PROBLEM SET 7 – DUE NOVEMBER 10

See course website for policy on collaboration.

1. (a) Let

$$c(r, \theta, h) = (r \cos \theta, r \sin \theta, h).$$

Compute $\det Dc$ and describe when it is zero.

(b) Let

$$s(r, \theta, \phi) = (r \cos \phi \cos \theta, r \cos \phi \sin \theta, r \sin \phi).$$

Compute $\det Ds$ and describe when it is zero.

2. In this question, we will prove that rotating coordinates in \mathbb{R}^2 does not change integrals. Do not simply quote the change of variables formula, as the whole point of this proof is to walk you through a special case which is missing a lot of the complications.

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function and R > 0 a constant such that f(x, y) = 0 for $(x, y) \notin [-R, R]^2$. Let's assume that f is bounded and is continuous except on a set of measure 0, so $\int_{\mathbb{R}^2} f$ exists. (Since f = 0 for (x, y) large, we just have $\int_{\mathbb{R}^2} f = \int_{[-R,R] \times [-R,R]} f$.)

(a) Let $h \in \mathbb{R}$. Show that

$$\int_{\mathbb{R}^2} f(x, y) = \int_{\mathbb{R}^2} f(x, y + hx).$$

(b) Let a and b > 0. Show that

$$\int_{\mathbb{R}^2} f(ax, by) = \frac{1}{ab} \int_{\mathbb{R}^2} f(x, y)$$

- (c) Let θ be a real number. Show that the map $(x, y) \mapsto (\cos \theta x \sin \theta y, \sin \theta x + \cos \theta y)$ can be written as a composition of maps of the forms $(x, y) \mapsto (x, y + hx), (x, y) \mapsto (x + hy, y)$ and $(x, y) \mapsto (ax, by)$.
- (d) Show that

$$\int_{\mathbb{R}^2} f(x,y) = \int_{\mathbb{R}^2} f(\cos\theta x - \sin\theta y, \ \sin\theta x + \cos\theta y).$$

- 3. This problem provides a quick proof that $\lim_{R\to\infty} \int_{[0,R]} \frac{\sin x}{x}$ exists (where x = 0 may be filled in however you like.)
 - (a) Integrate by parts to show, for 0 < M < N, that

$$\left| \int_{[M,N]} \frac{\sin x}{x} \right| \le 3/M.$$

(If you get a different constant, that's fine.)

- (b) Show that $\lim_{R\to\infty} \int_{[0,R]} \frac{\sin x}{x}$ exists.
- 4. In order to make proofs in this problem shorter, we will slightly broaden the definition of measure zero: We'll say that $X \subset \mathbb{R}^n$ has measure zero if, for any $\epsilon > 0$, there exist a sequence of closed bounded sets R_i such that $\operatorname{Vol}(R_i)$ exists, $X \subseteq \bigcup R_i$ and $\sum \operatorname{Vol}(R_i) < \epsilon$. (In class, we insisted that the R_i be rectangles.)

Moreover, if a high school geometry student would know how to compute $Vol(R_i)$, you may assert its value without proof.

- (a) Let $f: [0,1] \to \mathbb{R}^2$ be a smooth function. Show that there is a constant C > 0 such that, for any $0 \le x < y \le 1$, the image f([x, y]) is contained in a ball of radius C(y x).
- (b) Show that f([0,1]) has measure 0. Let $g: [0,1] \times [0,1] \to \mathbb{R}^2$ be smooth. Let Z be the set of $(x,y) \in [0,1] \times [0,1]$ where $\det(Dg)_{(x,y)} = 0$. The goal of the next several parts is to show that g(Z) has measure 0.
- (c) Let $z \in Z$. Show that there is a nonzero vector $\vec{v} \in \mathbb{R}^2$ such that

$$\frac{\partial}{\partial x}(\vec{v}\cdot g) = \frac{\partial}{\partial y}(\vec{v}\cdot g) = 0 \text{ at } z$$

- (d) Show that there is a constant C > 0 such that, for any $z \in Z$ and any $\epsilon \times \epsilon$ rectangle r containing z, the image g(r) is contained in a shape of area $< C\epsilon^3$. Here "shape" can mean anything whose area a high school geometry student could compute.
- (e) Show that g(X) has measure 0.