CONTINUITY AND DIFFERENTIABILITY OF THE EXPONENTIAL

Given an $n \times n$ real matrix A_{ij} , we define $|A_{ij}| = \sqrt{\sum_{i,j} A_{ij}^2}$.

Problem 8. Show that

$$|AB| \le |A| \cdot |B|.$$

Hint: Remember the Cauchy-Schwartz inequality: $\left(\sum_{k=1}^{n} c_k d_k\right)^2 \leq \sum_{k=1}^{n} c_k^2 \sum_{\ell=1}^{n} d_\ell^2$.

We recall the Weierstrass *M*-test: If $f_n(X)$ is a sequence of continuous functions of a variable X (in \mathbb{R}^k , say) and M_n is a sequence of positive numbers such that $|f_n(X)| \leq M_n$ and $\sum_{n=0}^{\infty} M_n < \infty$, then $\sum_{n=0}^{\infty} f_n(X)$ is convergent and converges to a continuous function.

Problem 9. Let R be a positive real number and let $B(R) = \{X \in \operatorname{Mat}_{n \times n}(\mathbb{R}) : |X| \leq R\}$. Show that $\exp : B(R) \to \operatorname{GL}_n(\mathbb{R})$ is continuous. Deduce that \exp is continuous.

Problem 10. Show that is X is an $n \times n$ real matrix then det exp(X) > 0.

We now consider differentiability of exp.

Problem 11. For X a $k \times k$ matrix, let $g(X) = X^n$. For any $k \times k$ matrix Y, show that $D(g)_X(Y) = \sum_{j=0}^{n-1} X^j Y X^{n-1-j}$.

On the next problem set, you'll show that it is legitimate to differentiate the sum defining exp term by term, giving:

$$(D\exp)_X(Y) = \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \frac{X^j Y X^{n-1-j}}{n!}.$$