IBL Notes January 17 2018

Charles Devlin and Jeremy Philip D'Silva

January 2018

Let V be a finite dimensional vector space over a field k and $A: V \to V$ a linear map. Suppose that there are $\lambda_1, \lambda_2, \ldots, \lambda_r$ in k and positive integers a_1, a_2, \ldots, a_r such that $(\prod_{i=1}^r (A - \lambda_i \text{Id})^{a_i}) = 0$. Our goal for the next several problems is to prove that V decomposes as $V_1 \oplus V_2 \oplus \ldots V_r$, where A maps each V_i to itself and $A - \lambda_i Id$ is nilpotent on V_i . Our proof is by induction on r.

- 5. Explain why the base case, $r = 1$, is trivial. Proof:In the case $r = 1$, $(A - \lambda_1 \text{Id})^{a_1} = 0$. Set $V_1 = V$. Clearly A maps V_1 into itself and $A - \lambda_1 \text{Id}$ is nilpotent because $(A - \lambda_1)^{a_1} = 0$. \Box
- 6. Now suppose that $r \geq 2$. From our previous results, we know that we can write $V = I \oplus N$, where $A - \lambda_r Id : I \to I$ is invertible and $A - \lambda_r Id : N \to N$ is nilpotent. Show that $(\prod_{i=1}^{r-1} (A - \lambda_i \text{Id})^{a_i}) = 0$ on the subspace I. (Notice that the top index is $r - 1$). *Proof:* We know that $\prod_{i=1}^{r-1} (A - \lambda_i \text{Id})^{a_i} (A - \lambda_r)^{a_r} = \prod_{i=1}^{r} (A - \lambda_i \text{Id})^{a_i} = 0$ but $A - \lambda_r \text{Id} : I \to I$ is invertible. In particular, $(A - \lambda_r \text{Id})^{a_r} : I \to I$ is invertible so that $(A - \lambda_r \text{Id})^{a_r}(I) = I$. Therefore,

$$
0 = \left(\prod_{i=1}^r (A - \lambda_i \mathrm{Id})^{a_i}\right)(I) = \left(\prod_{i=1}^{r-1} (A - \lambda_i \mathrm{Id})^{a_i}\right)((A - \lambda_r \mathrm{Id})^{a_r}(I)) = \left(\prod_{i=1}^{r-1} (A - \lambda_i \mathrm{Id})^{a_i}\right)(I)
$$

7. Finish the proof: show that V decomposes as $V_1 \oplus V_2 \oplus ... \oplus V_r$ where A maps each V_i to itself and $A - \lambda_i Id$ is nilpotent on V_i .

Proof: We can decompose V into $V = I_{A-\lambda_r} \oplus N_{A-\lambda_r}$, where $A-\lambda_r$ nilpotent on $N_{A-\lambda_r}$. Note that this means that $N_{A-\lambda_r} = V_{\lambda_r}$, the λ_r -eigenspace of V with respect to A. So $V = I_{A-\lambda_r} \oplus V_{\lambda_r}$. By number 6, $\left(\prod_{i=1}^{r-1}(A-\lambda_i\mathrm{Id})^{a_i}\right)(I)$ is identically 0 on $I_{A-\lambda_r}$, which means that by the inductive hypothesis, we can decompose $I_{A-\lambda_r} = I_{A-\lambda_{r-1}} + N_{A-\lambda_{r-1}}$. To conclude: repeating this process recursively from λ_{r-2} to λ_1 justifies the "...":

$$
V = I_{A-\lambda_r} \oplus N_{A-\lambda_r} = I_{A-\lambda_r} \oplus V_{\lambda_r}
$$

= $I_{A-\lambda_{r-1}} \oplus N_{A-\lambda_{r-1}} \oplus V_{\lambda}r = I_{A-\lambda_{r-1}} \oplus V_{\lambda_{r-1}} \oplus V_{\lambda}r = \dots$
= $V_{\lambda_1} \oplus \dots \oplus V_{\lambda_r}$

 \Box