JORDAN NORMAL FORM DAY 3

Juntai Zhou and Jason Liu

January 19, 2018

Let W be a finite dimensional vector space over a field k and let $B: W \to W$ be nilpotent (meaning $B^m = 0$ for some m). Let $n = \dim W$. It this problem, we will show that we can find j_1, j_2, \ldots, j_s with $j_1 + j_2 + \cdots + j_s = n$ and a basis e_q^p , with $1 \le p \le s$ and $1 \le q \le j_p$ such that B acts on this basis by

$$0 \leftrightarrow e_1^1 \leftrightarrow e_2^1 \leftrightarrow e_3^1 \leftrightarrow \dots \leftrightarrow e_{j_1}^1$$

$$0 \leftrightarrow e_1^2 \leftrightarrow e_2^2 \leftrightarrow e_3^2 \leftrightarrow e_4^2 \leftrightarrow e_5^2 \leftrightarrow \dots \leftrightarrow e_{j_2}^2$$

$$\vdots$$

$$0 \leftrightarrow e_1^s \leftrightarrow e_2^s \leftrightarrow \dots \leftrightarrow e_{j_s}^s$$

$$(*)$$

Our proof is by induction on n. The base case n = 0 is trivial, so we assume n > 0. Let \overline{W} be the image of W.

Problem 8: Show that $\dim \overline{W} < \dim W$.

Proof.

Since B is nilpotent, B is not invertible. Then dim $\overline{W} < \dim W$.

Problem 9: Show that $B \text{ maps } \overline{W}$ to itself.

Proof.

 $\overline{W} = B(W)$ is the subspace of W, i.e. $\overline{W} \subset W$.

Then $B(\overline{W}) \subset B(W) = \overline{W}$. So B maps \overline{W} to itself.

1

By induction, we can find $\overline{j}_1, \overline{j}_2, \ldots, \overline{j}_{\overline{s}}$ and a basis e_q^p for \overline{W} as above.

Problem 10: Show that, for each p, you can find a vector $e_{\overline{j}_p+1}^p$ in W such that $Be_{\overline{j}_p+1}^p = e_{\overline{j}_p}^p.$ *Proof.*

For each p, since $e_{\overline{j}_p}^p \in \overline{W}$ and B maps W to \overline{W} , there exists $e_{\overline{j}_p+1}^p \in W$ such that $Be_{\overline{j}_p+1}^p = e_{\overline{j}_p}^p$.

So we now have vectors obeying (*), but they aren't a basis yet.

Problem 11: Show that the vectors e_q^p which you have constructed so far are linearly independent.

Proof. Suppose

$$\sum_p \sum_{q=1}^{\overline{j}_p+1} c_q^p e_q^p = 0$$

for some scalars c_q^p , then

$$B(\sum_{p}\sum_{q=1}^{\overline{j}_{p}+1}c_{q}^{p}e_{q}^{p}) = \sum_{p}\sum_{q=1}^{\overline{j}_{p}}c_{q+1}^{p}e_{q}^{p} = 0.$$

Since these e_q^p form a basis of \overline{W} by construction, $c_q^p = 0$ for q > 1. Therefore, back to the previous equation, we get

$$\sum_{p} c_1^p e_1^p = 0.$$

Again, since e_1^p are linearly independent, $c_1^p = 0$. Thus all the coefficients are 0, so e_q^p are linearly independent.

Choose some additional vectors f_1, f_2, \ldots, f_t such that the e_q^p you have already constructed, together with f_1, f_2, \ldots, f_t form a basis for W.

Problem 12: Explain why there are constants c_q^p (dependent on r) such that

$$Bf_r = \sum_{p=1}^s \sum_{q=1}^{\overline{j}_p} c_q^p e_q^p$$

Proof.

From **Problem 11**, we know e_q^p is a basis for \overline{W} .

Since B maps W to \overline{W} , $Bf_r \in \overline{W}$. Then Bf_r can be written as the linear combination of the basis e_q^p , i.e.

$$Bf_r = \sum_{p=1}^s \sum_{q=1}^{\overline{j}_p} c_q^p e_q^p$$

Put

$$g_r = f_r - \sum_{p=1}^s \sum_{q=1}^{\overline{j}_p} c_q^p e_{q+1}^p.$$

Problem 13: Show that the e_q^p , together with g_r , is the desired basis.

Proof.

We already know e_q^p obeying (*), then we just need to show $Bg_r = 0$.

$$Bg_r = Bf_r - \sum_{p=1}^{s} \sum_{q=1}^{\overline{j}_p} c_q^p Be_{q+1}^p$$

We also have $Be^p_{\overline{j}_p+1}=e^p_{\overline{j}_p}$

$$\sum_{p=1}^{s} \sum_{q=1}^{\overline{j}_p} c_q^p B e_{q+1}^p = \sum_{p=1}^{s} \sum_{q=1}^{\overline{j}_p} c_q^p e_q^p$$

Then $Bg_r = Bf_r - Bf_r = 0.$

Besides, $f_1, ..., f_r$, with e_q^p , is a basis for W. Linear combination of basis is still a basis. So e_q^p together with g_r is the desired basis.