A BONUS TOPIC, MATRICES WITH NO LOGARITHM

DAVID E SPEYER

Problem 10 shows that any matrix which has a (real) logarithm has positive determinant, so we can deduce that $\begin{bmatrix} -1 \end{bmatrix}$ or $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ don't have logarithms. The slick proof also shows that a matrix which has a logarithm has a square root, so we can find other matrices without logarithms by finding matrices with out square roots. In particular, we claim that $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ does not have a square root.

Proof: Suppose

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}.$$

Looking at the upper right, 1 = ab + bd = b(a + d) so $a + d \neq 0$. Looking at the lower left, 0 = ca + dc = c(a + d) so c = 0. Then the upper left shows $a^2 = -1$, a contradiction. \Box

Note that this shows that the set of matrices with logarithms is not a group, since

$$\exp\begin{bmatrix}0 & \pi\\-\pi & 0\end{bmatrix}\exp\begin{bmatrix}0 & -1\\0 & 0\end{bmatrix} = \begin{bmatrix}-1 & 0\\0 & -1\end{bmatrix}\begin{bmatrix}1 & -1\\0 & 1\end{bmatrix} = \begin{bmatrix}1 & -1\\0 & 1\end{bmatrix}.$$