A) denote the image of n in G. If &
is a primitive (™ root of unity in §, then 7 is o-conjugate by an element of G to an element of A of the form \(€) where

A e XL (A).
Proof. This follows from Lemma 3.2.5 by looking at the reductive quotient. [

Remark 3.2.7. Note that the element A € X, (A) = X, (A) encodes what is known as the Kac coordinates or, equivalently,
the Kac diagram of the image of no in Aut(Lie(G)). Note that since pu(§) = 1 forall € £ X, (A), the element \ cannot be
unique. First introduced by Kac in [21] (see also [20, Chapter X, Section 5] or [22, Chapter 8]), the use of Kac coordinates
for p-adic groups was initiated in [40] and [41]. We will have more to say about Kac coordinates in Section 3.5.

3.3. From tame elements of )V to maximal K -tori in G. Mark Reeder is responsible for the key ideas of this section:
the definition of the element g,, and how to use g, to define the maximal K-torus T, of G. I thank him for explaining
these ideas to me; I am responsible for all errors.

Choose a tame 7 € W, and suppose na has order £,, in W x L.

Recall that @ € k is a uniformizer. Choose a uniformizer 7 € K, such that 7/ = w. Set £ = o(7)/7; note that £ € K is
a primitive /! root of unity. Thanks to Lemma 3.2.5 there exist h € Gz, o and A, € X, (A) such that b= na(h) = A, (€).
Define z,, € A'(A) by z,, = 2o + A\ /[y, define g, € G(K,,)qz, 0 bY gn = A (m)h "I\ ()7L, and define the maximal
K,,-split torus T, of G by T = 9"A*,

Remark 3.3.1. The point z,, = A, () - z is an absolutely special vertex in B4 (G, K,,).
Lemma 3.3.2. The torus T, is defined over K.
Proof. We first compute g;la( n):
9 0 (gn) = An(hAa (1)) (@(Aa (M) A (1) ™)) = Xa (M)A (1) A () An (1) ()™ A (€)™
= A (M)A (§)o (h) A (7€) ™! = An ()X (7€) ™ = n[n™ Aa(m)n A (7€)

/
=na
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where o’ = ”_lAn(w))\n(Wf) € A*(K,). Consequently, o(T,,) = o(9"A#) = 9""@'A# = 9nA# = T, and so T, is defined
over K. [ ]

While the maximal K -torus T, of G depends on many choices, we now show that the G-conjugacy class of T, depends
only on the o- con]ugacy class of the image of n in w.

Suppose w € W.Ifw' is o- conjugate to w, then w’ and w have the same order in W x I. Thus, if w is tame, then every
element in the o-conjugacy class of w is tame as well. Let T/* denote the set of tame elements in . Let W., (resp. ng)
denote the set of o-conjugacy classes in W (resp. wh.

Definition 3.3.3. We let C denote the set of G-conjugacy classes of maximal K-tori in G.

Corollary 3.3.4. The assignment n — T}, from tame elements in W to maximal K -tori in G induces an injective map
Vot ng - C.

Proof. For w; € W with i € {1,2} we let n; € W be in the preimage of w; under the natural projection WW — W. Recall
that to the element n; we can associate g; € G(k¢) such that g; Yo(g))A* = n;A*. Let O; € C denote the G-orbit of
T,, = 9A*.

We first show that the orbit O; depends only on the o-conjugacy class of w;. Suppose T € O;. Then T is ki-split
and so there exists g € G(k¢) such that T = 9A*. Let w’ denote the image of g~'o(g) € Ng (k) (A*) in W. Since T is
G-conjugate to T, there exists k; € G such that T = ¥/T;. Thus 9A# = ¥i9/A# Consequently, there exists n, € Na (k) (A7)
such that gi‘lki‘lg =n, SO k;lg = g;n. Note that

w' =g 'o(g)A* = (k' g) o (k7 g) A% = (gin) Lo (gin)A* = n" o (n) A* = u wio(u)
where u denotes the image of n in W. Thus, w' is o-conjugate to w;.

We now show that if w; is o-conjugate to ws, then Oy = Oa. If w1 is o-conjugate to wo, then there exists n € Nz (A")
such that n™'noo(n)A* = ny A*, or (gon) 1o (gan)A* = gilo(g1)A*. Consequently, there exists ¢ € T (k) such that
gongy 't = o(gangyt). Thus, for all y € T}, we have

-1 -1 -1 -1
o (92191 ) = a(g2ng; )7 _ gang] t7 = 92191y,

That is, ggngl‘1 maps K-points of T3 to K -points of T5. Thus, by Lemma 2.1.1, we have that T} and T> are G-conjugate.
That is, O; = O. We can therefore define a function ¢,: ng — C by sending the o-conjugacy class of w; € W to the
(G-conjugacy class of T);.

Finally, we show that ¢, is injective. Suppose c; and cy are two o-conjugacy classes in W* with vo(c1) = po(ca).
Suppose w; € ¢;. Since @, (1) = s (c2), there exists g € G such that 9T = T, and so 99*A* = 92A#, Consequently, there
exists n’ € Ng (i) (A*) such that g1t ga =n', 50 g1 ga = g1n’. Note that

_ _ _ _ _ -1
noA* = g3l 0 (g2) A = (g7 g2) o (g 92) AF = (gin') Mo (gin)AY =0’ nyo(n') A*.
Consequently, c; = ca. [ ]

Definition 3.3.5. An element w € W* is called o- elliptic provided that the o-conjugacy class of w does not intersect a
proper parabolic subgroup Wy of W where 6 c II, 6 # II, and 0(9) = 6. Here W} is the subgroup of W generated by the
simple reflections corresponding to the roots in . An element n ¢ W will be called o-elliptic provided that its image in W
is o-elliptic. A o-conjugacy class in W is called o-elliptic provided that some (hence any) element in c is o-elliptic.

Lemma 3.3.6. Suppose n € W is tame. We have n is o-elliptic if and only if T, is K-minisotropic. Moreover, if T,, is
K -minisotropic, then xT, = T,

Proof. Let 7i denote the image of n in W.

Suppose n is not o-elliptic. Without loss of generality, we may assume that 1 € Wy for some proper 0 c I with
o(0) = 6. Let My denote the Levi subgroup of G that contains A* and corresponds to 6. That is, Mg is the centralizer of
(Naeo ker(ar))°. Note that (n,7) is tame in Wy » T and we can construct g,, in Mg (k) for which g;;'c (g, ) has image 7
in Wjy. By construction, 9"A# < My is a K -torus which is not K& -minisotropic for G.

Suppose T, is not K -minisotropic. After conjugating by an element of (=, we may assume that T,, ¢ My for some
o-stable proper # c II. Since 9"A* and A* are k¢-split tori in My, there exists m € My (k) such that "A# = ™A#_ As in
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the proof of Corollary 3.3.4 we have that the images of m~'o(m) and g;;'(g,) in W are o-conjugate. Since the image of
m~ o (m) belongs to W, we conclude that n is not o-elliptic.

Suppose T, is K-minisotropic. Since 7}, splits over the tame extension K, the point x,, is the o-fixed point of the
image of A'(T,,, K,,) in B**Y(G, K,,). Hence, we have z,, = 27, . ]

Corollary 3.3.7. w € W' is o-elliptic if and only if the only fixed point for the action of wo on X, (A#)/ X, (Z) is 0.

Proof. Suppose n € W is a lift of w. Since the action of o on A(T, K,,) corresponds to the action of wo on A(A#, K, ),
the result follows from Lemma 3.3.6. ]
Remark 3.3.8. Suppose w € W' is o-elliptic. Since any two lifts of w into Ngi (A7) are A*-conjugate, we conclude that
any two lifts of w into YW < G’ have the same order. Thus, when w € W' is o-elliptic, the £ and K, of Definition 3.1.4
depend only on the o-conjugacy class of w.

Lemma 3.3.9. If w € Wtis o-elliptic, then we may choose gy, in Lemma 3.3.2 such that g, c(g,) = z - An (), for some
Z € Z[).

Remark 3.3.10. Note that g7 '0(gn) € G(Ky,)z, 0. Also, since W < G, we can replace G by G’ in every result of
Section 3.3 to this point. Thus, we can choose h, g, € G', hence z € Zon G'.

Proof. Let Z denote the maximal split torus in the center of Cwo; note that this is the image of Zo N éa:o,() in GIO. Since
w is o-elliptic, the map 1 — wo: A*/Z — A*/Z is surjective. Thus, by using an approximation argument as in the proof of
Lemma 3.2.5, we can produce a € A* and z € Zg such that ano(a)"'n™" = z-"\,(€). In the proof of Lemma 3.3.2 replace
h, which has the property that A\, (£)o(h)~! = n, with  := ah and replace g,, with § := *»(™h~1 to obtain

Gn'o(3n) = ahdn (o (h) o (a)  An(€) ™) =N ana (a) M0 nAn(§)™) = 2P,
Note that " A# = InA#, |

As in [41, Theorem 4.1] is also possible to explicitly describe the reductive quotient at the point x,:

Lemma 3.3.11. Suppose n € W is tame. The map Ad(A\,(7)): G(Kp) g0 = G(Kn)a, o identifies Gy, with G;\(’;(S).

Proof. Since A*(K,,) N G(Kp)zy0 = A*(Kp) N G(Ky)z,0 and A, (§) centralizes A*(K,), it suffices to look at what
happens on root subgroups of G, .

Suppose a € (G, A). Choose & € (G, A*) satisfying resa (&) = a. Since A\, € X,.(A), we have (\,,a) =
(An, @) = (A, 0a) where (, ): X, (A*) x X*(A*) denotes the natural pairing. For all X in the root space g( K, )s, wWe
have o(M(MX) = ¢Pna) . AT (5(X)). Thus, if U, denotes the unipotent subgroup of G corresponding to c, then
Ad(M\, (7)) maps Uy NGy 0 to Uy NGy, o if and only if €A = 1. Since z is absolutely special, the result follows. =

Lemma 3.3.12. Suppose n € W is tame. We have Gi‘g 0 <G, 0

Proof. If k € G)7 o then k € Gy, o for all 7 € R. Thus G2” o < Gooix, /0,0 = G 0- n
When n is o-elliptic, we revisit and sharpen this result in Section 3.5.

3.4. Parameterizing maximal tame K -tori of G. Recall that a K-torus T of G will be called fame provided that T is
E¢-split. Note that if T is tame, then every G-conjugate of T is tame as well. We let C* denote the set of G-conjugacy
classes of tame maximal K -tori of G.

Lemma 3.4.1. The image of the injective map

Po Wfa -C
of Corollary 3.3.4 is C*.
Proof. By construction, the image of ¢, lies in C*. So, we only need to show that if O € C*, then there exists c € Wfo such
that ¢, (c) = O. Fix O € C'. Choose T € O. Let E < k; be the Galois extension over which T splits. From Lemma 1.4.2
we have that A* splits over F, and so K < E. Choose g € G(E) such that T = 9A#. Let w denote the image of g~ o(g)
inW.IfE = k;’j, then ‘Gal(f(/K)‘ divides j and w’ is the image of

(g7 (9)) = (g7 () (g (9))o* (g o (9)) " (g7 a(9)) =g o/ (g) = 1
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in I/T{ Thus, the order of ws € W x T divides J, hence w is tame. Let ¢ denote the o-conjugacy class of w. Note that
ceW! and p,(c) = 0. |

Definition 3.4.2. We will say that G is K-tame provided that C = C*.

Corollary 3.4.3. Recall that we are assuming that K _is a tame extension of K. We have G is K-tame if and only if
W' =W. Moreover, if G is K-tame, then the map ¢,:W._ — C is bijective.

Proof. From Lemma 3.4.1 it is enough to prove that G is K -tame if and only if W' = V.

If K is quasi-finite, then this is [ 13, Lemma 4.2.1]. Thus, for the remainder of the proof we may and do assume that f is
finite.

We first show that we may assume that G is k-quasi-split. Indeed, G is an inner form of a k-quasi-split group G*.
This means there is a k-isomorphism ¢:G* — G such that for all v € Gal(k/k) there exists g, € G*(k) such that
¢y = toyop=Ad(gy) € G}4(k). Since K has cohomological dimension < 1, we may assume that c, = 1 € G for all
v eI =Gal(k/K). Thus y(¢) = ¢ for all v € I and we conclude that o: G* — G is a K-isomorphism that identifies G*
with G. Thus, without loss of generality, we may replace G with G* and assume G is k-quasi-split.

Suppose W = W*. Suppose T € O € C. The action of Gal(k/k) on T factors through T x Aut(II) = Ng(T)/T x
Aut(II). Since W = W*, we conclude that p does not divide the order of W x Aut(II), hence Gal(k/k) acts trivially on
T. That is, T splits over a tame extension of K and O € C*.

Suppose C = C*. It will be enough to show that if p | ’Wt , then there is a K -torus in G that doesn’t split over k. Since
we are assuming that G is k-quasi-split, this follows from Part 1. of [16, Corollary 2.6]. [ ]

Remark 3.4.4. Suppose f is a finite field. In [ 16, Theorem 2.4] Fintzen explores the extent to which the condition Wt=w
can be relaxed when we are interested in maximal k-tori rather than maximal K -tori. One can think of this as asking: when
does the G-orbit of a maximal K -torus of G that splits over a tame extension of K contain a maximal k-torus of G? This
question is addressed in Sections 4 and 5.

Remark 3.4.5. Suppose { is a finite field. In the notation of the proof of Corollary 3.4.3 we have for all € Gal(k/K) that

Ad(gr) = cre = ¢ o Fro (9o Ad(gp-1,5,)) = &yr = &Y (cr) = Ad(g,) 0 ¥(Ad(grr)) = 7(Ad(grr))-

Here we are using that Fr normalizes Gal(k/K) and Ad(g,) = 1 € G for all v € Gal(k/K). Thus we have Ad(gr,) €
G'; ;- Moreover, as groups with Gal( K /k)-action we can identify G with G* where Fr acts on G* by Ad(gg:) o Fr. Since
f is finite, there is an alcove D in B(G™) = B(G) that is Ad(gg, ) o Fr-stable. Choose h € G* such that hC' = D. Since cp; €
H'(Fr, G,) is cohomologous to Ad(h™1)cp, Ad(Fr(h)), we may replace Ad(gr,) with Ad(h™) Ad(gr) Ad(Fr(h))
and assume Ad(gp,) stabilizes C. That is, at the level of K -points all inner forms of G can be thought of as G* with
Fr acting by Ad(g) o Fr for some Ad(g) € Stabg: (C). Moreover, one can show that for every Ad(g) € Stabg= (C),
the group G* with Fr acting by Ad(g) o Fr defines an inner form of G. Since, by Lang-Steinberg, we have (Gaq)c,0 =
(1 - Ad(g)Fr)(Gaa)c,o. it follows that every element of the coset Ad(g)(Gad)c,0 is cohomologous to Ad(g). So, for
example, Ad(g) is cohomologous to an element of Ng, (A): since C' c A(Ad(g) - A), there exists Ad(k) € (Gad)c,0
such that (Ad(g) Ad(k))-A =A.

3.5. Kac coordinates. As discussed in Remark 3.2.7 the element \,, € X, (A) encodes Kac coordinates of the image of
no in Aut(g). We illustrate how this works for an 7 that is o-elliptic.

The point x,, = g+ A,/ = A () - 20 is an element of A’ ( A) and so there exists d € Ng(A) such that y,, := d-2, € C'.
Note that ¥ (z,,) = ¥(20) + (¥, An) /s € Q for all ¢ € ¥. Thus, it makes sense to define j,, to be the least natural number
for which ¢ (x,,) € jinZ for all ¢ € W. The |Al|-tuple (j,, - ¥ (yn)|® € A) defines Kac coordinates of n. If the point x,,

belongs to the closure of C’, then the coordinates are called normalized Kac coordinates. Tables of some Kac coordinates
(or, equivalently, Kac diagrams) and values of j,, may be found in [1], [9], [29], [38], [40], and [41]. An exhaustive list of
Kac diagrams for o-elliptic Weyl group elements may be produced by combining the results of [1, §9] and [15, §4].

Thanks to Lemmas 2.2.2 and 3.3.6, since n is o-elliptic we have that x, is uniquely determined, up to the action
of Ng(A), by j, and the Kac coordinates of n. In fact, we can do better as the following lemma shows (see also [,
Lemma 6.4]).

Lemma 3.5.1. Suppose n € W is tame and o-elliptic. We can choose A, € X, (G’ n A) such that x,, = xg + A/, € C".
In fact, this uniquely identifies \,,.
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Proof. Choose d € Ng(A*) such that y,, = d - x,, € C". Write d = am where m € Ng,,(A) and a € A*. The element a
acts on A’(A) by translation, say p € X, (A). Then y, = am -z, = zg + u + m - A, /¢,,. After replacing the h and \,, that
are used to define g, at the start of Section 3.3 by hm™" and m - \,,, we may assume that y,, = xo + (L + A ) /4. Since
(Lnpt+An)(€) = An(§), we may also replace Ay, with £y pt + App. Thus, Yy, = 2, = 2o + A /Uy, € C'.

Since W is in GIO 0N G’ < G', we can carry out all of the proofs 1nv01v1ng W, Ap, etc. inside of G'. In particular, we
can assume \,, € X,(G’'nA). The statement about uniqueness follows immediately from the fact that since n is o-elliptic,
we have that the G-orbit of x,, intersects C’ exactly once. |

When \,, is chosen such that x,, = xg+\,, /¢, € C', it is often, but not always, true that we can improve on Lemma 3.3.12
by identifying G,,, with G%g. An example where we can’t identify them is discussed in Example 3.6.3: for the group Go
and the element —1 € A; x A; in the Weyl group we have G,,, is isomorphic to SO, while Gjr\g is isomorphic to GLy. In
Lemma 3.5.3 we discuss conditions under which we can identify G,, with G;‘g.

Definition 3.5.2. For a facet F in A’(A), let M((F") denote the Levi K-subgroup generated by A* and the root groups Uy,
where « runs over those roots in ®( G, A*) for which there exists 1) € ¥ such that 1) = resa « and 1) is constant on F.

Lemma 3.5.3. Suppose n € W is tame and o-elliptic. Choose Xy, such that x,, = xo+ A\ /ly € C'. Let F,, denote the
facet in A’'(A) to which x,, belongs. If F,, contains xg in its closure, then we can identify G, with G;}g via the equality

G = M(Fy) e, 0-

xOO_

Proof. If zg = F,, then since zg = xo + A, we conclude that \,, is central. The result follows.

Suppose zg # F},. Since F}, contains x,, = 2o + A\, /¢, we conclude that the intersection of the ray 7 = {zg + )\, |7 > 0}
with F, contains an open segment of #. Thus M (F,) = G and so M (F,)s, .0 = G;\g,& Since the reductive quotient of
M(Fp)z,01s Gz, , the result follows. ]

3.6. Examples. We illustrate the results of this section by looking at a number of examples. Since the tori of interest
depend on the o-conjugacy class of the image of n in W (rather than n), below we label the points and tori that occur by
their corresponding o-conjugacy class in W. Also, recall that when illustrating the various x7 that arise, the isogeny class
of G’ doesn’t matter (see Remark 2.2.1).

Example 3.6.1. Suppose G has ¢ = ® = A,_; and either f has characteristic zero or p does not divide n. Fix a basis
IT = {ay,q,...,a, 1} for the root system of G with respect to the torus A. Let w = [T} 1 w; denote a Coxeter element
where w; is the s1mple reflection in W corresponding to «; € I1. Let ¢ denote the W- -conjugacy class of w in W and let O,
denote the corresponding G-conjugacy class of K -minisotropic maximal K-tori in G. The barycenter of C" is the unique
point in the alcove C’ corresponding to O...

Example 3.6.2. Suppose either f has characteristic zero or p > 2 and G has type C. Without loss of generality we assume
G is Spy. For each Sp, (K')-conjugacy class of K -anisotropic maximal tori in Sp, (/') we identify, in Figure 1, the unique
point in an alcove corresponding to that class.

Fix a basis IT = {a, 5} for the root system of Sp, with respect to the torus A. Assume « is the short root. The
(absolutely) special vertex g of Sp,(K') in Figure 1 lies on hyperplanes defined by affine roots with gradients « and 3,
and the pictured alcove is the unique alcove that contains z in its closure and on which these affine roots are positive. If w,
and wg denote the simple reflections corresponding to o and 3, then the two elliptic conjugacy classes in the Weyl group are
Cy = {wqwg, wpwe } and —1 € Ay x Ay = {wawawawg}. Let O¢, and O_; denote the corresponding Sp, ([ )-conjugacy
classes of K-minisotropic maximal K -toriin Sp,. Since the square of every element in C5 is —1, we can read off the unique
points in the alcove that correspond to O¢, and O_; from [40, Section 8.2.2]. For O¢, the point is ¢, = zo + (3 + 45 )/8,
and for O_; the pointis z_; = g + (& + 2/3) /4.

Example 3.6.3. Suppose either f has characteristic zero or p > 3. For each Go( K )-conjugacy class of K-anisotropic
maximal tori in Gy we identify, in Figure 2, the unique point in an alcove corresponding to that class.

Fix a basis IT = {«, 8} for the root system of Gy with respect to the torus A. Assume « is the short root. The special
vertex o of Go(K) in Figure 2 lies on hyperplanes defined by affine roots with gradients « and £, and the pictured
alcove is the unique alcove that contains xg in its closure and on which these affine roots are positive. If w, and wg
denote the simple reflections corresponding to « and S, then the three elliptic conjugacy classes in the Weyl group are
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FIGURE 1. The embeddings of buildings of tame K -minisotropic maximal tori in type Co

G2 = {wawg, wgwa }, Az = {wawpwawg, Wawawawe } and —1 € Ay x Ay = {wawswawgwawg}. Let Og,, O4,, and
O_; denote the corresponding Go(K')-conjugacy classes of K -minisotropic maximal K -tori in Go. From [4 1, Section 5.1]
the unique points in the alcove that correspond to Og,, O a,, and O_; are: x¢, = 2o+ (3¢ +58)/6; x4, = 0+ (d+23)/3;
and x_; = zo + (& +253) /2.

Lo

FIGURE 2. The embeddings of buildings of tame K -minisotropic maximal tori in Gy

Example 3.6.4. Suppose p > 3 and G has type 2A,. Without loss of generality we assume G is simply connected. For
each G-conjugacy class of K -anisotropic maximal tori in a ramified SU(3) we identify, in Figure 3, the unique point in an
alcove corresponding to that class. Thinking of SU(3, K) as the o-fixed points of SL3(K), the dotted equilateral triangle
is a o-stable alcove of SL3(K). If IT = {c, 8}, then o(«) = 5. The absolutely special vertex, zo, of SU(3) pictured in
Figure 3 lies on the hyperplanes defined by affine roots with gradients « and 5 while the other vertex, z, lies on a hyperplane
defined by an affine root with gradient o + 3. Since p # 2, the reductive quotient at 2y is PGLy and at z it is SLy.

The o-conjugacy classes in T are ¢; = {1, wawg, wpwa}, cw, = {wa,wg}, and ¢y, = {wo = wawgwe}. Note that
wqo acts by —1 x wgw, on X, (A*) and wyo acts by —1 on X, (A*). In particular, both ¢,,, and c,, are o-conjugacy
classes of o-elliptic elements in W. Let Oec,, and O, denote the corresponding SU3(K)-conjugacy classes of K-
minisotropic maximal K -tori in SU3. From [40, Table 9] the unique points in the alcove that correspond to O, and cho
a+p

6

are: re, =g+ and Ty, = X0-
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FIGURE 3. The embeddings of buildings of tame K -minisotropic maximal tori in type %A

Remark 3.6.5. In at least one respect, Example 3.6.4 is a little misleading. In general, facets do not behave well under
extensions that are not unramified. For example, for ramified SU(4) an alcove over K intersects multiple alcoves over K.
It can also happen, even when £k is residually quasi-split, that an alcove over k is not contained in any alcove over a totally
ramified splitting extension (consider, for example, SL; (D) for D an index two division algebra over k).

Example 3.6.6. Suppose either § has characteristic zero or p > 3. Suppose G is a group of type 3Dy. For each G (K)-
conjugacy class of K-anisotropic maximal tori in G we identify, in Figure 4, the unique point in an alcove corresponding
to that class.

Fix a basis II = {1, g, a3, a4} for the root system of D4 with respect to the torus A*. Assume oy corresponds to the
node with three adjacent edges in the Dynkin diagram of D, and that o acts by o (1) = a3, 0(a3) = ag, and o(ay) = ay.
The four o-elliptic o-conjugacy classes in W correspond to the conjugacy classes Fy, Fy(ay), Aa x A, and C3 x A in the
Weyl group of type F}, and we will label them as such (this correspondence is discussed prior to [29, Lemma 4.11] and the
labeling is that of [11, Table 8]). If w; denotes the simple reflection corresponding to o, then from [19, Theorem 7.5 and
§7.22] the F class is represented by wyws, the Fy(aq) class is represented by w3wswiws, the Ag x [12 class is represented
by wiwewqwswowi wowy, and the C'5 x Ay class is represented by wswowi waowsws.

Let C’ denote an alcove of A(A, K), and let 2y denote the absolutely special vertex in the closure of C'. If @; €
X, (A*) ® R denotes the fundamental coweight for «;, then the vertices of C’ can be taken to be xq, 2o + U1, and xq + Uy
where U1 = (W1 + w3 + @4)/6 and Uy = @Wa/3 (see [39, §4.4]). The reductive quotient at x + ¥y is of type A x Ay, and
at o + Uz it is of type As. The unique points in the alcove that correspond to OF,, OF,(a;)> O, 4, a0d Ocyxa, are:
TRy = %0+ 731/2 + 172/4; TFEy(ar) = %0 + 172/2; xAngg =1xq + V9, and TCO3xA; = X0 + 271.

Remark 3.6.7. In the tame case, the location of a point z7, in C' that occurs for a K -minisotropic maximal torus of G
depends only on the existence of /1 roots of unity in /& . Thus, in the tame setting the set of points that occur depends only on
IT and the image of ¢ in the automorphism group of the Dynkin diagram associated to II. It seems likely that no additional
points occur when we remove the tameness assumption, but I don’t know how to prove this. See also Remark 6.3.4 and the
discussion immediately preceding Definition 9.0.2.

3.7. A comment on other vertices in C’. In this subsection we assume that G is K-split; that is, A* = A. See Re-
mark 3.7.3 for a discussion of the situation when G is not K -split.

Suppose y is a vertex in C’. Let ®(y) < ® denote the root system of G, with respect to A. Let G(y) denote the
connected reductive group generated by A = A* and the root groups U, where « runs over those elements of ®(G, A)
belonging to ®(y). As affine spaces, we may and do identify the apartment of A in B*4(G(y)) with A’(A); under this
identification, every G(y)-facet in .A’(A) will be a union of G-facets.

Note that since G is K-split, we have that y is absolutely special in A’(A) c B (G(y)). Let W(y) < G(y),,0 denote
a Tits group for W (y) := Na(y) (A*)/A* = Ng(y)(A)/A. Let C(y)" denote the unique G(y)-alcove in A’(A) that
contains C’. The chamber C'(y)’ determines a set of simple affine roots A(y) for ¥(G(y), A, K,v).
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FIGURE 4. The embeddings of buildings of tame & -minisotropic maximal tori in 3Dy

Suppose n € W(y) is tame and o-elliptic. Let ¢,, denote the order of n and choose a uniformizer 7 € K, = k7 ™ Define
a /' root of unity by o(7) = &m. Thanks to the work above with y in place of ¢, we can find \,, € X, (T) and h € G(y)y.0
such that

e hlno(h) = A\n(€) and

o Yn =Y+ /lneC(y).
If we define g, = A\ (m)h " A (7) ™! € G(y)(Ky)y, 0, then n and g, o (gn) € Na(y)(k,)(A) have the same image in
W (y). The maximal K -torus 9"A = 9"A* of G(y) is K-minisotropic and the unique point in B°4(G(y)) associated to it

18 Yp,.
Example 3.7.1. We offer a cautionary example to show that the point identified in C’ for a given G-conjugacy class of

maximal K -minisotropic tori might not be the point identified in C (y), for a corresponding G(y)-conjugacy class. Adopt
the notation of Example 3.6.3. Suppose y is the vertex at the right angle in Figure 2; i.e., the vertex there with the label
x_1. In Figure 5 we identify the unique point, denoted y_1, in C (y), corresponding to the Coxeter element —1 € A; x A;
in the Weyl group of G(y) = SO4. The dotted lines show the Go-facet structure, and the shaded region is C’. Note that y
and y_1 are Go-conjugate.

To1 =Y [

0 @

FIGURE 5. An embedding of the building of a K -minisotropic maximal torus in SOy (inside G2)

Remark 3.7.2. We continue to assume that G is K -split. Observe that for y # x¢, the pinning (G, A = A* B, {X, }qen1)
of G from Section 1.3 does not define a pinning of G,,. However, if B(y) denotes the Borel subgroup of G(y) generated
by A and those root groups U, where « is the gradient of some ¢ € A(y) with ¢)(y) = 0, then it is possible to choose
a pinning (G(y),A = A%, B(y), {Ya}aer(y)) of G(y) that is compatible, in the obvious sense, with y such that Y}, =



TOTALLY RAMIFIED MAXIMAL TORI AND BRUHAT-TITS THEORY 17

Xj, for all b € II nTI(y). In fact, we can fix pinnings in such a way that if g,y are two vertices in C’ with pinnings
(G(y), A, B(y), {Ya}aeri(y)) and (G(y'), A, B(y'), {Y, }aeri(yy) that are compatible with y and 3’ respectively, then
Y, =Y, forall b e II(y) nTI(y").

Remark 3.7.3. If G is not K -split, then one needs to be more careful. For example, suppose y is a non-special vertex in
the building B(G, K') where G = SU(4) splits over a quadratic extension E of K. In this case y is special in B(G, E),
and there does not exist a full rank reductive subgroup H of G such that y is absolutely special in B(H, K) and G, = H,.
In general, one might hope to choose a subgroup H of G such that (a) the K-rank of H is the same as the K -rank of G,
(b) y is absolutely special in B(H, K'), and (c) we have G, = H,; this is being investigated in [37].

4. ON THE EXISTENCE OF K-MINISOTROPIC MAXIMAL k-TORI OF G

From now until the end of the paper we assume that & is a nonarchimedean local field; in particular, f is finite. Recall
that Fr is an element of Gal(k/k) that lifts a topological generator of Gal( K /k).

In this section we provide, in Lemma 4.0.3, a criterion for determining when the GG-orbit of a K -minisotropic maximal
K-torus of G contains a torus defined over k. Recall that C denotes the set of G-conjugacy classes of maximal K -tori in
G.

Lemma 4.0.1. If O €C, then Fr(O) €C.

Proof. Suppose T € O € C. Choose a strongly regular semisimple v € 7. Note that Fr(T) = Cg(Fr(v)) is again a
maximal K -torus of G. Since Fr(G) = G, the result follows. |

Lemma 4.0.2. If T is a K-minisotropic maximal torus in G, then the torus Fr('T') is also a K-minisotropic maximal torus

in G.

Proof. For all § € Gal(k/K) we have §(Fr(T)) = Fr(6'(T)) = Fr(T) where §' = Fr™'6Fr € Gal(k/K). Thus, Fr(T)
is a maximal K-torus in G. An element y € X*(T) is fixed by Gal(k/K) if and only if Fr(x) € X*(Fr(T)) is fixed by
Gal(k/K); so Fr(T) is also a K -minisotropic torus. |

Lemma 4.0.3. Assume that T is a K-minisotropic maximal torus in G, not necessarily defined over k. Let O denote the
G-orbit of T. There exists a torus in O that is Fr-stable if and only if Fr(QO) = O.

Proof. If there is a torus in O that is Fr-stable, then without loss of generality we may assume Fr(T') = T. This immediately
implies Fr(O) = O.

Suppose Fr(Q) = O. Without loss of generality the point 27 corresponding to T belongs to C’. Since Fr(Q) = O, there
exists h € G such that Fr(T) = "T. Since C” is Fr-stable, we have Fr(z7) € C’. On the other hand, by uniqueness we have
h-xzp = Fr(zr). Thanks to Lemma 2.2.2 we conclude that i - 27 = zp and so h € Stabg(xr). From Lemma 2.3.1 we
know Stabg (x7) = G4, 0T, so without loss of generality we may assume h € G, 9. From Lang-Steinberg, there exists

k € Gy 0 for which h~' = k™ Fr(k). So Fr(T') = T = (*"DRT, which implies Fr("T) = *T. m

Corollary 4.0.4. Suppose v € G is K-elliptic and strongly regular semisimple. If the G-orbit of vy is Fr-stable, then the
G-orbit of v contains a Frobenius-fixed point.

Proof. Let T denote the centralizer of . Since Fr(T) is the centralizer of Fr(v) and Fr(v) is G-conjugate to v, we
conclude that the G-orbit of T is Fr-stable. Thanks to Lemma 4.0.3 there exists & € G such that "T" is Frobenius fixed.
Replacing y with "y we may and do assume that v € 7" and T is defined over k. Note that Fr(~) € T and Fr(~y) = "y for
some 1 € G. Since 7 is strongly regular semisimple, we must have n € Ng(7T') < Stabg(z7). From Lemma 2.3.1 we
know Stabg(z7) = G, 07, so without loss of generality we may assume n € G, o. From Lang-Steinberg, there exists
J € Gz o for which n~!t = j7'Fr(4). The element /vy is Frobenius fixed. [

Remark 4.0.5. When the derived group of G is simply connected, Corollary 4.0.4 may be derived from [28, Theorem 4.1
and Lemma 3.3].

5. ON THE EXISTENCE OF K -MINISOTROPIC MAXIMAL k-TORI OF (G IN THE TAME SITUATION

Note that Fr 'oFr = 0. Moreover, Fr acts on the set of tame extensions of K as well as W and A*.
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5.1. A simple criterion. In this section we translate, in the tame setting, the criterion of Lemma 4.0.3 into a condition on
the o-conjugacy classes in the Weyl group.

Lemma 5.1.1. If O € C', then Fr(O) € C".

Proof. Suppose T € O € C'. Let E be a tame extension of K over which T splits. Thanks to Lemma 4.0.1 we know that
Fr(T) is again a maximal K -torus of G. Since Fr(T) splits over the tame extension Fr(F) of K, we have Fr(0) eC'. =

Since ¢ is a generator for Gal(k/K), it also stabilizes every tame extension of K; in particular, it stabilizes K. Let
Wfaq denote the set of o/-conjugacy classes in W* and let pyq: Wfoq — C denote the resulting map from the set of

o?-conjugacy classes in Wt to the set of (G-conjugacy classes of maximal K -tori in G.
Ford e Zs1 and w € W set

Nyg(w) = w- U(w)...g(d—2)(w) .J(d—l)(w)‘
The map N, induces a well-defined map from W.. to W._, and Fr defines a map from W.._, to W._.
Lemma 5.1.2. The diagram below commutes.
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Moreover, each map is a bijection.

Proof. The statement (and proof) of Lemma 3.4.1 holds when o is replaced by any generator of Gal(k;/K ), so we conclude
that all three vertical arrows are bijections.

Suppose ¢ is a o-conjugacy class in W*. Then there exists g € G(k;) such that the image of g~'o(g) in W is an element
of ¢. We have (Idog,)(c) = {"A#|h € G}. The image of g"'09(g) = (¢ ' (9))o(g o (g))-—-09 (g7 o (g)) in W
belongs to N, (¢) and so

(001 0 Ng)(€) = poa(Ny(c)) = {"A* | € G}.
Thus p5q 0 Ny = Id ogps,.

Suppose ¢ is a o?-conjugacy class in Wt Let O = woa(€) € C. There exists § € G(ky) such that the image of
G '09(g) in W is an element of & We have (Fr o pq4)(¢) = Fr(O) = {""(9A#|h ¢ G}. The image of Fr(§ '0?(g)) =
Fr(§) 'o(Fr(§)) in W belongs to Fr(¢) and so

(2o 0 T1)(E) = 0o (Fr(@)) = {""PA* [h e G).

Since this is Fr(O), we have 4 o Fr = Fr o @,4.
Since G is Fr-stable, the map Fr~1:C' — C' is the inverse to Fr:C* — C*. The result follows. u

Corollary 5.1.3. Suppose c € ng is o-elliptic. There exists a torus in @, (c) that is Fr-stable if and only if ¢ = (FroNg)(c).

Proof. From Lemma 5.1.2 we know that Fr(¢,(c)) = ¢ (c) if and only if ¢ = (Fr o N;)(¢). The result follows from
Lemmas 3.3.6 and 4.0.3. ]

5.2. An application of the rationality of Weyl groups. A finite group H is said to be rational provided that for any
h € H we have that k7 is H-conjugate to h whenever j is relatively prime to the order of h. There are many equivalent
definitions of rationality, and the nomenclature is explained by the fact [43, Section 13.1] that H is rational if and only if
every irreducible character of H takes values in Q.

It is known that every Weyl group is a rational group (see, for example, [15, Lemma 2.1.2], [26, Section 3 of Chapter 2
and Chapter 5], or [45, Theorem 8.5]).

Corollary 5.2.1. If G is K-split, then the diagram
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commutes and each map is a bijection. Here WP is the set of W—conjugacy classes in W*. Moreover; the vertical maps are
independent of the choice of topological generator o of Gal(ki/K). When G is k-split, all maps are independent of the
choice of topological generators Fr for Gal(K |k) and o for Gal(k¢/K).

Proof. Since G is K-split, we have A = A* and ¢ acts trivially on 1¥. Thus, Ny(w) = w for all w € w.

Choose w € W*. Since W is a rational group and gq is relatively prime to the order of w, we have that w? and w are
conjugate in W. Thus Ny(c) =cforall ce ch The claims about the commutativity of the diagram and bijectivity of its
maps follow from Lemma 5.1.2.

We now show that the vertical maps are independent of the choice of the topological generator . Let o’ be another
choice of topological generator for Gal(k;/K). Suppose w € ¢ € WZ. Choose g € G(k;) such that g~*o'(g) € Nk (A)
has image w in . Let E/K be the splitting field of 9A.. Set ¢ = [E : K. Without loss of generality, we may assume that
g € G(E). Note that for all k € Z, the elements (¢ 0 (g))* and g~ 'o"(g) of Ng(g)(A) have the same image in W,
namely w”. Putting k = ¢, we conclude that w’ = 1. Let & (resp. ") denote the image of o (resp. ¢') in Gal(E/K). Since
o' generates Gal(E/K), there exists m € Zsy with (m,£) = 1 such that ' = ™. Putting k = m, we conclude that the
image g 10'(g) € Ng(g)(A) is w™. Since m is relatively prime to the order of w and W is a rational group, w and w™

are conjugate in W. Thus w™ € c. We conclude that ¢, (c) = ¢,/ (c) = “(9A). )

Suppose now that G is k-split. In this case any choice of Fr acts trivially on WW; hence the horizontal maps are both the
identity. Hence, when G is k-split, the maps in the diagram are independent of the choice of both Fr and o. [

Remark 5.2.2. Suppose G is not K -split and o' is another choice of topological generator for Gal(k/K). If the image of
o and ¢’ in Aut(II) agree, then by arguing as in the proof of Corollary 5.2.1 it follows from [1, Proposition 2.6] that ¢
and ¢, induce the same map from W' to C*.

Remark 5.2.3. If G is k-split, then from Corollary 5.2.1 the condition ¢ = (Fr o N;)(c) of Corollary 5.1.3 holds for every
tame elliptic conjugacy class ¢ of the Weyl group. However, if we remove the assumption that G is k-split, then this
condition is no longer guaranteed to hold. For example, suppose k' is an unramified degree three extension of & and let
G = Ry Ga. As a K-group, we have G 2 Ga x Gg x G2, and Fr-acts by cyclically permuting the three copies of Go.
By placing one of each of the three distinct elliptic conjugacy classes A; x A1, Ay, and G on each of the three G5 factors
of G, we obtain an elliptic conjugacy class in the Weyl group of Ry, Go which is not Fr o N;-stable.

5.3. Cautionary example. Suppose T is a maximal K-torus in G. We know from our work above that if T is K-
minisotropic and Fr(GT) = OT, then “T contains a k-torus. At the other extreme, we also know that if T is a maximally
K -split maximal K -torus in G, then T is Fr-stable and, since every maximal k-split torus of G is contained in a maximally
K-split maximal k-torus of G, T contains a k-torus.

These examples and the results above suggest that there might be an elegant general theory relating the existence of k-
tori in an orbit O in C* to the Fr-invariance of O. In this section we present an example showing that the natural condition
Fr(O) = O does not guarantee that O contains a k-torus.

Example 5.3.1. Suppose that the residual characteristic of k is larger than three and let H be a connected reductive group of
type Ay such that H" = SL; (D) where D is a division algebra of index 3 over k. Recall that we may identify H = H(K)
with SL3(K). Let A denote a maximal K-split k-torus in H; it is unique up to H™"-conjugacy. Let W = Ng(A)/A.
Suppose C is the alcove in A(A) c B(H) for which C™* # @. Let {19, 11,12} be the simple affine /& -roots determined
by H, A, v, and C. We assume that the v; are labeled such that Fr(1;) = ;41 mod 3.

Let T denote a maximal K -torus in H that corresponds, under Corollary 3.4.3, to the W—conjugacy class of the simple
reflection Wy, - Since this W—conjugacy class is Fr-stable, from Corollary 5.2.1 we conclude that Fr(T) is H-conjugate
to T. Since T splits over a quadratic extension of K and all maximal k-tori in G correspond to extensions £ < D whose
ramification degree over k is not 2, we conclude that /T’ cannot contain a k-torus.
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5.4. Results when G is K-tame. We gather here the statements of the main results of this section under the hypothesis
that G is K-tame. Recall that when G is K-tame we have W = W' and C = C* (see Definition 3.4.2 and Corollary 3.4.3).
The following three results follow immediately from Lemma 5.1.2, Corollary 5.1.3, and Corollary 5.2.1.

Lemma 5.4.1. Suppose G is K-tame. The diagram below commutes.
- N, -
W., —% W.,

w.,
J/Sl’cr J/‘Paq J:Pa
> C

Id F
C y C -

Moreover, each map is a bijection. [

Corollary 5.4.2. Suppose that G is K-tame. Suppose c € WNU is o-elliptic. There exists a torus in v, (c) that is Fr-stable

if and only if ¢ = (Fr o N)(c). |
Corollary 5.4.3. If G is K-tame and K -split, then the diagram
W. —s WL
[ ]
c —¢C

commutes and each map is a bijection. Here W.. is the set of W—conjugacy classes in W. When G is K -tame and k-split,
all maps are independent of the choice of generators Fr for Gal(K [k) and o for Gal(ky/K). [ |

Corollary 5.4.4. If G is K-tame and k-split, then every G-orbit of K-minisotropic maximal K -tori in G contains a torus
defined over k.

Proof. Since G is k-split, the top horizontal map of the diagram in Corollary 5.4.3 becomes the identity. The result follows
from Lemma 4.0.3. ]

6. RESULTS ABOUT K -MINISOTROPIC MAXIMAL k-TORI IN G

Suppose that T is a K -minisotropic maximal k-torus of G. The set of Fr-stable tori in the G-orbit of T is denoted
Oé‘i. In this section we parameterize three sets related to O?: we parameterize the G'"-conjugacy classes in Oé,i; we
parameterize the k-stable-conjugacy classes in Oé‘i (see Definition 6.4.1); and we parameterize, up to GF*-conjugacy, the
k-embeddings of T into G (see Definition 6.2.1).

Recall from §2.2 that we can associate a point 27 in B*4(G) to T'. Since T is defined over k, we have Fr(7) = T and
so by uniqueness we conclude that 7 is Frobenius fixed. Thus, we can assume z7 € C'™" ¢ B*4(G)'™ = Bd(G, k).
Recall that F is the unique facet in B(G') whose image in B4(G) contains z7.

6.1. Points in the reduced building associated to /K -minisotropic maximal k-tori of G. Suppose T is a K-minisotropic
maximal k-torus of G.

Lemma 6.1.1. The set -
GFI“ . xT n ClFr

has cardinality one.

Remark 6.1.2. The proof below also works if % is not residually quasi-split, but we must replace the alcove C'F" in
B4(G, k) with an alcove D in B"4(G, k) that is contained in the closure of C’. The statement would then read:

G (k) - 7 n D has cardinality one.

Proof. From Lemma 2.2.2 we know that G - 1 N C' has cardinality one, and so G - 7 n C'™ has at most one point.
Since zp € C'F*, the result follows. [ ]

Lemma 6.1.3. Suppose T’ is a maximal k-torus in G. If T is G-conjugate to T, then there exist h € G and k' €
Stabg(27) such that *"T' = T.
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Proof. Since T' is G-conjugate to T, we have that T is a K -minisotropic maximal k-torus in G. Thus, we may associate
to T/ a point 27+ in B*Y(G, k). Choose h € G** such that hagr € ',

From Lemma 2.2.2 we know hzrv = z7. Since T and T’ are G-conjugate, there exists k' € G such that T = ¥’ So
xr = k'hxy = k' xp, which implies k' € Stabg (). ]
Lemma 6.1.4. Recall that in this section xr is Frobenius fixed.

G cxr N Bred(G)Fr _ GFr T

Proof. 1t is enough to show that G - 7 n B"4(G)™ ¢ G - 7. Suppose g € G such that g - zr is Frobenius fixed. Then
g - x7 belongs to some alcove of B°Y(G)™ and so there exists h € GF* such that h'g - 27 € C'*". From Lemma 2.2.2 the
point h_lg -xp mustbe xpandsog-xp=h-xp € G .z [ ]

6.2. k-embeddings of T into G. For many questions in harmonic analysis we want to understand the ways to k-embed
T into G up to G*"-conjugacy.
Definition 6.2.1. Suppose S is a maximal k-torus in G. A k-embedding of S into G is a map f:S — G such that

(1) there exists g € G such that f(s) =9 for all s € S and

(2) fisak-morphism.

Remark 6.2.2. In Definition 6.2.1 it would be more standard to take g € G(k). However, since f is completely determined
by what it does to any strongly regular semisimple element of 7", from Lemma 2.1.1 we can restrict our attention to g € G.

If f: T -» G is a k-embedding, then f is completely determined by where it sends any given strongly regular semisimple
element of 7', So, we begin by studying strongly regular semisimple elements.

Definition 6.2.3. Suppose v € G'" is strongly regular semisimple. An element v' € G is k-stably-conjugate to ~ provided
that there exists g € G such that %y = 7. Let O,’j denote the set of elements of GI that are k-stably-conjugate to .

Definition 6.2.4. T :=T NG

In the notation of Corollary 2.3.4 we have that T = n[ Ty ]Tp. In general, T is neither T nor is it the parahoric subgroup
Tjy. For example, for p > 2 and a K -minisotropic maximal k-torus in SLy that splits over a quadratic ramified extension,
we have T'/TF is trivial and T /Ty is isomorphic to Z/27. However, for p > 2 and a K -minisotropic maximal k-torus in
PGLs;, that splits over a quadratic ramified extension, we have T'/T is isomorphic to Z/27Z and T /Ty is trivial.

Definition 6.2.5. For a Fr-module A, let Ag, denote the Fr-coinvariants. That is
Ap = A/(1-Fr)A.
Thanks to Lang-Steinberg, we have Ty < (1 — Fr)Tr < Tp. We can have Ty # (1 - Fr)Tr and (1 - Fr)Tp + Tr; to see
this suppose p > 3 and consider ramified elliptic maximal k-tori in SL3 for various choices of k.
Definition 6.2.6. Let Ty = Tx/Tp.
Since (1 - Fr)Tp = Ty, we have Tr = (Tr ). We will often use this identification.

Lemma 6.2.7. Suppose vy € T'" is strongly regular semisimple. There is natural bijection between the set of G¥*-conjugacy
classes in (’)]7~C and the Frobenius coinvariants of T'r. That is

Os/GFr-conjugacy — (Tr)p-
Remark 6.2.8. Lemma 6.2.7 implies that (T ¢ ), is a finite group. This also follows from the fact that TS, = (1 - Fr)T5..

Proof. Ify' € OF, then there is an € G such that v = . Since T is k-stably-conjugate to C ('), thanks to Lemma 6.1.3
there is a g € GT* such that the point in B7°4(G) attached to both T and 9(Cq (7)) is 7. That is, we may replace ' by
9hy and assume, thanks to Lemma 2.3.1, that o/ = ¥y for k € GFp. Since Fy = Fr(%y) = ")y, we have k™ 'Fr(k) € Tr.
Moreover, if 7/ = ¥ for k' € G, then k™'k" € T which implies that & = ks for some s € Tp. Hence (k') 'Fr(k') =
s Y (E71Fr(k))Fr(s) = (K 'Fr(k)) (s 'Fr(s)). That is, we have a well-defined map \: O,’j >Tr/(1-Fr)Tr = (TF) -

On the other hand, if ¢ € Tr, then, thanks to Lang-Steinberg, there is a k € Gr such that k™ Fr(k) = ¢. Note that
ky e O’; and \(%y) is the image of ¢ in Tr/(1 - Fr)Tp.
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To complete the proof, we need to show that if v1, 7o € Of;, then 7, is G¥"-conjugate to 7o if and only if A(71) = A(72).
As above, after possibly conjugating by an element of G, we can write ; = %y with k; € G F,0-

Suppose A(71) = A(72). Then there exists s € T such that (k7 Fr(k1))(s™'Fr(s)) = ky'Fr(kz). Note that v, =
’“Skil'yg and Fr(k:lskzgl) = kysky !, s0 v is G™"-conjugate to s.

Suppose 7; is G'*-conjugate to ;. Then, thanks to Lemma 6.1.3, there exists h ¢ GE{O such that "y = ~5. Note that
k;lhkl € Tp. Thus, there is a t € T such that kglhkl =t1, or ko = hkqt. Note that

ky'Fr(ky) = t Yk A B () Fr(k)Fr(t) = (k7 Fr(k)) (¢ Fre(t)).
Hence, A(71) = M\(72). ]

Corollary 6.2.9. Suppose t1,ta,...,tq € Ty represent the elements of (T )y and choose k; € G such that k; e (k) =
ti. Then
{fi: T > G| fi(t) ="t forteT}

is a complete set of representatives for the G¥*-conjugacy classes of k-embeddings of T into G.

Proof. If v € T is strongly regular semisimple, then the k-embeddings of T into G are in one-to-one correspondence
with the G**-conjugacy classes in (9’;. [ ]

6.3. K-minisotropic maximal tori in G and the () group. The original aim of this subsection was to prove Corol-
lary 6.3.10, which is used in the proof of Lemma 6.4.7 . The derivation of Corollary 6.3.10 gave rise to some interesting
results about the §2 group. We develop some of these results here.

Recall that C' is a Fr-stable alcove in B(G) such that F ¢ C and 7 belongs to the image of F' in B'*Y(G). In this
section we show that 7'/T' is isomorphic to 2 = Stabg (C')/Gc o and that Stabgr: (F) = TFGE .

We begin by recalling a known fact, though I am not sure where it is proved in the literature. 7

Lemma 6.3.1. Suppose H is a facet in B(G) with H c C. There is a natural group homomorphism
¢:Stabg(H) - 2
with kernel G . Moreover, if H is Fr-stable, then ¢ is Fr-equivariant and o descends to a group homomorphism
@:Stabgr (H) — QF,
which has kernel Gll?f,o-

Proof. Suppose t € Stabg(H). Since H c C, t- H = H, and all Borel subgroups in a connected reductive group are
conjugate, there exists k € G such that kt - C' = C that is, kt € Stabg(C). Fix such a k. If &' € G also has the
property that k't - C = C, then
(K't)(kt) ' =K'k e G

and

k™ -C=(Kt)(kt)™-C=C.
Since parabolic subgroups of a reductive group are self-normalizing (see also [ 14, Lemma 4.2.1]), we have k'k~! € Gep.
So, (k't)(kt)~! e Gcy. Thus, as G¢ g is normal in Stabg(C'), we have k't € Go okt = ktGe . Consequently, we have a
function ¢: Stabg (H) — Stabg(C)/G o defined by t — ktGcp.

To see that ¢ is a group homomorphism, fix ¢,t' € Stabg(H) and choose k, k" € G such that ¢(t) = ktGc o and
o(t') = K't'Gepo. A calculation shows that ¢(t)p(t') = (k'%")(tt")G ¢ 0. Since (K'%")(tt')C = C, with k'’ € G o, we
conclude that p(tt") = p(t)p(t').

By construction, the group homomorphism ¢ has kernel G .

Suppose now that H is Fr-stable. We have Fr(¢(t)) = Fr(k)Fr(t)Fr(Gc). Since H and C' are Frobenius stable, we
have Fr(k) e Gy and Fr(Gc ) = G . It follows that Fr(p(t)) = Fr(k)Fr(t)Geo = o(Fr(t)).

That ¢ descends to a map on Frobenius-fixed points

©: Stabgr (H) — StabGn(C’)/GE{O

with kernel G%,o follows by repeating the initial part of this argument with all the groups replaced by their Frobenius-fixed
points. [
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Lemma 6.3.2. There is a natural surjective, Fr-equivariant, group homomorphism from T to () with kernel Tp.

Proof. From Lemma 6.3.1 there is a Fr-equivariant map ¢: Stabg (F') —  with kernel Gr. Since T' < Stabg (F') and T’
is Fr-stable, we may restrict ¢ to 7" to obtain a Fr-equivariant group homomorphism : 7" — (2.

We first show that T = ker(y). If t € Tp, then t~! ¢ Grp and t7lt-C = C. So, ¢(t) = t‘ltGC,o = G¢,, and we
conclude that ¢ € ker(¢). On the other hand, if ¢ € ker(y), then there exists k € G such that kt - Gco = Gco. This
means tGco = k’leO c GFrp. We conclude that t € G, hence t is in T.

We now show that ¢ is surjective. Suppose w € §2 and choose g € Stabg(C') such that w = gG¢ 9. From Lemma 2.2.2
we conclude that gF' = F'. Hence, from Lemma 2.3.1 there exist ¢t € T"and k € G g such that g = k. We conclude that
o(t) = w. ]
Corollary 6.3.3. The point xr is fixed by §.

Proof. Suppose g € Stabg(C'). From Lemma 6.3.2, there exist ¢ € 7" and k € G’ such that tk = g. Since kzr = 7 and
txr = x7, we conclude that gz = 7. [ ]

Remark 6.3.4. Since the point x7 is independent of isogeny type (see Remark 2.2.1), we see that 7 must be invariant under
the action of Q,q = Stabg,,(C')/(Gad)c,0- So, for example, for groups of type A,, the point 27 must be the barycenter of
C'.

Remark 6.3.5. If G is almost simple, then Fr(z7) = xp. In the tame case, this follows from [, Proposition 6.8]. To see that
this holds in general, express z7 in barycentric coordinates: xp = 3 ea Ty vy Where the vy, are the vertices of C,zy >0,
and Y zy = 1. As noted in Remark 6.3.4, we have w(z7) = o7 for all w € Q.q. Thus, zy = 7,y for all w € Q,q and
) € A. By case-by-case checking, one sees that this implies that xy, = x,(,, for all automorphisms 7 of the affine Dynkin
diagram. Since Fr(C') = C, we conclude that Fr(A) = A, and hence Fr induces an automorphism of the affine Dynkin
diagram. Thus, Tp, () = Ty for all 1 € A, and so Fr(xr) = 7. If G is tame, this implies that every G-conjugacy class of
K -minisotropic maximal K -tori contains a torus defined over k. If G is not almost simple, then the example discussed in
Remark 5.2.3 shows that there exists zp such that Fr(xp) # z7p.

Lemma 6.3.6. We have
(Tp)p 2 Tp- (1-Fr)T/(1 - Fr)T.

Remark 6.3.7. Since taking torsion points is left exact while H! (Fr,Tp) = ((T F)Fr)tor and Hl(Fr T) = (Twr)tors We
conclude from Lemma 6.3.6 that the inclusion T — T induces an injection H! (Fr, T) - H!(Fr, T).

PI"OOf. Since TO = (1 - FI‘)T(), we have (TF)Fr = TF/(l - FI')TF = (TF)Fr
Fix a strongly regular semisimple v € T'". As proved in Lemma 6.2.7, the map \: (’)]Vc > Trp/(1-Fr)Tr = (TF)p:
descends to a bijective map from O’; /G¥-conjugacy to (Tr)p;. Define
wTrp/(1-Fr)Tp - Tp-(1-Fr)T/(1-Fr)T
by pu(t(1 - Fr)Tr) = t(1 - Fr)T for t(1 - Fr)Tr € (Tr ). This map is surjective, and so the map X := f o A from the set
of G™-conjugacy classes in (’)k to Tr - (1 = Fr)T/(1 - Fr)T is surjective. It will be enough to show that \is 1n]ectlve
Suppose 1,72 € (’) and )\('yl) = A(72). After possibly conjugating by an element of G™*, we can write ; = *+ with

ki € Gpp. Since A(71) )\(ny) there exists s € T such that (k7 Fr(k1)) (s Fr(s)) = k3 Fr(k2). Note that v, = Raskyly,
and Fr(kyskyt) = ky1sky!, so 41 is GF'-conjugate to 7o. [ ]

Lemma 6.3.8. The sequence B
1 — (Te)r — (T/To)re — Qe — 1

is exact.

Proof. Since
1 —Tp—T/T) — Q—1
is an exact sequence of Fr-modules and taking coinvariants is right exact, it is enough to check that the map (Tr)m —
(T/To)¥y is injective. Note that by exactness the image of (Tg)g in (T'/T0)r is ker((T/To) r = Oy ).
We first show that T - (1 - Fr)T/(1 - Fr)T = ker((T/To)r = Q).
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“>” Suppose t € T such that the image of t in (7'/T ) . belongs to ker((7'/To) r- = Qp:). As in the proof of Lemma 6.3.2
we may choose k € G such that kt € Stabg(C'). Since the image of ¢ in (T'/Tp)p, belongs to ker((T/To)m — Qpr)
and (1 - Fr)Gro = Gpo, we have kt € g 'Fr(g)Ge,o for some g € Stabg(C'). Again using Lemma 6.3.2 we can write
g =k's where k' € G and s € T. So, kt € s (k") ' Fr(k")Fr(s)Gc,o. Since Gog < Gro and Fr(s)F = F, after some
manipulation we arrive at

tsFr(s™t) = stsFr(s s e kT (KT G 0 ¢ Grp.
Consequently, t € T - (1 - Fr)T. Thus, since (1 — Fr)Ty = Ty, we have that ker((T/Tp)r — ) is contained in
Trp-(1-Fr)T/(1-Fr)T.

“c” On the other hand, if ¢ = ¢(1 — Fr)T with ¢ € T, then from Lemma 6.3.2 we know that the image of ¢ in {2 is trivial.
Thus TF . (1 - FI')T/(l - FI')T = keI‘((T/To)Fr g QFr)

From Lemma 6.3.6 we conclude that ker((7'/Ty)r = Q) and (Tp ) have the same finite cardinality. The result
follows. [ ]

Remark 6.3.9. If G is semisimple, then the natural injections 7" - T" and Stabg(C') - G induce isomorphisms
(T/Ty)E: = tor((T/Tp)g:) 2 H (Fr, T') and Qp, = tor(Qr,) 2 H' (Fr, G).

Under these isomorphisms, the map (7/Ty) gy — Q. becomes H! (Fr, T') — H! (Fr, G). Since the cardinality of ker (H' (Fr, T") —
H'(Fr,G)) measures the number of rational classes in the k-stable class of any strongly regular semisimple element of
T Lemma 6.3.8 follows from Lemma 6.2.7.

Corollary 6.3.10.
Stabgr (F) = T™ Gy,

Remark 6.3.11. This can also be stated as Stabgr: (z7) = T G

z7,0°

Proof. Suppose g € Stabgr (F'). From Lemma 2.3.1 we may choose ¢t € T" and k € G such that g = tk. Since
tk = g = Fr(g) = Fr(t)Fr(k), we conclude that ¢t 'Fr(¢) € Tp. Since ¢t 'Fr(t) - Ty maps to the identity in €2, from
Lemma 6.3.8 it is in the image of the map (Tr)r. — (T/Tp)r:. Thus, we conclude that there exists s € Tr < G F0 such
that ¢~'Fr(t) = s 'Fr(s) mod Tp; replacing ¢ by ts~* we conclude that t"'Fr(t) € Ty. Since H!(Fr, Tp) is trivial, there
exists € Ty such that ¢t 'Fr(¢) = " 'Fr(r). Replacing ¢ by t7~!, we conclude that ¢ € T**. Note that g € tG%\fO. ]

Alternate Proof. The short exact sequence
1 —Tp — T xGpo—> Stabg(F) — 1
gives rise to the long exact sequence
1— Tp — T x Gy — Stabgr (F) — H' (Fr, Tp) — H'(Fr,T x Gpyp).
Since H!(Fr, T x G ) = H'(Fr,T) and, by Remark 6.3.7, H! (Fr, Tr) injects into H' (Fr, T), the result follows. m
Definition 6.3.12. Set Ot ,, = Ad(G,,0)T and let Olcr,xT denote the set of Fr-stable tori in O ;..

Corollary 6.3.13. The injection O.’i‘@T > (95} induces a bijection between the set of GE;O-conjugacy classes in O%7xT

and the set of G**-conjugacy classes in (’)!}‘.

; Fr
Proof. Since every G,

C is a G™-conjugacy class in O%., then C n (91} 2y 18 @ single Gngyo—conjugacy class.

o-conjugacy class in O!% . determines a G -conjugacy class in OL., it is enough to show that if

Suppose C is a GF'-conjugacy class in (’)’{1. We first show that C n Ol_“[‘ »p 1 nonempty. Choose T’ € C. Let x7 denote

the (unique) point in B4 (G)™ associated to T". Since T’ = 9T for some g € G, we conclude that 27+ = g - z7. Since
G* acts transitively on the alcoves in B*4(G), there exists b € G* such that h - x7/ = zup belongs to C'**. From
Lemma 2.2.2 we conclude that h - x7r = hg - x7 = x7. Since b’ = 9T and hg -z = xp, from Lemma 2.3.1 we conclude
that there exists j € Gz, 0 such that W' =T, That is, C N (91}7” is nonempty.

Suppose 61,62 c Cn O’]i“,mT are two Ggrﬂo—conjugacy classes. Choose T; € ;. Since T, T € C, there exists g € G'™
such that YT = Ts. Since z7, = x, = x7, we conclude that g € Stabgr: (z7). From Corollary 6.3.10 we conclude that
there exists j € G?T,O such that 7Ty = Ts. That is, €} = . [ ]



TOTALLY RAMIFIED MAXIMAL TORI AND BRUHAT-TITS THEORY 25

Corollary 6.3.14. If I' = C, then for every Fr-stable facet H contained in the closure of C' we can assume that the
representatives for Stabge (H)/ G%,O lie in T™.

Proof. Suppose H is a Fr-stable facet that is contained in the closure of C. If h € Stabgr: (H ), then there exists k € G?{r’o
such that hkC' = C'. From Corollary 6.3.10 we can assume that hk ¢ TFrGgo. Thus,

hGifo = hkGl o c TG Gl o = T G o. m
A similar proof shows:

Corollary 6.3.15. Suppose T is any K-minisotropic maximal K -torus, not assumed to be defined over k. If F' = C, then
for every facet H contained in the closure of C we can assume that the representatives for Stabg(H)/Gpp lieinT. m

6.4. k-stable conjugacy and G -conjugacy of tori. In this section we analyze the Fr-structure of “T" where T is a
K -minisotropic maximal k-torus. Recall that (’):’} denotes the set of k-tori in G that are G-conjugate to T.

Definition 6.4.1. If T/, T € O}, then we will say that T" is k-stably-conjugate to T" provided that there is a g € G such
that YT/ = T” and Ad(g): T" - T" is a k-morphism. If T/, T" € OX., we will say that T is G¥"-conjugate to T" provided
that there is a g € G'™ such that 9T = T".

Note that if two tori T1, Tg € OF are k-stably-conjugate, then there is an x € G such that %(T (k)) = Ta(k).

Remark 6.4.2. As in Definition 6.2.1 it would be more standard to define the notion of k-stably-conjugate in Definition 6.4.1
by taking g € G(k). However, Lemma 2.1.1 allows us to restrict our attention to g € G.

We first describe (’):’} /G¥-conjugacy, the set of rational conjugacy classes in (’);‘1. For this we introduce the group Wr
and the notion of Frobenius conjugacy.

Definition 6.4.3. Set W = Ng(T)/T and Wr = Ng,, ,(T) /Ty where T is the parahoric subgroup of 7',

Remark 6.4.4. Note that, in general, Wy is not isomorphic to either Wz = Ng(T)/T or Ng(T)/Tr. Indeed, for SLy and
p > 2 we have that W has order four while both Wr and No(T)/Tr = Ng,.,(T)/TF have order two.

Definition 6.4.5. Suppose H is a group on which (Fr) acts. Two elements h,h' € H are said to be Frobenius conjugate
provided that there exists = € H such that z7'hFr(x) = h’. We denote the set of Frobenius-conjugacy classes of H by
H

~Er
Remark 6.4.6. If H is abelian, then H., = Hp.

Lemma 6.4.7. There is a natural bijection between the set of GY"-conjugacy classes in Olj"l and the set of Fr-conjugacy
classes in Wrp. That is
Ok JG™conjugacy <> (Wr).p,.

Remark 6.4.8. Since taking coinvariants is right exact and Tp = (1 - Fr)Tp, we have (Wr).p, = (NG o(T))wp, -

Proof. Suppose T’ € O:’ﬁ. From Lemma 6.1.3 we may assume, after conjugating by an element of G'*, that T and T’
are conjugate, as K-tori, by an element of Stabg(F'). Thanks to Lemma 2.3.1, we may assume that T and T’ are, in
fact, conjugate by an element of Gro. Choose k € G such that FT = T’. Since both T and T’ are k-tori, they are
Fr-stable. Thus, k~'Fr(k) € NGy, (T). If k' € GFyp is another element such that KT = T, then m = kK ¢ Nap,o(T)
and (k") "'Fr(k’) = m 1 (k~'Fr(k))Fr(m). Consequently, after taking the quotient by T}, we have a well-defined map
.k 1

PO (W), )

On the other hand, if m € Wr, then we can choose m € Ng,,,(T) lifting 7m. Thanks to Lang-Steinberg, there is a
k € Gr such that k"'Fr(k) = m. Note that *T € O% and p(*T) is the Fr-conjugacy class of 7. That is, p is surjective.

To complete the proof, we need to show that if T, T € (’)éﬁ, then T is G'"-conjugate to T if and only if p(T;) =
p(T3). As above, after possibly conjugating by an element of G**, we can write T; = 9T with g; € G F,0-

Suppose p(T1) = p(T2). Then there exist m € Ng,.,(T) and ¢ € Tp such that

mgy 'Fr(g1)Fr(m) ™" = tg3 ' Fr(go).
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Since gotgy! € 92T}, by Lang-Steinberg, there is a k € 92T such that k™ 'Fr(k) = gatgy'. Thus,
Fr(kgamgy') = kgamgy
showing that T; and T are conjugate by kgomgy! € G,
Suppose T is G -conjugate to T5. Then thanks to Corollary 6.3.10 with T = T, there exists h € G%\fo such that

MT1(k)) = To(k). Thus, for all strongly regular semisimple y ¢ T (k) we have "y € To(k). Since "'T = 92T, we have
m = gylhg € NGy, (T). Thus

95'Fr(g2) = mgi ' h™ ' Fr(hgim™) = mg; 'Fr(g1)Fr(m™).
We conclude that p(T1) = p(T2). ]

Remark 6.4.9. It would be nice if the intersection of a Frobenius-conjugacy class in W with T would lie in (1- Fr)'T' P,
giving us an injective map (Tr)g, — (Wr).,,. However, this is not true. For example, when p > 2 and -1 ¢ (k*)?
consider a ramified elliptic maximal k-torus in SLs.

We wish to describe (9:’,? / ~, the set of k-stable-conjugacy classes in (’);‘i.

Lemma 6.4.10. There is natural bijection between the set of k-stable conjugacy classes in (’):kp and the set of Frobenius
conjugacy classes in Wp = Ng(T)/T. That is

Ol;—’/% <« (WT)"‘Fr'

Proof. Note that W7 may be naturally identified, as groups with Fr-action, with Wz /T .

As in the proof of Lemma 6.4.7, we have a surjective, well-defined map ju: O% — (W /T ).y, .

To complete the proof, we need to show that if T¢,To € Ok , then T is k-stably-conjugate to T if and only if
1(T1) = u(T2). Thanks to Lemma 2.3.1 and Lemma 6.1.3, after conjugating by an element of G*™, we can write T; = ¥T
with k; € GF70.

Suppose ((T1) = u(T2). Then there exist m € Ng,.,(T) and ¢ € T such that

mky Fr(k)Fr(m™) = t 1 ky ' Fr(ky).
-1

For all v € Ty (k) we have Fr(F2mki'y) = k2tmki’y - Gince ™K1’y e T(K), we have "1’y = mki'y Thus, Fr(F2mki'y) =

komki?!

v, and we conclude that T is k-stably-conjugate to T.
Suppose T is k-stably-conjugate to T. Then there exists & € G such that (T (k)) = T2(k). Thus, for all strongly

regular semisimple v € T (k) we have "y € Ty(k). Thus s = h'Fr(h) € T1(K) = *(T(K)) and k's € Tp. Since
hkap = k2T, we have m = k' hk € NGy, (T). Thus
ky'Fr(ky) = (mky{*h ) Fr(hkym™) = (mkfls)(mk‘IlFr(kzl)Fr(m_l)).

k

Since "*1's € Ty, we conclude that w(Ty) = u(Ty). ]

Different choices of “base point” T for the orbit “T will result in different realizations of the action of Fr. We explore
how these different realizations are related.

Definition 6.4.11. Suppose T’ € (’)?. Choose h € G such that 7" = "T". Set my, = h™'Fr(h) and let ), denote the image
of my, in Wrp. Let W i, den(_)te the group Wy, but with Fr acting by Fr -z = ™#Fr(z). Similarly, we let Trm, (resp.,
(T'/Ty+)m,,) denote the group T (resp. T'/Ty+), but with Fr acting by Fr - ¢ = ™Fr(t).

Lemma 6.4.12. Recall that T' =T ¢ O:’“p with h € G. Let F' denote the facet corresponding to T
(1) The group homomorphism that sends m' € Ng(T") to h™*m'h € Ng(T) induces a Fr-equivariant isomorphism
on: W = Wr g, .
(2) The group homomorphism that sends t' € T' to h™'t'h € T induces Fr-equivariant isomorphisms

on:T' T3 = (T To+ )i, and op:Trr > T, - m
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6.5. The rational structure of “T': a summary. In this subsection we gather some of the key results and definitions of
the previous subsections. Recall that T is a K -minisotropic maximal k-torus, and O% denotes the set of tori in “T that are
defined over k.

e k-stable classes in (9{,’2. Two tori T1,To € (9? are said to be k-stably-conjugate provided that there is an x € G
such that %4 € TQFr forall t; € TlFr . The k-stable classes in O:’ﬁ are parameterized by (Wr)..., the set of Frobenius-
conjugacy classes in Ng(T)/T. (Lemma 6.4.10)

o k-embeddings of T. If T/ € O%, then a k-embedding of T’ into G is a k-morphism f: T/ - G that arises via
conjugation for some z € G. Up to G™-conjugation, the set of k-embeddings of T into G is parameterized by
(TF)re, the group of Fr-coinvariants in Tp = (T n G r0)/To. If T € Olj‘i belongs to the stable class indexed
by w € ¢ € (Wr).g,, then the set of k-embeddings of T’ into G is parameterized by (T )y, the group of
wFr-coinvariants in T . (Lemmas 6.2.7 and 6.4.12)

o G'-conjugacy classes in O@. The set of G'"-conjugacy classes in O? is parameterized by (W7 ).y, , the set of
Frobenius-conjugacy classes in Wy = Ng o (T)/Tp. (Lemma 6.4.7)

6.6. A comment on the relationship between the normalizer of T over X and the normalizer of T over k;. We now
check that the parahoric subgroup G'r interacts with the normalizer of T as expected.

Lemma 6.6.1. If E is a Galois extension of K over which T splits and y is the Gal(F|K)-fixed point of A'(T,E) in
B*Y G, E), then
Ng(T) n GF,O c G(E)yp.
If G is K-tame, then
Ng(T) N GF70+ =Tn GF70+ = T0+.

Proof. Suppose m € Ng(T) n Gpp. Our first goal is to show that m € G(E), 0. Note that z7 is the unique closest
point in B"4(G, K) to y. Similarly, y is the unique point in A’(T, E) closest to z7. Indeed, the unique point, call it z,
in A'(T, E) nearest x7 has the property that dist(xr, 2) = dist(y(zr),v(2)) = dist(zr,v(2)) for all v € Gal(E/K).
Thus, by uniqueness, we conclude that z is Gal( E/K') fixed; hence it must be y.

Since y is the unique Gal(E/K)-fixed pointin A’ (T, E), my € A'(T, E), and v(my) = my for all v € Gal(E/K), we
conclude that my = y. From [3, Lemma 2.12], we have m € G < G(E) 0, and so from [14, Lemma 4.2.1] we conclude
that m € G(E)y0.

For the second claim, it is enough to show Ng(T) nGgo+ ¢ T. Choose m € Ng(T) n G+ Note that m € G(E), o N
G(E)z,,0+» which means that the image of m in the reductive quotient G(E), 0/G(E), 0+ must be unipotent. Since G
is K -tame, we can assume F is a tame extension of K and so the image of m in G(E),,0/G(E),,o+ is semisimple. Thus,
the image of m is the trivial element. Consequently, m fixes an open neighborhood U in A’(T, E) with y € U, hence m
must fix all of A’(T, E) and so m € T(FE). Since m € Ng(T) nT(E), we conclude that m € T |

Remark 6.6.2. The proof of Lemma 6.6.1 shows that, in fact, N¢(T) < Ng(g), ,(T) - T-

Remark 6.6.3. Tameness may or may not be required for the second statement of Lemma 6.6.1. However, it is required for
the current proof. For example, for § of characteristic two we have

)| A O]

in SLa(f). That is, without some assumptions on the characteristic of our field, nontrivial elements of the normalizer of a
torus can be unipotent!

Remark 6.6.4. Thanks to Lemma 6.6.1 when T splits over a tame extension, we can interpret Ng,.,(T)/(T' n GFp+) as
Stabg,.(T) where G is the connected reductive f-group corresponding to the quotient G /G po+. By Stabg, (T) we
mean the group of Z € Stabg,, (T) for which there exists a lift z € G such that “T = T.

7. THE MAIN RESULT AND EXAMPLES

We begin by stating the parameterization theorem of this paper. We then develop some machinery for calculating the
objects that appear in this theorem, and we end by looking at a number of examples.
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7.1. The main result. Before stating the main result, we develop and recall some notation.

Let (Wf’e)Fr"N ¢ denote the set of Fr o N,-fixed points in the set of o-elliptic tame o-conjugacy classes in W. For
ce( Wf’e)FTON 4, choose w € ¢ and let n € W be a lift of w. Thanks to Remark 3.3.8 it makes sense to denote the order of
noeWxT by /. and to define K. = l-ct‘réc. Let 7 denote a uniformizer in the tame extension of K of degree . such that
wte = w. Let A denote the unique element in X, (A N G') such that

e 1 is o-conjugate to \.(c(7)/m) by an element of G, o (see Lemma 3.2.5) and
e x.:= 2o+ A/l is an element of C’ (see Lemma 3.5.1).

If ¢ € (W) °Na_ then there exists a tame K -minisotropic maximal k-torus T¢ in G for which the point associated to
T* is x. (see Lemma 3.3.6 and Corollaries 3.3.4 and 5.1.3). Set T}, =T°“n Gy, .

Theorem 7.1.1. Recall that k is a nonarchimedean local field. For each c € (WE’B)F”N‘? fix a tame K-minisotropic
maximal k-torus T in G for which the point associated to TC is x..

(1) The set of G**-conjugacy classes of tame K -minisotropic maximal k-tori in G is parameterized by the set
{(¢,&)] ce (W)™ Na and é e (Wrpe).py ).
Here (Wre).p; denotes the set of Fr-conjugacy classes in Wrye = Ng,, o(T)/T5. More precisely, for each
¢ € (Wre)op we fix kz € Gy, o such that k3'Fr(kz) € Ng,, ,(T€) is a lift of a member of é. Then each G™-
conjugacy class in O%, has exactly one representative in the set
{Ad(kz)TC|¢ e (Wre)opy )
(2) The set of k-stable classes of tame K -minisotropic maximal k-tori in G is parameterized by the set
{(¢,&)] ce (W) Na gnd é e (Wrpe). gy ).
Here (Wre).wy denotes the set of Fr-conjugacy classes in Wre := Ng, ,(T¢)/Ty . More precisely, for each
¢ € (Wre)ope we fix ks € Gy, o such that ké_lFr(ké) € Ng,. ,(T€) is a lift of a member of ¢. Then each k-stable
conjugacy class in Ol}c has exactly one representative in the set
{Ad(k:)T| ¢ € (Wpe)apy )

(3) Suppose c ¢ (Wf’e)FrONq and ¢ € (Wrpe)apy. Let T = Ad(k:)T€ where kg is chosen as in (2). Let m de-
note the image of ké_lFr(k:é) in Wre. The set of k-embeddings of T into G is parameterized by (T;C)mm, the
group of mFEr-coinvariants in T;C =Ty |T5. More precisely, for each ¢ € (T;C)mpr we fix ke € G0 such that
kz'(mFr(kz)m™t) € TS is a lift of a member of ¢. Then

{fs:T > G| fa(s) = Ad(kekek;')s for s € T and ¢ € (TS ) }
is a complete set of representatives for the G¥"-conjugacy classes of k-embeddings of T into G.
Remark 7.1.2. If ¢ € (Wrpe) .y, then the fiber over ¢ of the natural map
(Wre)ame > (Wre)opr

parameterizes the set of G'"-conjugacy classes of tame K -minisotropic maximal k-tori that appear in the k-stable class
corresponding to ¢.

Proof. From Lemma 3.4.1 every G-conjugacy class of tame maximal K -tori in G corresponds to an element of W?. Thus
the assignment ¢ — “T° from (Wf’e)F“N 7 to the set of G-conjugacy classes of tame K -minisotropic maximal tori in
G has image consisting of exactly those G-conjugacy classes of tame K -minisotropic maximal tori that contain a torus
defined over k.

Consequently, to establish statements (1) and (2) of the theorem it is enough to show that for every c € (Wf’e)FTON a
the G'"-conjugacy classes and k-stable classes in Oéic can be parameterized as claimed. This follows from Lemmas 6.4.7
and 6.4.10.

Statement (3) follows from Corollary 6.2.9 and Lemma 6.4.12. [ |
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7.2. A recasting of part (1) of Theorem 7.1.1. In Corollary 7.2.4 below we recast part (1) of Theorem 7.1.1 in a way that
does not require the choice of a base point T°. While perhaps more elegant from the point of view of avoiding choices,
this new description is considerably less concrete.

7.2.1. A result about nearby tori. We begin with a result about tori that are, in some sense, close to each other at depth
ZEeT0.

Lemma 7.2.1. For this lemma we let E be any extension of k and let fi denote its residue field. Suppose x € B(G,E)
and T is a maximal §g-torus in the connected reductive fg-group GE corresponding to the quotient G(E) ;. 0/G(E)z 0+
Suppose T4, Ty are E-split maximal tori such that € A(T;, E).

o Ifthe image of T;(E) N G(E)y o in GE is T, then T1 and Ty are G(E) . g+-conjugate.

o Iffor all n € N there exists k € G(E) .y, such that bT, =Ty, then Tq = Ts.

o Ifge NG(E)(Tl) N G(E)I’oh then g € Ty (E)0+.

Proof. Since x belongs to A(T1, E)n.A(T2, E), there exists an h € G(E), o such that "T'; = Ty. Let i denote the image
of h in Gf . By hypothesis, T = T; thus, h € Ng B (T). Consequently, by looking at the affine Bruhat decomposition, we
see that there exist an n € Ng(g)(T1) N G(E)z0 and a g € G(E), 0+ such that h = gn. We have Tg = I, = 9T4. This
establishes the first claim.

For the second claim, suppose T # T9. Then there exists ¢ € Ty (E) such that ¢ ¢ To(E). Since To(E) is closed, there
exists £ € N such that t- G (E), ¢nTa(E) = @. By hypothesis, for all n € N there exists k € G(F),, ,, such that % € To(E).
This implies that ¢ € T2(E) modulo G(E), ,, for all m € N. This contradicts the fact that ¢ - G(E), ¢ N T2(E) = @.

For the final claim we note that since g € Ng(g)(T1), we have that A(T1, E) is stabilized by g. If C is an alcove in
A(T1, E) such that F' c C, then since g € G(E), 0+ we have that g fixes C pointwise. Therefore, since gA(T1, E) =
A(T1, F) and ¢ fixes C pointwise, we conclude that g fixes A(T1, E) pointwise. Thus, we conclude that g € T1(F) n
G(E)z0+ = T1(E£)or u

7.2.2. Recasting part (1) of Theorem 7.1.1. The point x. of Theorem 7.1.1 determines a facet F. in B(G, K.). Let
G, denote the connected reductive §-group attached to F.. We identify G, with G(K.)r, 0/G(K.)F, 0+, and we have
GY = G,.. (Recall that GZ denotes the connected component of Fixg, (c).) We let A* denote the maximal torus in G,
corresponding to A*. That is, the group of F-points of A* coincides with the image of A*(K,) n G (K, ) F,01in Ge.

If T is a maximal -torus in G, then there exists g € G, such that T = 9&*. If T is o-stable, then ¢~ Lo(g) € Ng, (A#)
determines a o-conjugacy class in W. This gives a well-defined map from the set of o-stable maximal tori in G, to Wt
Let O, denote the preimage of ¢ under this map, and let (’)? denote the subset of O, consisting of tori that are Fr- stable.
Note that G, (= G, 0/Gz.0+) acts on O, while ng acts on O, and O,

Recall from Definition 6.3.12 that OZ}%C denotes the set of Fr-stable tori in Ad(G5,0)T¢. For T € Or’}c@c let p(T) €
OX™ be the torus whose group of F-points corresponds to the image of G (K,) 2,0 N T(K,) in G.. In this way we define a
Ggo—equivariant map ¢: OF cxp ™ orr,

Lemma 7.2.2. If T € O and T1, Ty € ¢ [T], then T} and T3 are Ggim—conjugate.

With minor changes (e.g., changing K to K. and T' to Gal(K_./k)), this proof is the same as the proof of [I2,
Lemma 2.2.2].

Proof. From Lemma 7.2.1 there exists g € G(K_)z, o+ such that Ty = 9Ty. For v € Gal(K./k), let c4(7) = g717(g) €
Ng(k.)(T1); cg is a one-cocycle. Since I is Gal(K./k)-stable and g € G(K.).. 0+, we have c4(7) € G(K¢)z, 0+ From
Lemma 7.2.1 we conclude that ¢, () € T (K. )o+.

Since H' (Gal(K./k), T1(K.)o+) is trivial [25, Theorem 13.8.5 (1)], there exists a z € T (K. )o+ such that gz is fixed

by Gal(K./k). We have 9°T; = T3 and, thanks to [25, Proposition 12.9.4], gz € G(K, )Sagf{‘/k) Ggf o+ [
Lemma 7.2.3. The ngvo-equivariant map @: OF cxp O is surjective.

Proof. Fix T ¢ Ofr. Since T € O, there exists £ € G(K.),, o such that T = T is a lift of T; that is, T corresponds to the
image of T(K.) N G(K;)z. 0 in G.
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Let £ < K, be a finite Galois extension of k£ such that T is E-split. It will be enough to show that there exists
¢ € G(E),, 0+ such that “T is a k-torus.

Suppose that for all £ € G(E),, o+ we have that “T is not a k-torus. Then, thanks to Lemma 7.2.1, for all £ € G(E),, o+
there exists sy € Q.o such that

o v('T) is contained in the G(FE),, s,-orbit of ‘T for all v € Gal(E/k) and
o there exists v € Gal(E/k) such that v(‘T) is not contained in the G(E),, s;-orbit of T

Since G(E);, o+ is compact and the assignment ¢ — s, is locally constant, there exists h € G(E),, o+ such that s, > s/
for all £ € G(E),, o+. Without loss of generality, we set T = MT. We then have s; > s, for all £ € G(E)z, 0+ We will
produce j € G(E),, o+ such that s; > sy, a contradiction.

If v,p € Gal(E/k), then vp(T) = “oT = ~(%T) = 7&%)OT. Hence fr(v,p) = @1 -v(€,)' - £,, is an element of
G(E)z.,s; "Ng(T). From Lemma 7.2.1 we conclude that fr(v,p) € T(E)s,. Since G(E),, s+ is abelian, one checks
that the induced function f:Gal(E/k) x Gal(E/k) — T(E)s:s: s a 2-cocycle. Since H%Gal(E/k),T(E)sl:sT) is
trivial [25, Theorem 13.8.5 (2)], there exists a: Gal(E/[k) » T(E)s,:s;, writteny — G, such that f(y,0) = ’yo‘zo-o‘gé -0y
forall v, o € Gal(E/k). If £, denotes the image of £, in T(E)j,. st» then one checks that y — £,y defines a 1-cocycle with
values in G(E),, s,.st- Since HY(Gal(E/k), G(E)s,.s7) is trivial [25, Theorem 13.8.5 (2)], there exists j € G(E)a,,s,
such that the image of y(j)~!j in G(E) 5151 18 Ca, for all v € Gal(E/k). If a, € T(E)s, is any lift of &, then there
exists zy € G(E),, s+ such that £y, = v(5)~ jx~. Thus, for all v € Gal(E/k) we have

~(T) = 1Db = et jrwj’l(jT)‘
Since jz,j ! € G(E)xc,s;, we conclude that s; is greater than s;. ]
Corollary 7.2.4. The G};Z-conjugacy classes in (’)Er are in bijective correspondence with the G¥*-conjugacy classes in
Ok...

Proof. From Lemma 7.2.3 and Lemma 7.2.2 the G§£7O-equivariant map ¢: OF cx, OF" descends to a bijective map from

Tc
the set of Ggio—conjugacy classes in OZ}C », to the set of GEﬁ—conjugacy classes in O, The result now follows from
Corollary 6.3.13. [

7.3. A more concrete realization of Wy, T'/Ty+, Tr/Ty+, and Wr in the tame setting. Fix c ¢ Wfa, w e, n e with
image w in W. Choose h, A = A, g = gn € G(K})z,,0 asin §3.3 and set T = 9A%. Note that the image of n, := g lo(g)
in W is w. Let F c B(G) be the facet corresponding to z,, € B°(G).

Because it will help with the bookkeeping later, we will refer to w as w,.

Lemma 7.3.1. We have
(1) The group homomorphism that sends m € Ng(T) to g"'mg € Ng(k,,)(A?) induces an isomorphism
by Na(T) [T — W/
(2) The group homomorphism that sends t € T to g 'tg € A*(K,,) induces an isomorphism
Pg’ T/T0+ — (A#(Kn)/A#(Kn)0+)wUU.
(3) The group homomorphism that sends t € T to g~ 'tg € A*(K,)g induces an injective map
pg:TF/TO+ — (A#)w"a.

(4) If we is o-elliptic, then for g as in Lemma 3.3.9 the group homomorphism that sends m € Ng,. , (T) to g 'mg €
Na(k,)(A") induces an injective map

pg:NGF,O(T)/TO* — (Nézo (A#))n)\(f)a.

Moreover, if G is simply connected, then Ty = Ty+, W = Ng F,o(T) /To+, and the maps of both (3) and (4) are isomor-
phisms.

Remark 7.3.2. The maps in (3) and (4) both fail to be surjective when G = PGLs. See also Lemma 7.4.9.
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Proof. Recall that n, € Ng(k, ) (A*) has image w, in w.
We begin by showing (1). Suppose m € Ng(T). Since

no0 (g~ mg)ne" = (g7 a(9)) (o (g™ )ma(9))(a(g™")g) = g~"mg,
the map sending m € Ng(T) to g~'mg € Ng(k,)(A") induces a homomorphism from N (T) to W™, Since the kernel

of this homomorphism is 7', the map descends to an injective map pg: W — Wweo

We now show that p, is surjective. Choose w’ € W*. Fix n’ € Ng(k,)(A*) such that the image of n in W is w'. We
have

a(®n') = g(g~ a(9))a(n')(o(9) " 9)g™" = g("o(n))g™! =%(n'a) = n'%
for some a € A*(K,,). As % € T(K,) we conclude that the coset (%n')T(K,,) is o-invariant. Since H' (o, T(K,)) is
trivial, we conclude that every o-invariant coset in Ng(x,,)(T)/T(K,) has a representative in Ng(T)/T. Hence, pg is

surjective.
We now show that (2) holds. Note that

Tor =TNnGpo+ = T(K,) n (G(Kn)F,O+)O = (T(K,)n G(Kn)F,m)"
- (A () 0 G (K)o )" = ((A*(Kn) 0 G(Kn) o))" = (A (Kn)or))".
Since H! (0, T(K},)o+) is trivial, we conclude that T'/Tj+ is isomorphic to
(AP (En)) /(A (Kn)o+))” = (A7 (EKn) [ (AF (Kn)o+)))”
Since w, is the image of g~'o(g) in W, we conclude that (9 A*(K,,)/(A# (K, )o+))) is isomorphic, via their identifica-
tion under the map Ad(g), to (A*(K,)/(A* (K, )o+))""°.

For (3), recall that Tr = T n G and g € G, SO g 1 Trg < A*(K,)o. Thus, from (2) we have an injective map from
Tr[To+ to (A7 (Kn)o/ A% (Kp)o+ )77 Since (A* (K, )o/A¥ (K )o+) is isomorphic to A%, the result follows.

We now show that (4) is valid. From Lemma 3.3.9 we may assume that g~ (g) = z- M, for some z € Zp. Suppose m €
Ng.o(T). Since g € G(K ) ro we have g lmg e Nea(k,)p, (A"). Since conjugation by g carries topologically unipotent
elements in G'r to topologically unipotent elements in G (K»)Fo, we have a well-defined injective group homomorphism
from Wr to StabG(Kn)a;n,O/G(Kn) A#) with image in (StabG(Kn)a;n,O/G(Kn) A#))n"g. Here the stabilizer in
the quotient is to be interpreted as in Remark 6.6.4. Since x,, = \(7) - 20, 1o = 2 - ™, and G (K ;) 0.0/ G (Kn) o0+ i
isomorphic to G, the result follows.

Finally, if G is simply connected and - € G (K, ), 0 has image in (G (K,) 0.0/ G (Kn)zo.0+ )" &7, then gA(m)2zA ™! (1) g7}
belongs to Stabg i) (F) - G(Ky) ro+ = G(K) ko G(Ky) o+ It follows that the maps of both (3) and (4) are surjective,
hence isomorphisms. [

e .

Remark 7.3.3. If y € G(K,) also has the property that YA* = T, then there exists a 7 € Ng(k,,)(A*) such that g = yn.
Thus, p,(Ng(T)/T) = wW¥eowt = W(@weo(®)™) where i denotes the image of 7 in W. Similarly, p, (T/T+) =
(A# (1) [ (A# (] )gr)) (et e,

7.4. The action of Fr. Suppose T contains a k-torus. It may happen that T = 9A is not defined over k. However, if “T

contains a Fr-stable element, then there exists £ € G such that “9A = T is defined over k. In fact, if T is K -minisotropic,
then from Lemma 2.3.1 and Lemma 6.1.1 we can also assume ¢ € G, o. Note that (£g) "o (¢g) = gL o (g) = n,-

Definition 7.4.1. Suppose T = JA is defined over k and g € G(K})4, 0. Define ng, € Ngx, (A*) by ngy :=

g 'Fr(g). Let wg, denote the image of ng, in w.

)xn,O

Lemma 7.4.2. We have that ng; o Fr stabilizes Ng(k.,),. ,(A*)"7 while wg; o Fr stabilizes Wwoo,

)Inx

Proof. Tt will be enough to prove the first statement. Suppose m € Ng(k,,),, ,(A”) and Ad(ng)o(m) = m. We have

Ad(n,)o[Ad(ng)Fr(m)] = Ad[(g™'0(9))o (97 Fr(9)) ] (Fr(m))
- Ad[(g7 o (Fr(9)) o (Fr(m))
= Ad(ne)Fr[Ad(g7'0%(9))0(m)]
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Since
Ad(g7'o%(9))o?(m) = Ad(g ™ 0"} (9))o " [Ad(g ' o(9))a(m)] = Ad(g ™ 0" (¢9))o " [m],
after ¢ — 1 iterations we conclude that Ad(g~'0%(g))o?(m) = m. Hence, we have shown

Ad(ny)o[Ad(ng)Fr(m)] = Ad(ng )Fr(m),
as required. [

Lemma 7.4.3. Via Ad(g™!) (that is, pg), the action of Fr on Wy and T [Ty+ corresponds to the action of wyy o Fr on Wwwe
and (A*(K,,)|A* (K, )o+)"°.

Proof. We will verify this for W™=7; the proof for (A*(K,)/A*(K,)o+)""? is similar. The map from Ng(T) to
Na(k,)(A*)[A* (K, ) is given by m +~ g 'mg. Thus Fr(m) maps to
g ' Fr(m)g = g 'Fr(gg " )Fr(m)Fr(gg™")g = (g7 'Fr(9))Fr(g~'mg)(Fr(g)~'g).

The result follows from looking at the images of these elements in W, [
Lemma 7.4.4. We have

Fr(N,(ns)) = npwneo(ngy) and Fr(Ny(wy)) = wp weo (wry).
Proof. For the first equality we have:

Fr(Ny(no)) = Fr(ng - o(ny)--09" (ny)) = Fr(g o (g) -0 (g7 o (g))0" (g7 0(9)))
= Fr(g7'0%(9)) = Fr(¢ 7 (B 00 0 Fr)(9)) = Fr(g™!)o (Fr(g))

Fr(g7)(997)a((997)Fr(g)) = (Fr(97)9) (g™ o (9))o (g Fr(g))
= npingo(ng).

The second equality follows from the first. [

Corollary 7.4.5. Recall that ng: € Ng (k) o (A*). The equality
Fr(N,(no)) = ngneo(ng)
of Lemma 7.4.4 uniquely determines the element g up to left multiplication by an element of (Ng(k,,)y,(A”))".
Similarly, the equality
Fr(Ny(ws)) = wl;rlwoa(wFr)
uniquely determines the element wy, up to left multiplication by an element of Wweo,

Proof. Tt will be enough to establish the first statement. Suppose y € Ng (k). , (A") satisfies

FI‘(Nq(TLU)) = y_anU(y)'
We then have

neo(npy~)n," = npy ™"
and the result follows. ]
Lemma 7.4.6. Suppose c is o-elliptic. Suppose T' = "T' ¢ O with h € G. Set mj, = h™'Fr(h) € Ng(T) and let
wy, denote the image of g~'myg in W. Via the map Ad(g™") o Ad(h™') ( i.e., the composition py o o, where oy, is
defined in Lemma 6.4.12) the action of Fr on Wy and T [Ty+ corresponds to the action of (wpwg,) o Fr on W*? and
(A7 (Kp) [ A7 (K)o )77
Proof. This follows from Lemmas 6.4.12 and 7.4.3. [

Remark 7.4.7. If G is K-split, then from Lemmas 7.4.3 and 7.4.4 we have Fr(wl) = wgﬁwowpr and (Wr).,, is in
bijection with the set of wr, o Fr-conjugacy classes in W% .

Remark 7.4.8. Note that from Corollary 7.4.5 the element wg, will only be determined (in W) up to left multiplication by
an element of W7 but from Lemma 7.4.6 this is exactly what must happen as different choices of base point for “T will
result in different realizations of the various actions.
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Lemma 7.4.9. Suppose G is semisimple and c is o-elliptic. The group homomorphism that sendst € T to g~ 'tg € A*(K,)
induces an isomorphism pg:T [To+ — AF"o7,

Remark 7.4.10. If G is simply connected, then since K, /K is tame we have G(Ky)%, = Grp. Thus, in this case,
Tp =T/To+ and so T is isomorphic to A W0 ip agreement with Lemma 7.3.1.

Proof. Since c is o-elliptic, we have that T" is a bounded subgroup of G. It follows that T" is bounded in T(K ), and so
T c T(Rkg, ) where R, denotes the ring of integers of K,. Since g € G(K},) 0, we have

T =T(Rk,)” = (T(Kn) N G(En)ro)” = ((A(Kn)) 0 G(Kn)ro)” = (A" (Rk,)))"-
From the proof of Lemma 7.3.1 we have Ty = (9(A# (K, )o+))°. Identify A* with the image of A* (R, )/A*(K,)o+ in
G(K,)ro/G(K,)Fo+. Since H (o, T+ ) is trivial, we conclude that T'/Ty+ is isomorphic to
(AA*(Rk,)[U(A* (Kn)o-))" = ((AF (Ri, )/ (A* (K)o ))) = (AF)°
where g denotes the image of g in G(K,,) ro/G(Ky)Fo+-

Since w, denotes the image of g™'o(g) € Ng(x,)(A*) in W, we have that (A#) is isomorphic to A**=% via their
identification under the map Ad(g). [ ]

Corollary 7.4.11. Suppose G is simply connected and w, is o-elliptic. The set of k-stable classes in Oéﬂ is indexed by
(Ww”")NwFroFr. If T is a k-torus in the wgy o Fr-class corresponding to w' € W™, then, up to G**-conjugacy, the set of
k-embeddings of T' into G is indexed by A#Luygpropr.

Proof. This follows from Lemmas 6.2.7, 6.4.10, 7.3.1, and 7.4.3. []

7.5. The action of Fr when G is k-quasi-split and n is o-elliptic. In this subsection we refine the results of subsection 7.4
under the additional assumptions that G is k-quasi-split and n is o-elliptic.

Since G is k-quasi-split, we may assume that zg is Frobenius fixed, and so, since x,, is Fr-invariant, we have that
Fr(\) = A. In this section we also assume that Fr is chosen such that Fr(7) = 7.

Since n is o-elliptic, from Lemma 3.3.9 we may assume that n, = z - A, for some z € Zo.
Definition 7.5.1. Define np € Ng(x,,),, o (A*) by np = Dng,.
(A#)n)\(é)o"

Corollary 7.5.2. If G is k-quasi-split and n is o-elliptic, then we have that np o Fr stabilizes Ng Kn)ap.0

Proof. Suppose x € NG(Kn)xO,O(A#) such that "o () = 2. Then

A(W)x _ )\(7r)n)\(§)0_($) _ TLO-O_(A(W)I)'

Thus, *(™z ¢ (NG(Kp)a, o (AF))"7. Since M®n g o Fr = npy o Fr, the result follows by unwinding definitions and using
Lemma 7.4.2. u
Corollary 7.5.3. If G is k-quasi-split and n is o-elliptic, then we have
Fr[Ny(nA(€)2)] = ng (nA(€)2)o (nr).
Proof. We have
Fr[Ng(nA()2)] = Fr[Ng(* g A(€)] = B[Ny (A (1)ngo (A(7)))]
= B[\ (m)neo(A(n))) - o (A (m)ngo (A())) - > (A (m)noo (A(m))) - 0 (A () ngo(A(m))]
= A (M) Fe[ Ny (ng )0 (A(m))] = X7 () Fr [Ny () JA () - Fr[A™ ()04 (A ()]
= A7 (1) Fr[Ng (ng) JA(m) - A(Fr(€7))
From Lemma 7.4.4, this becomes
AT (Mg neo (ne)A(T) - AFr(EH(€))) = (np'n2) - A7 (1) o (nm ) A(T) - A(€)
= (npnz) - A (m)a (A1) - o (A (m)neA(n)) - o (A () A7) - A(€)
= (npnzA(€)o(nr) - A7 (€) - M(€)
= np (nA(€)2)a(nk).
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|
Corollary 7.5.4. If G is k-quasi-split and n is o-elliptic, then the equality
Fr(Ny(nA(€)z)) = ngnA(§)z0(nr)
uniquely determines the element np up to left multiplication by an element of (Ng Kn)ag.0 (A#))M&)ea
Proof. The proof is very similar to that of Corollary 7.4.5. ]

Corollary 7.5.5. Suppose G is k-quasi-split and simply connected. Suppose also that n is o-elliptic. The set of G(k)-
classes in O% is indexed by ((Ng, (A#))”A(g)(’)N

npoFr®

Proof. This follows from Lemma 6.4.7, Lemma 7.3.1, and tracing through how Fr acts on (Néw (A#))rM&e |

7.6. Example: the Coxeter conjugacy class for K-split groups. Suppose G is K-split. Since G is K-split, we have
that o acts trivially on W and II = II. Suppose wy is a Coxeter element [] 7 wq in W here w,, is the simple reflection in
W corresponding to . We have that Wwe = (wey). Let £ denote the order of w, and suppose throughout this section that
(pv f) =1

Since (p,¥) = 1, we know that w¢ is W- -conjugate to w,. Since Fr preserves ®, it must carry II to another basis for
®. Thus Fr(wy ) is again a Coxeter element of . Since the set of Coxeter elements form a single W -conjugacy class,
we conclude that the Coxeter conjugacy class in W is stable under Fr o Ng. Thus, from Corollary 5.1.3 we may choose a

Fr-stable maximal torus T of G in ¢, ("w, ).

From Lemma 6.4.10 we have that the elements of the set of k-stable conjugacy classes in (’); are indexed by (Wr )., .
Since y = wl also generates (w,) = W™, from Lemma 7.4.3 and the fact that W7 is abelian we have that (Wr).,, is
isomorphic to (w,)/{(y™ (wrFr(y)wg)). From Lemma 7.4.4 we have that y ! (wr Fr(y)wg!) = (w;')9"!. Thus, the
elements of the set of k-stable conjugacy classes in O%. are indexed by (w, )/(wd ") 2 Z/(¢,q - 1).

The group Tr/Tp may be identified with Z,,, the center of G,,. Thus, from Lemma 6.2.7, we conclude that, up to
G™ -conjugacy, the group (Z4, ) parameterizes the k-embeddings of T into G.

Since Z, is central in the reductive quotient G,,, we conclude that w, acts trivially on Z,,. Thus, if T/ is a k-
torus in one of the stable classes in (’);, then, up to G™-conjugacy, the set of k-embeddings of T/ into G is indexed by
(Zao ) wpwooFr 2 (Zgy ) wr- If we also assume that G is k-split, then (Z;, )pr = Z,o/{zT zeZy, ).

7.7. Example: SL,, and unramified SU,,. Suppose G, is the k-group SL,, and G_ is the k-group unramified SU,,.
Suppose p does not divide n, and let w, be a Coxeter element in . Note that the Coxeter class is the only o-elliptic class
in W,

From the discussion in §7.6, we can choose a k-torus T in the G.-orbit <pg( w, ) and the elements of the set of k-stable
classes in OF are indexed by (w,)/{wg '), which is isomorphic to Z/ (n,q-1).

Since G is simply connected, from Remark 7.4.10 we have Ty ~ A#w"", which, in this case, may be identified with
Iin, the center of G. The action of wg, on A#%e0 i trivial and the action of Fr on A#%7 is given by x ~ (z*!)9. Thus,
(A#WaTY ~y oy is isomorphic to Z/(n, ¢ ¥ 1). We conclude that there are, up to GL"-conjugacy, (n, ¢ ¥ 1) k-embeddings
of T into G.

The set O:’} breaks into (n,q — 1) k-stable classes. If T is a k-torus in one of these classes, then, up to G*-conjugacy,
it can be embedded into G in (n,q ¥ 1) ways.

7.8. Example: Sp,. Suppose p > 2. We adopt the notation of Example 3.6.2.

As discussed in Example 3.6.2 there are two G-conjugacy classes of K -minisotropic maximal K -tori in Sp,, denoted
Oc¢, and O_1, corresponding to the two elliptic W -conjugacy classes Cy and —1. Since Sp, is k-split, from Corollary 5.4.3
each of O¢, and O_; contains tori that are defined over k.

A Coxeter element of Sp, has order 4 and the center of Sp, is isomorphic to ps. Therefore, (’)k decomposes into
(q—1,4) k-stable classes. If T is a torus in one of these classes, then, up to Sp,(k)- conjugacy, it k- embeds into Sp, in
two ways. Since W is isomorphic to g, the number of Sp, (k)-conjugacy classes in OF, ,is (¢ - 1,8).

The set Ok breaks into five k-stable orbits, corresponding to the five conjugacy classes in W~ = W. Note that we can
take wpy to be the trivial element in TV. A conjugacy class ¢ in W will be called a-even if for some (hence any) element
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w in ¢ we have that w, appears an even number of times in some (hence any) expression for w in terms of the simple
reflections w, and wg. If T' belongs to a k-stable class that is indexed by an a-even conjugacy class (of which there are
three), then, up to Sp,(k)-conjugacy, T/ has four k-embeddings into Sp,. If T’ belongs to a k-stable class that is not
indexed by an a-even conjugacy class (of which there are two), then, up to Sp,(k)-conjugacy, T/ has two k-embeddings
into Spy.

For some choice of T ¢ (’)'fl, the group Cy = NGacT,O(T) /To has 32 elements and is isomorphic to the group, under
matrix multiplication, of two-by-two matrices whose elements look like

b o] fa

with a,b,c,d € {1,i,-1,—i} and Fr(i) = +i depending on whether or not —1 is a square in f*. One calculates that if 4 does
not divide ¢ — 1, then O%| breaks into six Sp, (k)-conjugacy classes. If 4 does divide ¢ — 1, then O breaks into fourteen
Spa(k)-conjugacy classes; more specifically, in this case two of the stable classes break into two Sp,(k)-orbits each, two
break into three Sp,(k)-orbits each, and one breaks into four Sp, (k)-orbits.

7.9. Example: PSp,. Suppose p > 2. We adopt the notation of Example 7.8.

There are two G-conjugacy classes of K -minisotropic maximal K -tori in PSp,, denoted O¢, and O_1, corresponding
to the two elliptic W-conjugacy classes Cy and —1. Since PSp, is k-split, from Corollary 5.4.3 each of O¢, and O_;
contains tori that are defined over k.

A Coxeter element of PSp, has order 4 and the center of PSp, is trivial. Therefore, O& decomposes into (g — 1,4)
k-stable classes. If T is a torus in one of these classes, then, up to PSp,(k)-conjugacy, it k-embeds into PSp, in one way;
hence, the number of PSp,(k)-conjugacy classes in (9@2 is also (¢ — 1,4).

As in the case of Sp,, the set O’fl breaks into five k-stable orbits indexed by the W—conjugacy classes in . If T’
belongs to a k-stable class that is indexed by an «-even conjugacy class, then, up to PSp,(k)-conjugacy, T' has two
k-embeddings into PSp,. If T belongs to a k-stable class that is not indexed by an a-even conjugacy class, then, up to
PSp, (k)-conjugacy, T' has one k-embedding into PSp,.

For some choice of T € OF,, the group Ne,,.o(T)/T has 16 elements and is isomorphic to the Cy/ . One calculates
that if 4 does not divide ¢ — 1, then OF, breaks into six PSp, (k)-conjugacy classes. If 4 does divide ¢ — 1, then OF, breaks
into ten PSp,(k)-conjugacy classes; more specifically, in this case each stable classes breaks into two PSp,(k)-orbits
each.

7.10. Example: Go. Suppose p > 3. We adopt the notation of Example 3.6.3. As discussed in Example 3.6.3 there are
three G-conjugacy classes of K -minisotropic maximal K-tori in Gg, denoted Og,, O4,, and O_; corresponding to the
three elliptic W—conjugacy classes G, A, and —1. Since Gy is k-split, from Corollary 5.4.3 each of Og,, O 4,, and O_;
contains tori that are defined over k.

A Coxeter element of Go has order 6 and the center of G is trivial. Therefore, (’)82 decomposes into (¢ —1,6) k-stable
classes. Since G has trivial center, if T is a torus in one of these classes, then, up to Go(k)-conjugacy, it k-embeds into
Go in one way. This shows that the number of Ga(k)-conjugacy classes in OéQ is (¢ — 1,6); this can also be verified by
calculating Wr.

Suppose T € (’)’jb. The group Wy is isomorphic to y6, and T is isomorphic to u3. One calculates that (Wr)py =
(W1 )~p, is 16 (f) — that is, there are six k-stable classes in OIZ2 when the cubic roots of unity belong to § and two otherwise.
For half of the k-stable classes in Oﬁz a torus T” in the class will embed, up to Go(k)-conjugacy, into G in three ways.
For the other half of the classes a torus T’ in the class will embed, up to Gz (k)-conjugacy, into G in one way. Finally,
there are twelve G*-conjugacy classes of tori in OZQ when 3 = |u3(f)| and three otherwise.

Alternatively, if w, = wowgwawg, then Wy = Wweo = o = (wawﬁ). Up to left multiplication by an element of
W“’C’, from Corollary 7.4.5 we have wg, is trivial if ¢ is congruent to 1 modulo 6 and wr, is w,, if g is congruent to —1
modulo 6. (Note that p3(f) = 1 if and only if ¢ is congruent to —1 mod 6.) When wg, = 1, there are six k-stable classes in
(’){f‘2 and a torus T’ indexed by (wawg)? € (wawgs) will, up to Go(k)-conjugacy, k-embed into G in three ways when j
is even and in one way when j is odd. When wg;, is w,, then there are two K -stable classes in OZQ and a torus T’ indexed
by @ € (wawg)/{(wawg)?) will, up to G2 (k)-conjugacy, k-embed into G in three ways if @ is not trivial and in one way
if w is trivial.
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If |u3(f)| = 3, then (’)Ilf12 breaks into twelve Ga(k)-conjugacy classes. If |3 (f)| = 1, then (91’22 breaks into three Ga(k)-
conjugacy classes.

For some choice of T ¢ O’fl, the group Wy is isomorphic to the Weyl group of G and T r is isomorphic to o x tto. Thus
(’)]_“1 decomposes into six k-stable classes — one for each wg-conjugacy class in W' = W. If T’ belongs to a k-stable class
that is indexed by a wg,-conjugacy class with one element then, up to G (k)-conjugacy, T has four k-embeddings into G.
If T’ belongs to a k-stable class that is indexed by a wg,-conjugacy class with three elements then, up to G (k)-conjugacy,
T’ has two k-embeddings into G. If T’ belongs to a k-stable class that is indexed by a wg,-conjugacy class with two
elements then, up to Go(k)-conjugacy, T' has one k-embedding into G.

The group NGIT,O (T)/T) has 48 elements and is isomorphic to a Tit’s group of G with generators n,, and ng of order

four where Fr(nq) = no and Fr(ng) = nqﬁ. Independent of how Fr acts, O! | breaks into ten G2 (k)-conjugacy classes. The
k-stable classes indexed by a wp,-class with an odd number of elements each break into two Go(k)-conjugacy classes.

7.11. Example: ramified SU3. Suppose p > 3. We adopt the notation of Example 3.6.4. As discussed in Exam-
ple 3.6.4 there are two G-conjugacy classes of K-minisotropic maximal K-tori in ramified SU3, denoted O, and
Oc,,» corresponding to the twisted Coxeter element w,o and the element 1 = wgo. Since ¢y, = (Fro Ny)(cw,)
and ¢y, = (Fr o Ng)(cw, ), from Corollary 5.1.3 we conclude that each of O,,, and O, contains tori that are defined
over k.

Suppose T € Oﬁwa. Then Wy is isomorphic to us. Therefore, for the twisted Coxeter class, we have that (’)ffwa

decomposes into |(1i3)ry| = |3 (§)| k-stable classes. Since Ao = Tp is trivial, for T/ in a given k-stable class there is,
up to SU3(k)-conjugacy, only one k-embedding of T’ into SU3. . .
Suppose T € (’)é"wo. Then W is isomorphic to Ss, the symmetric group on three letters. Since W™ = W, we can

assume wr, = 1. Thus Ofwa decomposes into three k-stable classes — one for each Fr-conjugacy class in W =W. We

have A*~! is o % po. If T belongs to a k-stable class that is indexed by a Fr-conjugacy class with one element then, up to
SUs(k)-conjugacy, T' has four k-embeddings into SU3. If T’ belongs to a k-stable class that is indexed by a Fr-conjugacy
class with three elements then, up to SU3(k)-conjugacy, T’ has two k-embeddings into SUs. If T/ belongs to a k-stable
class that is indexed by a Fr-conjugacy class with two elements then, up to SU3(k)-conjugacy, T’ has one k-embedding
into SU3.

8. K-MINISOTROPIC TORI IN ISOGENOUS GROUPS

Motivated by the examples of Sp, and PSp, discussed in Examples 7.8 and 7.9 we show that information about K-
minisotropic maximal tori can, in some cases, be derived from information about the analogous tori in isogenous groups.

8.1. On the surjectivity of isogenies at the level of parahoric groups for tori. Recall that L is the completion of K
and R;, denotes its ring of integers. Let T and T’ be tori over K, hence they are tori over L. We denote by 7 and 7~
the connected Néron models of T and T’, such that Ty = T(Ry) ¢ T = T(L) is the parahoric subgroup of 7 and
T} :=T'(Ry) c T':= T'(L) is the parahoric subgroup of 7"

Suppose p : T — T’ is an isogeny. Since 7 and 7 are (Ift-)Néron models, p extends uniquely to a morphism p :
T — T' [7, Proposition 6]. From [25, Proposition B.9.1], we have Ty+ = T(Rp)o+ = ker(T(Rz) - T(F)) and
Ty = T'(Rp)o- = kex(T'(Ry) ~ T'(3)).

Proposition 8.1.1. If p : T — T’ is an isogeny whose order is prime-to-p, then p[Tp) = T}, p[To+] = T}, and p is
surjective on special fibers.
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Proof (Cheng-Chiang Tsai). We first claim that C' := coker(Tj 2 T}) is finite and prime-to-p. Indeed, we have a Snake
Lemma diagram

ker(p«) s

|

1 > To > T T X (T) —— 1
1 > T} s T T X (T —— 1

C —— H(L,ker(p))

where ker(p, ) and H' (L, ker(p)) are both finite and prime-to-p, hence the claim.

Next, we claim that p : 7 — 7 is surjective on special fibers. Suppose on the contrary that it is not. Since § is infinite,
we then have coker(7(F) — 7'(§)) is infinite. Since T = T’ (RL) surjects onto 7'(F), we have that C is also infinite, a
contradiction.

Looking again at a Snake Lemma diagram

ker(7(8) - T'(3))

|

1 —— ker(T(Ry) > T(F)) —— T(Ry) ———— T[F) ——— 1

% | |

1 —— ker(T'(R) = T'(§)) —— T'(Ry) ————— T'(§) ————— 1

| |

coker(f?) ——— C

we need to show that p° is surjective. Since we already know that 7(F) surjects onto 7'(F) and that both C' and
ker(7(F) — T'(F)) are finite and prime-to-p, it suffices to show that coker(f") is pro-p. This follows from the fact
that ker (7' (Rr) = T'(§)) is pro-p [25, Proposition A.4.23]. |

Corollary 8.1.2. Suppose T and T’ are tori that are defined over K. If p : T — T is an isogeny whose order is prime-to-p,
then p[To] = Ty and p[To+] = Tj..

Proof (Cheng-Chiang Tsai). Suppose ' € T{. From Proposition 8.1.1 there exists v € Ty = T (Ry) such that p(7y) = v
The fiber of p over 7/ is a finite scheme over K, and so any element of the fiber must be defined over a finite extension, call
it K/, of K. Thus,y e T(K')nT(L) = T(K). We conclude that y € Tp. A similar argument shows that p[Tp+] =Tj.. =

8.2. On the surjectivity of isogenies at the level of parahoric subgroups. Suppose H and L are reductive K -groups
and p: H — L is a K-isogeny. Note that p carries H into L and, for z € B(H) = B(L), it carries Staby (x) into Staby (z).
Thus, from [23, Corollary 3.3.1] the map p carries H o into L, o. We show that, under mild conditions, the latter map is
surjective.

A version of the lemma below, but for k rather than K, occurs in [23, Lemma 3.3.2].

Lemma 8.2.1. If p does not divide the order of ker(p), then the map resy_ o+ P Hz0r = Ly o+ is surjective. Similarly, the
map resy, , p: Hyo = Ly o is surjective.

Proof. Let A g denote a maximal K-split torus in H such that x belongs to the apartment of Ay. Let A denote the
corresponding maximal K -split torus of L. Let A*fq denote the centralizer of Ay in H, and let A*Z denote the centralizer
of Ay, in L. Since H and L are K-quasi-split, both A%, and A" are maximal K-tori. Moreover, p(A%;) = A% .
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Since the restriction of p to the group generated by unipotent elements in H, o+ is an isomorphism onto the group
generated by unipotent elements in L, o+, it is enough to show that the restriction of p to the pro-unipotent radical of A@

surjects onto the pro-unipotent radical of A*E. This follows from Corollary 8.1.2.

Similarly, since the restriction of p to the group generated by unipotent elements in H, o is an isomorphism onto the
group generated by unipotent elements in L, g, it is enough to show that the restriction of p to the parahoric subgroup of
A#;{ surjects onto the parahoric subgroup of Ai. This follows from Corollary 8.1.2. [

8.3. k-embeddings of maximal K -anisotropic k-tori in isogenous semisimple groups. Suppose now that H and L are
semisimple k-groups and p: H — L is a k-isogeny.

Let T be a maximal K-minisotropic k-torus in H, and let T” be the corresponding maximal K -minisotropic k-
torus in L. Let x7 denote the point in B(L) = B(H) identified by T and let F' denote the facet to which zr be-
longs. From Remark 2.3.6 it follows that (resy p) '[T%], the preimage of T% = TX n L, under resy p, is TH and

(vesyy p) ' [Ni,,o(TH)] = Nit,p o (TH).
Set Z{,{ =Z0nH F,0 Where ZH denotes the center of H. Similarly, since ker(p) < Z it makes sense to define
ker(p)r = ker(resg p) N Hrp.

Lemma 8.3.1. IfTOL denotes the parahoric subgroup of T*, then (resy p)_l[Td;] < Tg and
(resyr p) ' [Ty] = ker(p) Ty

Proof. Since TF < TL and (vesy p) " [TE] = TH, we have (vesy p) M [TE] < TH.

Since L is semisimple, we have that T¢* = T Thus, if ¢ € (vesy p) " [T{], then Z, the image of ¢ in L, is topologically
unipotent and so ¢ must be topologically unipotent mod ker(resg p). Since (resy p) [T, ({J ] < Tﬁ , we conclude that ¢
must be topologically unipotent mod ker(p) . ]

Definition 8.3.2. Define Wi = Ny (T") /T = Ny, (T")/T", Wi = Ng,(T")/T3", and T = T{ /T Define
W:,@ , W:,@ ,and TE similarly.

Lemma 8.3.3. The map p induces an isomorphism W:,H = WZQ Moreover, if p does not divide the order of ker(p), then p
induces surjections N, (TH) - Ni,.o (TH), TH - TL, WH — Wk, and TH — TL. The kernel of each of these

surjections is ker(p) p or ker(p) pTE T as appropriate.

Proof. Since ker(resy p) < T, we have WYH = WTL . The remainder of the statements follow from Corollary 8.1.2 and
Lemmas 8.2.1 and 8.3.1. n

Remark 8.3.4. If p does not divide the order of ker(p), then we may and do identify ker(p)  with its image in T#.
Corollary 8.3.5. If p does not divide the order of ker(p), then
(TF)ee = (TH )/ (ker(p) p)ie and  (TH)pe = (T g/ (ker(p) £) -
Proof. From Lemma 8.3.3 we know that
1> ker(p)p — TF — Tf — 1
is exact. Since taking coinvariants is right exact, we have (T5)p, = (TH )i/ (ker(p) p)py. Similarly, from Lemma 8.3.3
we know that
1> ker(p)pTH /T — TH —TL —1

is exact. Since taking coinvariants is right exact, from Lemma 8.3.1 we conclude (T*)p, = (T?)p/(ker(p)r)fr. ]
Corollary 8.3.6. If p does not divide the order of ker(p), then

NLxT,o(TL)~Fr = (NHxT,o(TH)/kel"(P)F%H and  (Wi§)-m = (Wi [ ker(p) )/ - [

Remark 8.3.7. If z € ker(p)r and ¢ € (W).p,, then, since z is central in H, we have cz € (W )_p,. For ¢; and c3 in
(WH).pr we write ¢ % ¢ provided that there exists z € ker(p)p such that ¢; = cpz. Then (WH /ker(p)r)/.r may be
identified with the set of £-equivalence classes in (W) .py. A similar interpretation holds for (N Haopo (TH) ) ker(p)F)-pr-
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Remark 8.3.8. Suppose G is the derived group of G. Recall that G, denotes the simply connected cover of G’ while
G .q denotes the adjoint group of G. Let T' denote a K -minisotropic maximal k-torus in G’.

The results of this Section (that is, Section 8.3) show that if p does not divide the order of the kernel of the isogeny
Gs. — G/, then the stable classes in the G’-orbit of T, the rational classes in the G’-orbit of T’, and the k-embeddings,
up to rational conjugacy, of T' into G’ can be calculated in a straightforward manner if we know how to parameterize these
things for the corresponding torus in Gg.

8.4. A generalization of Example 7.6. If G is K -splitand T is a tame K'-minisotropic maximal k-torus in G correspond-
ing to the Coxeter element of W, then from Example 7.6 the set of k-embeddings of T into G form a single Ggfl-orbit.
This phenomenon can be generalized as follows.

Lemma 8.4.1. Suppose T is a maximal K -minisotropic k-torus in G. Let xp denote the point in B(G) identified by T
and let I denote the facet to which xr belongs. If the images of T N Gro and Z n Grg in G agree, then chrl acts
transitively on the set of k-embeddings of T into G. In fact, up to G -conjugacy, the parahoric subgroup ((Gaq) F,U)Fr
acts transitively on the set of k-embeddings of T into G.

Proof. Let T,q denote the k-torus in G,q corresponding to T.

The k-map G — G,q induces maps Grg = (Gadq)ro and Gro+ = (Gaq)Fo+. Since the images of T'n G and
Z n Gy in Gf agree, we conclude that the image of T,q N (Gaq) Fo in (Gaq) F is trivial.

Suppose v € T is strongly regular semisimple and g € G such that %y is Frobenius fixed. Since %y is Frobenius fixed,
we conclude that g-x7 is Frobenius fixed. Hence, from Lemma 6.1.4 there exists £ € G* such that £g-xp = zp. So, without
loss of generality we may and do assume g € Stabg (7). It will be enough to show that there exists € ((Gaq) o)™ such
that %y = /.

Let g denote the image of g in G,q. Note that g € Stabg,, (x7). From Lemma 2.3.1 there exist t € Toq and k € (Gaq) 0
such that g = kt. Thus, %y = k’)/. But then k‘ilFI'(k‘) eTqn (Gad)p70 <Tan (Gad)F,0+ = (Tad)O- Since H' (FI‘7 (Tad)(])
is trivial, there exists y € (Tha)o such that k™ Fr(k) = y~'Fr(y). But then h = ky™! € ((Gaa) r0)™™ < GEY and Py = Py =
. [ ]

9. K-MINISOTROPIC COXETER TORI

The existence of a maximal K -minisotropic k-torus in G was established by Adler in the Appendix to [13]. We sharpen
this result by showing that there exists a maximal K -minisotropic k-torus such that z is in the interior of C’.

Lemma 9.0.1. Recall that Z¢ = Z n G o. There exists a maximal K -minisotropic k-torus in G such that (a) x7 € C' and
(b) Tc = ZcTo+.

Proof. 1f 1 is an affine root of A with respect to G, A, K, and our valuation v, then we let Uy, denote the subgroup of Uw
corresponding to 1. Recall that for z € A(A), we have Uy, < G if and only if ¢)(2) > 0.

Write @ as the finite disjoint union ||}, ®; with each ®; irreducible. This decomposition produces a decomposition
A ="} A; of the affine simple roots and a decomposition ¥ = | I, ¥, of the affine roots. Similarly, we also have a
decomposition BY(G) = B(Gs.) = [T, B(GL.) where G is a simply connected group with root system ®;, and we
write C' = [Ti; C! for the corresponding decomposition of C’. For each 1 < i < m there exist unique r; € R, and a unique
x; € C! such that r; = ¢(x;) forall ¢ € A;. Letx = (z1,22,...,%m,) € C" and 7 = (r1,re,...,7m) € RY,. Let G be the
group (Ag+, Uy [ € ¥y implies ¢ (x;) > ;) and let G, 7+ be the group (Ag+, Uy |1 € ¥; implies ¢ (x;) > r;).

Since Fr preserves C, it acts on A. For ¢ € A, choose uy, € Uy \ Uy+ such that Fr(uy ) = Upy(y)- Set u = [Tuy.

Suppose y = (y1,Y2, - - -, ym) € BY(G). If for each 1 < i < m we have 9)(y;) = r; for all 1) € A;, then 2 = y. That s,
u € Gy \ Gy p+ if and only if x = y. In fact, this is true for any element of uG 7+.

It follows that C(7y) < Stabg(C') for all 7y € uGl 7+. Since u™'Fr(u) € G, 7+ and H' (Fr, G, 7+ ) is trivial, we conclude
that uG 7+ N G™ = . Thus, we may choose a strongly regular € uGy 5+ N G Since C(7) is a bounded subgroup of
G, we conclude that T := Cg () is a maximal K -anisotropic k-torus of G. Note that z7 = .

Suppose t € Tp = G, 0N T, and let ¢ denote the image of ¢ in G,,.. Since 7 is in C’, the reductive quotient G, is A.
Since t commutes with y € uG,, 7+ and ¢ € A, we have «(t) = 1 for all & € A. Thus, T = Z¢To+. [ |

The point zp for T = Cg () with strongly regular + as in the proof of Lemma 9.0.1 is, in the K -split tame setting,
given by the Kac coordinates of the Coxeter conjugacy class in W. For this reason, we make the following definition.



40 STEPHEN DEBACKER

Definition 9.0.2. A torus that arises via the construction in the proof of Lemma 9.0.1 is called a K-minisotropic Coxeter
k-torus. If we don’t require that it be defined over k (i.e., we don’t require that Fr(u) = u or Fr(y) = +), then we will call
it a K-minisotropic Coxeter K -torus or just a KX-minisotropic Coxeter torus.

K -minisotropic Coxeter k-tori have many desirable properties. We enumerate some of these properties here.

Corollary 9.0.3. Suppose T is a K-minisotropic Coxeter k-torus with x1 € C".

e Ifa facet H of B(G) is contained in the closure of C, then the representatives for Stabg(H)/G o can be chosen
in T. If H is also Fr-stable, then the representatives for Stabgr (H)/ GE{’O can be chosen in T™".

o The group Ggfi acts transitively on the set of k-embeddings of T into G.
e Every element of Stabg, ,(C) is cohomologous to an element of T,q. Here T 5q is the k-torus in G,q corresponding
to'T.

Proof. The first point follows from Corollaries 6.3.14 and 6.3.15, the second follows from Lemma 8.4.1, and the final point
follows from Lemma 2.3.1 and Remark 3.4.5 [

Recall that 7: Gg. — G is the composition Gg. -~ G’ - G.
Corollary 9.0.4. If T is a K-minisotropic Coxeter K-torus and xp € C', then T¢ = 1 Zsc | To.

Proof. We already know from Corollary 2.3.4 that T = n[Ts.]Tp. Since Ty is a K -minisotropic Coxeter K-torus in Gy,
from Lemma 9.0.1 we have Ty = (Tyc)c = Zsc - (Tsc)o+ Where Zs. denotes the center of G.. Since n[ (T )o+] c Tp, the
claim follows. [

Corollary 9.0.5. If T is a K-minisotropic Coxeter K-torus in G, then AnT = An Z.

Remark 9.0.6. This result is not true for arbitrary K -minisotropic tori. For example, if p > 2 and T is a K -minisotropic
torus in Sp, of type —1 € A; x A; as in Example 3.6.2, then A nT has order 4, not 2.

Proof. Without loss of generality, we may and do assume that G is absolutely almost simple.

Choose ge AnT.LetH=Cg(g9)°. If H=G, theng e Z.

Suppose H # G. Note that A* < Hand T < H.

If H is a Levi K-subgroup, then since g € A we must have that H is the Levi of a parabolic K-subgroup. However,
since T is elliptic in G, it cannot then belong to H.

Thus, H must be a generalized Levi K -subgroup of G that is not the Levi of a parabolic K -subgroup. Consequently,
the ranks of the derived groups of H and G must be the same and so we can identify B"4(H) in B*4(G). Since T < H,
by uniqueness we have x7 € B (H) c B4(G). Choose r > 0 so that Gy 0+ = Gypr # Gy . Since o € B(H),
there exists h € H such that hzp € A'(A). Let C] be the G-alcove in A’(A) that contains hxy, let 21 be an absolutely
special vertex in C7, and let By be the Borel subgroup determined by A, C7, and 1. Since T is a K-minisotropic Coxeter
K-torus in G, it contains an element v that, modulo G}, ,+, looks like [T u as ¢ runs over A’ = A(G, A, K,v,C7) and
Uy € Uy N Uy+. Since Hy, s = Hn Gy forall y € A’(A) and s € R.(, we have that, modulo Hpgop r+, the element u € H
looks like [T u, where ¢ runs over A" and wuy, € Uy \ Uy+. We conclude that for each 1) € A’ we have ) e O(H,A).
In particular, A(G,B’, A) is a subset of ®(H, A), hence ®(H, A) = ®(G, A). This contradicts our assumption that
H=+G. [ ]

Remark 9.0.7. The proof of Corollary 9.0.5 shows that if H is a connected reductive K -subgroup of G that contains both
a K -minisotropic Coxeter torus and the centralizer of a maximal K -split torus of (, then H must be G. In particular, the
intersection of a K -minisotropic Coxeter torus and any maximal K -split torus of G must be central.

As Lemma 9.0.8 shows, the Lie algebra version of Corollary 9.0.5 holds for any K -minisotropic Cartan subalgebra.
Thus, in characteristic zero we can always conclude that if G is semisimple and T is any K -minisotropic torus G, then
AnT is finite.

Lemma 9.0.8. Suppose k is any field of characteristic zero and g is the Lie algebra of a reductive k-quasi-split group.
Suppose b is a Borel k-subalgebra of g and Yy is a Cartan k-subalgebra of b. If t is a k-elliptic Cartan subalgebra of g,
then t 0 b is 3 b~ where 3 denotes the center of g.

Here h* denotes the maximal k-split toral subalgebra of .
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Proof. Suppose Y € tn h*. Then Cy(Y') is a Levi k-subalgebra of a parabolic k-subalgebra of g. Since h < Cy(Y') and h
is k-elliptic, we conclude that Cy(Y') = g. That is, Y € 3. |

Remark 9.0.9. In characteristic zero, the proof of Lemma 9.0.1 can be modified to work on the Lie algebra by choosing,
for i € A, Xy € gy N gy+ such that Fr(Xy) = X¥r(y)- Here the subgroups gy, and gy« of the root group g, are the Lie

algebra analogues of U, and U,+. We then replace y with a regular semisimple Y € X + gEfw where X =}’ X € gt

Remark 9.0.10. In the tame setting the G'"-conjugacy class of Cg () is independent of the choice of strongly regular
v e qu;f"r+. Similarly, in the tame setting in characteristic zero the GF"-conjugacy class of the Cartan subalgebra Cy(Y)is

independent of the choice of regular semisimple Y € X + g§T+. This follows from [2, Lemma 2.3.2].

APPENDIX A. TWO QUESTIONS ABOUT PARAHORIC SUBGROUPS OF K -MINISOTROPIC TORI

Mitya Boyarchenko, Stephen DeBacker, Anna Spice, Loren Spice, and Cheng-Chiang Tsai

We continue to use the notation developed in the main body of this paper. In particular, G is a connected reductive
k-group, G is the group of K-points of G, C'is an alcove in the building of GG, and G¢ g is the parahoric subgroup of G
corresponding to C. If T is a K-torus, then B(T') is the alcove of B(T"), and we denote by T} the parahoric subgroup of
T.

We explore two natural questions that arise from results in this paper:

(1) Does the sequence
(A.0.1) 1—Ggo— Stabg(C) — Stabg(C)/GC,O —1

discussed in Section 6.3 always split?
(2) If T is a maximal K -anisotropic torus in the derived group of G, is the cardinality of T'/Tj independent of the
isogeny class of the derived group?

A.1. On the splitting of A.0.1. It is known that the sequence A.0.1 splits whenever G is K -split and either the derived
group of G is simply connected or G is almost simple [4]. In this appendix we show that A.0.1 also splits when both G is
adjoint and a K -minisotropic Coxeter k-torus (see Definition 9.0.2) in G splits over a tame extension of K. We then show
that A.0.1 does not, in general, split.

Suppose T is a K-anisotropic maximal torus. Note that 7" is bounded. Write 1" = T}, x T}, where T}y is the subgroup of
elements of order coprime to p and T}, is the pro-p-subgroup of T'. If T}, = Ty = T+, which always happens when T splits
over a tame extension, then the sequence

1—Ty—T—T/Thy —1
splits.

Lemma A.1.1. If G is an adjoint group and T is a K -minisotropic Coxeter K -torus in G that splits over a tame extension,
then sequence A.0.1 splits.

Proof. This follows from the discussion prior to the statement of the lemma together with Corollary 6.3.15 and Lem-
mas 6.3.2 and 9.0.1. ]

To see that the sequence in A.0.1 can fail to split in the absence of tameness, even in characteristic zero, consider the
following example. Let k be Qo, let 7 € k be a square root of —1, and let E be the quadratic ramified extension K [7]. Note
that 1 +1 is a uniformizer in E. Let T be a K-torus such that T(E) = E* and T = N, ., the kernel of the norm map from

E/K>
F to K. From [28, Section 7.3] we have the following commutative diagram.

RT(E)

EX=T(E) —2 X, (T)

I b

N =T — X (T)Gai(/x)
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Here each of the horizontal maps is a surjective Kottwitz map, NN is defined by N(z) = 27(z)~! where 7 is the non-
trivial element of Gal(E/K), and « is the obvious surjective map. Since N (1 +i) = 7 and a(kyg)(1 +4)) # 0 in
Xi(T)Gai(r/K) 2 Z[2Z, we have k7 (i) # 0. Note that k7 (-1) = k(i) = 2r7(4) = 0. Since the kernel of xp is Tp, we
conclude that —1 € Tj and 4, the image of 4 in T'/ Ty, generates the group T'/Tp = 7/27. Since the only order two element
of T'is —1, we conclude that the sequence in A.0.1 does not split.

If we replace Q- in the above discussion with Fo((¢)) where F is the field with two elements and let F be a quadratic
extension of Fa((t)), then T'/T} has order two, but 7" has no order two elements and so the sequence in A.0.1 does not
split.

A.2. Isogeny and the cardinality of 7'/T} for K -anisotropic T. If T is a k-torus in SLy corresponding to the norm one
elements of a tamely ramified extension and T" is the corresponding k-torus in PGLg, then T'/T) and 7" /T have the same
cardinality. This is not a general phenomenon, but it is not rare.

From the results of Haines and Rapoport and of Kottwitz discussed in Section 2.3 we have T'/Tj = X, (T); where I is
the inertial group Gal(k/K). We will study X, (T);.

Lemma A.2.1. Let A be an additive cyclic group of order n, and T an automorphism of A. Let m be a multiple of n such
that 7™ is trivial, and put Ny, (X) := Y701 78(N) for all X € A. Then Ny, is identically 0 on A.

Proof. By the Chinese Remainder Theorem, we may, and do, assume that n is a power of some prime ¢, so that A is a
cyclic module for the ¢-adic integers Zy. Since N, factors through N ../ ,,, we may, and do, assume that m is also a
power of £, as well as a multiple of n (or even that m equals n, though we do not need this).

Choose an element k € Z, such that 7 sends a generator A of A to k), hence acts as multiplication by & on all of A. Then
N, acts on A as multiplication by the /-adic integer ;") Vi,

Since 7, which acts on A as multiplication by k™, is trivial, and the annihilator of A in Z, is nZ,, we have that k"
belongs to 1 + nZ,. Since m is a power of ¢ and Z;/(1 + ¢Z;) has order relatively prime to ¢, we conclude that k£ belongs
to 1 + ¢Zy, and so that the ¢-adic Valuat]icg)nn 1of k™ — 1 is the sum of the ¢-adic valuations of m and k — 1. Thatis, k™ -1

belongs to m(k — 1)Z, so X1 Lgi = -1 belongs to mZ, S nZy, and hence multiplication by 2261 k' annihilates A;

that is, IV, is identically 0 on A. [

We now present a technical result, Proposition A.2.2, on Weyl groups, whose proof seems to require case-by-case
analysis.

The quantification in Proposition A.2.2 seems elaborate, but note that almost every irreducible root system has a cyclic
fundamental group, so the result usually says that the order of w is divisible by the order of the fundamental group, and in
the remaining case (of D,, with n even) just says that the order of w is divisible by 2.

Proposition A.2.2. If ® is an irreducible root system and w is an elliptic element of W (®), then the order of w is divisible
by the order of every element of every subquotient of the fundamental group of P.

Proof. Put W = W (®). We indicate below the possibilities, according to the Borel-de Siebenthal algorithm, for a maximal
proper, but non-parabolic, Weyl subgroup W' of .

For W of type A,,, the maximal proper Weyl subgroups of W are all parabolic. Since the Weyl groups of types B,, and
C,, are the same, we do not distinguish them.

We put By = C = Aj and Dy = Ay + Ay, but do not consider D1, so that any occurrence of a symbol D,, carries the
implicit constraint m > 1.

Type of W Type of W'
B, or C, Cr+Ch_, D,
D, D,.+D,_,
E6 Al + A5, 3A2
E7 A1 + DG, A2 + A5, A1 + 2A3, A7
Eg A1 + A2 + A5, A1 + A7, A1 + E7, A2 + Eﬁ, A3 + D5, 2A4, Ag, Dg
Fy A1 + Ag, A1 + 03, 2A2, B,
G2 Al + Al, AQ.

Recall that W is the Weyl group of ®. For each entry in the chart above, if W’ is the Weyl group of ®’ and ®" is
an irreducible component of ®’, then in each case except D,, with n even, the fundamental group of ® is (cyclic and)
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isomorphic to a subgroup of the fundamental group of ®”'. Even in this exceptional situation, we have that every cyclic
subgroup of the fundamental group of @ is isomorphic to a subgroup of the fundamental group of ®".

Therefore, we may, and do, assume that w belongs to no proper Weyl subgroup of W. Then, using [11, p. 8, Lemma 10]
to enumerate the possibilities and [1 1, p. 23, Table 3] to compute their orders, we find:

Type of W | order of w is divisible by ...
A, n+1

B, or C, 2n
D, 2gcd(n-1,2)
Eg 3
Er 2
Eg 1
Fy 12
Go 6.

The result follows. u

Lemma A.2.3. Suppose k has characteristic zero and G is split and simple over K. Suppose p: G — H is an isogeny. Let
T be a K -anisotropic maximal torus in G and let T' denote the corresponding torus in H under p. Let E be the splitting
field of T over K, and suppose that I := Gal(E/K) is cyclic. We have that X,.(T)r, and X.(T')1, have the same
(finite) cardinality.

Proof. Since k has characteristic zero, the isogeny is separable. Since G is K-split and K -simple, its absolute root system
is irreducible.

By assumption, /g is cyclic, say of order m. Choose a generator 7.

We have an exact sequence

0 — X.(T) 2 X.(T') — A —— 0,

and A is a quotient of the (absolute) fundamental group X, (T")/Z®" (H, T") of H, hence a subquotient of the fundamental
group of the absolute root system ®(H, T"). The short exact sequence above yields the long exact sequence in homology

Hi(Ig, X.(T")) — Hi(Ig,A) — Xu(T)r, — Xu(T) 1, > Ag > 0.

E

Since I is cyclic of order m with generator 7, for every Z-module A on which I acts we have Hy (I, A) = A2 /N;_[A]
where Np, (a) = 251%—1) 7/ (a) for a € A. Since T, and so T’, is K -anisotropic, we conclude that H; (I, X, (T”)) = 0.
Thus, the long exact sequence becomes

> 0.

0 — AE/Nj [A] — Xu(T)1, —— Xu(T)1, > As

E

Since

0 — Al® » A 75 A y Ar, — 0

is exact, we conclude that |AIE‘ = |Az,|. Thus, the index of X, (T)y, in X.(T")r, is [Nz, [A]].

Since G, hence H, is K-split, it must be the case that there is some elliptic element w ¢ W such that the action of
Gal(E/K) on X, (T') satisfies 7(\) = w() for all A € X, (T"). Then m is the order of w, so Proposition A.2.2 gives that
the order of every element of A divides m.

Moreover, the action of I on the fundamental group of the absolute root system ®(H, T"), hence on its subquotient A,
is trivial. Thus Ny, (A) is multiplication by m, which, by assumption, divides the order of every element of A; so Ny, (A)
equals 0. [

Remark A.2.4. If I is not cyclic, then the cardinality of X, (T);,, and X, (T");, need not be the same, even if A is cyclic.
For example, suppose that k£ has characteristic zero, the residue field of K has characteristic 3, and F is a Galois extension
of K with Galois group S3. Let T be the maximal k-torus in SL3 determined by the standard action of S5 on

X.(T) = {2 a;e;|ay,as,as € Z with ay + as + az = 0}.
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Here (e;|1 < i < 3) is the standard basis of Z?. Specifically, T may be taken to be ker(Resz; GL1 - GL1), where E’

is the fixed field of any one of the order-2 elements of 1. Let T’ denote the corresponding k-torus in PGLg3 under the
isogeny p:SLz — PGL3. Then X, (T);,, is trivial while X, (T");,, is isomorphic to Z/3Z.

APPENDIX B. ON —1 INVARIANTS AND TITS GROUPS OF A SPLIT SIMPLY CONNECTED GROUP

Ram Ekstrom

We continue to use the notation of the main body of this paper. Suppose G is a simply connected K-split group. This
means that K = K and & = 1. Since G is simply connected, X, (A#) is spanned by the coroots, " = &V (G, A*).

Suppose —1 belongs to W and letn € Wbe a representative of —1. In this note we investigate when the group of n-fixed
points of N' = Ns(A*) is a Tits group (with respect to some pinning). We assume 7 is tame. Thanks to the next lemma,
this is equivalent to assuming p is not two.

Lemma B.0.1. n* = 1.
Proof. Since (-1)? = 1, we know n? € W n A*. Thus, there exists ;€ Z®" such that n? = ;1(~1). The result follows. m
Let ¢ denote the order of n; so £ is 2 or 4. Let £ be —1 or ¢ depending on whether £ is two or four.

B.1. The structure of N for any ¢ € A). Recall that G is simply connected and K-split. Let N = N (A*).

Lemma B.1.1. Forallt e fl#, the elements n and nt have the same order. In fact, we have (nt)2 =n2.

Remark B.1.2. Since n is elliptic, n and nt are conjugate by an element of A#. Hence n and nt have the same order.
Proof. Note that
2
(nt)?="t-"t-n2=t"1t-n?=n2
Since n has order 2 or 4, the result follows. [ ]
Lemma B.1.3. Fixt e flﬁ. There is a pinning (G, A* B, { X/} ;) such that if n!, is the unique element of
N N U_o(K)exp(XHU_o(K) = N [ exp(X.)U_o(K) exp(X.)
forace f[, then B
N™ = (nl:a eTI).
That is, N™ is the Tits group for the pinning (G, A*, B, {X}} ).
Proof. Ifa € I, then
e = ala(t)) ™ "ng.
Recall that n, is the unique element of N n U_,(K) exp(X a)q_a(f( ). Because "n, and n, have the same image in W
and n normalizes G, we have that n;l - ", lies in both G, N A* and W n A*. So n;l - "n, is in the image of & and has
order either one or two. In the former case n, is fixed by n while in the latter "n, = ny,a(-1). If "n, = ng, then define

yL € Rk to be a square root of a(t). If "n, = n,a(-1), then define y! to be a square root of —a(t). Observe that these
elements exist since the polynomial X2 — a(t) has roots in R%. = Rj. This is because, modulo p -, X 2 _ a(t) has simple

roots over the algebraically closed residue field, p is not equal to two, and K is Henselian. Put X L= (yfl)_1 - X, and note
that n?, = 4/ an, = naa(yL) where f! is a square root of (y)~!. We then calculate that if "n, = n,, then

il = a(a(0)) e a(uh) " = na @(a() - a(sl) ) = nad(yh) =l
While if "n, = nqa(-1), then we similarly find
g = na - (aa(t)) - a(-1) - a(ye) ™) = naaly,) = ng.
Consequently the group W' = (n!:a € II) is a Tits group for the pinning (G, A#, B, { X!}
N = W' A# and G is simply connected, we find
Nnt _ Wt . (A#)nt _ Wt . (A#)n — Wt. -
Remark B.1.4. Note that N = W, and it can happen that WL +W.

aci) and is fixed by nt. Since
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Remark B.1.5. Simply connectedness is necessary in the above lemma. For example for the non-simply connected group
G = PGL; with A* the diagonal torus, consider the matrices

_fo1], -t
"Tloop™ o 1|

Then n = n, is a nontrivial representative of the Weyl group N5 (A*)/ A# and one calculates that (N, & (A*))™ is the four
element group generated by n and ¢y. On the other hand, preserving the notation of the above lemma, one checks that since
ng is fixed by n, we have that y} can be taken to be 1, and n} = n,a(yl) = n,. Consequently (nl:a e II) = {1,n} is a Tits
group and is a proper subgroup of (N (A”))".

B.2. Results about n.

Lemma B.2.1. For all t € A* we have that n® = (nt)? is central.

Proof. Fix t € A#. From Lemma B.1.1 we know that n? = (nt)2. Tt will be enough to show that for all a € IT we have
(nt)QXt - Xt
a _a* - -
Fix a € II. Since "n!, = n! and Ad((nt)?)U_4(K) = U_,(K), we have

~ ~ ~ 2 ~
Ng(A*) M U_o(K) exp(X;)U-o(K) = Ng(A*) M Uo(K) exp("™) XU (K).

A calculation shows this can happen if and only if (")°X? = X n

Corollary B.2.2. If n has order four, then for all t € A* we have n* = (nt)? = A (~1).

Proof. Recall from Section 3.3 that there is an h € G such that h™'nh = \,,(7). Thus,
An(=1) = (W 'nh)(h'nh) = hin’h.

2 is central, the conclusion follows. []

Since n
Lemma B.2.3. If G is k-quasi-split, K-split, then we may assume Fr(n) = n.

Proof. If G is k-quasi-split and K -split, then we may assume {X,} . is a Chevalley-Steinberg system for G (see [25,
Section 2.9]). Note that we then have Fr(n,) = np,(q) for all a € I1.

If w € W has a reduced decomposition w = Sq, ***S,, Where a; € 1:1, then the lift n,, of w to W defined by Ny = Mg, N,
is independent of the reduced decomposition of w [25, Proposition 2.9.11]. It thus follows that if -1 € W has a reduced
decomposition 1 = s4,°+54,, then Fr(n) = Fr(ng, *na,,) = NFc(ay) MFr(am) = 1 SINCE SFr(q;) " SFr(a,,) 1S another
reduced decomposition of —1. [

Remark B.2.4. If G is not quasi-split, then it may be the case that n cannot be Frobenius fixed. As an example, let D be
a central division algebra over £ of index 2 and let G = SL; p. Then our n fixes exactly one vertex of the Bruhat-Tits
building B(G) while Fr fixes exactly the barycenter = of an alcove C. This latter fact follows from the fact that since {x}
is the underlying set of B(G, k), the reductive quotient G, is defined over f and therefore is quasi-split by Lang’s theorem.
And so a Borel subgroup B c G, defined over f is a torus since G is anisotropic, whence G is an f-torus. This implies that
2 is an interior point of C' (necessarily the barycenter). As a consequence one concludes that n cannot be Frobenius fixed.

B.3. Results about n . Recall that ng. and np = )‘ﬁl(ﬁ)npr are defined in Definitions 7.4.1 and 7.5.1. By construction,
nr € Ng( Kn)ago (A#) normalizes N™*(£)_ In this section we assume G is K -split, k-quasi-split and simply connected.
From Lemma B.2.3, we may and do assume Fr(n) = n. From Lemma 7.5.3 there exists z € Zy = Zy such that

Fr[Ny(nzAn(€))] = nz (nzAn(€))np. Since -1 € W, the center of G is an elementary abelian two group and so 22 = 1.
Since Zy = Zy+ and p # 2, we conclude that z = 1. Thus Fr [N, (nA,(€))] = nz (A, (€))np.

Lemma B.3.1. We have np € N (1)

Proof. Since n? is central, we have Ad(n)\,(€) - Ad(n?)\,(€) is trivial. Thus, N,(n),(€)) = Ad(n?) (M, (€)) - nd.
Suppose first that n? = 1. In this case we have ¢ = —1, and s0 Ny(n\,(=1)) = Ad(n?)(A\n(=1))n? = Ad(n)A\p(=1)n =
An(=1)n =nAd(n ')\, (~1). Thus, from Corollary 7.5.3 we conclude that

nAn (1) = nA,(=1) = Fr(Ny(nAn(<1)) = (np) ' - (nAn(-1)) - np.
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Consequently, ny € N (1),

Suppose now that n has order four. In this case we can take & = 4, and so Ny(nA, (7)) = Ad(n?) (A, (7)) - n?. We have
two cases: ¢ = 1(4) and ¢ =3(4)

Suppose first that ¢ = 1(4). In this case Fr(i) = ¢ and Ny(n\, (7)) = Ad(n)(A,(2)) - n = nA,(i). Thus, from
Corollary 7.5.3 we conclude that

nAn (i) = nAn (1) = Fr[Ng((nAn(9)))] = (np) ™ - (nAn () -

and song € N (D),
Suppose now that ¢ = 3 (4). In this case Fr(i) = =i and Ny(n\,(i)) = Ad(n?)(A\,(i)) - n3. From Lemma B.2.1 and
Corollary B.2.2, n? = \,,(~1) is central, so

Ny(nAn (7)) = Ad(n) A (7) - nA(=1) = Ay (=i)nA, (1) =n - Ad(n N (=1) - An(=1) = nA, (=i).
Thus, from Corollary 7.5.3 we conclude that
nAn (1) = Fr[nn (=1)] = Fr[Ng(nAn(2))] = (np) ™" - (nAn(0)) -0,
and so, ng € N (D), [ ]
The following result now follows from the above work and Corollaries 7.4.11 and 7.5.5.

Corollary B.3.2. Suppose G is a simply connected, K -split, k-quasi-split group and —1 belongs to W. Let n € W be a lift
of =1 such that Fr(n) = n. The set of k-stable classes in O:kF is indexed by the conjugacy classes in w. If T is a k-torus in
the conjugacy-class corresponding to w' € W, then, up to G™*-conjugacy, the set of k-embeddings of T’ into G is indexed
by A#;}Fr. Finally, the set of G(k)-classes in (9]73 is indexed by NZ?:@). [ ]

Remark B.3.3. This Corollary and Lemma B.1.3 were used in Example 7.10 to compute the number of rational classes in
(’)éi for T corresponding to —1 in the Weyl group of Go. We also used this Corollary to double-check the results about the
tori that correspond to —1 for SLy and Sp, in Examples 7.7 and 7.8.
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