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1 THE UNITARY GROUP

Definition. Let V' be a complex vector space. A sesquilinear form is a map
x:V xV — C obeying:

Note that this implies that ¥ ¢ € R.

Definition. A Hermitian form is called positive definite if, for all nonzero
U, we have U U # 0

If we identify V with C™, then sequilinear forms are of the form v = WQW
for an arbituary Q € Mat, x,(C), the Hermitian condition says that @ = QF,
and the positive definite condition says that @) is positive definite Hermitian.
The standard Hermitian form on C" is #T0.

Let V be a finite complex vector space equipped with a posiive definite
Hermitian form . We define A : V' — V to be unitary if (A¥) * (AwW) = ¥ % W,
Vo, @ € V. We will show taht V has a *-orthonormal basis of eigenvectors,
whose eigenvalues are all of the form €. Our proof is by induction on n.

Let X be a complex eigenvalue of A, with eigenvector .

Problem 1.1. Show that |A| =1

Proof.
T* 0= AU * AT = (AT) * (AT) = A\(T * ?)

Well, since ¥ is an eigenvector, it is not zero. Since * is positive definite, we
know that o+ ¥ # 0 Well this implies that 1 = A\ So we have [|A]| = VAA =1
Remark: This shows that A = e’6 for some § € R O



Problem 1.2. Show that A takes v := {0 : %% = 0} to itself.

1. Note that
x0T =0 <—

Proof. We want to show that Vi € o, (Aw) *
from the previous problem, we have that A #
AMAD) « U. Well AM(Ad) x ¥ = (AW) * (\) = Using the fact
that A is unitary, we have that A(AW) * ¢ = & * v definition. Thus
(AW) * 7 € T+ O

on

Problem 1.3. FExplain why we are done

Proof.
Claim: V = Cv @ v+

Its enough to show that C&'N @+ is trivial and that C& + ¢+ spans V.

Well, C7 N o+ = {0} since ©'* & # 0 if ¥ # 0 by positive definiteness.

Fix 7 € V. Let p = (0% Z)(T* )10 € Cd. Let § = 7 — p. Note that
TG=Ux(T—pP) = UxT— U (T+T)(T*0) 10 =0+ T — (T+ ) (T*0) "L (T* V) =
T« —T+xZ=0.Soqgev. Wel #=p+ge Co+ o+

This concludes the proof of the claim. We will use induction to prove that
we have *-orthonormal basis of eigen vectors.

Base case) dimV = 1. Well, then our matrix A is 1 by 1. This is already
diagonalized.

Inductive step) Suppose that for all unitary maps between n dimensional C
vector spaces, we can find an orthonormal eigen basis.

Now suppose that A is an unitary map from V to V where V is an + 1
dimensional C vector space. Consider the characteristic polynomial of A. We
know that it has degree of n + 1. Since C is algebraically closed, we can find
A € C, which is a zero the characteristic polynomial. This means det(A—\) = 0.
So ker(A — \) is not trivial. Fix ¥ € ker(A — X\) — {0}. WOLOG scale ¥ such
that it is an unit vector. Note that ¥ and A\ are the corresponding eigen value
and vector. From our claim, we know that we can write V = C¢ @ v-. From
previous problem, we know that A takes 7+ to ¢*. Well, since that A is unitary,
its restriction to 7 is also unitary. So A is an unitary map from ¢+ to o+ and
dim(v+) = n + 1 — dim(C%) = n. By inductive hypothesis, we can find an
orthonormal eigen basis 5 of A in . Well since ¥ is perpendicular to every
element in 8 C o4, a = BU{¥} is a basis. Furthermore, they are all orthogonal
and are an eigen vector. O

2 THE ORTHOGONAL GROUP

On this page we make sure to get a clear record of a result which was done con-
fusingly in homework: A real orthogonal matrix can be put into block diagonal
form where the blocks are [:I:l] and CPSQ —sing .

sinf  cosf
Let V be a finite dimensional real vector space equipped with a positive

definite symmetric bilinear form -: V xV — R. We can then extend - to a
symmetric bilinear form -: (V @ C) x (V @ C) — C. We define A: V — V to be



orthogonal if (A7) - (AW) = ¢ & for all ¥ and & in V. Our goal is to prove the
following : If A is orthogonal then we can decompose Vas Vi @ Vo @ --- BV,
with the V; orthogonal, such that A carries each V to itself, wither by [:I:l] or
{cos f# —sin 9}

sinf cos6

Problem 2.1. Suppose that A has a real eigenvalue A, with corresponding eigen-
vector U. Show that A = +1.

Proof. Since A is orthogonal, we have 7 - 7 = (A?) - (A¥) = AT - \T = \2(¥ - D).
Therefore A = £1. O

Problem 2.2. Continue to assume that A has a real eigenvalue X\, with corre-
sponding eigenvector U. Show that A : v+ — v, so we can induct.

Proof. For any vector @ L ¥, we have O =47 711’ = (AU - AwW) = AU - Aw. Since
A==+1#0, v Aw = 0. Therefore A : 7+ — O

Suppose that A : V®C — V ® C has an eigenvalue A which is not in R. Let
the corresponding eigenvector be ¥ = & + i/, with & and ¢ € V.

Problem 2.3. Show that Z-Z =y -y and -y =0

Proo. (7 (247) = AQF+i0)-AF4i0) = X(E i) (74i9). Sineo A ¢ B
A2 # 1 and (F+i%)-(F+i7) = 0. Therefore (Z-7—7-9)+2i(F§) =0 = 7T = §-7
and 7 -y =0. O

Problem 2.4. Show that A\ =1, so A = e’ for some real 6.

Proof. Since (Z+i7)- (Z—iif) = A(Z+i7) - A(Z—if) = AN(T+17) - (F—iF]), either
M\ = 1 or (F+iy)- (£ —if) = 0. However since (F+iif)- (£ —iy) = &-T+5-7 # 0,
A\ = 1. Therefore A = €% for some real 6. O

Problem 2.5. Put L = Span(%,%). Show that A preserves L and L*, and acts
on L by

cosf —sinf

{Siné’ cos 6 }
Proof. (% + i) = A(Z + i¥) = AZ + iAf Sub €’ = cosf + isinf. xcosf —
ysinf +i(xsinf + ycosd) = A¥ + iAy. Since A is real, it sends real vectors to

real vectors. Thus we get x cosf — ysinf = Ax and zsin 6 + y cos @ = Ay. This
concludes our proof. O

Problem 2.6. Show that the exponential map exp : so(n) — SO(n)issurjective

Proof. For any U € SO(n), we can find a orthogonal matrix @ such that
QUQT = D, where D is a block-diagonal matrix whose blocks are [il] or

cosf) —sinf
i T) = T -
L‘in@ 050 } Since exp(QMQT) Qexp(M)QT, it suffice to find a ma

trix M such that exp(M) = D. Since exp([0]) = [1], exp( [g _00]) =



E:z Cz;nao}, and exp( [_Oﬁ g}) = {01 _01] and that the number of —1
on the diagonal of D is even given that the D € SO(n), we can first, by change of
basis of D, put all the —1s on the diagonal together and take M to be the block

diagonal matrix with [O] corresponding to[l] in D, corresponding to

0 -0
6 0

E:g _czlsn;} in D, and {_Oﬂ 7(;} corresponding to [_01 _OJ in D and get
exp(M)=D

O
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