JORDAN NORMAL FORM DAY ONE

Let V be a finite dimensional vector space (over some field) and let $A : V \to V$ be a linear map. We recall that A is called *invertible* if A is bijective, and is called nilpotent if there is a positive integer n for which $A^n = 0$.

The goal of our first several problems is to show that V can be decomposed as a direct sum $V = I \oplus N$, where A maps each of I and N to themselves, where the restriction of A to I is invertible and the restriction of A to N is nilpotent.

Let I_j be the image of A^j , and let N_j be the kernel (also known as null space) of A^j .

Problem 1. Show that

 $I \supseteq I_2 \supseteq I_3 \supseteq \cdots$ and $N \subseteq N_2 \subseteq N_3 \subseteq \cdots$.

Put $I = \bigcap_{j=1}^{\infty} I_j$ and $N = \bigcup_{j=1}^{\infty} N_j$.

Problem 2. Show that I and N are subspaces of V.

Problem 3. Show that A maps I to I and maps N to N.

Problem 4. Show that $A: I \to I$ is invertible and that $A: N \to N$ is nilpotent.

JORDAN NORMAL FORM DAY TWO

Let V be a finite dimensional vector space over a field k and $A: V \to V$ a linear map. Suppose that there are $\lambda_1, \lambda_2, \ldots, \lambda_r$ in k and positive integers a_1, a_2, \ldots, a_r such that $\prod_{i=1}^r (A - \lambda_i \operatorname{Id})^{a_i} = 0$. Our goal for the next several problems is to prove that V decomposes as $V_1 \oplus V_2 \oplus \cdots \oplus V_r$ where A maps each V_i to itself and $A - \lambda_i \operatorname{Id}$ is nilpotent on V_i . Our proof is by induction on r.

Problem 5. Explain why the base case, r = 1, is trivial.

Problem 6. Now suppose that $r \ge 2$. From our previous results, we know that we can write $V = I \oplus N$ where $A - \lambda_r \text{Id} : I \to I$ is invertible and $A - \lambda_r \text{Id} : N \to N$ is nilpotent. Show that $\prod_{i=1}^{r-1} (A - \lambda_i \text{Id})^{a_i} = 0$ on the subspace I. (Notice that the top index is r - 1 now!)

Problem 7. Finish the proof: Show that V decomposes as $V_1 \oplus V_2 \oplus \cdots \oplus V_r$ where A maps each V_i to itself and $A - \lambda_i$ is nilpotent on V_i .

JORDAN NORMAL FORM DAY THREE

Let W be a finite dimensional vector space over a field k and let $B: W \to W$ be nilpotent (meaning $B^m = 0$ for some m). Let $n = \dim W$. It this problem, we will show that we can find j_1, j_2, \ldots, j_s with $j_1 + j_2 + \cdots + j_s = n$ and a basis e_q^p , with $1 \le p \le s$ and $1 \le q \le j_p$ such that B acts on this basis by

$$\begin{array}{l} 0 \leftrightarrow e_1^1 \leftrightarrow e_2^1 \leftrightarrow e_3^1 \leftrightarrow \cdots \leftrightarrow e_{j_1}^1 \\ 0 \leftrightarrow e_1^2 \leftrightarrow e_2^2 \leftrightarrow e_3^2 \leftrightarrow e_4^2 \leftrightarrow e_5^2 \leftrightarrow \cdots \leftrightarrow e_{j_2}^2 \\ \vdots \\ 0 \leftrightarrow e_1^s \leftrightarrow e_2^s \leftrightarrow \cdots \leftrightarrow e_{j_s}^s \end{array} \tag{(*)}$$

Our proof is by induction on n. The base case n = 0 is trivial, so we assume n > 0. Let \overline{W} be the image of W.

Problem 8. Show that $\dim \overline{W} < \dim W$.

Problem 9. Show that B maps \overline{W} to itself.

By induction, we can find $\overline{j}_1, \overline{j}_2, \ldots, \overline{j}_{\overline{s}}$ and a basis e_q^p for \overline{W} as above.

Problem 10. Show that, for each p, you can find a vector $e_{\overline{j}_p+1}^p$ in W such that $Be_{\overline{j}_p+1}^p = e_{\overline{j}_p}^p$.

So we now have vectors obeying (*), but they aren't a basis yet.

Problem 11. Show that the vectors e_q^p which you have constructed so far are linearly independent.

Choose some additional vectors f_1, f_2, \ldots, f_t such that the e_q^p you have already constructed, together with f_1, f_2, \ldots, f_t form a basis for W.

Problem 12. Explain why there are constants c_q^p (dependent on r) such that

$$Bf_r = \sum_{p=1}^s \sum_{q=1}^{\overline{j}_p} c_q^p e_q^p.$$

Put

$$g_r = f_r - \sum_{p=1}^s \sum_{q=1}^{j_p} c_q^p e_{q+1}^p.$$

Problem 13. Show that the e_q^p , together with g_r , is the desired basis.