Math 395 IBL - The Spectral Theorem

William Garland, Michael Ivanitskiy, Le Hu

Friday October 13, 2017

Context: Finite Dimensional Spectral Theorem

Let H be some symmetric matrix. Then, $\exists U \in O(n)$ such that

$$H = UXU^{-1} \qquad U \in O(n)$$

where X is a diagonal matrix; i.e.

$$X = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

Take an input H. We desire some $U \in O(n)$ for which $U^{-1}HU$ is diagonal. Define a function $f: M_n \to \mathbb{R}$ by

$$f(z) = \sum r_i z_{ii}$$

for $r_i \in \mathbb{R}$ with the property that $r_1 < r_2 < \cdots < r_n$ and let $g: M_n \to \mathbb{R}$ be defined by $g(U) = f(U^{-1}HU)$

Example: Let

$$f(Z) = z_{11} + 2z_{22}$$
 $H = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ $U = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \in O(n)$

Then

$$U^{-1}HU = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta + 2\sin\theta & 2\cos\theta + 3\sin\theta \\ -\sin\theta + 2\cos\theta & -2\sin\theta + 3\cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2\theta + 4\cos\theta\sin\theta + 3\sin^2\theta \\ \sin^2\theta - 4\cos\theta\sin\theta + 3\cos^2\theta \end{bmatrix}$$
$$f = (\cos^2\theta + 4\cos\theta\sin\theta + 3\sin^2\theta) + 2 \cdot (\sin^2\theta - 4\cos\theta\sin\theta + 3\cos^2\theta)$$

This function is minimized for a value of θ satisfying

$$0 = \frac{d}{d\theta} \left(\left(\cos^2 \theta + 4 \cos \theta \sin \theta + 3 \sin^2 \theta \right) + 2 \left(\sin^2 \theta - 4 \cos \theta \sin \theta + 3 \cos^2 \theta \right) \right)$$

= $-2 \cos \theta \sin \theta + 4 \cos(2\theta) + 6 \sin \theta \cos \theta + 4 \sin \theta \cos \theta - 8 \cos(2\theta) - 12 \cos \theta \sin \theta$
= $-4 \sin \theta \cos \theta - 4 \cos(2\theta)$
= $-2(\sin(2\theta) + 2 \cos(2\theta))$
 $\implies \tan(2\theta) = -2 \implies \theta \approx 1.01722$

We wish to show that for any such symmetric matrix H, $\exists U \in O(n)$ such that $f(U^{-1}HU)$ is minimized, and furthermore that in this case $U^{-1}HU$ is diagonal.

Problem 19: Show that $\exists U_0 \in O(n) \ni g$ is minimized at some U_0 on O(n).

Proof. Recall that $g: O(n) \to \mathbb{R}$ is a continuous real-valued map. Therefore, it is sufficient to show that O(n) is compact. Since O(n) is a subset of a real vector space \mathbb{R}^{n^2} , we may show that it is closed and bounded.

Closed: Define a function $h: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ $(M_n$ denotes the space of $n \times n$ matrices) by $h(A) = A^t A$. Note matrix multiplication is a polynomial map with respect to the entries of A, so h is continuous. Furthermore

 $O(n) = \{A \in M_n : A^t A = \mathrm{Id}\} = \{A \in M_n : h(A) = \mathrm{Id}\} = h^{-1}(\mathrm{Id})$

Since h is continuous and the singleton $\{Id\}$ is closed, we conclude that O(n) is closed.

Bounded: Let $|\cdot|_{\infty}$ denote the supremum norm on M_n . Let $U \in O(n)$. Note that by the standard inner product on \mathbb{R}^n , we know that U is orthogonal implies $(Ue_1, Ue_2, \ldots, Ue_n)$ forms an orthonormal basis of \mathbb{R}^n . Furthermore note that these are the columns of U, and that if each has $|Ue_i| = 1$ under the 2-norm, then no element of U has absolute value > 1. Therefore $|U|_{\infty} \leq |U_{ij}| \leq 1$ for some i, j, so U is bounded by 1 for all $U \in O(n)$. Therefore O(n) is bounded.

Thus O(n) is compact. The image of a compact set under a continuous map is compact, so we note that $g(O(n)) \subset \mathbb{R}$ achieves its minimum at some $U_0 \in O(n)$.

We showed on a previous homework that if g achieves its minimum at U_0 , then $[Dg]_{U_0}[v] = 0$ for all $v \in T_{U_0}O(n)$. But for any $U \in O(n)$, how do we describe T_UO_n ? Recall that since $U \in O(n)$ which is a smooth manifold, then the function $U \exp : P \to B$ (where P is an open subset of $\mathfrak{so}(n)$) is a coordinate patch from $\mathfrak{so}(n)$ to O(n) near U. Therefore,

$$T_U O(n) = [D(U \exp)]_U[\mathfrak{so}(n)] = [D(U)]_{\mathrm{Id}}[D \exp]_0[\mathfrak{so}(n)]$$

Note U as a map from $A \to UA$ is linear, so $[D(U)]_{Id} = UId = U$. As we have previously shown, $[D \exp]_0 = Id$, so consequently we conclude

$$T_U O(n) = U \operatorname{Id}[\mathfrak{so}(n)] = U \cdot \mathfrak{so}(n)$$

Thus if $A \in T_U O(n)$, then A = UJ for some $J \in \mathfrak{so}(n)$.

However, we can also define $T_UO(n)$ in a different way, as the set of derivatives of paths through O(n) at U. Under this definition, if $UJ \in T_U$, let $\gamma(t) : (-\delta, \delta) \to O(n)$ by $\gamma(t) = U \exp(tJ)$ and note $\gamma(0) = U \exp(0) = U$ and $\gamma'(0) = UJ \exp(0) = UJ$. By the Chain Rule, it follows that

$$\begin{split} [Dg]_U[UJ] &= \left. \frac{d}{dt} \right|_{t=0} g(\gamma(t)) \\ &= \left. \frac{d}{dt} \right|_{t=0} f((U \exp(tJ))^{-1} H(U \exp(tJ))) \\ &= \left. \frac{d}{dt} \right|_{t=0} f(\exp(tJ)^{-1} U_0^{-1} HU \exp(tJ)) \\ &= \left. \frac{d}{dt} \right|_{t=0} f(\exp(-tJ) X \exp(tJ)) \end{split}$$

where $X = U^{-1}HU$ does not depend on J or t. Since f is linear, [Df] = f, so we conclude

$$[Dg]_U[UJ] = f\left(\frac{d}{dt}\bigg|_{t=0} \exp(-tJ)X\exp(tJ)\right) = f(-JX + XJ)$$

for any $UJ \in T_UO(n)$.

Now that we have computed [Dg], we are ready to tackle Problem 20.

Problem 20: Show $U^{-1}HU$ is diagonal if and only if g(U) is minimized.

First, suppose $U \in O(n)$ such that $X := U^{-1}HU$ is diagonal. Therefore $\forall J \in \mathfrak{so}(n)(n)$, the diagonal entries of J must all be zero, so note

$$-JX + XJ = \begin{bmatrix} 0 & * \\ & \ddots & \\ -* & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} + \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} 0 & -* \\ & \ddots & \\ * & 0 \end{bmatrix}$$

 So

$$[Dg]_U [UJ] = \sum r_k [-JX_0 + X_0 J]_k k = 0$$

for all $UJ \in T_UO(n)$. Thus g(U) is minimized.

Now, let $U \in O(n)$ and define $X = U^{-1}HU$ such that

$$[Dg]_U[UJ] = \sum r_k (-JX + XJ)_{kk} = 0$$

We need to show that X is diagonal.

Notice

$$X^{t} = (U^{-1}HU)^{t} = U^{t}H^{t}(U^{-1})^{t} = U^{-1}HU = X$$

so X is symmetric. Suppose X is not diagonal. Then $\exists i, j$ with $i \neq j$ such that

$$X_{ij} = X_{ji} = a \neq 0$$

Define $J \in \mathfrak{so}(n)$ such that $J_{ij} = 1$, $J_{ji} = -1$, and $J_{rs} = 0$ for all $(r, s) \neq (i, j)$. Then note

$$JX_{ii} = J_{ij}X_{ji} = X_{ji} = a$$
 $JX_{jj} = J_{ji}X_{ij} = -X_{ij} = -a$

$$XJ_{ii} = X_{ij}J_{ji} = -X_{ij} = -a \qquad XJ_{jj} = X_{ji}J_{ij} = X_{ji} = a$$

and for $r \neq i, j$,

$$JX_{rr} = XJ_{rr} = 0$$

Therefore,

$$0 = f(-JX + XJ) = \sum r_k (-JX + XJ)_{kk}$$

= $r_i (-JX_{ii} + XJ_{ii}) + r_j (-JX_{jj} + XJ_{jj})$
= $r_i (-a + -a) + r_j (a + a) = 2(r_j - r_i)a$

But $r_j \neq r_i$ by construction (since $j \neq i$), so it follows that a = 0, a contradiction. Therefore it must be the case that $X = U^{-1}HU$ is diagonal.

Problem 21: Prove the Spectral Theorem.

The result is immediate: if H is a symmetric matrix, then by Problem 19 $\exists U_0 \in O(n)$ such that $g(U_0)$ is minimized. Define $X_0 = U_0^{-1}HU_0$. Since g attains a local minimum on O(n) at U_0 , it follows that $\forall U_0 J \in T_{U_0}O(n)$,

$$[Dg]_{U_0}[U_0J] = f(-JX_0 + X_0J) = 0$$

Therefore by Problem 20, we conclude that X_0 is diagonal. Thus for every symmetric matrix $H \exists U_0 \in O(n)$ such that $U_0^{-1}HU_0$ is diagonal.