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Recall and review: We begin by giving an example to motivate this theorem.
Suppose f : A → R2; (x, y) 7→ ( 1

xy , x
2 + y2) where A is an open set chosen "sensibly" (e.g. excluding the x

and y axes, such that f is well-defined).
Questions: We might want to know, is this map invertible at (1, 2) ∈ A? If so, is f−1 differentiable? And if
so, what is it? The Inverse Function Theorem is the tool we need to answer these questions.
Theorem: (Inverse Function Theorem). Let V,W be finitely generated R vector spaces. Let A ⊂ V be open,
f a C1 map f : A→ W , and a ∈ A. Then if [Df ]a is invertible then f is invertible in a neighborhood of a,
and f−1 is C1. In particular, ∃ open neighborhood A′ ⊂ A containing a, and ∃ B′, an open neighborhood
containing b = f(a), such that resA′f : A′ → B′ is invertible (bijective) and, with this restriction, f−1 is C1.
(Also, note [Df−1]b = ([Df ]a)

−1).

1. Show that f is injective on A.
Suppose f(x1) = f(x2) for some x1, x2 ∈ A. By our previous work, A is shrunken such that there
exists c > 0 such that |f(x)− f(y)| ≥ c|x− y| for all x, y ∈ A. Then

0 = |f(x1)− f(x2)|
≥ c|x1 − x2|
≥ 0

So we must have c|x1 − x2| = 0. As c 6= 0, we have x1 = x2 and f is injective.

2. Show that there is a neighborhood B
′ 3 b such that B

′ ⊂ f(A).
From previous work, we know we can shrink A sufficiently small such that for all open U ⊂ A, we have
f(U) is open. Fix U with a ∈ U and let B

′
= f(U). Since a ∈ U , we have f(a) ∈ f(U) = B

′
. As

U ⊂ A, f(U) ⊂ f(A).

3. Show that there is a neighborhood A
′ 3 a in A such that f is a bijection A

′ → B
′
.

As f is continuous, the inverse image of open sets is open. Therefore, f−1(B
′
) is open in A. Let

A
′
= f−1(B

′
). From 1, f is injective on A and therefore is injective on A

′
. Surjectivity follows from

the definition of A
′
. So f is a bijection on A

′
.

4. Let y1 and y2 ∈ B
′
and let xi = g(yi). Show that there is a constant c2 such that |x1−x2| ≤ c2|y1−y2|.

Deduce as a corollary that g is continuous.
The result follows from previous work, in which it was shown that with A

′
sufficiently shrunk, there

exists a constant c > 0 such that
|f(x1) − f(x2)| ≥ c|x1 − x2| for all x1, x2 ∈ A

′
. Choose y1, y2 ∈ B

′
. Since g = f−1, there exists

x1, x2 ∈ A
′
such that g(y1) = x1, g(y2) = x2. So we have

c|g(y1)− g(y2)| = c|x1 − x2|
≤ |f(x1)− f(x2)|
= |y1 − y2|

As c ≥ 0, we may divide both sides by c to obtain

|x1 − x2| ≤ c−1|y1 − y2|
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To see that g is continuous, we note that g is Lipschitz continuous on B
′
by the inequality above. As

Lipschitz continuity implies continuity, g is also continuous on B
′
.

For brevity, set E = D(f)(a) and recall that E is assumed invertible.

5. For h small enough that b+ h ∈ B
′
, show that

|g(b+ h)− g(b)|
|h|

≤ c2

From 4, if h is made small enough so that b+ h ∈ B
′
, then we have

|g(b+ h)− g(b)| ≤ c2|b+ h− b|
= c2|h|

=⇒ |g(b+ h)− g(b)|
|h|

≤ c2

For h as above, put k(h) = g(b+ h)− g(b).

6. Show that, as h→ 0, the function k(h) goes to 0 as well.
This follows from the continuity of g from 4. Since g is continuous at b, we have g(b + h) − g(b) → 0
as h→ 0. So then k(h) = g(b+ h)− g(b)→ 0 as h→ 0.

7. Show that

|g(b+ h)− g(b)− E−1(h)|
|g(b+ h)− g(b)|

=
|k(h)− E−1(f(a+ k(h))− f(a))|

|k(h)|

=
|E−1(E(k(h))− f(a+ k(h)) + f(a))|

|k(h)|

First, observe that

f(a+ k(h))− f(a) = f(a+ g(b+ h)− g(b))− f(a)

= f(a+ g(b+ h)− a)− f(a)

= f(g(b+ h))− f(a)

= b+ h− b

= h

so

|g(b+ h)− g(b)− E−1(h)|
|g(b+ h)− g(b)|

=
|k(h)− E−1(f(a+ k(h))− f(a))|

|k(h)|

=
|E−1(E(k(h)))− E−1(f(a+ k(h))− f(a))|

|k(h)|

=
|E−1(E(k(h))− f(a+ k(h)) + f(a))|

|k(h)|

8. Show that, as h→ 0, we have

|g(b+ h)− g(b)− E−1(h)|
|g(b+ h)− g(b)|

→ 0.
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Proof: Well,

|g(b+ h)− g(b)− E−1(h)|
|g(b+ h)− g(b)|

=
|E−1(E(k(h))− f(a+ k(h)) + f(a))|

|k(h)|
≤ |E−1| |Ek(h)− f(a+ k(h))− f(a)|

k(h)

Note that as h→ 0, k(h)→ 0 (by Problem 6). Thus, we note that as k(h)→ 0

|E−1| |Ek(h)− f(a+ k(h))− f(a)|
k(h)

→ |E−1| |E(h)− f(a+ h)− f(a)|
h

→ 0.

This is simply the definition of E = (Df)a, multiplied by a constant, hence it goes to 0.

9. Prove the theorem by proving g is differentiable at b with derivative E−1. In other words, as h → 0,
we have

|g(b+ h)− g(b)− E−1(h)|
|h|

→ 0

Proof: Well, rearranging terms of the inequality proven in Problem 5, we note that

c2|h|
|g(b+ h)− g(b)|

≥ 1

So then we see that if |h| is small,

|g(b+ h)− g(b)− E−1(h)|
|h|

≤ |g(b+ h)− g(b)− E−1(h)|
|h|

c2|h|
|g(b+ h)− g(b)|

= c2
|g(b+ h)− g(b)− E−1(h)|

|g(b+ h)− g(b)|

But this is just a constant times the expression in 8, which goes to 0 as |h| goes to 0, so this expression
goes to 0 as well.

Recapitulation: Let us be clear about what we have proven. We begin with the hypotheses stated in the
theorem statement. At a ∈ A, (Df)a is bijective. Applying results from Monday (9/18) and Wednesday
(9/20) in class, we produce restrictions to make f bijective on a neighborhood around a mapping to a
neighborhood around f(a). This means that f−1 is defined on this neighborhood. We then showed that
g : B′ → A′ = f−1 : B′ → A′ is differentiable at b = f(a), with inverse given by E−1 = ((Df)a)

−1.
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