
Problem Set 6 – due November 3
See course website for policy on collaboration.

1. Let R be a rectangle in Rn and let f and g be bounded functions R → R. Prove from the
definitions:

(a) If f(x) ≤ g(x) for all x ∈ R, then
∫
f ≤

∫
g and

∫
f ≤

∫
g.

(b) We have ∫
f +

∫
g ≤

∫
f + g ≤

∫
f + g ≤

∫
f +

∫
g.

(c) If S ⊃ R is a larger rectangle, and f : S → R is a bounded function with f(x) = 0 for
s ∈ S \R, then ∫

R

f =

∫
S

f and

∫
R
f =

∫
S
f.

Whether or not you have proved them, you may assume the results of Question
1 in the rest of this (and all following) problem sets.

2. Let Q be a closed rectangle. Let R1, R2, . . . , be a sequence of open rectangles such that
Q ⊆

⋃
Ri. In this problem, we will show that Vol(Q) ≤

∑
Vol(Ri). For any subset S of Rn,

let

χS(x) =

{
1 x ∈ S
0 x 6∈ S

.

(a) Show that there is a finite subset Ri1 , Ri2 , . . . , RiN of the R’s with Q ⊂
⋃
j Rij .

(b) Show that Vol(Q) ≤
∑N

j=1 Vol(Rij ). (Hint: Let C be a rectangle which contains all of the

Q and Rij . Consider
∫
C χQ and

∫
C

∑N
j=1 χij and cite Question 1 liberally.)

3. The goal of this question is to construct a function f : [0, 1]× [0, 1]→ R such that∫
x∈[0,1]

∫
y∈[0,1]

f(x, y) <

∫
(x,y)∈[0,1]×[0,1]

f(x, y).

I think part (a) of this question is the hardest; you may want to first do parts (b) and (c).

(a) Construct a subset C of [0, 1] × [0, 1] such that (1) C is dense in [0, 1] × [0, 1] but (2) for
any x ∈ [0, 1], there is at most one y such that (x, y) ∈ C.

Let

f(x, y) =

{
1 (x, y) ∈ C
0 otherwise

.

(b) Show that
∫
x∈[0,1]

∫
y∈[0,1]

f(x, y) =
∫
x∈[0,1]

∫
y∈[0,1]f(x, y) = 0.

(c) Show that
∫
(x,y)∈[0,1]×[0,1]f(x, y) = 1.

The issue pointed out in this problem is an artifact of the Riemann integral; using the Lebesgue
integral, if

∫
x

∫
y f(x, y) exists in the Lebesgue sense, then

∫
(x,y) f(x, y) exists and equals it.

4. Let A be a matrix. An elementary row operation is to (1) switch two rows (2) multiply a row
by a nonzero scalar or (3) add a scalar multiple of one row to another. Show that, if A is an
invertible matrix, then it is possible to apply elementary row operations to A to turn A into
the identity. (This is a linear algebra lemma we will need next week.)



5. We introduce the following notation: Let A be an m × n matrix, let k ≤ m, n and let I be a
k-element subset of {1, . . . , n} and J a k-element subset of {1, 2, . . . , n}. Then AIJ denote the
matrix with rows indexed by I and columns indexed by J . Let A be a `×m matrix, B a m×n
matrix, let k ≤ `, m and let L be a k-element subset of {1, 2, . . . , `} and N a k-element subset
of {1, 2, . . . , n}.
Show that

det(AB)LN =
∑

M⊆{1,2,...,m}
|M |=m

detALMBMN .

For clarity, we give an example:

det

[a11 a12 a13
a21 a22 a23

]b11 b12
b21 b22
b31 b32

 =

det

[
a11 a12
a21 a22

]
det

[
b11 b12
b21 b22

]
+ det

[
a11 a13
a21 a23

]
det

[
b11 b12
b31 b32

]
+ det

[
a12 a13
a22 a23

]
det

[
b21 b22
b31 b32

]
.

6. This question introduces a Lie group we will want to consider often in the future. Set

I =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 J =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 K =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
You may assume without proof the identities:

I2 = J2 = K2 = −Id4, IJ = −JI = K, IK = −KI = −J, JK = −KJ = I.

Let H = SpanR(Id4, I, J,K) ⊂ Mat4×4(R). As an abstract ring, H is called the quaternions.
For a quaternion α = aId4 + bI + cJ + dK, we define α = aId4 − bI − cJ − dK.

(a) Check that αβ = β · α. (The · on the right hand side is multiplication.)

(b) Define SU(2) = {α ∈ H : αα = 1}. Show that SU(2) is a subgroup of GL4.

(c) Define su(2) = SpanR(I, J,K). Show that su(2) is the Lie algebra of SU(2).

(d) Let X = pI + qJ + rK ∈ su(2) and define θ2 = p2 + q2 + r2. Show that

exp(X) = cos θ Id4 + sin θ
θ X.

(e) Show that exp is injective on {pI + qJ + rK : p2 + q2 + r2 < π2} and describe how exp
behaves on the sphere {pI + qJ + rK : p2 + q2 + r2 = π2}.


