IBL Notes September 22 2017

Jeremy D'Silva and Charles Devlin VI

September 22 2017

<u>Recall and review</u>: We begin by giving an example to motivate this theorem.

Suppose $f: A \to \mathbb{R}^{\nvDash}$; $(x, y) \mapsto (\frac{1}{xy}, x^2 + y^2)$ where A is an open set chosen "sensibly" (e.g. excluding the x and y axes, such that f is well-defined).

Questions: We might want to know, is this map invertible at $(1,2) \in A$? If so, is f^{-1} differentiable? And if so, what is it? The Inverse Function Theorem is the tool we need to answer these questions.

<u>Theorem</u>: (Inverse Function Theorem). Let V, W be finitely generated \mathbb{R} vector spaces. Let $A \subset V$ be open, $f \neq C^1 \mod f : A \to W$, and $a \in A$. Then if $[Df]_a$ is invertible then f is invertible in a neighborhood of a, and f^{-1} is C^1 . In particular, \exists open neighborhood $A' \subset A$ containing a, and $\exists B'$, an open neighborhood containing b = f(a), such that $\operatorname{res}_{A'} f : A' \to B'$ is invertible (bijective) and, with this restriction, f^{-1} is C^1 . (Also, note $[Df^{-1}]_b = ([Df]_a)^{-1}$).

1. Show that f is injective on A.

Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in A$. By our previous work, A is shrunken such that there exists c > 0 such that $|f(x) - f(y)| \ge c|x - y|$ for all $x, y \in A$. Then

$$0 = |f(x_1) - f(x_2)|$$

$$\geq c|x_1 - x_2|$$

$$\geq 0$$

So we must have $c|x_1 - x_2| = 0$. As $c \neq 0$, we have $x_1 = x_2$ and f is injective.

- 2. Show that there is a neighborhood $B' \ni b$ such that $B' \subset f(A)$. From previous work, we know we can shrink A sufficiently small such that for all open $U \subset A$, we have f(U) is open. Fix U with $a \in U$ and let B' = f(U). Since $a \in U$, we have $f(a) \in f(U) = B'$. As $U \subset A$, $f(U) \subset f(A)$.
- 3. Show that there is a neighborhood $A' \ni a$ in A such that f is a bijection $A' \to B'$. As f is continuous, the inverse image of open sets is open. Therefore, $f^{-1}(B')$ is open in A. Let $A' = f^{-1}(B')$. From 1, f is injective on A and therefore is injective on A'. Surjectivity follows from the definition of A'. So f is a bijection on A'.
- 4. Let y_1 and $y_2 \in B'$ and let $x_i = g(y_i)$. Show that there is a constant c_2 such that $|x_1 x_2| \le c_2 |y_1 y_2|$. Deduce as a corollary that g is continuous.

The result follows from previous work, in which it was shown that with A' sufficiently shrunk, there exists a constant c > 0 such that

 $|f(x_1) - f(x_2)| \ge c|x_1 - x_2|$ for all $x_1, x_2 \in A'$. Choose $y_1, y_2 \in B'$. Since $g = f^{-1}$, there exists $x_1, x_2 \in A'$ such that $g(y_1) = x_1, g(y_2) = x_2$. So we have

$$c|g(y_1) - g(y_2)| = c|x_1 - x_2|$$

$$\leq |f(x_1) - f(x_2)|$$

$$= |y_1 - y_2|$$

As $c \geq 0$, we may divide both sides by c to obtain

$$|x_1 - x_2| \le c^{-1} |y_1 - y_2|$$

To see that g is continuous, we note that g is Lipschitz continuous on B' by the inequality above. As Lipschitz continuity implies continuity, g is also continuous on B'.

For brevity, set E = D(f)(a) and recall that E is assumed invertible.

5. For h small enough that $b + h \in B'$, show that

$$\frac{|g(b+h) - g(b)|}{|h|} \le c_2$$

From 4, if h is made small enough so that $b + h \in B'$, then we have

$$|g(b+h) - g(b)| \le c_2|b+h-b|$$
$$= c_2|h|$$
$$\implies \frac{|g(b+h) - g(b)|}{|h|} \le c_2$$

For h as above, put k(h) = g(b+h) - g(b).

- 6. Show that, as $h \to 0$, the function k(h) goes to 0 as well. This follows from the continuity of g from 4. Since g is continuous at b, we have $g(b+h) - g(b) \to 0$ as $h \to 0$. So then $k(h) = g(b+h) - g(b) \to 0$ as $h \to 0$.
- 7. Show that

$$\frac{|g(b+h) - g(b) - E^{-1}(h)|}{|g(b+h) - g(b)|} = \frac{|k(h) - E^{-1}(f(a+k(h)) - f(a))|}{|k(h)|}$$
$$= \frac{|E^{-1}(E(k(h)) - f(a+k(h)) + f(a))}{|k(h)|}$$

First, observe that

$$f(a + k(h)) - f(a) = f(a + g(b + h) - g(b)) - f(a)$$

= $f(a + g(b + h) - a) - f(a)$
= $f(g(b + h)) - f(a)$
= $b + h - b$
= h

 \mathbf{SO}

$$\frac{|g(b+h) - g(b) - E^{-1}(h)|}{|g(b+h) - g(b)|} = \frac{|k(h) - E^{-1}(f(a+k(h)) - f(a))|}{|k(h)|}$$
$$= \frac{|E^{-1}(E(k(h))) - E^{-1}(f(a+k(h)) - f(a))|}{|k(h)|}$$
$$= \frac{|E^{-1}(E(k(h)) - f(a+k(h)) + f(a))|}{|k(h)|}$$

8. Show that, as $h \to 0$, we have

$$\frac{|g(b+h) - g(b) - E^{-1}(h)|}{|g(b+h) - g(b)|} \to 0.$$

Proof: Well,

$$\frac{|g(b+h) - g(b) - E^{-1}(h)|}{|g(b+h) - g(b)|} = \frac{|E^{-1}(E(k(h)) - f(a+k(h)) + f(a))|}{|k(h)|} \le |E^{-1}|\frac{|Ek(h) - f(a+k(h)) - f(a)|}{k(h)}$$

Note that as $h \to 0, k(h) \to 0$ (by Problem 6). Thus, we note that as $k(h) \to 0$

$$|E^{-1}|\frac{|Ek(h) - f(a+k(h)) - f(a)|}{k(h)} \to |E^{-1}|\frac{|E(h) - f(a+h) - f(a)|}{h} \to 0.$$

This is simply the definition of $E = (Df)_a$, multiplied by a constant, hence it goes to 0.

9. Prove the theorem by proving g is differentiable at b with derivative E^{-1} . In other words, as $h \to 0$, we have

$$\frac{|g(b+h) - g(b) - E^{-1}(h)|}{|h|} \to 0$$

Proof: Well, rearranging terms of the inequality proven in Problem 5, we note that

$$\frac{c_2|h|}{|g(b+h) - g(b)|} \ge 1$$

So then we see that if |h| is small,

$$\frac{|g(b+h) - g(b) - E^{-1}(h)|}{|h|} \le \frac{|g(b+h) - g(b) - E^{-1}(h)|}{|h|} \frac{c_2|h|}{|g(b+h) - g(b)|} = c_2 \frac{|g(b+h) - g(b) - E^{-1}(h)|}{|g(b+h) - g(b)|}$$

But this is just a constant times the expression in 8, which goes to 0 as |h| goes to 0, so this expression goes to 0 as well.

Recapitulation: Let us be clear about what we have proven. We begin with the hypotheses stated in the theorem statement. At $a \in A$, $(Df)_a$ is bijective. Applying results from Monday (9/18) and Wednesday (9/20) in class, we produce restrictions to make f bijective on a neighborhood around a mapping to a neighborhood around f(a). This means that f^{-1} is defined on this neighborhood. We then showed that $g: B' \to A' = f^{-1}: B' \to A'$ is differentiable at b = f(a), with inverse given by $E^{-1} = ((Df)_a)^{-1}$.