PROBLEM SET 11 – DUE FRIDAY APRIL 13

See the course website for policy on collaboration.

1. This question constructs what is known as the Haar measure on a Lie group. Let G be a *n*-dimensional Lie group with Lie algebra \mathfrak{g} . For $g \in G$, let L_g be the map $h \mapsto gh$ from G to G and let R_g be the map $h \mapsto hg$. Fix a nonzero element $\omega \in \bigwedge^n \mathfrak{g}^\vee$. Define an n-form μ^L on G by

$$
\mu_g^L(\vec{v}_1,\ldots,\vec{v}_n)=\omega(DL_{g^{-1}}\vec{v}_1,\ldots,DL_{g^{-1}}\vec{v}_n).
$$

The form μ^L is called the *left Haar measure*. We similarly define right Haar measure by

$$
\mu_g^R(\vec{v}_1,\ldots,\vec{v}_n)=\omega(DR_{g^{-1}}\vec{v}_1,\ldots,DR_{g^{-1}}\vec{v}_n).
$$

- (a) For any $h \in G$, show that $L_h^* \mu^L = \mu^L$ and $R_h^* \mu^R = \mu^R$.
- (b) Let $\chi : G \to \mathbb{R}$ be the function from the previous problem set. Show that $\mu_g^R = \chi(g)\mu_g^L$. Deduce that, if G is a compact connected Lie group, then $\mu^L = \mu^R$. As an application, we prove the following theorem: If G is a compact Lie group, contained

in some GL_N , then G preserves a positive definite inner product on \mathbb{R}^N .

Choose the orientation O of G such that μ_g is positive on the component O of $\bigwedge^n T_gG$. Let \cdot be the standard dot product on \mathbb{R}^N . Define

$$
\vec{u} * \vec{v} = \int_{g \in G} (g\vec{u}) \cdot (g\vec{v}) \mu^R.
$$

- (c) Show that $(q\vec{u}) * (q\vec{v}) = \vec{u} * \vec{v}$ for all $g \in G$.
- (d) Show that $\vec{v} * \vec{v} > 0$ for all nonzero \vec{v} .
- 2. A question about second countability and paracompactness! Let T be a topological space. Recall that a **basis of neighborhoods** for X is a collection $\{U_i\}$ of open sets such that, for any nonempty open set $V \subseteq X$ and any $x \in V$, there is a U_i with $x \in U_i \subseteq V$. The space T is called **second countable** if it has a countable basis of neighborhoods.
	- (a) Show that \mathbb{R}^n is second countable. Show that any subset of \mathbb{R}^n , with the subspace topology, is second countable. (Hint: There are only countably many rational numbers.)
	- (b) Let X be a manifold with a countable atlas. Show that X is second countable.

Let X be a k-dimensional manifold (including the condition that X is Hausdorff) with a countable atlas. We are going to show X is paracompact.

(c) Show that we can equip X with a new (equivalent) atlas $\{(f_j, P_j, f_j(P_j))\}_{1\leq i\leq\infty}$ where each P_j is an open ball of some radius r_j around some point $z_j \in \mathbb{R}^k$. We abbreviate the closed and open balls around z_j of radius r $B_j(r)$ and $\overline{B}_j(r)$.

Let V_{α} be an open cover of X. We need to find a locally finite refinement. For $k \geq 1$, put

$$
U_k = \bigcup_{j=1}^k f_j\left(B_j\left(\frac{k-1}{k}r_j\right)\right) \qquad K_k = \bigcup_{j=1}^k f_j\left(\overline{B}_j\left(\frac{k-1}{k}r_j\right)\right).
$$

For convenience, we define $U_k = K_k = \emptyset$ for $k \leq 0$.

(d) Show that U_k and K_k form an exhuastion of X, meaning that $X = \bigcup U_k$, the U_k are open, the K_k are compact, and $U_1 \subset K_1 \subset U_2 \subset K_2 \subset \cdots$.

(e) Show that, for each k, we can find finitely many open sets $W_{k,1}, W_{k,2}, \ldots, W_{k,M_k}$ such that each W_j is contained in some V_α and

$$
K_k \setminus U_{k-1} \subseteq \bigcup_{\ell=1}^{M_k} W_{k,\ell} \subseteq U_{k+1} \setminus K_{k-2}.
$$

(f) Explain why the set of all $W_{k,\ell}$ form a locally finite refinement of V_α .