IBL Jan 26

Jaeyoon Kim; Shiliang Gao

January 2018

1 THE UNITARY GROUP

Definition. Let V be a complex vector space. A **sesquilinear form** is a map $\ast : V \times V \rightarrow \mathbb{C}$ obeying:

$$
\vec{u} * (\vec{v} + \vec{w}) = \vec{u} * \vec{v} + \vec{u} * \vec{w}
$$

$$
(\vec{u} + \vec{v}) * \vec{w} = \vec{u} * \vec{w} + \vec{v} * \vec{w}
$$

$$
\lambda(\vec{u} * \vec{v}) = (\bar{\lambda}\vec{u}) * \vec{v} = \vec{u} * (\lambda\vec{v})
$$

Definition. A sesquilinear form is called **Hermitian** if it obeys the following:

 $\vec{u} * \vec{v} = \overline{\vec{v} * \vec{u}}$

Note that this implies that $\vec{v} * \vec{v} \in \mathbb{R}$.

Definition. A Hermitian form is called positive definite if, for all nonzero \vec{v} , we have $\vec{v} * \vec{v} \neq 0$

If we identify V with \mathbb{C}^n , then sequilinear forms are of the form $\vec{v} * \vec{w} = \vec{v}^\dagger Q \vec{W}$ for an arbituary $Q \in Mat_{n \times n}(\mathbb{C})$, the Hermitian condition says that $Q = Q^{\dagger}$, and the positive definite condition says that Q is positive definite Hermitian. The standard Hermitian form on \mathbb{C}^n is $\vec{v}^{\dagger} \vec{w}$.

Let V be a finite complex vector space equipped with a posiive definite Hermitian form ∗. We define $A: V \to V$ to be unitary if $(A\vec{v}) * (A\vec{w}) = \vec{v} * \vec{w}$, $\forall \vec{v}, \vec{w} \in V$. We will show taht V has a \ast -orthonormal basis of eigenvectors, whose eigenvalues are all of the form $e^{i\theta}$. Our proof is by induction on n.

Let λ be a complex eigenvalue of A, with eigenvector \vec{v} .

Problem 1.1. Show that $|\lambda| = 1$

Proof.

$$
\vec{v} * \vec{v} = A\vec{v} * A\vec{v} = (\lambda \vec{v}) * (\lambda \vec{v}) = \lambda \bar{\lambda} (\vec{v} * \vec{v})
$$

Well, since \vec{v} is an eigenvector, it is not zero. Since $*$ is positive definite, we know that $\vec{v} * \vec{v} \neq 0$ Well this implies that $1 = \lambda \bar{\lambda}$ So we have $||\lambda|| = \sqrt{\lambda \bar{\lambda}} = 1$ \Box

Remark: This shows that $\lambda = e^{i\theta}$ for some $\theta \in \mathbb{R}$

Problem 1.2. Show that A takes $\vec{v}^{\perp} := {\vec{w} : \vec{v} * \vec{w} = 0}$ to itself.

Proof. We want to show that $\forall \vec{w} \in \vec{v}^{\perp}$, $(A\vec{w}) * \vec{v} = 0$. Fix $\vec{w} \in \vec{v}^{\perp}$. Note that from the previous problem, we have that $\lambda \neq 0$. Thus $(A \vec{w}) * \vec{v} = 0 \iff$ $\lambda(A \vec{w}) * \vec{v}$. Well $\lambda(A \vec{w}) * \vec{v} = (A \vec{w}) * (\lambda \vec{v}) = (A \vec{w}) * (A \vec{v})$. Using the fact that A is unitary, we have that $\lambda(A \vec{w}) * \vec{v} = \vec{w} * \vec{v} = 0$ by definition. Thus $(A \vec{w}) * \vec{v} \in \vec{v}^{\perp}$ \Box

Problem 1.3. Explain why we are done

Proof.

Claim: $V = \mathbb{C} \vec{v} \oplus \vec{v}^{\perp}$

Its enough to show that $\mathbb{C}\vec{v} \cap \vec{v}^{\perp}$ is trivial and that $\mathbb{C}\vec{v} + \vec{v}^{\perp}$ spans V.

Well, $\mathbb{C}\vec{v} \cap \vec{v}^{\perp} = \{0\}$ since $\vec{v} * \vec{v} \neq 0$ if $\vec{v} \neq 0$ by positive definiteness.

Fix $\vec{x} \in V$. Let $\vec{p} = (\vec{v} * \vec{x})(\vec{v} * \vec{v})^{-1}\vec{v} \in \mathbb{C}\vec{v}$. Let $\vec{q} = \vec{x} - \vec{p}$. Note that $\vec{v} * \vec{q} = \vec{v} * (\vec{x} - \vec{p}) = \vec{v} * \vec{x} - \vec{v} * (\vec{v} * \vec{x}) (\vec{v} * \vec{v})^{-1} \vec{v} = \vec{v} * \vec{x} - (\vec{v} * \vec{x}) (\vec{v} * \vec{v})^{-1} (\vec{v} * \vec{v}) =$ $\vec{v} * \vec{x} - \vec{v} * \vec{x} = 0$. So $q \in \vec{v}^{\perp}$. Well $\vec{x} = \vec{p} + \vec{q} \in \mathbb{C}\vec{v} + \vec{v}^{\perp}$

This concludes the proof of the claim. We will use induction to prove that we have *-orthonormal basis of eigen vectors.

Base case) $dim V = 1$. Well, then our matrix A is 1 by 1. This is already diagonalized.

Inductive step) Suppose that for all unitary maps between n dimensional $\mathbb C$ vector spaces, we can find an orthonormal eigen basis.

Now suppose that A is an unitary map from V to V where V is a $n+1$ dimensional $\mathbb C$ vector space. Consider the characteristic polynomial of A . We know that it has degree of $n + 1$. Since $\mathbb C$ is algebraically closed, we can find $\lambda \in \mathbb{C}$, which is a zero the characteristic polynomial. This means $det(A-\lambda) = 0$. So $ker(A - \lambda)$ is not trivial. Fix $\vec{v} \in ker(A - \lambda) - \{0\}$. WOLOG scale \vec{v} such that it is an unit vector. Note that \vec{v} and λ are the corresponding eigen value and vector. From our claim, we know that we can write $V = \mathbb{C} \vec{v} \oplus \vec{v}^{\perp}$. From previous problem, we know that A takes \vec{v}^{\perp} to \vec{v}^{\perp} . Well, since that A is unitary, its restriction to \vec{v}^{\perp} is also unitary. So A is an unitary map from \vec{v}^{\perp} to \vec{v}^{\perp} and $dim(\vec{v}^{\perp}) = n + 1 - dim(\mathbb{C}\vec{v}) = n$. By inductive hypothesis, we can find an orthonormal eigen basis β of A in \vec{v}^{\perp} . Well since \vec{v} is perpendicular to every element in $\beta \subset \vec{v}^{\perp}$, $\alpha = \beta \cup {\{\vec{v}\}\ }$ is a basis. Furthermore, they are all orthogonal and are an eigen vector. \Box

2 THE ORTHOGONAL GROUP

On this page we make sure to get a clear record of a result which was done confusingly in homework: A real orthogonal matrix can be put into block diagonal form where the blocks are $[\pm 1]$ and $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ $\sin \theta \quad \cos \theta$ 1 .

Let V be a finite dimensional real vector space equipped with a positive definite symmetric bilinear form $\cdot: V \times V \to \mathbb{R}$. We can then extend \cdot to a symmetric bilinear form $\cdot : (V \otimes \mathbb{C}) \times (V \otimes \mathbb{C}) \to \mathbb{C}$. We define $A : V \to V$ to be **orthogonal** if $(A\vec{v}) \cdot (A\vec{w}) = \vec{v} \cdot \vec{w}$ for all \vec{v} and \vec{w} in V. Our goal is to prove the following : If A is orthogonal then we can decompose V as $V_1 \oplus V_2 \oplus \cdots \oplus V_r$, with the V_i orthogonal, such that A carries each V to itself, wither by $\begin{bmatrix} \pm 1 \end{bmatrix}$ or $\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix}$ $\left| \sin \theta - \cos \theta \right|$.

Problem 2.1. Suppose that A has a real eigenvalue λ , with corresponding eigenvector \vec{v} . Show that $\lambda = \pm 1$.

Proof. Since A is orthogonal, we have $\vec{v} \cdot \vec{v} = (A\vec{v}) \cdot (A\vec{v}) = \lambda \vec{v} \cdot \lambda \vec{v} = \lambda^2 (\vec{v} \cdot \vec{v}).$ Therefore $\lambda = \pm 1$. \Box

Problem 2.2. Continue to assume that A has a real eigenvalue λ , with corresponding eigenvector \vec{v} . Show that $A : \vec{v}^{\perp} \to \vec{v}^{\perp}$, so we can induct.

Proof. For any vector $\vec{w} \perp \vec{v}$, we have $0 = \vec{v} \cdot \vec{w} = (A\vec{v} \cdot A\vec{w}) = \lambda \vec{v} \cdot A\vec{w}$. Since $\lambda = \pm 1 \neq 0, \, \vec{v} \cdot A \vec{w} = 0.$ Therefore $A : \vec{v}^{\perp} \to \vec{v}^{\perp}.$ \Box

Suppose that $A: V \otimes \mathbb{C} \to V \otimes \mathbb{C}$ has an eigenvalue λ which is not in \mathbb{R} . Let the corresponding eigenvector be $\vec{v} = \vec{x} + i\vec{y}$, with \vec{x} and $\vec{y} \in V$.

Problem 2.3. Show that $\vec{x} \cdot \vec{x} = \vec{y} \cdot \vec{y}$ and $\vec{x} \cdot \vec{y} = 0$

Proof. $(\vec{x} + i\vec{y}) \cdot (\vec{x} + i\vec{y}) = A(\vec{x} + i\vec{y}) \cdot A(\vec{x} + i\vec{y}) = \lambda^2(\vec{x} + i\vec{y}) \cdot (\vec{x} + i\vec{y})$. Since $\lambda \notin \mathbb{R}$, $\lambda^2 \neq 1$ and $(\vec{x}+i\vec{y})\cdot(\vec{x}+i\vec{y}) = 0$. Therefore $(\vec{x}\cdot\vec{x}-\vec{y}\cdot\vec{y})+2i(\vec{x}\cdot\vec{y}) = 0 \Rightarrow \vec{x}\cdot\vec{x} = \vec{y}\cdot\vec{y}$ and $\vec{x} \cdot \vec{y} = 0$. \Box

Problem 2.4. Show that $\lambda \overline{\lambda} = 1$, so $\lambda = e^{i\theta}$ for some real θ .

Proof. Since $(\vec{x}+i\vec{y})\cdot(\vec{x}-i\vec{y}) = A(\vec{x}+i\vec{y})\cdot A(\vec{x}-i\vec{y}) = \lambda\bar{\lambda}(\vec{x}+i\vec{y})\cdot(\vec{x}-i\vec{y})$, either $\lambda \bar{\lambda} = 1$ or $(\vec{x} + i\vec{y}) \cdot (\vec{x} - i\vec{y}) = 0$. However since $(\vec{x} + i\vec{y}) \cdot (\vec{x} - i\vec{y}) = \vec{x} \cdot \vec{x} + \vec{y} \cdot \vec{y} \neq 0$, $\lambda \bar{\lambda} = 1$. Therefore $\lambda = e^{i\theta}$ for some real θ . \Box

Problem 2.5. Put $L = Span(\vec{x}, \vec{y})$. Show that A preserves L and L^{\perp} , and acts on L by

$$
\begin{bmatrix}\n\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta\n\end{bmatrix}
$$

Proof. $e^{i\theta}(\vec{x} + i\vec{y}) = A(\vec{x} + i\vec{y}) = A\vec{x} + iA\vec{y}$ Sub $e^{i\theta} = \cos\theta + i\sin\theta$. $x \cos\theta$ $y \sin \theta + i(x \sin \theta + y \cos \theta) = A\vec{x} + iA\vec{y}$. Since A is real, it sends real vectors to real vectors. Thus we get $x \cos \theta - y \sin \theta = Ax$ and $x \sin \theta + y \cos \theta = Ay$. This concludes our proof. \Box

Problem 2.6. Show that the exponential map $exp : \mathfrak{so}(n) \rightarrow SO(n)$ issurjective

Proof. For any $U \in SO(n)$, we can find a orthogonal matrix Q such that $QUQ^{\dagger} = D$, where D is a block-diagonal matrix whose blocks are [± 1] or $\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix}$ $\sin \theta \quad \cos \theta$ Since $exp(QMQ^{\dagger}) = Qexp(M)Q^{\dagger}$, it suffice to find a matrix M such that $exp(M) = D$. Since $exp([0]) = [1]$, $exp(\begin{bmatrix} 0 & -\theta \\ 0 & 0 \end{bmatrix})$ $\theta = 0$ $\Big| \Big) =$

 $\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix}$ $\sin \theta \quad \cos \theta$, and $exp(\begin{bmatrix} 0 & \pi \\ - & 0 \end{bmatrix})$ $-\pi$ 0 $\Big] = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$ $0 -1$ | and that the number of -1 on the diagonal of D is even given that the $D \in SO(n)$, we can first, by change of basis of D, put all the −1s on the diagonal together and take M to be the block diagonal matrix with [0] corresponding to [1] in D, $\begin{bmatrix} 0 & -\theta \\ 0 & 0 \end{bmatrix}$ $\theta = 0$ corresponding to $\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix}$ $\sin \theta \quad \cos \theta$ $\Big]$ in D, and $\Big[\begin{array}{cc} 0 & \pi \\ - & 0 \end{array} \Big]$ $-\pi$ 0 $\Big]$ corresponding to $\Big[$ ⁻¹ ⁰ $0 -1$ in D and get $exp(M) = D$

