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1 THE UNITARY GROUP

Definition. Let V be a complex vector space. A sesquilinear form is a map
∗ : V × V → C obeying:

~u ∗ (~v + ~w) = ~u ∗ ~v + ~u ∗ ~w

(~u+ ~v) ∗ ~w = ~u ∗ ~w + ~v ∗ ~w

λ(~u ∗ ~v) = (λ̄~u) ∗ ~v = ~u ∗ (λ~v)

Definition. A sesquilinear form is called Hermitian if it obeys the following:

~u ∗ ~v = ~v ∗ ~u

Note that this implies that ~v ∗ ~v ∈ R.

Definition. A Hermitian form is called positive definite if, for all nonzero
~v, we have ~v ∗ ~v 6= 0

If we identify V with Cn, then sequilinear forms are of the form ~v∗ ~w = ~v†Q ~W
for an arbituary Q ∈ Matn×n(C), the Hermitian condition says that Q = Q†,
and the positive definite condition says that Q is positive definite Hermitian.
The standard Hermitian form on Cn is ~v† ~w.

Let V be a finite complex vector space equipped with a posiive definite
Hermitian form ∗. We define A : V → V to be unitary if (A~v) ∗ (A~w) = ~v ∗ ~w,
∀~v, ~w ∈ V . We will show taht V has a ∗-orthonormal basis of eigenvectors,
whose eigenvalues are all of the form eiθ. Our proof is by induction on n.

Let λ be a complex eigenvalue of A, with eigenvector ~v.

Problem 1.1. Show that |λ| = 1

Proof.
~v ∗ ~v = A~v ∗A~v = (λ~v) ∗ (λ~v) = λλ̄(~v ∗ ~v)

Well, since ~v is an eigenvector, it is not zero. Since * is positive definite, we
know that ~v ∗ ~v 6= 0 Well this implies that 1 = λλ̄ So we have ||λ|| =

√
λλ̄ = 1

Remark: This shows that λ = eiθ for some θ ∈ R
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Problem 1.2. Show that A takes ~v⊥ := {~w : ~v ∗ ~w = 0} to itself.

Proof. We want to show that ∀~w ∈ ~v⊥, (A~w) ∗ ~v = 0. Fix ~w ∈ ~v⊥. Note that
from the previous problem, we have that λ 6= 0. Thus (A~w) ∗ ~v = 0 ⇐⇒
λ(A~w) ∗ ~v. Well λ(A~w) ∗ ~v = (A~w) ∗ (λ~v) = (A~w) ∗ (A~v). Using the fact
that A is unitary, we have that λ(A~w) ∗ ~v = ~w ∗ ~v = 0 by definition. Thus
(A~w) ∗ ~v ∈ ~v⊥

Problem 1.3. Explain why we are done

Proof.
Claim: V = C~v ⊕ ~v⊥

Its enough to show that C~v ∩ ~v⊥ is trivial and that C~v + ~v⊥ spans V .
Well, C~v ∩ ~v⊥ = {0} since ~v ∗ ~v 6= 0 if ~v 6= 0 by positive definiteness.
Fix ~x ∈ V . Let ~p = (~v ∗ ~x)(~v ∗ ~v)−1~v ∈ C~v. Let ~q = ~x − ~p. Note that

~v ∗ ~q = ~v ∗ (~x− ~p) = ~v ∗~x−~v ∗ (~v ∗~x)(~v ∗~v)−1~v = ~v ∗~x− (~v ∗~x)(~v ∗~v)−1(~v ∗~v) =
~v ∗ ~x− ~v ∗ ~x = 0. So q ∈ ~v⊥. Well ~x = ~p+ ~q ∈ C~v + ~v⊥

This concludes the proof of the claim. We will use induction to prove that
we have *-orthonormal basis of eigen vectors.

Base case) dimV = 1. Well, then our matrix A is 1 by 1. This is already
diagonalized.

Inductive step) Suppose that for all unitary maps between n dimensional C
vector spaces, we can find an orthonormal eigen basis.

Now suppose that A is an unitary map from V to V where V is a n + 1
dimensional C vector space. Consider the characteristic polynomial of A. We
know that it has degree of n + 1. Since C is algebraically closed, we can find
λ ∈ C, which is a zero the characteristic polynomial. This means det(A−λ) = 0.
So ker(A − λ) is not trivial. Fix ~v ∈ ker(A − λ) − {0}. WOLOG scale ~v such
that it is an unit vector. Note that ~v and λ are the corresponding eigen value
and vector. From our claim, we know that we can write V = C~v ⊕ ~v⊥. From
previous problem, we know that A takes ~v⊥ to ~v⊥. Well, since that A is unitary,
its restriction to ~v⊥ is also unitary. So A is an unitary map from ~v⊥ to ~v⊥ and
dim(~v⊥) = n + 1 − dim(C~v) = n. By inductive hypothesis, we can find an
orthonormal eigen basis β of A in ~v⊥. Well since ~v is perpendicular to every
element in β ⊂ ~v⊥, α = β ∪{~v} is a basis. Furthermore, they are all orthogonal
and are an eigen vector.

2 THE ORTHOGONAL GROUP

On this page we make sure to get a clear record of a result which was done con-
fusingly in homework: A real orthogonal matrix can be put into block diagonal

form where the blocks are
[
±1

]
and

[
cos θ − sin θ
sin θ cos θ

]
.

Let V be a finite dimensional real vector space equipped with a positive
definite symmetric bilinear form ·: V ×V → R. We can then extend · to a
symmetric bilinear form ·: (V ⊗ C)× (V ⊗ C)→ C. We define A : V → V to be
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orthogonal if (A~v) · (A~w) = ~v · ~w for all ~v and ~w in V. Our goal is to prove the
following : If A is orthogonal then we can decompose V as V1 ⊕ V2 ⊕ · · · ⊕ Vr,
with the Vi orthogonal, such that A carries each V to itself, wither by

[
±1

]
or[

cos θ − sin θ
sin θ cos θ

]
.

Problem 2.1. Suppose that A has a real eigenvalue λ, with corresponding eigen-
vector ~v. Show that λ = ±1.

Proof. Since A is orthogonal, we have ~v · ~v = (A~v) · (A~v) = λ~v · λ~v = λ2(~v · ~v).
Therefore λ = ±1.

Problem 2.2. Continue to assume that A has a real eigenvalue λ, with corre-
sponding eigenvector ~v. Show that A : ~v⊥ → ~v⊥, so we can induct.

Proof. For any vector ~w ⊥ ~v, we have 0 = ~v · ~w = (A~v ·A~w) = λ~v · A~w. Since
λ = ±1 6= 0, ~v ·A~w = 0. Therefore A : ~v⊥ → ~v⊥.

Suppose that A : V ⊗C→ V ⊗C has an eigenvalue λ which is not in R. Let
the corresponding eigenvector be ~v = ~x+ i~y, with ~x and ~y ∈ V .

Problem 2.3. Show that ~x · ~x = ~y · ~y and ~x · ~y = 0

Proof. (~x+i~y)·(~x+i~y) = A(~x+i~y)·A(~x+i~y) = λ2(~x+i~y)·(~x+i~y). Since λ /∈ R,
λ2 6= 1 and (~x+i~y)·(~x+i~y) = 0. Therefore (~x·~x−~y·~y)+2i(~x·~y) = 0⇒ ~x·~x = ~y·~y
and ~x · ~y = 0.

Problem 2.4. Show that λλ̄ = 1, so λ = eiθ for some real θ.

Proof. Since (~x+i~y) ·(~x−i~y) = A(~x+i~y) ·A(~x−i~y) = λλ̄(~x+i~y) ·(~x−i~y), either
λλ̄ = 1 or (~x+i~y) ·(~x−i~y) = 0. However since (~x+i~y) ·(~x−i~y) = ~x ·~x+~y ·~y 6= 0,
λλ̄ = 1. Therefore λ = eiθ for some real θ.

Problem 2.5. Put L = Span(~x, ~y). Show that A preserves L and L⊥, and acts
on L by [

cos θ − sin θ
sin θ cos θ

]
Proof. eiθ(~x + i~y) = A(~x + i~y) = A~x + iA~y Sub eiθ = cos θ + i sin θ. x cos θ −
y sin θ + i(x sin θ + y cos θ) = A~x+ iA~y. Since A is real, it sends real vectors to
real vectors. Thus we get x cos θ− y sin θ = Ax and x sin θ+ y cos θ = Ay. This
concludes our proof.

Problem 2.6. Show that the exponential map exp : so(n)→ SO(n)issurjective

Proof. For any U ∈ SO(n), we can find a orthogonal matrix Q such that
QUQᵀ = D, where D is a block-diagonal matrix whose blocks are

[
±1

]
or[

cos θ − sin θ
sin θ cos θ

]
. Since exp(QMQᵀ) = Qexp(M)Qᵀ, it suffice to find a ma-

trix M such that exp(M) = D. Since exp(
[
0
]
) =

[
1
]
, exp(

[
0 −θ
θ 0

]
) =
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[
cos θ − sin θ
sin θ cos θ

]
, and exp(

[
0 π
−π 0

]
) =

[
−1 0
0 −1

]
and that the number of −1

on the diagonal of D is even given that the D ∈ SO(n), we can first, by change of
basis of D, put all the −1s on the diagonal together and take M to be the block

diagonal matrix with
[
0
]

corresponding to
[
1
]

in D,

[
0 −θ
θ 0

]
corresponding to[

cos θ − sin θ
sin θ cos θ

]
in D, and

[
0 π
−π 0

]
corresponding to

[
−1 0
0 −1

]
in D and get

exp(M) = D
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