PROBLEM SET 10 – DUE DECEMBER 8

See course website for policy on collaboration. This is the last problem set!

- 1. Let γ be a circle of radius r in \mathbb{R}^2 centered at 0, oriented counter clockwise. Compute
 - (a) $\int_{\gamma} x dx$
 - (b) $\int_{\gamma} x dy$
 - (c) $\int_{\gamma} \frac{ydx xdy}{x^2 + y^2}$
- 2. (a) Let f(x, y) be a C^{∞} function on \mathbb{R}^2 . Show that

$$\frac{\partial}{\partial y}\int_{x=a}^{b}f(x,y)dx = \int_{x=a}^{b}\frac{\partial f}{\partial y}(x,y)dx.$$

(b) Let g and h be C^{∞} functions $\mathbb{R}^2 \to \mathbb{R}$, obeying $\frac{\partial g}{\partial y} = \frac{\partial h}{\partial x}$. Define

$$F(x,y) = \int_{s=0}^{x} g(s,0)ds + \int_{t=0}^{y} h(x,t)dt.$$

Show that

$$\frac{\partial F}{\partial x} = g$$
 and $\frac{\partial F}{\partial y} = h$.

(c) On $\mathbb{R}^2 \setminus \{(0,0)\}$, put

$$g(x,y) = \frac{y}{x^2 + y^2}$$
 and $h(x,y) = \frac{-x}{x^2 + y^2}$.

Check that $\frac{\partial g}{\partial y} = \frac{\partial h}{\partial x}$. Show that, nonetheless, there does not exist $F : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ such that $\frac{\partial F}{\partial x} = g$ and $\frac{\partial F}{\partial y} = h$. (One approach is to use your computation from 1(c).)

- 3. Let V be a finite dimensional real vector space, $A \subset V$ an open subset and α be a differentiable vector field on A, meaning a C^1 function $A \to V$. For $x \in A$, we define the divergence $(\nabla \cdot \alpha)(x)$ to be the real number $\text{Tr}(D\alpha)_x$. So, in coordinates, $\nabla \cdot \alpha = \sum_i \frac{\partial \alpha_i}{\partial x_i}$. This problem checks basic properties of divergence; the parts are not very related to each other.
 - (a) Let W be another vector space of the same dimension as V, B an open subset of W and $\phi: A \to B$ a diffeomorphism. Let α be a vector field on A. Define a vector field β on B by $\beta(y) = (D\phi)_{\phi^{-1}(y)}\alpha(\phi^{-1}(y))$. Check that $(\nabla \cdot \alpha)(x) = (\nabla \cdot \beta)(\phi(x))$. Deleted for being false! If you'd like a challenge, give a counter-example. One dimension will do it!
 - (b) Let $V = \mathbb{R}^n$ and let α be a vector field on \mathbb{R}^n . Let C be the cube $[0,1]^n$. Let $L_i = \{(x_1,\ldots,x_n) \in C : x_i = 0\}$ and $R_i = \{(x_1,\ldots,x_n) \in C : x_i = 1\}$. Check that

$$\int_C (\nabla \cdot \alpha) = \sum_i \int_{R_i} e_i \cdot \alpha - \sum_i \int_{L_i} e_i \cdot \alpha$$

where e_i is the standard basis of \mathbb{R}^n and \cdot is the ordinary dot product.

4. In this problem, we will prove the identity that, for X an $n \times n$ matrix,

$$\det \exp(X) = e^{\operatorname{Tr} X}.$$

Let SL_n be the set of $n \times n$ matrices with determinant 1 and let n be the set of $n \times n$ matrices with trace 0.

- (a) Show that SL_n is an $(n^2 1)$ -fold and n is its Lie algebra.
- (b) Show that, if X is an $n \times n$ matrix with $\operatorname{Tr} X = 0$, then $\det \exp(X) = 1$. (This is just a matter of remembering which IBL result to cite.)
- (c) Show that, for any scalar c, we have det $\exp(c \operatorname{Id}_n) = e^{\operatorname{Tr}(c \operatorname{Id}_n)}$.
- (d) Show that, for any matrix X, we have $\det \exp(X) = e^{\operatorname{Tr} X}$.

5. Let

$$\mathcal{Q} = \left\{ (\alpha, \beta) : \begin{array}{cc} 0 < \alpha, \beta \\ 2\alpha + \beta, \ \alpha + 2\beta < \pi \end{array} \right\}$$
$$\mathcal{A} = \left\{ (x, y) : \begin{array}{cc} 0 < x, y \\ e^{-x} + e^{-y} > 1 \end{array} \right\}$$

Consider the system of equations

$$e^{-x}\sin\alpha = e^{-y}\sin\beta$$
$$e^{-x}\cos\alpha + e^{-y}\cos\beta = 1$$
(*)

- (a) Show that there is a bijection $(x, y) \to (\alpha(x, y), \beta(x, y))$ from \mathcal{A} to \mathcal{Q} so that $(x, y, \alpha(x, y), \beta(x, y))$ obeys the equations (*). (This is mostly the main result of Problem Set 2, Problem 3, just explain how to modify it for this problem.)
- (b) Show that \mathcal{Q} and \mathcal{A} have the same area.
- (c) Show that the area of \mathcal{A} is

$$\int_0^\infty -\log(1-e^{-x})dx$$

and show that this integral equals $\sum_{n=1}^{\infty} \frac{1}{n^2}$. (Yes, you need to justify moving the sum past the integral.)

(d) Compute the area of Q.