Problem Set 5 – Due October 27

See course website for policy on collaboration.

1. (a) Set

$$g(x,y) = \begin{cases} 1 & x < y < x+1 \\ -1 & x-1 < y < x \\ 0 & \text{otherwise} \end{cases}$$

Show that

$$\int_{x=0}^{\infty} \left(\int_{y=0}^{\infty} g(x,y) dy \right) dx \neq \int_{y=0}^{\infty} \left(\int_{x=0}^{\infty} g(x,y) dx \right) dy$$

although all the integrals all well defined.

(b) Set

$$h(x,y) = \frac{8xy(x^2 - y^2)}{(x^2 + y^2)^3}$$

for $(x, y) \neq (0, 0)$, and define h(0, 0) however you like. Show that

$$\int_{x=0}^{\infty} \left(\int_{y=0}^{1} h(x,y) dy \right) dx \neq \int_{y=0}^{1} \left(\int_{x=0}^{\infty} h(x,y) dx \right) dy$$

although all the integrals all well defined. Hint: For $(x, y) \neq (0, 0)$, we have

$$h(x,y) = \frac{\partial^2}{(\partial x)(\partial y)} \frac{x^2 - y^2}{x^2 + y^2}.$$

2. In thus problems, all areas and volumes are understood in the sense of high school geometry. This problem goes back to Archimedes!

Let R > 0. Let

$$\begin{array}{rcl} B &=& \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq R^2, \ 0 \leq z \} \\ C &=& \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \leq R^2, \ 0 \leq z \leq R \} \\ K &=& \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \leq z^2, \ 0 \leq z \leq R \} \end{array}$$

- (a) Draw B, C and K.
- (b) Show that, for every z_0 between 0 and R, we have

$$Area(B \cap \{z = z_0\}) + Area(K \cap \{z = z_0\}) = Area(C \cap \{z = z_0\}).$$

- (c) Show that Volume(B) + Volume(K) = Volume(C).
- 3. (a) Let B be an open ball in \mathbb{R}^d (say of radius r). Let $h : B \to \mathbb{R}^k$ be a C^1 map such that $(Dh)_u = 0$ at every $u \in B$. Show that h is constant. (Hint: This is meant to be easy; don't over think it.)
 - (b) Let $X \subset \mathbb{R}^n$ be a connected *d*-dimensional manifold and let *U* be an open set containing *X*. Let $h: U \to \mathbb{R}^k$ be a C^1 function such that $(Dh)_x$ restricted to $T_x X$ is 0 for all $x \in X$. Show that *h* restricted to *X* is a constant function.

4. Let V be an n-dimensional real vector space with basis e_1, \ldots, e_n . We define a quadratic form on V to be a function $H: V \to \mathbb{R}$ of the form

$$H\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i,j=1}^{n} Q_{ij} x_i x_j \qquad (*)$$

for some scalars Q_{ij} .

(a) Show that the definition of a quadratic form does not depend on the choice of basis e_i . In other words, show that, if (*) holds and f_1, \ldots, f_n is an other basis of V, then there are scalars R_{ij} such that

$$H\left(\sum_{j=1}y_jf_j\right) = \sum_{i,j=1}^n R_{ij}y_iy_j.$$

Let H be a quadratic form. For \vec{u} and \vec{v} in V, define $B(\vec{u}, \vec{v}) = \frac{1}{2} \left(H(\vec{u} + \vec{v}) - H(\vec{u}) - H(\vec{v}) \right)$.

- (b) Show that B is a symmetric bilinear form.
- (c) Show that there is a basis v_1, \ldots, v_n of V such that $B(v_i, v_j) = 0$ for $i \neq j$. Show furthermore that we can choose the basis such that $B(v_i, v_i) = -1$, 0 or 1 for each *i*. (Hint: I know two approaches here. One uses the spectral theorem; the other mimics the Gram-Schmidt algorithm.)
- (d) Let Q be a quadratic form on V. Let v_1, \ldots, v_n and w_1, \ldots, w_n be two bases of V such that $B(v_i, v_j) = B(w_i, w_j) = 0$ for $i \neq j$. Let a_+ , a_0 and a_- be the number of *i*'s for which $B(v_i, v_i)$ is > 0, = 0 and < 0 respectively, and let b_+ , b_0 and b_- be the number of *j*'s for which $B(w_j, w_j)$ has each sign. Show that $a_+ = b_+$, $a_0 = b_0$ and $a_- = b_-$. (Hint: If $b_- > a_-$ then $(a_+ + a_0) + b_- > n$. Use this to show there is a vector \vec{x} with both $B(\vec{x}, \vec{x}) \geq 0$ and $B(\vec{x}, \vec{x}) < 0$.)
- 5. Let $F : \mathbb{R}^n \to \mathbb{R}$ be a C^{∞} function. For $d_1, d_2, \ldots, d_n \ge 0$, define:

$$f_{d_1d_2\cdots d_n} = \left(\frac{\partial}{\partial x_1}\right)^{d_1} \left(\frac{\partial}{\partial x_2}\right)^{d_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{d_n} F \left|_{\substack{(x_1,\dots,x_n)=(0,0,\dots,0)\\ d_1+d_2+\dots+d_n\leq k}} F_{d_1d_2\cdots d_n} \frac{x_1^{d_1}}{(d_1)!} \frac{x_2^{d_2}}{(d_2)!} \cdots \frac{x_n^{d_n}}{(d_n)!} \right|_{R_k(z) = F(z) - P_k(z).}$$

(a) Show that, for any nonnegative integers d_1, \ldots, d_n with $\sum d_i \leq k$, we have

$$\left(\frac{\partial}{\partial x_1}\right)^{d_1} \left(\frac{\partial}{\partial x_2}\right)^{d_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{d_n} R_k \Big|_{(x_1,\dots,x_n)=(0,0,\dots,0)} = 0.$$

(b) Show that, if \vec{v} is any vector in \mathbb{R}^n , then

$$\left. \frac{d^j}{(dt)^j} R_k(t\vec{v}) \right|_{t=0} = 0$$

for $j \leq k$.

(c) Show that there is a constant M such that, for any vector $\vec{v} \in \mathbb{R}^n$ with $|\vec{v}| \leq 1$, we have $|R_k(\vec{v})| \leq M |\vec{v}|^{k+1}$.