PROBLEM SET 1 – DUE FRIDAY JANUARY 12

See the course website for policy on collaboration.

- 1. Let V be a vector space and W a sub-vector space. This problem reviews the definition of the quotient vector space, V/W , which I hope many of you have already seen. Define an equivalence relation \sim on V by $v_1 \sim v_2$ if and only if $v_1 - v_2 \in W$.
	- (a) Let $X_1 \subset V$ and $X_2 \subset V$ be equivalence classes for ∼. Define $X_1 + X_2 = \{x_1 + x_2 : x_1 \in V\}$ $X_1, x_2 \in X_2$. Show that $X_1 + X_2$ is a single equivalence class for ∼.
	- (b) Let X be an equivalence class for \sim and a a scalar. Define $aX = \{ax : x \in X\}$. Show that aX is an equivalence class for \sim .
	- (c) Show that the operations of addition and scalar multiplication defined in parts (a) and (b) make the set of equivalence classes for \sim into a vector space. This vector space is called V/W .
- 2. Let V be a real vector space of dimension at least 2. For each of the following supposed constructions, state whether or not this construction is well defined and prove your answer.
	- (a) Define a linear map $V \to V \otimes V$ by $v \mapsto v \otimes v$ for all $v \in V$.
	- (b) Define a linear map $V \otimes V \to V$ by $v \otimes w \mapsto v + w$.
	- (c) Let \langle , \rangle be a symmetric bilinear form on V. Define a symmetric bilinear form $(, \rangle$ on $V \otimes V$ by $(u \otimes v, w \otimes x) = \langle u, w \rangle \langle v, x \rangle$.
	- (d) Let \langle , \rangle be a symmetric bilinear form on V. Define a symmetric bilinear form $(, \rangle$ on $V \otimes V$ by $(u \otimes v, w \otimes x) = \langle u, v \rangle \langle w, x \rangle$.
- 3. Let V be a real vector space with basis e_1, e_2, \ldots, e_n . Let $\alpha = \sum_{i,j=1}^n a_{ij} e_i \otimes e_j$ be an element of $V \otimes V$. Show that α is of the form $v \otimes w$ if and only if the matrix a_{ij} has rank ≤ 1 .
- 4. Let V be a real vector space of dimension n. We consider $\mathbb C$ as a two dimensional real vector space, so $\mathbb{C}\otimes V$ is a real vector space of dimension $2n$. For $\beta\in\mathbb{C}$ and $\phi=\sum\gamma_i\otimes v_i\in\mathbb{C}\otimes V$, we define $\beta \phi = \sum (\beta \gamma_i) \otimes v_i$.
	- (a) Show that $\beta \phi$ is a well defined element of $\mathbb{C} \otimes V$.
	- (b) With this definition of scalar multiplication (and the same definition of addition as before), show that $\mathbb{C} \otimes V$ becomes a complex vector space.
	- (c) If e_1, \ldots, e_n is a basis for V as a real vector space, show that $1 \otimes e_1, 1 \otimes e_2, \ldots, 1 \otimes e_n$ is a basis of $\mathbb{C} \otimes V$ as a complex vector space.
- 5. This problem build on problem 5 from the final exam. Let $G \subset GL_n(\mathbb{R})$ be a 3-dimensional Lie group with Lie Algebra g. Suppose that we can identify g with \mathbb{R}^3 such that $[X, Y] = (X \times Y)$, where \times is the ordinary cross product.

Let S be the sphere of radius 2π in \mathbb{R}^3 . In that problem, you showed that exp is constant on S; put $\exp(S) = z$.

- (a) Show that z commutes with $exp(W)$, for any $W \in \mathfrak{g}$. (This part is repeated from the exam.)
- (b) Show that $z^2 = Id$. Let $H = \{ g \in G : gz = zg \}.$
- (c) Show that H is a subgroup of G .
- (d) Show that H is closed in G .
- (e) Show that H is open in G .