Math 395 IBL

Jaeyoon Kim, Raymond Luo, and Jason Liu

Due 10-27-2017

Let $G \subset GL_n \mathbb{R} \subset Mat_{n \times n} \mathbb{R} \cong \mathbb{R}^{n^2}$ be a closed subgroup and a sub-manifold. Remark G is a lie subgroup of $GL_n \mathbb{R}$ (not yet defined) We define $\mathfrak{g} = T_{Id}G$ One example we already had was $T_{Id}SO(n) = \mathfrak{SO}(n) = \{X : X + X^T = 0\}$

Problem 23. Suppose that $\gamma(t)$ is a smooth curve in GL_n with $\gamma(0) = Id$ and $\gamma'(0) = X$. Show that $\lim_{n \to \infty} \gamma(1/n)^n = \exp(X)$.

Proof. From previous IBL, we have shown that the inverse function theorem implies that we can restrict exp as a map from U to V where both U and V are open, $0 \in U$ and $Id \in V$ s.t. we have the inverse function denoted *log*. Additionally, since *exp* is smooth, by shrinking U and V sufficiently small, we can make *log* also smooth.

Since γ is a smooth function, for sufficiently small $t \in \mathbb{R}$, $\gamma(t) \in V$ Define $\delta(t) = log(\gamma(t))$. Since log is the inverse, we have $\gamma(t) = exp(\delta(t))$.

Since both γ and log are smooth, their composition δ is also smooth. Note that $\delta(0) = log(\gamma(0)) = log(Id) = 0$

Remember that $(Dexp)_0 = Id$ thus $(Dlog)_{Id} = (Dexp)_0^{-1} = Id$

$$\delta'(0) = (Dlog)_{\gamma(0)}\gamma'(0) = (Dlog)_{Id}X = Id\ X = X$$

$$\lim_{n \to \infty} \gamma(1/n)^n = \lim_{n \to \infty} [exp(\delta(1/n))^n]^n$$

Since $\delta(1/n)$ commutes with itself, $exp(\delta(1/n)^n = exp(n\delta(1/n)))$

And by L'Hopitol's Rule: definition of a derivative, $\lim_{t\to 0} \frac{\delta(t)}{t} = \delta'(0)$ Thus

$$\lim_{n \to \infty} \gamma(1/n)^n = \lim_{n \to \infty} \exp(n\delta(1/n)) = \exp(\lim_{t \to 0} \frac{\delta(t)}{t}) = \exp(\delta'(0)) = \exp(X)$$

Problem 24. Show that $exp(\mathfrak{g}) \subset G$

Proof. Fix $g \in \mathfrak{g}$. By definition of a tangent space, we can find $\gamma : (-\delta, \delta) \to G$ s.t. $\gamma(0) = Id$ and $\gamma'(0) = g$.

Since G is a group, it is closed under multiplication. Thus $\forall t \in (-\delta, \delta)$ and $\forall n \in \mathbb{N}, \gamma(t)^n \in G$. From problem 23, we know that $\lim_{n \to \infty} \gamma(1/n)^n = exp(g)$. Well since $\gamma(1/n)^n$ is a converge sequence living in G, a closed set, we know that its limit exp(g) is also in G.