The Lie Bracket

Yuzhou Mao, Chandler Meyers and Zulekha Mirza

November 6, 2017

Problem 27

Let $X \subset \mathbb{R}^n$ be a manifold and $x \in X$. Suppose that $\gamma : (-\delta, \delta) \to X$ is a smooth path with $\gamma(0) = x, \gamma'(0) = 0$, and $\gamma''(0) = \vec{v}$. Show that $\vec{v} \in T_x X$. Check that this does not hold without the hypothesis $\gamma'(0) = 0$.

Proof 1

Consider the function $\gamma_1: (-\delta^2, \delta^2) \to X$ defined by

$$\gamma_1(t) = \gamma(\sqrt{t}) \text{ if } t \ge 0$$

$$\gamma_1(t) = \gamma_1(-t)$$
 if $t < 0$

We have $\gamma_1(0) = \gamma(0) = 0$, and $\gamma'_1(0) = \lim_{t \to 0} \frac{\gamma_1(t) - \gamma_1(0)}{t - 0}$

If the limit does exist, then we have $\lim_{t \to 0} \frac{\gamma_1(t) - \gamma_1(0)}{t - 0} = \lim_{t \to 0^+} \frac{\gamma_1(t) - \gamma_1(0)}{t - 0} = \lim_{t \to 0^+} \frac{\gamma(\sqrt{t})}{t} = \lim_{t \to 0^+} \frac{\gamma'(\sqrt{t})}{2\sqrt{t}} = \lim_{t \to 0^+} \frac{\gamma'(\sqrt{t})}{2\sqrt{t}} = \lim_{t \to 0^+} \frac{\gamma'(\sqrt{t})}{2} = \frac{\vec{v}}{2}$ So we have $\frac{\vec{v}}{2} \in T_x X$. But $T_x X$ is a vector space, so we also have $\vec{v} \in T_x X$.

Remarks

The argument above crucially relies on the assumption that $\lim_{t \to 0} \frac{\gamma_1(t) - \gamma_1(0)}{t - 0} \text{ exists. But the limit does not exist: } \lim_{t \to 0^-} \frac{\gamma_1(t) - \gamma_1(0)}{t - 0} = \lim_{t \to 0^-} \frac{\gamma(\sqrt{-t})}{t} = -\lim_{t \to 0^-} \frac{\gamma(\sqrt{-t})}{-t} = -\lim_{s \to 0^+} \frac{\gamma(\sqrt{s})}{s} = -\frac{\vec{v}}{2}.$

Another proof ²

Suppose X is a d-fold, then by definition there is an open set $U \subset \mathbb{R}^n$ with $x \in U$, an open set

¹ Presented by Shiliang Gao in lecture

² Due to Nelson Zhang

 $P \subset \mathbb{R}^d$, and a bijection $f: P \to X \cap U$, such that f is a smooth immersion, and f^{-1} is continuous. Since γ is smooth, U is an open set around x, $\gamma(0) = x$, we can shrink δ , so that $\gamma(t) \in X \cap U$ for all $t \in (-\delta, \delta)$.

Consider the function $g: (-\delta, \delta) \to P$, defined by $g(t) = f^{-1}(\gamma(t))$. We have $\gamma(t) = f(g(t))$. Then $0 = \gamma'(0) = Df_{g(0)}(g'(0))$. Let $p = f^{-1}(x)$. Then g(0) = p. Since f is a immersion, Df_p is injective, $Df_p(g'(0)) = 0$, we must have g'(0) = 0

Then
$$\vec{v} = \gamma''(0) = (D(Df_{g(0)}))_{g'(0)}(g'(0)) + Df_{g(0)}(g''(0)) = 0 + Df_p(g''(0)) \in Df_p(\mathbb{R}^d) = T_x X$$

Problem 28

Let $G \subset GL_n(\mathbb{R})$ be a Lie group, meaning G is simultaneously a subgroup of $GL_n(\mathbb{R})$ and a manifold in \mathbb{R}^{n^2} . Let $X, Y \in \mathfrak{g}$ and define [X, Y] = XY - YX. Show that $[X, Y] \in \mathfrak{g}$. Hint: Consider $e^{tX}e^{tY}e^{-tX}e^{-tY}$.

Proof³

Since \mathfrak{g} is a vector space, closed under scalar multiplication, $tX, tY \in \mathfrak{g}$ for all $t \in \mathbb{R}$. Recall from Problem 24 that $\exp(\mathfrak{g}) \subseteq G$. So $\exp(tX) \in G$.

Since G is a group, note that $e^{tX}, e^{tY} \in G$. Similarly, $e^{tX}e^{tY}e^{-tX}e^{-tY} \in G$.

$$(\sum_{a} \frac{t^{a} X^{a}}{a!})(\sum_{b} \frac{t^{b} Y^{b}}{b!})(\sum_{c} \frac{(-1)^{c} t X^{c}}{c!})(\sum_{d} \frac{(-1)^{d} t X^{d}}{d!}) =$$

$$(\sum_{k=1}^{\infty} t^{k} \sum_{l=0}^{k} \frac{X^{l} Y^{k-1}}{(k-1)!(l!)})(\sum_{m=0}^{\infty} (-1)^{m} t^{m})(\sum_{n=0}^{m} \frac{X^{n} Y^{m-n}}{(m-n)!(n!)}) =$$

$$\sum_{k=0}^{\infty} t^{k} \sum_{t=0}^{k} (-1)^{k-l} (\sum_{m=0}^{l} \frac{X^{m} Y^{l-m}}{(l-m)!(m!)})(\sum_{m=0}^{k-l} \frac{X^{m} Y^{k-l-m}}{(k-l-m)!(m!)})$$

By Problem 27, we have that the second derivative of the above expression should be in the tangent space, in this case, \mathfrak{g} .

$$D(\sum_{k=0}^{\infty} kt^{k-1} \sum_{t=0}^{k} (-1)^{k-l} (\sum_{m=0}^{l} \frac{X^m Y^{l-m}}{(l-m)!(m!)}) (\sum_{m=0}^{k-l} \frac{X^m Y^{k-l-m}}{(k-l-m)!(m!)})) = 0$$

³ Presented by Charlie Devlin in lecture

$$2(XY - YX) + (t(terms)) + (t^{2}(terms))\dots$$

.

At t=0, this expression simplifies to $2(XY-YX) \in \mathfrak{g}$, which is closed under scalar multiplication. Therefore $(XY - YX) \in \mathfrak{g}$.