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8. Show that
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The first inequality comes from the Cauchy Schwarz Inequality.
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9. Let R be a positive real number and let B(R) = {X ∈Matn×n(R) : |X | ≤ R. Show that

exp: B(R)→ GLn(R). Deduce that exp is continuous.

Proof: We will show that the function is continuous using the Weierstrass M-Test.

Let Mn = Rn/n!. Then we have that
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Observe that, since |A| ≤ R, ∣∣∣∣An
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Then, ∑
∞
n=0 An/n! is convergent and continuous on B(R) by the Weierstrass M-test.

Note now that for any X ∈Matn×n(R) there exists R such that X ∈ B(R). Thus exp is

continuous on Matn×n(R).
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10. Show that if X is an n×n real matrix then det◦exp(X)> 0.

Proof: We will give two proofs. The first slick proof is from class. Note that eA =

eA/2eA/2. Thus

det(eA) = det(eA/2eA/2) = det(eA/2)det(eA/2)> 0

Now for the second proof: Note that both exp and det are continuous functions,

and so det◦exp is also continuous. We have also shown that exp(X) ∈ GLn(R). Thus

det(X) 6= 0.

Now note that Matn×n(R) is connected. Since det◦exp is continuous, it maps con-

nected sets to connected sets, so det(X)> 0 or det(X)< 0 for all X . Finally, recall that

det(e0) = det(Id) = 1, and we conclude that det(X)> 0 for all X .
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11. For X ∈ Matk×k(R), ket g(X) = Xn. For any k× k matrix Y , we want to show that

D(g)X (Y ) = ∑
n−1
j=0 X jY Xn−1− j. That is, this expression is the derivative of the function

g at the matrix X evaluated at the matrix Y .

Proof: Well, we want to show that ∀ε > 0, ∃δ > 0 such that if |Y |< δ , we have that:

|g(X +Y )−g(X)−D(g)X (Y )|
|Y |

< ε
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The inequality from the first to the second line comes from the noncommutative ex-

pansion of (X +Y )n. Every term in the expression with H0 or H1 is cancelled out

by Xn or a term in ∑
n−1
j=0 X jY Xn−1− j respectively. Then, via triangle inequality and

the inequality in Problem 8, all of the remaining matrices may be replaced with their
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magnitude—effectively turning (X +Y )n into (|X |+ |Y |)n. Since the norm of a matrix

is a real number and real numbers are commutative, this new expansion can be ex-

pressed via the binomial theorem (minus the first two terms, since the first two terms

in the binomial theorem sum expansion exactly correspond with the parts of the non-

commutative sum which cancelled out). This final expression is what is seen in the

numerator on the second line.

The inequality from the second to the third line is true because |Y | < δ ≤ 1, and

likewise the inequality from the third to fourth line follows from how we chose delta

as well. Thus, we have that D(g)X (Y ) = ∑
n−1
j=0 X jY Xn−1− j.
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