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Let W be a finite dimensional vector space over a field k£ and let B : W — W be nilpotent
(meaning B™ = 0 for some m). Let n = dim W. It this problem, we will show that we can
find ji, j2, ..., Js with j1 +Jj2 + - -+ js =n and a basis e/, with 1 <p < sand 1 < ¢ <,

such that B acts on this basis by
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Our proof is by induction on n. The base case n = 0 is trivial, so we assume n > 0. Let

W be the image of W.

Problem 8: Show that dim W < dim W.
Proof.

Since B is nilpotent, B is not invertible. Then dim W < dim W.

Problem 9: Show that B maps W to itself.
Proof.
W = B(W) is the subspace of W, ie. W C W.

Then B(W) C B(W) =W. So B maps W to itself.



By induction, we can find j,, jo, ..., js and a basis el for W as above.

Problem 10: Show that, for each p, you can find a vector e§ in W such that
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Proof.

For each p, since e? € W and B maps W to W, there exists eg 4 € W such
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So we now have vectors obeying (), but they aren’t a basis yet.
Problem 11: Show that the vectors e} which you have constructed so far are linearly
independent.
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for some scalars ¢f, then
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Since these el form a basis of W by construction, ch = 0 for ¢ > 1. Therefore, back

to the previous equation, we get

Zc’feﬁ’ =0.
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Again, since e} are linearly independent, ¢/ = 0. Thus all the coefficients are 0, so el

are linearly independent. 0

Choose some additional vectors fi, fa, ..., fi such that the ef you have already

constructed, together with fi, fo, ..., f; form a basis for W.



Problem 12: Explain why there are constants ¢/ (dependent on r) such that
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Proof.
From Problem 11, we know el is a basis for w.
Since B maps W to W, Bf, € W. Then Bf, can be written as the linear

combination of the basis ef, i.e.
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Problem 13: Show that the e?, together with g,, is the desired basis.
Proof.

We already know el obeying (%), then we just need to show Bg, = 0.
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We also have Be? = =¢€*
Jptl Jp
S Ep S
P PP
DD cBel = ZZC 6
p=1 ¢=1 p=1 g=1

Then Bg, = Bf, — Bf, = 0.
Besides, fi,..f;, with e, is a basis for W. Linear combination of basis is still

a basis. So el together with g, is the desired basis.
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