PARAMETERIZING CONJUGACY CLASSES OF UNRAMIFIED TORI VIA BRUHAT-TITS THEORY
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ABSTRACT. Suppose k is a nonarchimedean local field, K is a maximally unramified extension of k, and G is a connected
reductive k-group. In this paper we provide parameterizations via Bruhat-Tits theory of: the rational conjugacy classes of k-tori
in G that split over K; the rational and stable conjugacy classes of the K -split components of the centers of unramified twisted
Levi subgroups of G; and the rational conjugacy classes of unramified twisted generalized Levi subgroups of G. We also provide
parameterizations of analogous objects for finite groups of Lie type.

INTRODUCTION

Suppose k is a nonarchimedean local field, K is a maximally unramified extension of k, and G is a connected reductive
k-group. If T is a maximal k-torus in G, then TX the maximal K -split torus in T, is defined over £ and T is a maximal
K -minisotropic k-torus in L = Cgq (TX), the centralizer in G of TX. The group L is an unramified twisted Levi subgroup
of G; thatis, L is a k-group that occurs as the Levi component of a parabolic K-subgroup of G. Consequently, an approach
to parameterizing the rational conjugacy classes of maximal tori in G is to

e parameterize the rational conjugacy classes of unramified twisted Levi subgroups of G and
e for each unramified twisted Levi subgroup L of G parameterize the L(k)-conjugacy classes of K -minisotropic
maximal k-tori in L.

This paper takes up the former problem. The latter problem is studied in [6]. Future work will take up the problem of
parameterizing, via Bruhat-Tits theory, the rational classes of tame tori in a reductive p-adic group.

A subgroup L of G is called an unramified twisted Levi subgroup in G provided that L is a k-group that occurs as a
Levi factor for a parabolic K-subgroup of G. A k-torus S is called an unramified torus in G provided that S is the K -split
component of the center of an unramified twisted Levi subgroup in G. It follows that the problem of understanding the
set of unramified twisted Levi subgroups up to rational conjugacy is equivalent to the problem of understanding the set of
unramified tori up to rational conjugacy. A parameterization of the rational conjugacy classes of maximal unramified tori
in G via Bruhat-Tits theory was carried out in [3], and this paper may be viewed as a generalization of the results found
there.

If one tries to generalize [3] by naively replacing the role of “maximal tori in groups over the residue field” with “twisted
Levis in groups over the residue field,” it will not work. One reason for this failure is that any reductive group over the
residue field is quasi-split, but unramified twisted Levis do not need to be k-quasi-split. To make it work, one needs to
introduce a bit more data, as we now discuss.

In Theorem 5.5.4 the rational conjugacy classes of unramified tori are parameterized in terms of equivalence classes of
elliptic triples (F, 0, w) that arise from Bruhat-Tits theory. When G is k-split, the triples (F, 6, w) may be described as
follows. Let A denote a maximal k-split torus in G. Then F is a facet in the apartment of A” in the Bruhat-Tits building
of G, 0 is a subset of a basis for (G, Ak), the set of roots of G with respect to A*, and w is an element of the Weyl
group of the reductive quotient at F' which preserves the root subsystem in ®(G, A*) spanned by #. There is a natural
notion of equivalence among such triples, and the triple (F, 6, w) is elliptic provided that dim(F') > dim(F") for all triples
(F',0',w') that are equivalent to (F,6,w). When G is not k-split, the parameterization is modified to account for the
action of the Galois group of K over k.

If we restrict our attention to the set of triples that are of the form (F, (), w), then we recover the parameterization of
maximal unramified tori of G in [3]. It is the addition of the datum €, which has little or no relationship to F, that allows
the parameterization of this paper to work. In analogy with [3], the dimension of the Lie algebra of the maximal k-split
torus that occurs in the centralizer of an unramified torus parameterized by (F), 6, w) is equal to the dimension of F'.
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We now discuss the contents of this paper. By way of motivation, in Section 2 we parameterize the finite-field analogue
of unramified twisted Levi subgroups; this can be viewed as a natural generalization of the known parameterization, in
terms of Frobenius-conjugacy classes in the Weyl group, of maximal tori in finite groups of Lie type. In Section 3 we
recall some facts about the relationship between Levi subgroups and various tori in their centers. This section also verifies
that every unramified torus occurs as the maximal K -split subtorus of some maximal k-torus of G. In Section 4 we
parameterize, via Bruhat-Tits theory, all k-tori that split over K and contain the maximal K -split torus in the center of
G. Building on this, in Section 5 we parameterize, as discussed above, the rational conjugacy classes of unramified tori in
terms of Bruhat-Tits theory.

In Section 6 we define a notion of stable conjugacy for unramified tori and provide a criterion, in terms of the triple
(F,0,w), to describe when two rational conjugacy classes of unramified tori are stably conjugate. We also examine a more
general k-embedding question. Given an unramified torus S in G, a k-morphism f: S — G is said to be a k-embedding
provided that there exists g € G(K) such that f(s) = gsg~! forall s € S(K). We enumerate, in terms of parameterizing
data, the set of k-embeddings of S up to rational conjugacy. Note that the discussion of this result in [5] is incorrect.

Finally, in Section 7 we parameterize the rational conjugacy classes of generalized unramified twisted Levis (see Defini-
tion 7.0.1). This is akin to the parameterization of maximal-rank unramified subgroups of a K -split group G in [3], though
less restrictive and, I believe, easier to understand. We end as we began by parameterizing the conjugacy classes of the
finite-field analogue of unramified twisted generalized Levi subgroups.
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1. NOTATION

1.1. Fields, groups, roots. Let k denote a field that is complete with respect to a nontrivial discrete valuation v. We
assume that the residue field f of k is perfect, and outside of Sections 3 and 4, we will assume that the residue field § of k
is also quasi-finite. Let k denote a fixed separable closure of k, and let K < k be the maximal unramified extension of k.
The valuation extends uniquely to &, and we will also denote this extension by v. Let § denote the residue field of K; it is
an algebraic closure of . We will often identify an algebraic f-group with its group of §-points.

If G is a group and =,y € G, then Int(z)(y) and ¥y are defined to be zyx~*

If H is a k-group, then we let Lie(H) denote its Lie algebra.

We will use the following font convention: If H denotes an algebraic K -group, then we will denote its group of K -points
by H.

We identify I' = Gal(K/k) with Gal(F/f). When f is quasi-finite we fix a topological generator Fr for I, and choose a
lift of Fr to an element, which we will also call Fr, of Gal(k/k).

Let A denote a maximal K-split k-torus in G that contains a maximal k-split torus of G; such a torus exists and is
unique up to G''-conjugacy (see [ 16, Theorem 6.1] or in [3, Theorem 3.4.1] take an unramified torus corresponding to a
pair of the form (F, T) € I"™ with F an alcove). We denote by ® = ®(G, A) the root system of G with respect to A and
by W = W(G, A) the Weyl group Ng(A)/Ci(A). We denote by ¥ = (G, A, K, v) the set of affine roots of G with
respect to A and v. For ¢ € ¥, we let ¢ € ® denote the gradient of 1.

Since G is K-quasi-split, there is a Borel K-subgroup, call it B, that contains A. Let A = A(G, B, A) denote the
corresponding set of simple roots in ®. Set

©=0(G,A) ={wp|lwe Wand p C A}.

The set © is independent of the choice of B. Note that I' acts on ®, W, and ©. If § € ©, then we let &y C P denote the
root subsystem generated by 6, we let Wy < W denote the corresponding Weyl group, and we let Ay = (maEH ker(a))o.

1.2. Notation for tori. Suppose F is a Galois extension of %, and T is a k-torus. We let TZ denote the maximal E-split
subtorus in T.
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Definition 1.2.1. A maximally k-split maximal k-torus in G is a maximal k-torus T in G such that dim(Lie(T*)) >
dim(Lie(T*)) for all maximal k-tori T in G.

Note that if G is k-quasi-split, then a maximally k-split maximal k-torus in G is the centralizer of a maximal k-split
torus in G. In general, if T is a maximally k-split maximal k-torus in G, then T is a maximal k-torus in G that contains a
maximal k-split torus of G.

Suppose H is an algebraic k-subgroup of G. We let Z; denote the center of H. We set Z = Zg, and we let Zﬁ denote
the maximal E-split subtorus in Zyj.

Similar notation applies to objects defined over f.

1.3. Buildings. We denote by B(G) the (enlarged) building of G. If F is a facet in B(G), then we denote the correspond-
ing parahoric subgroup by G'r and its pro-unipotent radical by G’z o+. The quotient G /G o+ is the group of f-points of
a connected reductive group Gp. If F if I'-stable, then G is an f-group. The group G acts simplicially on B(G)', and a
fundamental domain for this action is called an alcove.

We let A(A) denote the apartment in B(G) corresponding to A. If F is a facet in A(A)L, then the image of A N G in
Gr, which we call A, is a maximally f-split maximal f-torus in Gr. That is, Ar is a maximal f-torus in G that contains
a maximal f-split torus of Gp. We denote by Wr the Weyl group N, (Ar)/Ar. Note that we may and do naturally
identify W with a subgroup of W. Let ¥ denote the set of affine roots of A that vanish on F', and let & denote the
corresponding set of gradients. Let M denote the Levi k-subgroup that contains A and corresponds to @ -, and let (M)
denote the GT -conjugacy class of M. Note that xMp = Gp.

Let WAl denote the affine Weyl group Ngr:(A)/(Cq(A) N GEY) where F is any facet in A(A)F*. Note that this is
the affine Weyl group for G'* and not the Fr-fixed points of the affine Weyl group of G.

Example 1.3.1. For the group Sp,(k) each alcove is a right isosceles triangle. For the group Go(k) each alcove is a
30-60-90 triangle. For every facet F' in the alcoves pictured in Figure 1, we describe the algebraic f-group Gr.

Sp4 SO4 GLQ SL3
GL1 X GL1
GLQ SLQ X GLl GL2 GL2
GL1 X GLl
Sp4 SL2 « GL1 SLQ X SLQ GQ

FIGURE 1. The reductive quotients for Sp, and Go

2. TWISTED LEVI SUBGROUPS FOR REDUCTIVE GROUPS OVER QUASI-FINITE FIELDS

Suppose f is quasi-finite.

As a way to motivate what happens in the nonarchimedean setting, we first look at an analogous parameterization
question for a connected reductive group over f, e.g. a finite group of Lie type. We first recall an important fact about the
Galois cohomology of such groups.

Lemma 2.0.1. IfH is a connected reductive §-group, then H'(Fr, H) = 1 and Borel §-subgroups of H exist.

Proof. Thanks to [18, XIII Section 2] the quasi-finite field f is of dimension < 1. The result now follows from Steinberg’s
Theorem [ 17, I Section 2.3]. |
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2.1. Notation. Suppose G is a connected reductive group defined over f. Fix a Borel f-subgroup B of G and a maximal
f-torus A of B. We denote by Ag = A(G, B, A) the corresponding set of simple roots and by Wg = W(G,A) the
corresponding Weyl group. For 6 C Ag, we let W ¢ denote the corresponding subgroup of Wg.

Definition 2.1.1. A reductive subgroup L of G is called a twisted Levi f-subgroup of G provided that L is defined over f and
there exists a parabolic §-subgroup of G for which L is a Levi factor. We let £ denote the set of twisted Levi f-subgroups
of G.

Every twisted Levi f-subgroup L of G identifies an f-torus in G: let S| denote the connected component of the center of
L. On the other hand, the centralizer of any f-torus in G is a twisted Levi subgroup [8, Proposition 1.2.2]. In light of this,
we make the following definition.

Definition 2.1.2. An f-torus S in G that is equal to the connected component of the center of Cg(S) will be called a Levi
torus.

Remark 2.1.3. For a twisted Levi subgroup L of G, we have that L = Cg(S) [8, Proposition 1.2.1], so there is a GFr-
equivariant bijective correspondence between the set of Levi tori in G and the set of twisted Levi f-subgroups in G. Con-
sequently, if we understand £ up to GF"-conjugacy, then we will understand the set of Levi tori in G up to G -conjugacy
(and vice-versa).

2.2. A parameterization. In this section we provide a parameterization of £, the set of G -conjugacy classes in £. This
parameterization may be viewed as a natural generalization of the known classification of the G'"-conjugacy classes of
maximal f-tori in G (see [2, Proposition 3.3.3], [3, Lemma 4.2.1], or [1 |, Section 1]).
Let I denote the set of pairs (6, w) where § C Ag and w € W such that Fr(6) = w6. For (', w’) and (0, w) € Ig we
write (¢',w’) ~ (0, w) provided that there exists an element n € W for which
e 0 =nbd and
o w=Fr(n)wn1.

One checks that ~ is an equivalence relation on the set Ig.
Lemma 2.2.1. There is a natural bijective correspondence between I/~ and L.

Remark 2.2.2. The set of equivalence classes in I for which the first entry in each pair is the empty set parameterizes the
set of GF"-conjugacy classes of maximal f-tori in G (see [2, Proposition 3.3.3], [3, Lemma 4.2.1], or [ |, Section 1]). At
the other extreme, the singleton containing (A, 1) € Ig is an equivalence class and parameterizes the G -conjugacy class

{G}.

Proof. We begin by defining a map ¢: Ig — L. Suppose that we have a pair (6, w) € Ig. Thanks to [3, Section 4.2] we
can choose g € G such that ng := Fr(g~')(g9) € Ng(A) and the image of ng in We is w. Let Ag = ([,cp ker(a))® and
Mg = CG(Ap). Since Fr(0) = wb, we have

Fr(“Mg) = "OFr(Mg) = 97" (Miyg)) = (" (Mup)) = M.
Thus, 9My is a twisted Levi f-subgroup of G.

The only choice in the above construction was g. We need to show that a different choice results in a twisted Levi
f-subgroup that is G'*-conjugate to 9My. Suppose h € G is chosen so that n, := Fr(h)~'h has image w in Wg. Choose
a € A so that nj, = nga. Since Fr(hg=!)"thg™! = 9a € 9A and H'(Fr,9A) is trivial, there exists ¢ € 9A such that
Fr(hg=!)~thg™! = Fr(t)~'t. Thus tgh~! = Fr(tgh™1'), so tgh~! € G'* and

IMy = t9M, = (g™l

This shows that "My is rationally conjugate to 9My, and so ¢ is well defined.

We now show that ¢ descends to an injective map from Ig/ ~ to £ we shall call this map ¢ as well. Suppose (6, w)
and (¢',w’) € Is. Choose g € G (resp. ¢’ € G) so that the image of n, = Fr(g)~'g (resp. ny = Fr(¢')"'¢’) in W is
w (resp. w'). If o(B,w) = @(#,w'), then there is z € G so that IMy = “9'My,. Without loss of generality, we may
replace ¢’ by xzg'. Since IMy = 9 My, we have that both 9A and 9' A are maximal f-tori in YMy. Consequently, there exists
m' = 9m with m € My such that ™'9'A = 9A and ™9 (B N Mg/) = 9(B N My). Since we also have (") (9’ A) = 9A, we
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conclude that m/Fr(m’)~* € Nowm, (A), which implies n, 'Fr(m)ngm="' € Ny, (A). Setn = mg~'g' € Ng(A). Note
that nf’ = 0 and

Fr(n)(ng)n~" = Fr(mg~ "¢ )Fr(¢") "' g'(mg~'¢') ™" = Fr(m)(ng)m™" = ny(ny 'Fr(m)(ng)m™").

By looking at images in Wg, we conclude that Fr(n)w'n~! € wWg ¢ where 7 denotes the image of n in Wg. Choose
x € Wgyp so that Fr(n)w'n~1 = wx. Note that
20 = wFr(n)w'n"10 = wFr(n)w'd’ = wFr(7)Fr(d') = wFr() = 6.
Since the action of W ¢ on the set of bases for the root system spanned by 6 is simply transitive, we must have = = 1.
Finally, we show that ¢ is surjective. Suppose L € L. Let S| denote the connected component of the center of L.

Choose a Borel f-subgroup By in L and a maximal f-torus A| in B|. Denote by A = A(L, B, A) the corresponding set
of simple roots. Choose a Borel §-subgroup B’ < G such that By = B’ NLand AL C A(G,B’,;AL). Choose g € G so that
AL = 9A and B’ = 9B. Define §_ = ¢~ - A_; note that §_ C Ag. Let w denote the image of Fr(g_l)g in Wg and put
Ao, = (MNaeo, ker(a))® < A. We have

e S| =9Ap and

[ FI“(QL) = w|_0|_.
By construction, ¢ (6, w ) is the GF"-conjugacy class of L. |

Example 2.2.3. For the group G = Gg let Ag = {«, 8} where « is short. Let w, and ws denote the corresponding simple
reflections in W, and let ¢ denote the Coxeter element w,wg. In Table 1 we provide a complete list of representatives for
the elements of I/ ~. We also indicate the type of the corresponding twisted Levi f-subgroup of Go. Groups of type A
for a long root are ornamented with a tilde (e.g. U(2)).

] Pair H Type of twisted Levi f-group ‘
(@, 1) GL1 X GL1
(0, we,) Coxeter torus in GLo
(0, wg) Coxeter torus in GLy
@, ¢) Coxeter torus in Go
(0,c?) Coxeter torus in SL3
0,c%) Coxeter torus in SOy
({a},1) GLs
({a}, wswawgwawg) q\(/Z)
({ﬁ}a 1) gLQ
({8}, wawpwawswa) U(2)
(Av 1) GQ

TABLE 1. Ga: A set of representatives for I/~

Example 2.2.4. For the group G = SU(3) let Ag = {a, B} with Fr(a) = . Let w, and wg denote the corresponding
simple reflections in Wg. In Table 2 we provide a complete list of representatives for the elements of Ig/ ~. We also
indicate the type of the corresponding twisted Levi f-subgroup of SU(3). When viewing the table, we find it useful to
remember that (0, 1) is equivalent to (), wowpg).

] Pair H Type of twisted Levi f-group ‘
(0,1) maximally f-split maximal f-torus in SU(3)
(0, wq) maximal f-anisotropic torus in U(2)
(0, wawswy) maximal f-anisotropic torus in SU(3)
({a}, waw) u@)
(A1) SU(3)

TABLE 2. SU(3): A set of representatives for I/ ~
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3. TORI AND LEVI SUBGROUPS

In this section we introduce some notation and recall some facts about tori and Levi subgroups.

3.1. Facts about Levi (F, k)-subgroups. For this subsection suppose that k is any field and E is a Galois extension of k.
A subgroup M of G will be called a Levi (E, k)-subgroup provided that it is a k-subgroup that occurs as a Levi factor for
a parabolic F-subgroup of G.

Lemma 3.1.1. [f M is a Levi (E, k)-subgroup and ZE/I is the maximal E-split torus in the center of M, then Z1€1 is defined
over k and M = Cg(ZL)).

Proof. Since M is defined over k, the center of M is defined over k. Thus Z{’, the unique maximal E-split sub-torus of
the center of M, is also defined over k.

Since M is a Levi (F, k)-subgroup of G, there is a parabolic E-subgroup P of G such that M is a Levi factor for P.
Thanks to the proof of [20, Proposition 16.1.1 (ii)] P contains an E-split torus S of G such that Cg(S) is a Levi factor
of P. Since M and C(S) are P(F)-conjugate [20, Proposition 16.1.1 (ii)], we may assume, after conjugating S by an
element of P(E), that M = Cg(S). Since S is in the center of M and is E-split, we conclude that S < ZL. Thus
M < Cg(ZL;) < Ca(S) = M, and we conclude that M = Cg (ZL)). |

Corollary 3.1.2. Suppose M is a Levi (E, k)-subgroup with center Zng. If H is a k-subgroup of G that lies between Zf/[
and Zyg, then M = Cg (H).

Proof. Since Z¥, < H < Zpg, we have M < Cg(Zym) < Cg(H) < Cg(ZL;) = M. u

Lemma 3.1.3. If T is a maximal k-torus in G, then Cg(TF) is the unique Levi (E, k)-subgroup in G that is minimal
among Levi (E, k)-subgroups that contain 'T.

Remark 3.1.4. The condition of maximality on T is necessary for uniqueness.

Proof. Let M = Cg(TF).

We first show that M is a Levi (E, k)-subgroup in G. Since TF is a torus, M is a Levi subgroup (see [8, Proposi-
tion 1.2.2]). Since T is the unique maximal E-split subtorus in T, it is defined over k. Hence M is defined over k. If Zf/[
denotes the maximal E-split torus in the center of IM, then TE < Zf/I. Moreover, since T < M, we also have Zf,l <T,
and so by maximality of T¥ we conclude that Z{; < T¥. Thus T = Z¥,, and so M = Cg(T?) = Cq(ZE)).

Let T’ denote a maximal E-split torus in G that contains T¥. Choose A € X (T') that is non-trivial on every root of
G with respect to T; let P, denote the corresponding parabolic E-subgroup of G. Since T < M., the subgroup MP ), of
G is a parabolic E-subgroup of G for which M is a Levi factor.

We now show that M is the unique minimal Levi (E, k)-subgroup in G that contains T. Suppose M’ is another Levi
(E, k)-subgroup that contains T. Let Zf/[, denote the maximal E-split torus in the center of M’. From Lemma 3.1.1 we
have M/ = Cg(Zf/[,). Since T < M/, we have Zl‘\E/I, < T and so Zf/[, <TF = Zf/ﬁ hence M < M. [ ]

3.2. On unramified twisted Levi subgroups and unramified tori. We again assume that k is complete with respect to
a nontrivial discrete valuation and § is perfect. When F is the maximal unramified extension K, we use the following
language.

Definition 3.2.1. A subgroup L of G is called an unramified twisted Levi subgroup in G provided that L is a Levi (K, k)-
subgroup of G.

Definition 3.2.2. A k-torus S is called an unramified torus in G provided that S is the K -split component of the center of
an unramified twisted Levi subgroup in G.

Remark 3.2.3. Lemma 3.1.1 tells us that if L is an unramified twisted Levi subgroup in G and S is the K -split component
of the center of L, then L = Cg (S).

Remark 3.2.4. Since two Levi (K, k)-subgroups are G* -conjugate if and only if the K -split components of their centers are
G" -conjugate, any parameterization of G -conjugacy classes of unramified tori is also a parameterization of G -conjugacy
classes of Levi (K, k)-subgroups.
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Lemma 3.2.5. Suppose § is finite. A torus T in G is unramified in G if and only if there exists a maximal k-torus T in G
such that T is the maximal K -split subtorus of T'.

Proof. Suppose T is the K-split component of the center of a Levi (K, k)-subgroup L. From Appendix A there is a
K -minisotropic maximal k-torus, call it T’, in L. Then T is the maximal K -split subtorus of T".

Suppose there exists a maximal k-torus T in G for which T is the maximal K -split subtorus of T'. Since T" is defined
over k, so too is T. Let L = Cg(T). From Lemma 3.1.3, we know L is the unique minimal Levi (K, k)-subgroup
containing T'. By construction, T is contained in Zp,, the center of L. Thus T = T < Zf . Since T contains Zj, and T
is the maximal K -split subtorus of T’, we conclude that Zf is contained in T. Hence T = Zf , and so T is an unramified
torus in G. |

3.3. A question about unramified tori. Suppose f is quasi-finite and S is a torus that occurs as the center of a Levi
(K, K)-subgroup. Based on our experience with maximal K -split tori of G, it is natural to ask:

Question 3.3.1. If Fr(S) is G-conjugate to S, then does there exist a g € G for which 98 is defined over £? That is, does
&S contain an unramified torus?

Unfortunately, the answer is no as the following example illustrates.

Let H be a connected reductive group of type Ay such that ™ = SL; (D) where D is an unramified division algebra
of index 3 over k. Recall that we may identify H = H(K) with SL3(K). Let A denote a maximal K -split k-torus in H;
it is unique up to H'"-conjugacy. Suppose C is the alcove in A(A) < B(H) for which C™* £ (). Let {10, 1,2} be the
simple affine K -roots determined by H, A, v, and C. We assume that the 1); are labeled so that Fr(v;) = ;41 mod 3.

Let A; = (ker;)° for j € {1,2}. Note that Fr(A;) = As. Since there exists n € Ng(A) for which nyy = 4y,
we conclude that Fr(A) is H-conjugate to A;. Suppose some conjugate, call it S, of A; is defined over k. Let T be a
maximal k-torus in the Levi k-subgroup Cg(S). Then T corresponds to an extension £ < D of degree 3 over k, and S
corresponds to a quadratic extension of k that lies in £. Since no such quadratic extension exists, we conclude that the
answer to Question 3.3.1 is no.

4. ON (K, k)- TORI

In this section we assume that the residue field f of k is perfect.

If E is a tame Galois extension of k and M is the group of K -rational points of a Levi (E, k)-subgroup of G, then we
may and do identify B (M) with a subset of B(G). There is no canonical way to do this, but all such identifications have
the same image.

Recall that Z = Zg denotes the center of (.

Definition 4.0.1. A torus in G will be called a (K, k)-forus in G provided that it is a K-split k-torus that contains
ZX. A maximally k-split maximal (K, k)-torus T in G is a maximal (K, k)-torus T in G such that dim(Lie(T¥)) >
dim(Lie(T*)) for all maximal (K, k)-tori T in G.

To ease the notation, if S = S(K) for a (K, k)-torus S in G, then we will call S a (K, k)-torus as well.

We let T denote the set of (K, K)-tori in G. The set T carries a natural action of I', and we denote the set of I'-fixed
points in Tx by T E(

The goal of this section is to describe the GT -conjugacy classes in ‘.TE{.

4.1. Some indexing sets. To understand the elements of ‘.Tg(, we introduce indexing sets that arise naturally from Bruhat-
Tits theory. For a facet Fin B(G), we let Zy denote the group corresponding to the image of GrNZX (K) in G /G Fo+t =
Gp. Consider the indexing set

J = {(F,S)| Fis afacetin B(G) and S is a torus in G that contains Zp }.
The following definition provides a link between Tk and J.

Definition 4.1.1. A K-split torus S € T is said to be a lift of (F,S) € J provided that

(1) F CB(Ca(9))
(2) the image of SN Grin Gr = Gp/Gp+ is S.
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Remark 4.1.2. 1t follows from [4, 4.4.2] that if S € T and y € B(C¢(S)), then a point z € B(G) is (S N Gy)-fixed if
and only if x € B(Cx(S)).

Suppose (F,S) € J. Note that if I'(F') = F, then Gp is defined over f. In this situation, it makes sense to consider
I'(S). We define
JV:={(F,S) € J|T(F) = Fand I'(S) = S}.

Definition 4.1.3. A pair (F,S) € J* will be called maximal provided that whenever a facet H C B(G) is both I'-stable
and contains F' in its closure, then S belongs to the f-parabolic subgroup G’ /G o+ of Gr = Gr/Gp o+ if and only if
F =H. Welet J},

max

Example 4.1.4. Suppose (F,S) € JL

max-*

denote the subset of maximal pairs in J''.
If S is f-split, then F! is a G'-alcove in B(G)".

I« As in Section 1.3 one can attach to F' a G'-conjugacy class (M) of Levi
(k, k)-subgroups. From Example 4.1.4, one expects that if S € TIF( is a lift of (F,S), then (M) is the minimal conjugacy
class of Levi (k, k)-subgroups for which S < M for some M € (xM). This is true and will be proved in Section 4.5.

More generally, suppose (F,S) € JL

4.2. Passing between tori over f and tori over k. Suppose (F,S) € J'. Our next two lemmas show that there is an
r

element of T} that lifts (F, S), and any two lifts of (F, S) are conjugate by an element of G, ot

Lemma 4.2.1. Set M = Cg,.(S) and let T denote a maximally f-split maximal f-torus in M. There is a torus T € Tk
that lifts (F, T). Moreover, for all T € T, lifting (F, T) there exists a unique lift S € Tk of (F,S) with the property that
S<T.

Remark 4.2.2. If M is f-quasi-split, then T is the centralizer of a maximal §-split torus in M.

Proof. Suppose T € T% is a lift of (F,T). (Such a torus T exists by [3, Lemma 2.3.1].) Note that X, (T) = X.(T) as
I'-modules, and we can therefore choose a subtorus S of T corresponding to the image of X,.(S) under X (S) — X, (T) =
X.(T). We have that S € T%.. Since T' < C(S) and F' C B(T) C B(Cg(S)), we conclude that S is a lift of (F,S).

If S’ € T% is another lift of (F, S) that lies in T, then X, (S") = X.(S) = X.(S) in X.(T), andso S’ = S. [ ]

Corollary 4.2.3. IfS,S' € T} both lift (F,S), then there exists an element g € G . such that 9S = S'.

Proof. We will use the notation of Lemma 4.2.1 and its proof.

Set M’ = C(S’). Note that F' C B(M’) and the image of M’ N Gp in Gp is M = Cg,.(S). Let T/ < M’ be a lift
of (F,T). Since S’ is in the center of M, we have S’ < T’. Since S’ (resp. T’) is a K-split torus lifting (F,S) (resp.
(F,T)), from Lemma 4.2.1 we conclude that S’ is the unique lift of (F,S) in T'. By [3, Lemma 2.2.2], there is an element
g e G%OJF such that 9T = T'. The result follows from Lemma 4.2.1. |

Remark 4.2.4. Suppose C is the maximal f-split component of the center of Gp. If C is a lift of (F, CZp), then Cg(C) is
GE,0+ -conjugate to M.
Suppose g € G' and (F,S) € J.,

max-*

Thanks to Lemma 4.2.1 and Corollary 4.2.3 we can define an action of G* on J. .

Let S be a lift of (F,S). Let 9S denote the image of 95 N Gyr in Gyp and set g(F,S) := (gF,9S) € JL ..
The following lemma allows us to move in the opposite direction: from tori over k to tori over f.

Lemma 4.2.5. Forall S € T%. there exists (F,S) € JL . such that S lifis (F,S).

max

Proof. Fix S € T%. Let M = Cg(S). Note that M is a Levi (K, k)-subgroup of G.

Choose a I'-stable M-facet H in B(M) so that H' is an M"-alcove; the choice of H is unique up to M -conjugation.
Since H can be written as the disjoint union of G-facets in B(G), we may choose a I'-stable G-facet F' in H so that
dim(FT) > dim(F") for all T-stable G-facets F' in H. In fact, dim(F") > dim(F") for all I'-stable G-facets F' in
B(M): if F is a [-stable G-facet in B(M), then, since M"-alcoves are M -conjugate, there is some mm € M that carries
F into H; thus dim(F") = dim((mF)") < dim(FT).

Let S be the f-torus in G corresponding to the image of S N G in Gg. By construction, the torus S is a lift of the
pair (F,S). We need to show that (F,S) € JL. . Suppose F/ C B(G) is a I'-stable G-facet with F C F and F # F'.

max*

Note that S N Ggr C SN Gr. If S belongs to the proper parabolic f-subgroup G/ /Gpo+ of G = Gr/Gpo+, then
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SNGp =SNG fixes I/ and (F',S") € J' where S is the f-torus in Gz corresponding to the image of S N Gp
in Gpr. From Remark 4.1.2 we conclude that F’' C B(M). But the dimension of F'T is strictly larger than that of F'T,
contradicting that dim(F") > dim(F™") for all [-stable G-facets F'in B(M). [

4.3. An equivalence relation. Thanks to Lemma 4.2.5 and Corollary 4.2.3, we have a surjective map ¢ from JL __ to the
set of G''-conjugacy classes in ‘J’}}. We introduce an equivalence relation, to be denoted ~, on JL__so that ¢ descends to
a bijection between JL ./~ and the set of G'-conjugacy classes in ‘J’}}.

Suppose A is an apartment in B(G)". This means there is a maximal k-split torus S < G such that A = A(S, k). Note
that every such apartment is equal to A(9 A)"" for some g € G

If Q C A, then we denote the smallest affine subspace of A that contains 2 by A(A, Q). When F, F» are two G -facets
in A for which ) # A(A, F1) = A(A, F3), then, since an affine root vanishes on F} if and only if it vanishes on F5, there

is a natural identification of Gg, with G, as algebraic f-groups. When this happens, we write G, LG Fy-

Definition 4.3.1. Suppose (F},S;) € J'. We write (F,S1) ~ (I, S2) provided that there exist an element g € G and
an apartment A in B(G)" such that

(D 0 # A(AF]) = A(A, gFy)

(2) S1 £ 95, in Gp, = Gyp,.

Lemma 4.3.2. The relation ~ is an equivalence relation on J% .

Proof. The proof is nearly identical to the material in [4, Section 3.6] or [3, Section 3.2]. [ |

4.4. A bijective correspondence. Suppose S € Tk is a lift of (F,S) € JL,.. Let M = Cg(S). Recall from Defini-

max-*
tion 4.1.1 that since S is a lift of (F,S), we have F' C B(M).

Lemma 4.4.1. Let C denote a T'-stable M -facet in B(M) that contains F in its closure. The M"-facet C*' is an alcove in
B(M)' and F" is an open subset of C*.

Proof. It will be enough to show that F'" is a maximal G"-facet in B(M)". Choose a G"-facet D C B(M)" such that
FU' c D. If FU # D, then as S is in the center of M, the image of S N G = SN Gp in Gr/Gpo+ belongs to the
parabolic f-subgroup G'p/G po+. This contradicts that (F,S) € J I |

max-*
Lemma 4.4.2. Suppose (F;,S;) € JL,. with lift S; € Tk.. If there exists g € G* such that 9S; = So, then (Fy,S;) ~
(F2,S2).

Proof. After replacing (F1,S;) with (gF1,9S1) we may and do assume that S; = S,. Without loss of generality, we
assume S = S; = Sy, and set M = Cg(S). Since S is a lift of (F;,S;), from Definition 4.1.1 we have F; C B(M).
Let C; denote the M-facet in B(M) to which F; belongs. By Lemma 4.4.1, C} is an MT-alcove in B(M"). Since
MT acts transitively on the alcoves in B(M)', there exists an m € M such that mC; = Cy. We may and do replace
(Fy,S1) by (mF1,™S). Since F{ and F} are open in C] = C}, for any apartment A in B(M)'' € B(G)' we have
0 # A(A, FT) = A(A, FY). Since ™S = S, we conclude that (F},S1) ~ (F»,S2). [

Corollary 4.4.3. There exists a bijection between JL ./ ~ and the set of G -conjugacy classes in ‘J’E(.

Proof. The only thing remaining to check is that if (Fy,Sy), (Fy, Se) € JL . with (Fy,S1) ~ (Fy, S2), then they have lifts
that are G'-conjugate. Suppose (Fy,S1), (F2,S2) € JL .. with (F,S1) ~ (F,,S3). Then there exist an element g € G
and an apartment A in B(G)" such that
(1) 0 # A(A, FY) = A(A, gF3)
(2) 51 é 952 in GF1 é GgF2
We may and do assume that A = A(A)" and that g is the identity.
Let M; = M. Since A(A, F{) = A(A, F1), we have M; = My. Set M = M;. By construction, the image of
M N G, in Gg, is G, itself (thatis, Mg, = Gp)).
Since S; = So in Gr, = Gp,, wecanfind T € ‘J’}} so that the image of "N p, M N g, M in Mp, = GF, is a maximally §-
split f-torus containing S;. As in Lemma 4.2.1 there is exactly one lift S of (F;, S;) in T. Since the image of SN g, M N g, M
in Mg, = Gp, is S;, the proof is complete. [ |
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4.5. (K, k)-tori and Levi (k, k)-subgroups. If M’ is a Levi (k, k)-subgroup of G, then we let (M’) denote the G-
conjugacy class of M'. Set M = {(M’): M'is aLevi (k, k)-subgroup of G}. If (M;),(Mz) € M, then we write
(M) < (My) provided that there exists L; € (M;) such that L; < Lo; this defines a partial order on M.

Lemma 4.5.1. Fix (F,S) € JL . with F C A(A), and let S € T% be a lift of (F,S). There exists M' € (pM) such that
S<M.

Proof Let M = Cg(S). Choose a maximally k-split maximal (K, k)-torus T in M. Note that S < M’ := Cg(T").
From Lemma 4.4.1, F' is a subset of an M"-alcove; thus, we can replace T with an M"-conjugate and assume F!' C
B(T)Y < B(M)L.

From Lemma 4.4.1, FT is a maximal G"-facet in B(M). Thus, if C denotes the image of T*(K) N G in G, then
C is the maximal f-split component in the center of Gp. Since TFZX is a lift of (F, CZ), from Remark 4.2.4 we have

M’ = Cq(T*)is G, o+-conjugate to M. [

Lemma 4.5.2. Fix (F,S) € JL,, with F C A(A), and let S € T be a lift of (F,S). If M" is a Levi (k, k)-subgroup of

G that contains S, then (FM) < (M").

Proof. Let M = Cq(S).

Suppose M” is a Levi (k, k)-subgroup that contains S. Recall that lei/[,/ denotes the k-split component of the center of
M". Since Z]K/[" commutes with S, we have Zl’i/l,, < M. Choose a maximally k-split maximal (K, k)-torus T in M that
contains Zlkw,.

From Lemma 4.4.1, F'' is a subset of an M " -alcove; thus, we can replace T and M” with M -conjugates and assume
FU' c B(T)" ¢ B(M). Since, from Lemma 4.4.1, F' is a maximal G'-facet in B(M), we have, as in the proof of
Lemma 4.5.1, (FM) = (Cg(T¥)).

Since Z%, < T*, we conclude that (pM) < (M”). [ ]
Corollary 4.5.3. Fix (F,S) € JL,. with F C A(A), and let S € T%- be a lift of (F,S). We have

(#M) = min{(M’) € M: there exists L' € (M) such that S < L'}. [

5. A PARAMETERIZATION OF UNRAMIFIED TORI

We again assume that f, the residue field of k, is quasi-finite.
We want to understand unramified tori, that is, those k-tori S in G for which S is the K -split component of the center
of CG (S)

Remark 5.0.1. Tori such as {diag(¢,t?,¢3)} in SLg are (K, k)-tori but are not unramified tori in our sense.
We begin by recalling a known result (see, for example, [7, Lemma 2.3.1]).
Lemma 5.0.2. If I is a facet in B(G)™, then H* (Fr, Gr) = 1.
Proof. Note that H' (Fr, Go+) = 1 and from Lemma 2.0.1 we have H' (Fr, Gp) = 1. Since
1 —Gpo+ — G — Gp — 1
is exact, from [17, I Section 5.5: Proposition 38] we have
H'(Fr,Gpo+) — H'(Fr, Gp) — H'(Fr, Gp)

is exact. The result follows. [ |

5.1. Comparison with the case of maximal unramified tori. We already know (see, for example, [3]) how to describe
the set of G*"-conjugacy classes of maximal unramified tori of G (the situation where Cg(S) is abelian) in terms of
Bruhat-Tits theory. In this case, there is a bijective correspondence between the set of G'"-conjugacy classes of maximal
unramified tori in G and the set of equivalence classes (as in Definition 4.3.1) of pairs (F,S) where F'is a facet in B(G)!™
and S is a maximal f-minisotropic torus in Gp:

{maximal unramified tori of G}/G™ -conjugacy +— {(F,S)}/equivalence.
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The basic idea of the correspondence is that given a pair (F,S), there is a lift of S to a maximal K -split k-torus S in G and
any two lifts of S are conjugate by an element of GIZfOJF. In the other direction, given a maximal K -split k-torus S in G,

the building of S embeds into that of G. We let F' be a maximal G'"-facet in the building of S and we let S be a maximal
f-torus in G whose group of §-points coincides with the image of S N G in Gp.

Example 5.1.1. For G = Sp,, there are nine G'"-conjugacy classes of maximal unramified tori of G. Since G' acts
transitively on the alcoves in B(G), to see how the above correspondence works it is enough to restrict our attention to
a single alcove. For a finite group of Lie type, the conjugacy classes of maximal tori in the finite group are in bijective
correspondence with the Fr-conjugacy classes in the Weyl group (see Remark 2.2.2). Here is what the notation in Figure 2
represents: for a conjugacy class of f-minisotropic torus in Gr we list one element in the corresponding conjugacy class
in the Weyl group of Gr; we have chosen a set of simple roots « and 5 with « short and 3 long so that in the diagram
below the hypotenuse lies on a hyperplane defined by an affine root with gradient o and the horizontal edge lies on a
hyperplane defined by an affine root with gradient 3; the symbol w, denotes the simple reflection in W corresponding to
«, the notation wg denotes the reflection corresponding to 3, and ¢ denotes the Coxeter element w,wg. In this way we
enumerate the nine pairs (F, S) that occur, up to equivalence.

C
02
Wey W2a+p
1
C w 2
2 A ¢
C

FIGURE 2. A labeling of the pairs (F,S) for Sp,

In order to understand all unramified tori, not just the maximal ones, we should consider pairs (F,S) where F is a facet
in B(G)F and S is an f-torus in G that lifts to an unramified torus in G. The problem with this approach is that F' cannot
“see”” which f-tori S are relevant. We present an outline of how to overcome this problem, and then spend the remainder of
this section fleshing out this outline.

5.2. Outline. Suppose that (F,S) is a pair with ' a G*"-facet in A(A)"" and S an f-torus in G that contains Zp. Let
S’ be a maximal f-torus in G that contains S. We can lift S’ to a maximal unramified torus S’ in G, and we let S be the
subtorus of S’ corresponding to S. We can choose g € G so that S’ = 9A. Since S’ is defined over k, we have that
Fr(g)~'g belongs to the normalizer of A in G, and we let w € Wy < W denote its image in the Weyl group. If S is going
to be unramified, that is, if S is going to be the K -split component of the center of C (S), then one checks that there exists
6 € © such that S = YA and Fr(®y) = wdy. Thus, our pair (F,S) corresponds to a triple (F, §,w) where F is a facet in
A(A)Y, 0 € ©, w € W, and Fr(dg) = wdy.

This approach leads to a bijective correspondence between the set of G"-conjugacy classes of unramified tori in G and
the set of equivalence classes of elliptic triples (F, 0, w):

{unramified tori} /G -conjugacy «— {elliptic (F,6,w)}/equivalence.

When we restrict this correspondence to maximal unramified tori in G, the triples under consideration are of the form
(F,0,w).
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5.3. An indexing set over f. Set
I={(0,w)|0 € O(G,A), weW,and Fr(®g) = wdy}.
Suppose F' C A(A)F is a G*"-facet. Set
®(F) = {4 |1 € U and resp 1) is constant} and A(F) := ( ﬂ ker(a))®.

Recall that pM = Cg(A(F)) is a Levi (k, k)-subgroup of G and the image of A(F') NG in G is the group of F-points
of the §-split component of the center of Gp ~ pMp.

Remark 5.3.1. If F is a minimal facet in A(A)', then ®(F) = ® and zM = G.

Recall that Ar denotes the maximally f-split maximal f-torus in G whose group of F-points is equal to the image
of AN Gp in Gp. Via the natural bijective correspondence between the characters of A and the characters of Ap, we
(canonically) identify ®(F’) with a subset of the character lattice of Ap. Note that ®(F') will, in general, be strictly larger
than the set of roots of G with respect to Ap.

Let

I(F):={(6,w) € I[|weWr <W}.
For (8, w'), (0, w) € I(F) we write (¢, w') L (A, w) provided that there exists n € W for which
® <I>9/ = n<I>9 and
o Fr(n)wn=! € w'(Wp N Wy).

Lemma 5.3.2. The relation % is an equivalence relation on I(F). [

We will say that (8, w) € I(F) is F-elliptic provided that for all (¢, w’) € I(F) with (6, w) L (0", w") we have that w’
does not belong to a Fr-stable proper parabolic subgroup of Wr. We set

I°(F) == {(0,w) € I(F)| (8, w) is F-elliptic}.

Remark 5.3.3. Suppose (6, w) € I(F). If (§,w) € I°(F), then (@, w) € I¢(F). The converse is false. Consider for
example a non-maximal F’ and (), w) € I°(F); the pair (A, w) € I(F') is not elliptic.

Lemma 5.3.4. Suppose (0, w) € I(F). We can choose g € G such that the image of n = Fr(g)~'g € Ng,(A) in Wp
is w.

Proof. Choose h € G such that the image of Fr(ﬁ)_lﬁ in W is w. Note that S = "Ap is a maximal f-torus in Gp. Let
S be a lift of (F,S). Since S is a maximal K -split k-torus of G and F' C A(S), there exists + € G such that A = S.
Let Z denote the image of 2 in Gp. Since S = “Af, from Lemma 2.2.1 and Remark 2.2.2 the image of Fr(:i)_la? in Wg is
of the form Fr(w’)~ww’ for some w’ € Wg. Letn’ € Ng,(A) be alift of (w')~1. Set g = an’. [ ]

Remark 5.3.5. In Lemma 5.3.4 we can choose g in (M) .

5.4. Relevant tori over f. Recall the set J defined in Section 4.1. Also recall that Corollary 4.2.3 shows that if S, S" both
lift (F,S), then there exists an element g € Gll; o+ such that 98 = §'.

Definition 5.4.1. Suppose (F,S) € J. Let S be a lift of (F,S). We will say that S is relevant in G provided that S is

the K -split component of the center of C'c(S). Let R(F') denote the set of relevant tori in Gp.
Fix : = (,w) € I(F). Thanks to Lemma 5.3.4, we may choose g € G such that the image of n = Fr(g) ™"

NG (A) in W is w. Let g denote the image of g in Gp. Let

As = ([ ker(a))° < Ap.
ael

LetS, =9Agand S, = 9Ay. Then S, is alift of (F,S,). Set L, = Cg,.(S,) and L, = C(S,). Note that F' C B(L,) and
Dy =9 D(L,,9A).

g €

Remark 5.4.2. In general, it is not true that &g = 9 &(L,, IAp).
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Since S, is the K-split component of the center of L,, S, is relevant.

Remark 5.4.3. Here is a way to think about the information that ¢ carries: The subset § (or ®4) determines, up to isogeny,
the derived group of L,, the action of w ™! o Fr on ®4 determines the k-structure of the derived group of L,, and the action
of w™! o Fr on ® determines the k-structure of the K -split component of the center of L, i.e. how k-anisotropic the center
of L, is.

Remark 5.4.4. Recall that ¢ = (6, w). Note that L, = C'(S,) is a torus if and only if § = ().

Lemma 5.4.5. The map that sends 1 € I (F) to the Gf;r-conjugacy class of S, is well defined. Similarly, the map that sends
v € I(F) to the G¥*-conjugacy class of S, is well defined.

Proof. We need to show that the G]F,r—conjugacy class of S, and the GIF;r—conjugacy class of S, are independent of the choice
of g. Suppose ¢’ € G such that the image of Fr(g')~'¢’ € Ng,(A) in W is also w and let §’ denote the image of ¢’ in
Gr.LetS, =9 Agand S, = 9 Ay. Then S/ is a lift of (F,S!). Since Fr(¢')~'¢’ and Fr(g)~'g have image w in W, there
exists a’ € Cg(A) N G such that Fr(¢’)"1g'a’ = Fr(g)~'g. Letz = ¢'g~' € Gp. Forall s € S, we have

Fr(%s) = PO D (s) = 997 ("9 Fr(s)) = “Fr(s).

Hence Int () and Int(Fr(z)) both carry S™ to S/™, hence they carry S, to S’. Moreover, Fr(z) ™'z € Cg,.(S,) = (L,)F.
From Lemma 5.0.2, we have H!(Fr, (L,)r) = 1. Thus there exists £ € Cg,.(S,) such that Fr(z)~'2 = Fr(¢)~'¢ modulo
G;. Thus ¢, the image of z/~! € GE? in G, belongs to G%\f. Note that S, and S/ are Ggr—conjugate by g while S, and S/
are G¥-conjugate by z¢~ .

1

v N

Lemma 5.4.6. The map that sends 1 € I(F) to the G -conjugacy class of S, descends to a bijective map from I(F)/
to the set of GEF-conjugacy classes in R(F).

Proof. We first show that the map is injective. Suppose ¢; = (0;,w;) € I (F) and g; € Gp such that the image of
Fr(g;)~'g; in Wp is w;. Set S; = 9 Ay, and S; = 91 Ay, where g; is the image of g; in Gr. Note that S; is a lift of (F,S;).
Suppose there exists h € GIFJ such that S; = "Sy. Then from Corollary 4.2.3, there exists a lift h € GIFJ of h for which
S; = "S,. Without loss of generality, replace go byihgg, so that S; = Sgp and S; = Sy. Let Ly = Cg,(S1) and let
L; = Cg(S1). There exists ¢ € L, for which 2Ap = %91 Ap. Thanks to Corollary 4.2.3 there is alift £ € Ly N G of ¢ for
which 92 A = %91 A. Choose m € Ng(A) for which £g; = gom. Note that m = gglﬁgl € Gr. Let My, = Ca(Ay,). We
have
Oy, = P(Mpy,,A)

= g7 ' O(Ly, " A) = g7 B (Ly, M A) = g7 L B(Ly, 2A)

= gy 1 g2®(My,, A) = m~'®(My,,A) = ®(M,, 14,,A)

= m_l(I)QQ,

1.e. m(I)gl = @92.
Since the image of 9 (Fr(¢)~1¢) € Ng(A) in W belongs to Wy, , it follows that

Fr(m)_lwgm = Fr(Egl)_lfglA = wlgfl(Fr(E)_lf)glA € w1 Wy, .

Since Fr(m)~twym = Fr(fgy)~0g1Ar € Wg, we conclude that ¢, L.

We now show that the map is surjective. Suppose T < G belongs to R(F'). Let T’ be a maximal f-torus in Gp that
contains T, and that has the largest possible f-split rank among tori in Gy that contain T. By definition T contains the
center of Gp. There exist lifts T of (F, T) and T’ of (F, T’) such that L = Cg(T) is a Levi (K, k)-subgroup, T is the
K -split component of the center of L, and T < T < L. Let By, < L be a Borel K -subgroup of L that contains T". Since
T’ is a lift of (F, T’), there isa g € G such that YA = T. Let§ = g~ 'A(L, Br, T") € ©. Let w denote the image of
Fr(g)~'g in Wp. The pair (6, w) belongs to I(F) and corresponds to T. [

Lemma 5.4.7. If S € R(F) corresponds to (0, w) € I°(F), then Cg,.(S) is an f-minisotropic maximal torus in G that
corresponds to (0, w) € I¢(F).
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Proof. Suppose S € R(F) corresponds to (6, w) € I¢(F). Choose g € Gp so that the image of Fr(g)~'g in Wy is w.
Without loss of generality, assume S = 9Ag. Since (0, w) € I ¢(F), no Fr-conjugate of w in W can belong to a proper
Fr-stable parabolic subgroup of Wg, so S’ := 9AF is an f-minisotropic maximal torus in Gp.

Let M denote the centralizer of S in G . Note that M is a Levi (§, f)-subgroup of G, it contains S', and it is f-quasi-split.
If M =5/, then S’ corresponds to (), w) and we are done. So, it will be enough to show that S’ = M.

Suppose S’ # M. Let Ty be a maximally f-split maximal f-torus in M and recall that TT\A denotes the unique maximal
f-split torus in Tp. Since M is f-quasi-split and is not a torus, we have Ty = Cu (TTVI) < M. Hence L := Cg,, (TTVI) cannot
be G, so L is a proper Levi (f, f)-subgroup of Gr. Note that L contains S and Ty. After replacing S with a GEF-conjugate,
we may also assume that Tf\,, < Apandso Ap < L.

Choose h € M so that " "9Ap = Ty. Note that S = ""'9A, and w’, the image of Fr(h~'g) " h~1g in W, has image
in w(Wy N Wr). That is, (6, w’) and (, w) are equivalent in I(F).

Choose ¢ € L so that ‘Ap = Ty. Let w” denote the image of Fr(¢)~'¢ in Wx. By construction w” belongs to a
Fr-stable proper parabolic subgroup of Wr. Moreover, since Ty = ‘Ap = ""'9Ap there exists an n € W for which

Fr(n)w"n~! = w'. Note that (n=10, w") & (6,w') ~ (6, w), contradicting that (6, w) € I¢(F). [ |
Corollary 5.4.8. We maintain the notation of Lemma 5.4.7. If T is a lift of (F, Cg,.(S)), then Cq(T*) € (rM).

Proof. Since T = Cg,(S) is an f-minisotropic maximal §-torus in G, we have that C = T7 is the f-split component of
the center of Gr. Since T*ZX is a lift of (F, CZf), from Remark 4.2.4 we conclude that Cq(T*Z%) € (M). Since
Cq(T*ZK) = Cg(T*), the result follows. [

Corollary 5.4.9. We maintain the notation of Lemma 5.4.7. If S is a lift of (F,S), then the dimension of a maximal k-split
torus in L = Cg(8S) is equal to the R-dimension of A(A, F)F.

Proof. Let dy, denote the dimension of a maximal k-split torus in L and let dr denote the dimension of A(A, F)f". We
need to show dj, = dp.

Suppose A; < L is a maximally k-split maximal K-split k-torus in L. The dimension of Alz is equal to dy,. Since
all maximally k-split maximal K -split k-tori in L are L¥-conjugate, we may assume F' is a subset of the apartment of
Ar. Let Ap, denote the f-torus whose group of §-points coincides with the image of A;, N G in Gr. We have that dy, is

equal to the f-dimension of A’;. Since A;, < L, we have A, < Cg,.(S). From Lemma 5.4.7 we know that Cg . (S) is an

f-minisotropic maximal f-torus in Gg. Since Cg, (S) is f-minisotropic in G, we conclude that AfL is the maximal f-split
torus in the center of Gg. But the dimension of the latter is dr. Thus, d, = dF. [ |

5.5. Parameterizing G'"-conjugacy classes of unramified tori in G. Define

I={(F0,w): FCA(A) is a G -facet and (0, w) € I(F)}
and let U denote the set of G™-conjugacy classes of unramified tori in G. Thanks to Lemma 5.4.5 and Corollary 4.2.3 we
can define a function j: I — U as follows. For (F,0,w) € I,letS € R(F') be a relevant torus associated to (¢, w) and let
§((F,0,w)) be the G* -conjugacy class of any lift of (F,S).

For (F',0',w'), (F,0,w) € I we write (F',0',w') ~ (F,0,w) provided that there exists an element n € W2 for
which A(A(A)F, F") = A(A(A)¥, nF) and with the identifications of Gz = G, and X*(Ap/) = X*(Apr) = X*(A)
thus induced we have that (6', w") K (nf,™w) in [(F') = I(nF).

Lemma 5.5.1. The relation = is an equivalence relation on I. |
Definition 5.5.2. We will say that (F,0,w) € I is elliptic provided that (§,w) € I¢(F), that is, for all (¢',w’) € I(F)
with (0, w) L (0", w’) we have that w’ does not belong to a Fr-stable proper parabolic subgroup of Wr. We set

I¢ .= {(F,0,w) € I|(F,0,w) is elliptic}.
Remark 5.5.3. Suppose (F;, 0;,w;) € I fori € {1,2} with (Fy,601,w1) ~ (Fy,02,ws). Then (Fy,01,w;) € I° if and
only if (FQ, 92, ZUQ) e I°.

Theorem 5.5.4. The map j induces a bijection from Ie /=~ to U.
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Proof. We first show that j is surjective. Let S be an unramified torus in G. Let L denote the centralizer of S and let F’ be
a maximal G™-facet in B(L)™™ C B(G)'™. Choose a maximal K-split k-torus S’ of L such that ' C B(S’)F*. Note that
S’ contains S. Fix a Borel K-subgroup By, of L that contains S’. Choose h € G so that hF' C A(A)'. After replacing
S with "S, we may assume that F' C A(A)™.

Let S denote the f-torus in G whose group of f-rational points coincides with the image of S N G in Gg. There exists
g € Gpsuchthat S’ = 9A. Let § = g7 'A(L,Bg,S’) € O and let w denote the image of Fr(g)~'g in Wr. Note that S
belongs to j((F, 0, w)).

To complete the proof of surjectivity, we need to show that (F, 6, w) is elliptic. If it is not elliptic, then there exist
(@', w') € I(F) with (6, w) K (0',w') and a G*-facet H C A(A)™ with ' C H so that w' lies in Wy. Since
w' € Wy, there exists h € Gy C GF such that the image of Fr(h)~'h in Wy < Wp is w’. Since (0, w) . 0, w'),
from Lemma 5.4.6 we have "Ay = *S for some z € GE}”. Set k = 2~ 'h € Gp. Note that “/A < L. Hence,
kH c AFA)F < B(L)™, contradicting the maximality of F.

We now show that if (F}, 0;,w;) for i € {1,2} are two elements of I¢ with j((F},01,w;)) = j((F,02,ws)), then
(F1,01,w1) ~ (Fy,02,wsy). Choose S; € R(F;) corresponding to (0;,w;) € I°(F;) and let S; be a lift of (F},S;).
Note that (F},S;) € JL .. Since j((F1,01,w1)) = 7((Fy, 02, w2)), we have that S1 is G**-conjugate to Sy. Thanks to
Corollary 4.4.3, we know that there exist g € G** and an apartment A’ in B(G)™ such that ) # A(A', Fy) = A(A’, gF»)
and S; = 9S, in Gp, = Gyr,. After conjugating everything in sight by an element of GE{ we may assume that A’ =
A(A)*. Thanks to the affine Bruhat decomposition, we may choose n € Ngr:(A) so that n~lg € GIFJQ Then there exists

x € G% such that after replacing, as we may, So by “Sy we may assume A(A(A)F, Fy) = A(A(A)F, nFy) and S, L ng,

inGp, L Gy, Identifying n with its image in W2 the fact that Sy L "Syin Gpy = G, means (01, w) L (na, "ws)
in I(F}) = I(nF). |

Corollary 5.5.5. There is a natural bijection between Ie /= and the set of G¥"-conjugacy classes of unramified Levi
subgroups in .

Proof. This follows from Theorem 5.5.4 and Remark 3.2.4 |

5.6. Example: Rational classes of Levi (k, k)-subgroups. Suppose M is a Levi (k, k)-subgroup of G, that is, M is the
Levi component of a parabolic k-subgroup of G. After conjugating M by an element of G, we may and do assume
that A < M. Choose a basis § C © for (M, A). Since M is a Levi (k, k)-subgroup and &y = ®(M, A), we have
Fr(®g) = ®y. So, for any facet ' C A(A)™ we have (6,1) € I(F). Thus (6,1) € I°(F) if and only if F'is an alcove in
A(A)F*. By construction we have M = Cg(Ay) and Ay € 5((C,0,1)) where C is any alcove in A(A).

Here is a systematic method, inspired by [19, pages 4 and 5], for identifying, up to equivalence, the possible 6 that
can arise in a triple (C, 6, 1) such that j((C,0,1)) parameterizes a rational conjugacy class of Levi (k, k)-subgroups.
Suppose G* is a k-quasi-split inner form of G with Frobenius acting on G* by Fr*. Choose a Borel k-subgroup B* in
G* and a maximally k-split maximal K-split k-torus A* < B*. Let A* = A(G*,B*, A*). Fix a Fr*-stable alcove D in
A(A*) C B(G™) such that every element of A* occurs as the gradient of some affine simple root of G with respect to A*,
K, v, and D. Let D’ denote the image of D in the reduced building of G*. Since G is an inner form of G*, there exists
Ad(m) € Ng= (A*) N Stabg+ (D') such that G is k-isomorphic to G* twisted by Ad(m) o Fr™ (see, for example, [0,
Remark 3.4.5]). That is, we may assume Gx = G, G = G* as abstract groups, and Fr(g) = Ad(n) o Fr*(g) for all
g€ @G.

Without loss of generality, B = B,. Since Ad(m) o Fr*(A*) = A*, we conclude that A* twisted by Ad(m) o Fr* is
a maximal K-split k-torus in G. Since Ad(m) o Fr*(D) = D, we have that A* twisted by Ad(m) o Fr* is a maximally
k-split maximal K -split k-torus in G, that is, we can, without loss of generality, take A to be A* twisted by Ad(m) o Fr*.
We therefore have A = A*, and we can take C' = D' C A(A)™. Define 6, C A € © by

O = {o € A|A¥ C ker(a)}.

The set of 6,,, may also be characterized as the set of gradients of affine roots ) € ¥(G*, A*, K, v) for which ¥ € Aand
resc Y is constant.
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As we now show, the set of triples (C, 6, 1) with # C A such that 6,,, C 6 and 6 is Fr*-stable contains a complete set of
representatives (possibly with duplicates) of the equivalence classes in I° that parameterize the G™*-conjugacy classes of
Levi (k, k)-subgroups of G.

Note that ®,  is Fr-stable, A¥ < Ay ,and A* = A’(jm. Thus, by Corollary 3.1.2 we have that Ly := Cg(Ay,,) =
Cq(AF) is a minimal Levi (k, k)-subgroup of G. Choose A € X, (A¥) such that (\,3) > 0 forall 3 € A\ A,,. Then
Py, := P()\), the parabolic k-subgroup of G generated by Ly, and those root groups U, for « € (G, A) such that
(A, B) > 0, is a minimal parabolic k-subgroup in G that contains B and has Levi factor Lg,,. Since B* = Fr*(B*), we
conclude that, as K-groups, we have B < Fr*(Py,,) = Ad(m~!)(Py,,). Thus Py, and Ad(m1)(Py,, ) are conjugate
standard parabolic K -subgroups, hence equal. Since parabolic subgroups are self normalizing, we conclude that Ad(m) €
Poa()). Similarly, since A < Fr*(Lg,, ) = Ad(m™1)(Ly,,) < Ad(m~1)(Py,,) = Py,, as K-groups, we conclude that
Ad(m~1)(L,,) = Ly,,, and so Ad(m) € (Laq)e,,-

We are interested in those 6 such that (C, 6, 1) corresponds to a maximal K -split torus in the center of a Levi (k, k)-
subgroup of G. Such a Levi belongs to a parabolic k-subgroup of G. After conjugating by an element of G, we may
assume A is contained in this Levi and the parabolic subgroup is a standard parabolic subgroup. Thus, we can assume
0, C 6 C A. Note that if " C A with 6,,, C €', then, since Ad(m) has image in Wy, , we have Fr(®y/) = @y if and only
if Fr*(®g/) = Py Since § C A*, we have that Fr*(®y/) = @y if and only if Fr*(6’) = ¢'. Thus, the 6 we seek are those
subsets 6 of A such that 6,,, C 0 and Fr*(0) = 0.

5.7. Some applications of Theorem 5.5.4.

Corollary 5.7.1. Suppose 0 € ©. A G-conjugate of Ay is defined over k if and only if there exists a facet F C A(A)F™
such that Fr(®g) = w(Py) for some w € Wr. [ |

Corollary 5.7.2. Suppose G is k-quasi-split, M is a Levi (K, K)-subgroup of G, and S is the maximal K-split torus in
the center of M. If Fr(¢S) = €S, then there exists h € G such that Fr("S) = "S. Moreover, we may assume that Cg ("S)
is a k-quasi-split unramified twisted Levi subgroup of G.

Remark 5.7.3. The converse to Corollary 5.7.2 is trivially true, even when G is not k-quasi-split.

Proof. Without loss of generality S = Ay for some § € ©. Choose h € G such that Fr(A4g) = "Ay. Since Fr(A) = A,
we have Ag," Ay C A. Thus " A and A are maximal K-split tori in Cg (" Ay). Consequently, there exists £ € Cg("Ay)
such that A = A. Thatis, /b € Ng(A). Let w denote the image of ¢h in W. Note that Fr(Ag) = Ay, that is
Fr(®p) = w(®Py).

Since G is k-quasi-split, there exists an absolutely special vertex g that belongs to the image of A(A) in B™(G)
Letn € Ng,, ,(A) be alift of w. From Corollary 5.7.1 with F' being the preimage in B(G) of xq, we conclude that a
G-conjugate of Ay is Fr-fixed.

We now show that we may assume that the centralizer in G of this Fr-fixed GG-conjugate of Ay is k-quasi-split. Indeed,
we can choose h € Gy o such that the image in W of Fr(h)~'h € Nea,,o(A) is w. Note that both hAg and " A are

Fr-stable. Let h denote the image of & in G,,. Since x is absolutely special, the root system ®(Cq,, ("Ag),"A) has a Fr-

Fr

invariant basis if and only if the root system ®(Cq("Ay),"A) has a Fr-invariant basis. Since Ce,, (EA(;) is f-quasi-split,
we conclude that Cg (" Ay) is k-quasi-split. [

Definition 5.7.4. We will say that v € G is an unramified semisimple element provided that Ca () is a Levi (K, K)-
subgroup and ~y belongs to the group of K -points of the maximal K -split torus in the center of Cg (7).

Corollary 5.7.5. Suppose G is k-quasi-split and v € G is an unramified semisimple element. If Fr(G’y) = G then there
exists h € G such that Fr("v) = "~. Moreover, we may assume that Cgq (") is a k-quasi-split unramified twisted Levi
subgroup of G.

Remark 5.7.6. The converse to Corollary 5.7.5 is trivially true, even when G is not k-quasi-split.

Remark 5.7.7. When the derived group of G is simply-connected, Corollary 5.7.5 may be derived from [13, Theorem 4.1
and Lemma 3.3].

Proof. Suppose v € G is an unramified semisimple element. Let S denote the maximal K -split torus in the center of
Cc (7). The assignment v — S defines a G-equivariant function from the set of unramified semisimple elements to the
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set of tori that arise as maximal K -split tori in the center of Levi (K, K)-subgroups in G. Moreover, we have Fr(9y) —
Fr(9)Fr(S) for all g € G. Consequently, since Fr(%y) = @+, we conclude that Fr(%S) = S. From Corollary 5.7.2 there
exists b € G such that Fr("S) = "S. From Theorem 5.5.4 there exists (F,0,w) € I¢ such that S € j((F,0,w)). Thus,
from the construction of the map j, there exists g € G such that S = Ay, the image of Fr(g) g € Ng,,(A) in W is w,
and 9y € Ay. '

Since G is k-quasi-split, there exists an absolutely special vertex xq that belongs to the image of A(A) in B™4(Q)
Choose ¢ € Gy, o such that the image of Fr(¢)~1/ € NGIO,o(A) in W is w. Replacing v by 9~ and S by ¢4y, we can
assume v € “Ay. Since Fr(‘Ay) = £ Ay, we must also have Fr(7y) € ‘Ay.

Since Fr(¢y) = @+, there exists m € G such that ™y = Fr(y). Note that v,y = Fr(y) € ‘4y < “A. Tt follows
that ™A and ‘A are maximal K-split tori in Cg (™). Thus, there exists r € Cg(™7) such that "™ A = ‘A. Choose
n € Na,, o (A) such that n and £~ 1rm/ have the same image in W. Since {nf~! € G, o, by Lang-Steinberg there exists

h € Gy 0 such that Fr(h)~*h = fnl=1. Since " (") = ™y and "(* 'y) = £ "m(!"" ), we have
Fr(h'y) — Fr(h)m,y _ Fr(h)rm,y — (Fr(h)@)(fflrmé)(ﬁ’l),y — Fr(h)(@nffl),y _h

Fr

5.
The proof that we may assume that Cq (") is a k-quasi-split unramified twisted Levi subgroup of G is nearly identical
to the proof of the similar result for Cq(*S) in Corollary 5.7.2 [

5.8. Unramified tori and Levi (k, k)-subgroups. Recall from Section 4.5 that if M’ is a Levi (k, k)-subgroup of G, then
we let (M) denote the G*-conjugacy class of M'.

Lemma 5.8.1. Suppose (F,0,w) € I°. If S € j((F,0,w)), then there exists M' € (M) such that S < M'. Moreover; if
M is a Levi (k, k)-subgroup of G that contains S, then (M) < (M).

Proof. Choose S € R(F) that corresponds to (6, w) € I¢(F). The pair (F,S) belongs to JL_ . and S is G™-conjugate to

a lift of (£, S). The result follows from Lemmas 4.5.1 and 4.5.2. [ ]

Definition 5.8.2. Suppose E is a Galois extension of k. A Levi (E, k)-subgroup L is called elliptic provided that any
maximal k-split torus in L coincides with the maximal k-split torus in the center of G.

Corollary 5.8.3. An unramified twisted Levi corresponding to the parameterizing data (F, 0, w) € I¢is elliptic if and only
if F is a minimal facet in B(G). [

5.9. A more concrete realization of the parameterization. To parametrize the elements of U, one only needs to look at
G -facets in A(A)' up to equivalence, and on each G*-facet, look at I(F) up to the equivalence given by the natural

action of Ny, (W) on I(F)/ L. Here W denotes the image of N (A)/Cer(A) in W, More specifically, one can
reduce to the following situation:

For G™-facets F, F’ in A(A)™ we will say that ' and F” are equivalent provided that there exists n € W such
that () # A(A(A)F, F) = A(A(A)Y", nF"). Fix a set of representatives F for the equivalence classes determined by this
equivalence relation.

Fix an alcove C in A(A)Fr. Without loss of generality, if F' € F, then F'is in the closure of C. For F' € F, we say that
(0,w), (¢, w') € I°(F) are equivalent provided that there exists m € Ny;, (W) - W such that

L] m‘bg = (P@/
° Fr(m)wm_l e w' (Wp N Wy)

For each F' € JF choose a set of representatives +(F') in I ¢(F) for the action described above. Without loss of generality,
we also require that if (6, w) € +(F’), then w does not lie in a proper Fr-parabolic subgroup of Wr. The set

{(F,0,w)|F € Fand (0,w) € «(F)}
indexes the G'"-conjugacy classes of unramified tori in G.

Example 5.9.1. We consider Sp, and adopt the notation of Example 5.1.1. There are sixteen G'"-conjugacy classes of
unramified tori. Since G'" acts transitively on the alcoves in B(G)™, to see how the above correspondence works it is
enough to restrict our attention to a single alcove. In Figure 3, we enumerate the sixteen triples (F, 6, w) that occur, up to
equivalence. The centralizer of the unramified torus corresponding to the pair ({« + 5}, wy) is unramified U(1, 1) while
the centralizer of the unramified torus corresponding to the pair ({a}, ¢?) is unramified U(2) (using Jabon’s notation [9]).
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©,¢) {B+2atwg)  ({a},?)

FIGURE 3. A parameterization of the rational conjugacy classes of unramified tori for Sp,

The centralizers of the tori corresponding to the pairs ({3}, wg42q) and ({8 + 2a}, wg) are of the form SLy x S where
S(k) is the group of norm-one elements of an unramified quadratic extension of k. The four unramified tori with labels of
the form (6, 1) are the k-split components of the centers of the four (up to rational conjugacy) distinct k-subgroups of Sp,
that occur as a Levi factor for a parabolic k-subgroup of Sp,.

Example 5.9.2. Let G be a connected reductive group of type A,,_1 such that GF* = SL; (D) where D is a division algebra
of index n over k. Recall that we may identify G(K) with SL,,(K). Suppose C is the alcove in A(A) < B(G) for which
CY¥ = (). Let {100, %1, . ..,%¥n_1} be the simple affine K -roots determined by G, A, v, and C. We assume that the 1); are
labeled so that Fr(v;) = 1;4+1 mod n.

Suppose 1 < j < mnandn = jm for some m € N. For 1 < ¢ < (j — 1)m set

m
= 1.
=1

Note that for 1 < 7 < m the set
93 = {Oéi, Ojtmy - - ,ai+(]‘_2)m}

is a basis for a root subsystem of type A ;_; in ®(G, A). Moreover, the roots in 9; are orthogonal to those in 0;’ fori # 7.

Define 0; = Ug’;ﬁ;. Note thatif j = 1, then 6; = 0; = ), whileif j = n, then0; = 0,, = {9,003, - -+ s Pp—2, ¥n_1, 0o}
‘We have that Cg<A9j> is a Levi K -subgroup in G of type A;_1 x A;_1 X --- x A;_1 where there are m copies of A;_;
in this product.

Since Fr(oy) = ayyq € 05forl < ¢ < (j—1)m—1and Fr(a(j_l)m) = —(1+ar4m~+-- -—|—a1+(j_1)m) € <I>9]1 C @,
we can conclude that @, is Fr-stable. Hence, Cg(Ay;) is a Levi (K, k)-subgroup; that is, Ay, is an unramified torus in
G.

The set {(C™,0;,1)|1 < j < n and j divides n} is a complete set of representatives for [°/~. Indeed, (C*", 0;,1)
corresponds to the G'"-conjugacy class of Ay,. In turn, these tori correspond to the maximal unramified extensions that
occur in fields £ < D that split over a degree n extension of k& and whose maximal unramified subfield has degree n/j
over k.

6. STABLE CONJUGACY

Suppose S is an unramified torus in G. A k-embedding of S into G is a k-morphism f: S — G for which there exists
g € G such that f(s) = 9s forall s € S. In this section we investigate the k-embeddings of S into G and enumerate these
k-embeddings up to G**-conjugacy.
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6.1. Two indexing sets over k. Recall from Section 5.3 that we have defined
I={(6,w)]|0€O(G,A),we W,and Fr(®5) = wdq}.

For (¢, w'), (8, w) € I we write (8, w')~(0, w) provided that there exists an € W for which

[ @9/ = nq)g and
o w € Fr(n)wn Wy

Lemma 6.1.1. The relation ~ is an equivalence relation on I. |

There is a smaller indexing set that carries much of the same information as . Let I denote the set of pairs (0, w) where
6 C A and w € W such that Fr(f) = w0; we require neither that w1 o Fr fix § point-wise nor that Fr(#) and wé are
subsets of A. For (¢, w’), (0, w) € I we write (§',w’) ~ (6, w) provided that there exists a n € W for which

e 0 =nf and
o w' = Fr(n)wn1.

Lemma 6.1.2. The relation ~ is an equivalence relation on I. |

Example 6.1.3. For Sp,(k) representatives of the ten equivalence classes in I can be taken to be: ((),1); (0, wq); (0, wg);
(0, waws): (0, wawgwaws): ({0}, 1); ({a}, wgwaws): ({8}, 1): ({8}, wawswa); and (A, 1).

Lemma 6.1.4. Suppose 0 C A and w € W. If Fr(®y) = wdy, then there exists a unique y € Wy for which Fr(0) = wyb.
Remark 6.1.5. 1f there exists y € Wy for which Fr(0) = wy#, then we have that Fr(®y) = w®y.

Proof. Note that Fr(6) is a basis for Fr(®y) and w~'Fr(f) is a basis for w™!Fr(®y) = ®¢. Since Wy acts simply
transitively on the set of bases for ®y, there exists a unique y € W, for which y~ 1w~ 1Fr(0) = 0. |

Lemma 6.1.6. The natural inclusion I — I induces a bijection between T |~ and I /.

Proof. Consider the map ¢: I — I/~ defined by sending (6, w) € I to the equivalence class of (6, w) in I/~.
We first show that ¢ is surjective. Suppose (6, w’) € I. There exists n € W such that n =16’ C A. Setw = Fr(n)~lw'n
and @ = n~1¢’. Note that

wdg = Fr(n) w'n®, -1y = Fr(n) 'w/'®y = Fr(n ! )Fr(®y) = Fr(n '®g) = Fr(Py).
Thanks to Lemma 6.1.4, there exists y € Wpy such that Fr(f) = wyf. Hence (6,wy) € ¢(I). We need to show
(6", w')~ (0, wy).
Since nf = ' we have ®g = n®y. Since w’ = Fr(n)wn~!, we have

w' = (Fr(n)wn™ Y (nyn Y (ny~n"1) € (Fr(n)wn™1) (nyn )Wy = Fr(n)wyn™ Wy

Hence (0", w')~(0, wy), and we conclude that ¢ is surjective.

Suppose (6, w), (0,%) € I with ¢((,1)) = +((f,)). Then there exists an n. € W for which ®; = nd, and
(RS Fr(n)wnleé. Since nf C ®; and W) acts (simply) transitively on the bases of @, there exists y € W such that
ynf = 6. Let i = yn. Note that § = 71f. Since y € W;, we have Fr(y) € WFr(é) = wW;w~ . Consequently,

a1 Fr(R) b = y(nw Fr(n) " HFr(y) o € y(Wéﬁfl)Fr(y)*lzD = (yWé)(ﬁler(y)*ltD) =yWy; =W,
Since W acts simply transitively on the bases of ¢, and
(7™ Fr(i) "')0 = fb ™ Fr(n) " Fr(0) = i 'Fr(a10) = Ao Fr(6) = 7f = 6,

we conclude that 7t~ Fr(72) "M = 1, that is @ = Fr(f)wn . Hence (6, ) ~ (, ), and the induced map is injective.
[
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6.2. Stable conjugacy of unramified tori.

Definition 6.2.1. Suppose S and S’ are unramified tori. We will say that S and S’ are stably conjugate provided that there
exists . € G such that "S = S" and Int(h): S — S’ is a k-isomorphism.

Remark 6.2.2. With notation as above, Int(h): S — S is a k-isomorphism if and only if Fr("s) = "s for all s € S™.

Remark 6.2.3. It would perhaps be more standard to say that S and S’ are stably conjugate provided that there exists
g € G(k) such that 9S = S’ and Int(g): S — S’ is a k-isomorphism. To see the equivalence of this definition to the one
given, suppose we have such a g. Let M be the Levi (K, k)-subgroup Cg (S). Choose s € S™ such that Cg(s) = Cq(S).
For all 4 € Gal(k/K), we have 95 = v(%s) = 79)s; hence g~ 'y(g) € M(k). Since H!(Gal(k/K), M) is trivial, there

exists m € M(k) such that g~ 1y(g) = m~y(m~!) forall v € I. Hence gm € G and for all § € S we have ™3 = 93.

Lemma 6.2.4.~ Suppose the unramified tori S; . for i € {1,2} belong to G**-conjugacy classes parameterized by data
(Fi, 0;,w;) € 1. We have (01, w1)~(02,ws) in I if and only if S1 and S are stably conjugate.

Proof. Since the GFr—conjugacy class of \S; is parameterized by (Fj, 6;, w;) we can assume that S; = 9% Ay, with g; € G,
and n; := Fr(g;)~'g; having image w; in Wg, < W.

Suppose first that (6y, w1 )~(fa,ws) in I. Then there exists w € W for which w®y, = &g, and wy ' Fr(w)wjw™' €
We,. Let n € N (A) be alift of w. Note that

_ _ _ _ _ -1 _ _
Fr(gang; ') = g2(95 'Fr(g2))Fr(n)(Fr(g1) 'g1)g1 ' = gongy " - 9" (ny 'Fr(n)nin ™).

Since n; 'Fr(n)nin~' € Ng(A) has image in Wy, and "~ Wy, = Wp,, the element 917" (ny 'Fr(n)nin=') acts trivially
on S1, and so
Fr(92n91 g) = 9m91 g

for all s € SIT.

For the other direction, suppose that S and Sy are stably conjugate by h € G;i.e. Int(h): S; — Sa is a k-isomorphism.
Let L; = Cg(S;). Since hg1 A and 92 A are maximal K -split tori in Lo, there exists £o € Lo such that t2hgr A — 92 A Note
that m = g5 '0ahg; € Ng(A). Let n denote the image of m in W. Since 2"91 My, = 92Mj,, we have n®y, = ®,,. Note
that Fr(n)wn~! is the image in W of

Fr(g2) " Fr(£2)Fr(h)Fr(g1) (Fr(g1) " g1)g 'h ™ 2™ g
which is
(Fr(g2)"'g2) - g5 ' (Fr(h ™Mo~ 1) "t h ™M™ ) g,
Since Int(h™1): S — Sy is also a k-isomorphism, we have Fr(’flsg) = hilsg for all so € S3¥, hence Fr(h)h™! € L.
Thus, Fr(h=14, 1) "1h=1, ! € L. Since 9' A and 92 A are maximal K -split k-tori in G, we have 9' A = Rl (22A) =
Fe(h)™'Fr(t2)™" (92 A). We conclude that g5 ! (Fr(h='¢21)""h="0y " )gs € Ng(A) has image in Wj,. Hence, we have
Fr(n)win=! € waWp,. [ |

Corollary 6.2.5. There is a bijective correspondence between 1/ ~ and the set of stable classes of unramified tori in
G. |

6.3. Example: Stable classes of unramified tori associated to Levi (k, k)-subgroups. For i € {1,2} let M; denote a
Levi (k, k)-subgroup of G. After conjugating M; by an element of G*, we may and do assume that A < M;. As in
Section 5.6 we may associate to M a triple (C, 6;, 1) € I° where C'is an alcove in A(A)™, §; € © such that &y, = Fr(®y,),
M, = Cg(Ay,), and Ay, € j((C,0,1)). From Lemma 6.2.4 we know that Ay, is stably conjugate to Ay, if and only if
there exists n € W such that n®y, = ®¢, and Fr(n)n~! € W,,. From Theorem 5.5.4 we know that Ay, is G*"-conjugate
to Ay, if and only if there exists x € Ngr (A)/Cgre (A) such that 2@y, = Py, .

Thanks to the work of Solleveld [ 19] we know that Ay, and Ay, are stably conjugate if and only if they are GF*-conjugate.
In fact, Solleveld shows: Ag, and Ay, are G (k)-conjugate if and only if they are G**-conjugate.

The equivalence of stable and rational conjugacy of Ay, and Ay, can also be established as follows.

Suppose that G is k-quasi-split and there exists . € W such that n®y, = @y, and Fr(n)in~ € Wy,. Since G is k-quasi-
split, there exists an absolutely special vertex o that belongs to the image of A(A) in B4 (G)F*. Choose n € Ne,,o(A)
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that lifts 7. Note that Fr(n)n=! € My and so Int(n): Ay, — Ay, is a k-isomorphism. Since n € Nec,,0(A), by
Lang-Steinberg there exists k € Gy, 0 N My such that Fr(k)k~ = Fr(n)n~!. Thus k~'n € G* and "' Ay, = Ay,.

We adapt Waldspurger’s argument [19, Lemma 4] to extend this result to any reductive k-subgroup. We adopt the
notation of Section 5.6. In particular, G* is a quasi-split inner form of G, A* < B* is a Borel-torus pair in G*, and
Ad(m) is an element of Ng= (A*) N Stabgx (D') such that Gk = G, Ax = Aj, G = G* as abstract groups,
and Fr(g) = Ad(n) o Fr*(g) forall g € G. Let 6,,, C A = A(G*,B*, A*) denote those simple roots « for which
A* C ker(a). As we may, we choose #; C A such that #,, C 6; and Fr*(¢;) = 6;. Since #,, C 6;, this means
Fr*(®g,) = (Ad(m) o Fr*)(®g,) = Py,. Note that (Ay,) x = (A, )k is a K-split torus in G = G

Suppose that Ay, and Ay, are stably conjugate in G. Then there exists n € W such that n®y, = ®g, and Fr(n)n~! =
(Ad(m) o Fr*)(n)n~! € Wy,. Let m denote the image of Ad(m) in W. Then m € Wy, < Wy, N Wy,. Thus
mEFr*(nmn~1) € Wy, and Fr*(nm)(nm)~! = (mFr*(nmn=1)) " Fr(n)n=! € Wy,. Thus, we have nim € W such that
nm®g, = ®p, and Fr*(nm)(nm)~1 € Wy,. That is, Ay, and Aj are stably conjugate in G*.

Since G™ is k-quasi-split, we conclude that Ay and Ay are rationally conjugate in G*. Thus, there exists z €
NG+ (A") such that z®p, = ®y,. Let Py be the standard parabolic subgroup in G corresponding to 0 and set Py =
Int(x)Py. Since m € (Lag)g,,. we have Fr(P;) = Ad(m)Fr*(P;) = P; for j € {1,2}, we conclude that P; and P»
are parabolic k-subgroups in G. They are conjugate by x € G* = (, hence these parabolic subgroups are conjugate
by y € G™. We have Py = Ad(y)P; and Ad(y)Ly, is a Levi factor of Py. Thus, there exists u € PL" such that
uyLg, = Lg,.

6.4. k-embeddings of unramified tori. For many purposes in harmonic analysis, it is not enough to understand the stable
conjugacy classes of (unramified) tori. We therefore introduce the following refinement.

Definition 6.4.1. Suppose S is an unramified torus in G. A k-embedding of S into G is amap f: S — G such that

(1) there exists g € G such that f(s) =9s forall s € S and
(2) fis a k-morphism.

Example 6.4.2. If S and S; are stably conjugate unramified tori in G, then there exists a k-embedding h: S; — G such
that h[Sl] = Ss.

Remark 6.4.3. Suppose S is an unramified torus in G and f: S — G is a k-embedding.

(1) If g, h € G such that f(s) = 9s = "sforall s € S, then g € hC(S).
(2) Since f is a k-morphism, we have Fr(f(s)) = f(s) forall s € S™.

We will be most interested in those k-embeddings of an unramified torus S into G for which the images of the k-
embeddings are S.

Remark 6.4.4. 1t would perhaps be more standard to say that a k-embedding of S into G isamap f: S — G such that (a)

there exists g € G(k) such that f(s) = 9s forall s € S and (b) f is a k-morphism. The equivalence of this definition and
the one given can be seen by arguing as in Remark 6.2.3.

6.4.1. Notation for Section 6.4. Suppose S is an unramified torus and set Ly = C(S1). Suppose that S; corresponds to
(F1,01,wy) € I°and S = 9' Ay, for g1 € p, M(K) N Gp, with ny := Fr(g1) "¢, having image wy in W.

Recall from Lemma 5.4.7 that T; = Cg,(S1) is an f-minisotropic maximal f-torus in G that corresponds to (0, w;) €
I ¢(F1). Let T1 < p,M be a lift of T; that contains S;. Thanks to Lemma 4.4.1 and Corollary 5.4.8, the k-rank of L is
equal to the k-rank of T¥, hence T < Ly is a maximally k-split maximal K -split k-torus in L that contains S.

Finally, we may assume that B(71) is a subset of A(A)™. Indeed, there exists m € g M™ for which T# < ™A,
hence B(Ty)™ c A(™A)Y". Since Fy € A(™A)F, there exists £ € f MIP,‘I such that

BT =0 BT - AMA)T = A(A)F.
Without loss of generality, we may replace g; by £g;.

6.4.2. Results on normalizers. Let Z; denote the center of L;. If h € Cz(Z), then since Sy is the unique K -split subtorus
in Z1, we must have h € Cz(S1) = L;. Since L; < Cg(Z;), we have Cg(Z1) = Ly

Lemma 6.4.5. Suppose g € G. We have 9S; is defined over k if and only if 97 is defined over k.



22 STEPHEN DEBACKER

Proof. If 9S; is defined over k, then YL; = Cg(951) is defined over k&, and thus so too is its center, 9Z;. On the other
hand, if 9Z; is defined over k, then 9S1, the maximal K -split torus in 9Z, is also defined over k. [ |

Corollary 6.4.6. Suppose g € G and 98 is defined over k. The map Int(g): S; — 9S; is a k-isomorphism if and only if
Int(g): Zy — 9Z, is a k-isomorphism.

Proof. Thanks to Lemma 6.4.5 both 9S; and 9Z; are defined over k.

If Int(g): S; — 9S; is a k-isomorphism, then Fr(g) g € L; and so Fr(9)™'9¢ — ¢ forall t € Z1; hence Int(g): Z; —
97 is a k-isomorphism.

On the other hand, if Int(g): Z; — 9Z; is a k-isomorphism, then since S; (resp. 9S;) is the unique maximal K -split
k-torus in Z; (resp. 9Z1), the map Int(g): Z1 — 9Z; restricts to a k-isomorphism Int(g): S; — 9S;. [ |

Lemma 6.4.7. If g € G such that 95, = S, then there exists { € Ly such that {g € Ng(T1).

Proof. If 951 = S1, then we have g € Ng(Li). Both T; and 9T; are maximal K-split tori in L. Thus, there exists
¢ € Ly such that 9T = T;. [ |

Lemma 6.4.8. If g € G such that 95, = Si, then there exists { € Lf\f such that £g € N (T1) < Ng(Ty).
Remark 6.4.9. For g and ¢ as in Lemma 6.4.8, the map Int(4g): S; — S; is a k-isomorphism.

Proof. Both Ty and 9T, are maximally k-split maximal (K, k)-tori in Lj. Thanks to [16, Theorem 6.1] they are Lfr—
conjugate. |

6.4.3. Classifying k-embeddings of S1 into G with image S;.
Definition 6.4.10. For H C G, set
N*(H,S,):={h e H|"S; = S, and Int(h): S; — S; is a k-isomorphism}.
Example 6.4.11. We have
N¥(L1,81) = L1, N¥(Cg(T1), 1) = Cg(Ty), and N¥(G¥, S1) = Ngr: (S1).
Remark 6.4.12. The quotient N*(G, S1)/L; indexes the distinct k-embeddings of S; into G that have image S;.
Note that N¥(G, S1), L1, N¥(Ng(T1), S1), and Nz, (T;) are Fr-modules.
Lemma 6.4.13. There is a natural ¥r-equivariant (group) isomorphism
¢: N¥@G,S1)/L1 — N¥(Ng(T1),S1)/Ng, (Ty).

Remark 6.4.14. Since Ly is a normal subgroup of N*(G, S1) and Ny, (T}) is a normal subgroup of N*(Ng(T1), S1), we
may quotient out on either the left or right for both the source and target of &.

Proof. Suppose g € N*(G, S1). From Lemma 6.4.7 there exists ¢ € L; such that {g € Ng(T;). Since ‘s = s for all
s € S1, we have that Int(¢g): S; — S; is a k-isomorphism; hence (g € Nk(Ng(Tl), S1).

If ' € L is another choice such that #g € N*(Ng(T1), S1), then (£g)(¢g)~! € Ng(T1). Thus £(£')~1 € Ng(T1) N
Ly = N, (T1). So £ = A\’ for some A € Ny, (T1). ) )

In this way we can define amap £: N*(G, S1) — Np,(T1)\ N*(Ng(T1), S1). If g, h € N*(G, Sy) with £(h) = £(g),
then there exist £, £, € Ly such that {49 € N, (T1)lyh, thatis g € Lih. Hence £ descends to a bijective map

£: L1\ N*(G, S1) — Nz, (T1) \ N*(Ng(T1), S1).

To see that ¢ is Fr-equivariant, note that if g € N¥(G, Sy), then there exists £ € L; = Fr(L;) such that £(L1g) is the

image of g € N¥(Ng(T1), S1) in N¥(Ng(T1),S1)/Nr,(T1). We have Fr(£g) € Fr(Ng(T1)) = Ng(T1), hence
Fr(€(Lg)) = Fr(fgNp, (T1) = (Fr(6)Fr(g)) N1, (T1) = E(Fr(Lag)). .
Definition 6.4.15. Suppose (0, w) € I. Put
Worrs := {w' € Ny (Wp): w Fr(w) tww’ € Wy}

Remark 6.4.16. Note that W,opy ¢ is a group, Ny (Ag) = Nw(Wp), and Wy I Wyomrg. Also, Wiyopr g consists of
precisely those w’ € Ny (Wjy) for which w~! o Fr preserves the coset w'Wy in Ny (W) /Wy .
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Lemma 6.4.17. There is a natural Fr-equivariant group isomorphism
n: N*(NG(T1), $1)/Cc(T1) — W oFr,6, -
Here Fr acts on Wy, oFy,p, via wy ' o Fr.
Remark 6.4.18. Since Cz(T1) < Cg(S1), we have C(T1) = Cr,(T1). Note that
N*(Ng(T1),1)/Cy (T1) = (Ng(ry)(S1)/Cry (T1)™.

Proof. Suppose n € N¥(Ng(T1), S1).

The map Int(gl_l): Ng(T1) — Ng(A) is an isomorphism. Since *S; = S7 and Fr(n) g, = G, the images of gl_lngl
and g; 'Fr(n)gy in W preserve Ay, and so belong to Ny (Wp, ).

Setm = 9 n € Ng(A). Let w denote the image of m in Ny (Wp,). Since (w;' o Fr)(;) = 6;, we have
(wl_l o Fr)(Wy,) = Wp, and (wl_l o Fr)(Nw (Wy,)) = Nw(Wp,). Thus, wl_lFr(w)*lwlw € Ny (Wpy,). Note that
wy 'Fr(w) " lwyw is the image of

(91 "Fr(g0)Fr(m™ 1) (Fr(91) 'g1)mlg; *o1) = g7 ' (Fr(n)~'n)gr € Ne(A).
Since Int(n): S; — S; and Int(Fr(n)): S; — S; are k-isomorphisms we have Fr(n)g — ng for all s € SlF\f. Thus,
Fr(n)~'n € Nr,(T1). Hence, the image of g; ' (Fr(n)~'n)g; in Ny (Wp,) < W belongs to Wy, . Thus w; "Fr(w)lwjw €
W,
Consequently, we can define a map
n: N¥(Ng(T1),S1) — Wiokr 0,

by letting 77(n) be the image of g; 'ng; in Ny (W, ) for n € N¥(Ng(T1), S1). Note that

-1
91 Fr(n) = g; "Fr(g1)Fr(g; 'ng1)Fr(g1) a1,

that is, 7(Fr(n)) = (w ! o Fr)(n(n)) for all n € N¥(Ng(T1), Sh).
We now show that 7 is surjective. Suppose w € Wy, oy g, . Choose a representative m € N¢(A) for w and letn = 9'm.
Note that )
nG =" Ay = gi1mgy I Ag, =9 Ag, =1 Ag, = 5.

Let n1 = Fr(g1)~'g1 € Ng(A), this is a lift of wy. Let p = ny 'Fr(m) 'nym. By hypothesis, the image of p in
Ny (Wp,) < W belongs to Wp,. Fix s € S1¥, and set a = nse Ap, . We have
1

Fr(ns) — F‘r(n)s _ H(gl)FY(m)Fr(gfl)(gl a) _n (n;IFr(m)nl (CL)) — g (mp_ a) — g (ma) —ng

Hence n € N¥(Ng(T1),S1) and n(n) = w.
The injectivity of 7 follows from the fact that the isomorphism Int(g; '): Ng(T1) — Ng(A) induces an isomorphism
N¢(T1)/Cq(T1) = W = Na(A)/Ca(A). u

Note that C(T1) = Cr,(T1) is a normal subgroup of N*(Ng(T1), S1) and is contained in Nz, (T1). Since the image
of gl_]LNL1 (T1)g1 in W is Wy,, Lemma 6.4.13 and Lemma 6.4.17 show:

Corollary 6.4.19. There is a natural Fr-equivariant (group) isomorphism

¢: N*(G, 51)/L1 — Waorr0, /W,
where Fr acts on W, orv 9, /Wo, via wl_l o Fr. [
6.4.4. Classifying, up to G**-conjugation, k-embeddings of S into G with image S;.

Definition 6.4.20. Suppose S is an unramified torus in G. Suppose f,h: S — G are two k-embeddings of S into G. We
say f is G¥"-conjugate to h provided that there exists z € G** such that Int(z) o f = h.

We want to understand the set of G**-conjugacy classes of k-embeddings of S into G having image S;.

Lemma 6.4.21. The set of GF*-conjugacy classes of k-embeddings of S1 into G with image S is parameterized by
(N*(G,81)/L1)/(Ngr (S1)L1/L1) = N*(G, S1) /Ngr (S1) L.
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Proof. Suppose f,h: S; — G are k-embeddings with images S;. We have f is G'"-conjugate to h by x € G if and
only if x € N¥(G™,81) = Ngre(S1) = (Ng(S1))™. [

Suppose g € Ngr(S1). Thanks to Lemma 6.4.8 there exists £ € L™ such that n = g¢ € N (T1) N Nere(S1) =
NN g (T1) (S1). Hence, in the notation of Lemma 6.4.13, £(gL1) = nNr,(T1) and, as groups,

§(Ngr:(S1)L1/L1) = NN g, (1,)(S1) N1, (T1) /N1, (T1)
= (NN (11)(81)C,y (T1)/CLy (T1)) / (N, (T1) /CL, (Th)).

Remark 6.4.22. We also have, as groups,
§(Ngr:(S1)L1/L1) = NN g, (11)(S1) /Npre (T).
Recall that S; corresponds to (F, 01, w1) € Iand S; =9 Ay, for g1 € G, with Fr(g1)~'g1 having image wy in W.
Definition 6.4.23. We let I (F) denote the image of the stabilizer (not fixator) in Ng(A) of A(A(A), F1). We set
W(F1, 01, w1) := W(F1) N Ny (We,) N Wiy, o 0-
Remark 6.4.24. The group W (Fi, 61, w; ) is a subgroup of Wy, oFy.6, -

Example 6.4.25. If wy is the identity element of W, then Fj is an alcove. If Fr acts trivially and ws is the identity, then
W (F1,01,w1) = Wy, om0, = Nw(Wp,).

Lemma 6.4.26. Suppose 0 is the Fr-equivariant group isomorphism of Lemma 6.4.17. We have

NN, (11)(81)CL, (T1)/CL, (T1)) < W(FY, 01, w1)

with equality if G is K-split or G is simply connected.

Proof. Suppose n € Ny, (1,)(S1). We need to show that w := n(n) is an element of W (F1) N Ny (Wo,) N Wiy, opy g-
Since n € G normalizes T1, it stabilizes B(Ty)™ = A(A(A)', F1) (see [3, Lemma 2.2.1]). Since g; stabilizes F}
and belongs to - M(K), we conclude that g; stabilizes A(A(A)™, Fy) as well. Thus, 7(n), the image of g; 'ng; in W,
belongs to W (F}). Let n; = Fr(g1)"'g1 € Ng(A), this is a lift of wy. Since wi 'Fr(w) lwjw is the image in W of
ny Fr(g; 'ng1) "' (g; 'ng1) = 1 (recall that Fr(n)~'n = 1), we conclude that 7(n) € Wiy, oFr,p- Since n normalizes
L; = Cg(S1), we conclude that n(n) € Ny (W, ).

We now show that if G is K-split or simply connected, then 7 is surjective. Suppose w € W (F1,6;,w;). Choose
m € Ng(A) lifting w. Since m stabilizes A(A(A)Y", 1) and g1 € g, M, also stabilizes A(A(A), F1), we have that
91 stabilizes A(A(A)™, ). Thus, forally € A(A(A)Y, Fy) we have 9'm-y = Fr((9m)-y) = Fr(9m)-y. This implies
that Fr(91m)~! - 91m fixes y. Since w € W, opy g, We have Fr(91m)~! - 9im = gy (n] 'Fr(m)"tnmim)g; ' € Cq(T1).
Set T := Cg(T1). If G is simply connected, then the set of points in 7 that fix y belong to (T} N Gg,). If G is
K-split, then ﬁ = T, and since T; is a maximal K-split torus in G, the set of points in 7} that fix y is equal to
T1 N G, . In either case, we have Fr(glm)_1 “9m e Tf N G'r. By Lang-Steinberg, we can choose ¢t € Tf N G g such that
Fr(9m)~! - 91m = Fr(t)t~'. Thus, if a = g; 'tg1 € Cq(A), then 91 (ma) € G'™. Note that (9 (ma)) = w. [ ]

The following Corollary summarizes the results of Section 6.4. Recall from Corollary 6.4.19 that : N*(G, S1)/L; —
Wy orr,0, /W, is a Fr-equivariant (group) isomorphism.

Corollary 6.4.27. The set of G -conjugacy classes of k-embeddings of S into G with image S1 is in natural bijective
correspondence with

W (F1,01,w1) := Wy o0, /(Nge (S1)L1/L1) Wy, .
If G is K-split or simply connected, this is
W’LU10F1‘,91/W(F17 017 wl)Wel)
and, in general, we have o(Ngw:(S1)L1/L1) < W (Fy, 61, w1). [ |
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6.5. Examples. We now illustrate the results of this section by looking at three examples: Sp,, G2, and unramified SUs3.

Example 6.5.1. We consider Sp, and adopt the notation of Example 5.1.1. In Figure 4, we have added a number and a
letter to each datum of Sp,. The number records the number of k-embeddings, up to G¥*-conjugacy, of the unramified torus
corresponding to the datum into itself. If two data have the same letter, then their corresponding unramified tori are stably
conjugate. So, for example, the number of k-embeddings of an unramified torus corresponding to the datum ({a + 5}, wq,)

(0,¢):1:a
0,¢%):1:b
(@,wa):l:f (@,UJQ()H_ﬁ)I]_Zd
(fa+Bhwa):1ie,/01): 19 |({Bhwgiza) i 1:e
({a},1):1:h
{B}r,1):1:4
(A)1):1:5
((Z),c):l:a (&wb’):l:d (@,62)2211)
0,¢%):1:b {B+2a},wg):1:e {al,?):1:¢

FIGURE 4. A parameterization of the k-embeddings of unramified tori for Sp,

is two, up to G*"-conjugacy.

Example 6.5.2. In Figure 5 we have enumerated the data that classifies the rational conjugacy classes of unramified tori for
the group Gs. The tick marks on the horizontal edge and the hypotenuse indicate that those two facets are equivalent.

We have chosen a set of simple roots « and 3 for Go with « short and 5 long so that in Figure 5 the hypotenuse lies
on a hyperplane defined by an affine root with gradient 8 and the vertical edge lies on a hyperplane defined by an affine
root with gradient o. We let w,, denote the simple reflection corresponding to «, and wg denotes the simple reflection
corresponding to 3. We let ¢ denote the Coxeter element w,wg.

As for Sp,, each label has three parts: a datum from I (F') where F is the facet adjacent to the label; a number that
records the number of k-embeddings, up to G**-conjugacy, of the unramified torus corresponding to the datum into itself;
and a letter indicating the stable conjugacy class of the unramified torus corresponding to the datum.

The centralizer of the unramified torus corresponding to the pair ({3 + 28}, wq) is unramified U(1,1) while the
centralizer of the unramified torus corresponding to the pair ({3}, ¢®) is unramified U'(2). The ornamental tilde indicates
that the group 0(2) is of type A; for a long root. The centralizer of the unramified torus corresponding to the pair
({8 + 2a},wg) is unramified U (1, 1) while the centralizer of the unramified torus corresponding to the pair ({a + 3}, ¢?)
is unramified U(2). The four unramified tori with labels of the form (¢, 1) are the k-split components of the centers of the
four (up to conjugacy) distinct k-subgroups of Go that occur as a Levi factor for a parabolic k-subgroup of Go.

Example 6.5.3. In Figure 6 we have enumerated the data that classifies the rational conjugacy classes of unramified tori for
the group of k-rational points of unramified SU(3). Thinking of this group as the Fr-fixed points of SL3(K), the dotted
equilateral triangle is a Fr-stable alcove of SL3(K).

We have chosen a set of simple roots « and 3 for SL3 so that Fr(«) = (3 and the hyperspecial vertex (of SU(3)) pictured
in Figure 6 lies on the hyperplanes defined by affine roots with gradients « and /3 while the other vertex lies on a hyperplane
defined by an affine root with gradient o + 3.

As for Sp, and Gg, each label has three parts: a datum from I (F') where F is the facet adjacent to the label; a number
that records the number of k-embeddings, up to G**-conjugacy, of the unramified torus corresponding to the datum into
itself; and a letter indicating the stable conjugacy class of the unramified torus corresponding to the datum.
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0,¢3):3:¢
{B},¢*) :1:d | 0,2 :2:b
3) . 1.
{a+p},e?):1:e 0.1):1:h
({a},1):1:1
(B} 1)1
(A1) :1:k
0, wa) : 1 f (0,wg):1:g
({3a+28},wy) i 1:d ({B+2a},wg):1:e
(0,¢):1:a
0,¢?):1:b
0, :1:¢

0,1):1:4d
(A,1):1:e
(0, wpwawg) : 1:b (fa+pB1):1:c (0, wgwawg) : 3: b
(Dywa):1:a ({a}, wpwawg) : 1: ¢

FIGURE 6. A parameterization of the k-embeddings of unramified tori for unramified SU(3)

The centralizer of the unramified torus corresponding to the pair ({a}, wgwawg) is unramified U(2) while the cen-
tralizer of the unramified torus corresponding to the pair ({o + £}, 1) is unramified U(1,1). The two unramified tori
with labels of the form (6,1) where § € {), A} are the maximally K-split components of the centers of the two (up to
conjugacy) distinct k-subgroups of SU(3) that occur as a Levi factor for a parabolic k-subgroup of SU(3).

7. UNRAMIFIED TWISTED GENERALIZED LEVIS

In this section we provide a parameterization of U, the set of G™-conjugacy classes of unramified twisted generalized
Levi subgroups of G.

Definition 7.0.1. A connected reductive k-subgroup L of G will be called an unramified twisted generalized Levi subgroup
of G provided that it contains the centralizer of a maximal unramified torus of G.
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Example 7.0.2. Every unramified twisted Levi is an unramified twisted generalized Levi.

7.1. Closed and quasi-closed root subsystems. Suppose S is a maximal K-torus in G. Since G is K-quasi-split, we
have that S* := Cg (S) is a maximal k-torus in G. If u C ®(G, S#), then define G, := (S*, U, |« € p).

Definition 7.1.1. A subset p of ®(G, S*) is said to be a quasi-closed provided that if 3 € ®(G,S*) and Ug C G, then
B € u. Asubset T of ®(G,S*) is called closed provided that for all o, 5 € T we have o + 5 € ®(G, S*) if and only if
a+pBeT.

Remark 7.1.2. As discussed in [, Section 3] (see also, [22, XXIII, Corollaire 6.6]), every closed subset of ®(G, S?) is
quasi-closed and the converse is true if the characteristic of k is not 2 or 3. See Footnote 17 in [22, XXIII] or the Remarque
following [ 1, Proposition 2.5] for a specific list of cases where the converse fails.

A subset p of ®(G, A) is said to be a quasi-closed root subsystem provided that the set of roots
{a € P(G, A"): resp a € p}

is quasi-closed in ®(G, A#). Here A* is the maximal k-torus C(A). Similarly, a subset § of ®(G, A) is called a closed
root subsystem provided that
{a € P(G, A*): resp a € 4}
is closed in (G, A*).
We let © = ©(G, A) denote the set of bases of quasi-closed root subsystems of ®(G, A).

Example 7.1.3. If =2 C A C ®(G,A), then = € O, and, in general, © C ©. More exotically, the long roots in the root
system of Sp, form a closed root subsystem and so, in the notation of Example 5.1.1, {3, 8 + 2a} € ©. Note, however,
that the short roots in the root system of Sp, do not form a closed root subsystem, but they do form a quasi-closed root
subsystem when the characteristic of & is 2. Thus, in the notation of Example 5.1.1, we have that {«, 5+ a} € © whenever
the characteristic of k is 2.

Remark 7.1.4. Both W and Fr act on ©.

Suppose = € O. Let = denote the Z-span of = in ® and let W=z < W denote the associated Weyl group. Let M= be
the connected reductive K-group in G generated by A# and the root groups U, for « € ®(G, A*#) with resp o € P=.
Note that Wz is the Weyl group W (M=, A).

7.2. A result about parahoric subgroups and unramified twisted generalized Levi subgroups. Suppose H is an un-
ramified twisted generalized Levi subgroup of G, that is, H is a connected reductive k-subgroup of G that contains the
centralizer of a maximal unramified torus of G. Since H contains a maximal unramified torus of G, the building of B(H)
embeds into the building of B(G). There is not a canonical embedding, but all such embeddings have the same image.

Lemma 7.2.1. Ifx € B(H), then H, < G, N H.

Proof. Let S be a maximal K -split torus of H such that x € A(S) C B(H). Since the maximal K -split tori in H form
a single H-conjugacy class and since H contains the centralizer of a maximal unramified torus of G, we conclude that
S’ = Cg(S) is a subgroup of H.

Note that S, the parahoric subgroup of S’, is equal to SySy; where Sy is the parahoric subgroup of S and S, is the
pro-unipotent radical of \Sj).

The parahoric subgroup H, is generated by S{ and the groups U, for ¢y € ¥(H,S,v) with ¢(x) > 0. Suppose
¢ € U(H,S,v)and ¥(x) > 0. If u € Uy, then u is unipotent in G and fixes x, hence u € G,. Since G contains S, we
conclude that H, < G, N H. |

7.3. Some indexing sets. For a G™*-facet ' C A(A)', set
j(F) = {(va) | Ee é’w € WFaFr((I)E) = U]q)E}

For (2, w), (Z',w") € I(F), we write (2, w) L (2',w") provided that there exists m € Wy such that

o m<I>5 = (I)E’
o Fr(m)wm™! € w' (Wr N Wxz)
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Lemma 7.3.1. The relation % is an equivalence relation on J(F). [ |

We will say that (2, w) € J(F) is F-elliptic provided that for all (', w’) € I(F) with (2, w) L (2',w") we have that

w’ does not belong to a Fr-stable proper parabolic subgroup of Wx. We set
I(F) :={(E,w) € I(F) | (E,w) is F-elliptic}.
Define
J={(F,Z,w)| FisaG™-facetin A(A)™ and (2, w) € I(F)}.
For (F,Z,w), (F',Z' w') € J we write (F,Z,w) ~ (F',Z,w') provided that there exists an element m € W2 for
which A(A(A)Fr, F') = A(A(A)F, mF) and with the identifications of G = G, and X*(Ap) = X* (Apr) = X*(A)
thus induced we have that (=, w’) £ (mZ,™w) in I(F”) L J(mF).
Lemma 7.3.2. The relation ~ is an equivalence relation on J. |
Definition 7.3.3. We will say that (F, =, w) € J is elliptic provided that (=, w) € J°(F"). We set
¢ :={(F,E,w) € T| (E,w) € I°(F)}.

Remark 1.3.4. If (F, 2, w) € J°, then (0, w) € I°(F) C J¢(F).
7.4. Parameterizing U. Suppose u = (F,Z,w) € J. Choose g € G such that Fr(g)~'g € Ng,(A) has image w
in Wg. Let S = 9A. Since Fr(S) = S and Fr(g®z) = Fr(9)Fr(®z) = Fr(9)wdz = Fr(g)Fr(g) lgdz = g9z,

the connected reductive K-group L, ; := 9Mgz is a k-group. Since L, , contains Cg(S), we conclude that L, 4 is an
unramified twisted generalized Levi.

Lemma 7.4.1. The Glj;r—conjugacy class of L, 4 depends only on p.

Proof. Fix § € Gy such that Fr(§)~'§ € Ng,(A) has image w in Wy and notice that g~ 'Fr(g)Fr(g)~1g € A*. Set
S = 9 A* and note that Fr(gg—') 199! € SNGF. Since Sy = SN G is the parahoric subgroup of S, from Lemma 5.0.2
we have H'(Fr, Sp) is trivial, and so there exists s € Sy such that Fr(gg~'s™!) = gg~'s~! € Gr. We conclude that
sgg~! € GEF. Since
IMz = 9M= = %99 IM= = Ség_lLug7
we conclude that M= is G%\r—conjugate toL, 4. |
Thanks to Lemma 7.4.1 the following definition makes sense.

Definition 7.4.2. Define j: J — U by setting j (1) equal to the G**-conjugacy class of L,g.

Lemma 7.4.3. Suppose F C A(A) is a G¥-facet. Suppose (Z;,w;) € I(F) and g; € G such that Fr(g;)"'g; €
Ng,.(A) has image w; in Wr fori € {1,2}. Set L; = 9%Mgz,. The G%¥-conjugacy classes of Ly and L coincide if and

e F o
only if (21, w1) ~ (Z2, wy).

Proof. “<=" Since (21, wy) L (Z2,ws), there exists n € W such that
o n®z, = &z, and
o Fr(n)win=t € wo(Wr N Wxg,).

Choose . € N¢,.(A) such that the image of n in Wg is n. Choose g; € G such that the image of Fr(gi)_1 gi €
Ngp(A) in Wg is w;. Set

h:= (g5 'Fr(g2))Fr(i2) (Fr(g1) 'g1)n "
Since h belongs to Ng,.(A) and has image w, 'Fr(n)w;n~" in W, we conclude that / belongs to Mz, N Ng,.(A). Thus
2h = Fr(gin g ) g lgy ")

is an element of G’ N Ly. From Lemma 5.0.2 we have that H! (Fr, (L) r) is trivial, so there exists £ € (L)r < G such
that 92h = Fr(¢)¢~!. Thus
g1 tgy = Fr(gin gy '0).
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So glh_lgglf € Gt and
9171719271ng = g1h71M52 =9Mg, = L.

“="" Since the GJF;r—conjugacy classes of L1 and L9 coincide, there exists x € GZF} such that *L; = Lo. Without loss of
generality we can replace gs by g2 and assume L; = Ly. Set L = L.

Since 9t A and 92 A are maximal K-split k-tori in L and F C B(91 A) N B(92A)F" ¢ B(L), there exists £ € Lp <
G N L such that 91 A = 92 A Let m denote the image of gflf_lgg € Ng,(A)in W. Since 9 A and 9> A are k-tori, we
have

Fr(f)*l(ng) — f’l(ng)
which implies that g, 'Fr(¢)¢~'gs € N, (A) has image in T belonging to W=, N W.
Note that
Pz, = ®(Mz,,A) = g; ' ®(I'Mz,, " A) = g 'O(L, " A) = g7 U 1O(L, 91 A)
=g, " TO(L,2A) = gy T ga®(Mz,, A) = g 0 ga®z,

= m<I>32
and Fr(m)~lw;m is the image in W of
(Fr(g; "€g1)) (Fr(g1) "' g1) (91 0 g2) = Fr(g2) " (Fr(£)0™ ") g2 = Fr(g2) " g2(g5 'Fr(£)¢ ' g2)

which has image in wa (W=, N Wr). Consequently, (2, w;) L (22, wo). [ |

Lemma 7.4.4. Suppose (F,Z,w) € 3%, g € G such that the image of Fr(g) g € Ng,(A) in Wr is w, and L = IMz.
Then I is a maximal G**-facet in B(L)"".

Proof Let S = 9A. If F is not maximal, then there exists a G*"-facet H in B(L)"" such that ' C H and F # H. Since
we may choose x € GFJ such that tH C B(A)™™, without loss of generality we may assume that F' and H are G¥"-facets
in A(A)FF N B(L)F.

Since H C B(L)', there is a maximally k-split maximal (K, k)-torus T < L such that H C B(T)". Consequently,
we can choose h € G < G such that T = " A and the image, w’, of Fr(h)~'h € Ng, (A)liesin Wy < Wp < W.
Choose a basis Ay, for ®(L, T) and set 2 = h~'A. We have "Mz = L.

We now show (=, w) L (Z/,w'). Since T and S are maximal K -split k-tori in L and F' C B(T)¥ N B(S), there
exists € Lr < Gp such that ‘S = T. Let m denote the image of g~1¢/~'h € Ng,(A) in W. Since YA and "A are
k-tori, we have

F‘r(é)_l(hA) — Z_l(hA)
which implies that A1 Fr(¢)¢~'h € Ng,. (A) has image in W belonging to W= N Wp.
Note that
Pz = B(Mz, A) = g '®(IMz,9A) = g 1O(L,9A) = g W 1D(L,9A)

=g WL, "A) = g T hd Mz, A) = g YT has

and Fr(m)~twm is the image in W of

(Fr(h™g)) (Fr(g) " g) (g™ ¢ h) = Fr(h) " (Fr(O)¢)h = (Fx(h)"'h) - (A" Fr()¢ h)

which has image in w' (W= N Wp). Consequently, (=, w) L (2, w).
Since w’ belongs to Wy, a Fr-stable proper parabolic subgroup of W, this contradicts the assumption that (F, =, w) is
elliptic. |

Theorem 7.4.5. The map j defined in Definition 7.4.2 induces a bijection from 3¢/ =~ to U

Proof. We first show that j is surjective. Suppose L is an unramified twisted generalized Levi subgroup of G. Choose a
G -facet F' C B(L)™ that is maximal among the set of G*"-facets in B(L)'. Let S < L be a maximally k-split maximal
(K, k)-torus in L such that ' ¢ B(S)" ¢ B(L)™. Without loss of generality, we assume, after conjugating everything
in sight by an element of G'*, that F' ¢ B(S)" ¢ A(A)™ N B(L)'". Choose g € G such that S = 9A. Let w be the
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image of Fr(g)~'g € Ng,(A) in Wr < W. Choose a basis Ay, for ®(L,S) and let = = g~'A;, € ©. By construction,
(F,Z,w) € Jand j((F,Z,w)) is the G*"-conjugacy class of L.

To complete the proof of surjectivity, we need to show that (F,E,w) is elliptic. If it is not elliptic, then there exist
(2, w') € I(F) with (Z,w) ~ (Z,w') and a G¥*-facet H in A(A)T with F C H and F # H such that w’ lies in Wi
Since w’ € Wiy, there exists h € G C G such that the image of Fr(h)"'hin Wy < Wy isw’. Since (2, w) K (=, w),
from Lemma 7.4.3 we have "Mz = L for some = € GY. Note that “* A < L. Hence, zH = zhH C A(*"A)" <
B(L)™™, contradicting the maximality of F.

We now show that if p; = (F;, Z;, w;) fori € {1,2} are two elements of I¢ with j(u1) = j(u2), then py ~ po.

Choose g; € G, such that Fr(g;)~lg; € Ng,(A) has image w; in W, < W. Set L; = %Mz, and S; = 9 A. Thanks
to Lemma 7.4.4, we know that F; is a maximal G*-facet in B(L;)™. Since F; is a maximal G*"-facet in B(L;)f™ and
F; € B(S;) c B(L;)', the torus S; is a maximally k-split maximal (K, k)-torus in L;.

Since j(u1) = j(u2), there exists y € G such that L; = YL,. Since ¥Sy and S; are maximally k-split maximal
(K, k)-tori in Ly, from [16, Lemma 6.1] there exists £ € Llff such that S; = %¥S,. Since F} C A(A)H, there exists
x € GF such that B(*S;)*™ C A(A)F. Thus, after replacing iy with = - y1; and o with zy - po, we may assume that
L; = Lo, S1 = Ss,and Fy, F» € B(S)™  B(L)" N A(A)™. Let L = Ly and S = S;. Since F and I, are maximal in
B(L)F, they are maximal in B(S)* and so ) # A(F1, A(A)FY) = A(Fy, A(A)FY),

Let S; denote the image of S N G, in Gp,. Since S is a lift of (F},S;), we conclude that Sy = Sy in Gr, = Gry;
this means (0, w1) X (B,w2) in I(Fy) = I(F»). Let g; denote the image of g; in GF,. Let n = g, 'g1 in G, = Gp,.
Note that n € Ng,, (A) = Ngp, (A), and so it has image n € Wr, = Wp, < W. Moreover, Fr(n)w;n~! = ws. Since
92_191M51 = Mgz,, we conclude that n®z=, L &=, in X*(Ap,) 2 X*(Ap,) = X*(A). Consequently, 1 ~ ps. [

Example 7.4.6. In Figure 7 we provide, up to rational conjugacy, a parameterization of unramified twisted Levis that are
not unramified twisted Levis for the groups Sp, (when the characteristic of £ is not 2) and G2 (when the characteristic of
k is not 3).

-
o
R
A 1 +T
@O) ~
oy S|
YV + g
J o |2

FIGURE 7. A parameterization of the rational classes of unramified twisted generalized Levis that are not
unramified twisted Levis for Sp, (char(k) # 2) and Go (char(k) # 3).

For the group Sp, with char(k) # 2, the label ({3, 5+ 2a}, 1) corresponds to the rational conjugacy class of unramified
twisted generalized Levis that are isomorphic to SLy x SLo and the label ({3, 8 + 2a}, w, ) corresponds to the rational
conjugacy class of unramified twisted generalized Levis that are isomorphic to Rg /k(SLg) where FE' is the unramified
quadratic extension of k.

For the group Gy with char(k) # 3, the labels ({«, 28 + 3a}, 1) and ({53, 5 + 3a}, 1) correspond to the rational
conjugacy classes of unramified twisted generalized Levis that are isomorphic to SO4 and SL3, respectively. The label
({8, B+ 3a}, w,) corresponds to the rational conjugacy class of unramified twisted generalized Levis that are isomorphic
to (unramified) SU3.

Example 7.4.7. In Figure 8 we provide, up to rational conjugacy, a parameterization of unramified twisted Levis that are
not twisted Levis for the groups Sp,, when the characteristic of k is 2, and G, when the characteristic of & is 3.
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FIGURE 8. A parameterization of the rational conjugacy classes of unramified twisted generalized Levis
that are not unramified twisted Levis for Sp, when char(k) = 2 and for Go when char(k) = 3.

The unexplained labels are as in Example 7.4.6.

For the group Sp, with char(k) = 2, the label ({a, a + 5}, 1) corresponds to the rational conjugacy class of unramified
twisted generalized Levis that are isomorphic to SO, while the labels ({a, o + 8}, wg) and ({o, —a — B}, wg) ({5, 6 +
2a}, waq+g) correspond to the two distinct rational conjugacy classes of unramified twisted generalized Levis that are
isomorphic to the non-split quasi-split form of SO4.

For the group Go with char(k) = 3, the label ({«, 5 + a}, 1) corresponds to the rational conjugacy class of unramified
twisted generalized Levis that are isomorphic to PGL3. The label ({c, 8 4 a}, wg) corresponds to the rational conjugacy
class of unramified twisted generalized Levis that are isomorphic to PU3.

7.5. Relations among unramified twisted generalized Levis. As a Corollary to Theorem 7.4.5 we have:

Corollary 7.5.1. Suppose L and L are unramified twisted generalized Levi subgroups in G. There exists x € G™ such
that L < L if and only if there exist (F,E,w), (F7 =w) €Jand = € O such that

(1) @E C (I)E’, B
(2) F isin the closure of F,
—_ F o= .

3) (B w) ~ (E,m),

4) L € j(F.Z,w)), and

5) L ej((F,E w)).
Moreover, if L and L are unramified twisted Levi subgroups in G, then statement (1) may be replaced by the statement:
Ecz.

Remark 7.5.2. If F is in the closure of F' C A(AFr), then we have G < G and so W < Wr < W. Hence it makes
sense to think of w as an element of W in statement (3) of Corollary 7.5.1.

Proof. The last statement of the lemma, about unramified twisted Levi subgroups, is immediate because for =, =" € © we
have ®=z C Pz if and only if there exists a basis Z” for &=/ such that = C ="’

“&” Choose g € Gp such that the image of Fr(g)~'g € N, (A) has image w in Wp. Choose § € G such
that the image of Fr(g)~'g € Ng(A) has image w in Wg. Recall that Lipz ) = ‘Mz, Lpz = IM=,
L(F’_,w)’g —QM_ etc.

Since = C Pz, we have Lipz= )¢ < Lipz w)

w),g
.- Since F is in the closure of F, we have g € Gy < Gp and
w € Wi < W hence L = ;) - makes sense and is equal to L 5 = ) - Since (2, w) L (2, @), from Lemma 7.4.3
there exists k € G such that kL( w)g = L( . Since L € j((F,Z,w)), from Theorem 7.4.5 there exists h € G**

such that "I = L(rz w),g- Since Lc j(( =, 1)), from Theorem 7.4.5 there exists h € G™ such that L = EL(F 2 .5).G

W), g
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Ifx = Ek:h, then z € G and
_ hkhy _ hk hk
L=""L = "Lipgw) e < M

_h _T
F= L w),g = L(F,é,w),g =L.

“=" We suppose “L < L. Choose a GF'-facet F' in B(G) such that 2~ F is a maximal G -facet in B(L)™. Let S
be a (K, k)-torus such that * 'S is a maximally k-split (K, k)-torus in L and F C B(S)™. Since L < L, there exists
a maximally k-split (K, k)-torus S in L such that F' ¢ B(S)™ ¢ B(S)F < B(L)™. We can choose y € G such that
yB(S)Fr © A(A)Fr. After conjugating everything in sight by 1, we have that F is a maximal G¥"-facet in B (L) and

F CB(S)™ C B(S)™ C A(A)™

Choose g € G such that YA = S. Let = be a basis for ®(¢ *L, A), and let w denote the image of Fr(g) g €
N (A)in Wp. Let Z' be a basis for ©(7 'L, A). Since °L < L, we have &= C ®=.

Let F' be a max1mal G _facet in B(S) that contains F in its closure. Choose § € G 7 7 such that YA = S. Let=Ebea
basis for ®(9 'L, A), and let & denote the image of Fr(§) 1§ € Ng . (A)in Wp.

Since F' is in the closure of F, we have g € Gﬁ, < Grandw € Wz < Wg; hence L(F,é,u}),g makes sense and is equal
to Lz ) 5- Since L= Lz w),g = L(pz ) - from Lemma 7.4.3 we have (2, w) L (2,0).

As in the proof of Theorem 7.4.5, since F’ was chosen to be a maximal G**-facet in B(*L), we have (F,Z,w) € J° and
*L € j((F,Z,w)). Since j((F,Z,w)) is a single G*"-conjugacy class of unramified twisted generalized Levi subgroups
of G, we have L € j((F,E, w)).

Similarly, since £ was chosen to be a maximal G™-facet in B(L), we have (F,Z,%) € J°and L € j((F,Z,%)). W

7.6. Twisted generalized Levi subgroups for reductive groups over quasi-finite fields. We close with a generalization
of the material in Section 2. Let G, B, A etc. be as in Section 2. We denote by & = ®(G, A) the roots of G with respect to
A and by @ = ®*(G, B, A) the corresponding set of positive roots.

For p C ®¢ define G, to be the group generated by A and the root groups U, for o € p. The subset p of ®¢ is said to
be quasi-closed provided that if 3 € ®g and Ug C G, then 8 € p. We denote by Ag = A(G, B, A) the set

{2 C ®¢ | Zis a basis for a quasi-closed subset of P}

Definition 7.6.1. A reductive subgroup L of G is called a twisted generalized Levi f-subgroup of G provided that L is defined
over f and L is a full rank reductive subgroup of G. We let L' denote the set of twisted generalized Levi f-subgroups of G,
and we let £’ denote the set of GF"-conjugacy classes in £’

Let I} denote the set of pairs (=, w) where = C Ag and w € Wg such that Fr(Z) = wZ. For (£, w') and (Z,w) € I
we write (2, w’) ~ (2, w) provided that there exists an element 1 € W for which
e = =nZ and
o w=Fr(n)wn1.
One checks that ~ is an equivalence relation on the set I¢..
Lemma 7.6.2. There is a natural bijective correspondence between I(, / ~ and L.

Proof. For Z € A define Mz to be the group generated by A and the root groups U, for « in the root system spanned by
=. We let W = denote the corresponding subgroup of W.
With the definitions above and appropriate minor modifications, the proof mimics that of Lemma 2.2.1. |

Example 7.6.3. We consider G = G2 and adopt the notation of Example 2.2.3. In Table 3 a complete list of representatives
for the elements of I(./ ~ that are not in I/ ~. Recall that I is defined in Section 2.2. We also indicate the type of the
corresponding twisted generalized Levi f-subgroup of Ga.
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] Pair H Type of twisted generalized Levi f-group \ conditions on | ‘
({, 26 + 3a},1) SO4 none
({B,8 +3a},1) SL3 none
({8, 5 + 3a},wa) SU(3) none
({a,8+a}, 1) PGL; char(f) = 3
({a, B+ a},wg) PU; char(f) = 3

TABLE 3. Ga: A set of representatives for (I \ Ig)/~

APPENDIX A. EXISTENCE OF K-MINISOTROPIC MAXIMAL k-TORI
Jeffrey D. Adler

When k has characteristic zero, it follows from [12, Section 15] or [15, Theorem 6.21] that every connected reductive
k-group G contains a k-minisotropic maximal k-torus. When the residue field of & is finite, it follows from [3, Section 2.4]
that G contains a k-minisotropic maximally K -split maximal k-torus. In this appendix, we show that when the residue
field of k is finite, G contains a k-minisotropic maximal k-torus that is as ramified as possible.

Lemma A.0.1. If G is a connected reductive k-group and the residue field of k is finite, then G contains a K-minisotropic
maximal k-torus.

Proof. First observe that our result is true for general linear and k-quasi-split unitary groups. For if n > 1, the field k has
a totally ramified, separable extension of degree n. For such a field £, the torus Rp/,GL1 embeds as a K-minisotropic
maximal k-torus in GL,,. Given a quadratic Galois extension L/k, we can choose F to not contain L, in which case
the kernel of the map Ngr p: Rpr/GL1 — Rp/pGL1 embeds as a K-minisotropic maximal k-torus in the quasi-split
unitary group U,, /.

Second, we reduce to the case where G is absolutely simple. Observe that our result is true for G if and only if it is true
for G/Z, where Z is the center of G, and so we may assume that G is adjoint. Write G = [[;_, Rp, /1 Gi, where each
E;/k is a finite separable extension, and each G; is an absolutely simple E;-group (see [, Section 6.21]). If each group
G; contains a K Fj;-anisotropic maximal F;-torus T';, then ]_[Z R, /kTi is a K -anisotropic maximal k-torus in G (see [,
Corollary 6.19]). Therefore, we may replace G by G; and k by E;, and assume that G is absolutely simple.

Third, we reduce to the case where G is k-quasi-split. For suppose that Gy is a k-quasi-split inner form of G. From
a result of Kottwitz [14, Section 10] (see [10, Section 3.2] for the characteristic free version) a k-anisotropic torus T k-
embeds in G if and only if it k-embeds in Gg. Whether or not T is K -anisotropic is independent of the k-embedding, so
we may as well replace G by Gg and assume that G is k-quasi-split.

Fourth, suppose that G has a full-rank, semisimple k-subgroup H that is, up to isogeny, a product of groups of type A.
Then we have already seen that H has a K -anisotropic maximal k-torus, and thus so does G. Therefore, it will be enough
to show that G contains such a subgroup. Choose a maximal k-torus in a k-Borel subgroup of G. These choices determine
an absolute root system ® and a system A of simple roots, both of which are acted upon by Gal(E/k), where E is the
splitting field of our torus. It will be enough to show that ® contains a closed, full-rank subsystem, invariant under the
action of Gal(FE/k), that is a product of systems of type A.

Identify A with its Dynkin diagram, and let A, be the diagram obtained by deleting a vertex v from the extended
Dynkin diagram of A. A theorem of Borel and de Siebenthal tells us that each A, is the Dynkin diagram of a maximal,
full-rank, closed subsystem of ®. If v is fixed by the action of Gal(FE/k), then so is our subsystem. Therefore, it will be
enough to show that by iterating this process (i.e. replacing a Dynkin diagram by its extended diagram, and then deleting
a Gal(F/k)-invariant vertex), one can eventually obtain a product of diagrams of type A.

Doing so is straightforward in the cases where G is k-split, i.e. £ = k. Thus we only need to consider absolutely simple
groups of type 2D,, (n > 4), 3Dy, 9Dy, and ?Eg (see [21, §2 and Table II]). If G has type 2D,, (n > 4), then ® contains a
closed subsystem of type D;,—2 X Rg /. A;. If G has type 3Dy, then ® contains a closed subsystem of type A1 x Rp /AL
If G has type 6Dy, then ® contains a closed subsystem of type A x Ry /kA1, where E'/k is a cubic extension contained
in E. If G has type 2 Eg, then ® contains a closed subsystem of type Ay x Ry kA2 |
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