PROBLEM SET 3 - DUE FRIDAY JANUARY 26

See the course website for policy on collaboration.

1. Consider the nilpotent matrix X whose powers and ranks are shown below:

$$
X = \begin{bmatrix} -1 & -7 & -2 & -2 \\ 0 & 3 & 1 & 1 \\ 0 & -6 & -2 & -2 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad X^2 = \begin{bmatrix} -1 & -4 & -1 & -1 \\ 1 & 4 & 1 & 1 \\ -2 & -8 & -2 & -2 \\ -1 & -4 & -1 & -1 \end{bmatrix} \quad X^3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

$$
rank(X) = 2 \qquad rank(X^2) = 1 \qquad rank(X^3) = 0
$$

Give a basis for \mathbb{R}^4 which puts X into Jordan normal form.

2. Feel free to use technology to compute the eigenvalues and eigenvectors in this problem. Let $Z = \begin{bmatrix} 23 & 13 \\ -34 & -19 \end{bmatrix}$. Show how to factor Z in the form

$$
Z = S \begin{bmatrix} x - y \\ y - x \end{bmatrix} S^{-1}
$$

for S a real 2×2 matrix and x and y real numbers.

- 3. Give an example of a symmetric complex matrix which is nilpotent but not zero.
- 4. Let U be an $n \times n$ real orthogonal matrix. Recall that this means $(U\vec{v}) \cdot (U\vec{w}) = \vec{v} \cdot \vec{w}$ for any vectors \vec{v} and \vec{w} .
	- (a) If λ is a real eigenvalue of U, show that $\lambda = \pm 1$.
	- (b) Let λ be a complex eigenvalue of U, which is not real. Show that $\lambda = e^{i\theta}$ for some real number θ . (Hint: Let $\vec{v} \in \mathbb{C}^n$ be a λ -eigenvector, and consider the complex conjugate $\overline{\vec{v}}$.)
	- (c) Let θ_1 and θ_2 be two angles with $e^{i\theta_1} \neq e^{\pm i\theta_2}$. Let $\vec{x}_j + i\vec{y}_j$ be an $e^{i\theta_j}$ eigenvector of U, with \vec{x}_j and \vec{y}_j in \mathbb{R}^n . Show that $\text{Span}(\vec{x}_1, \vec{y}_1)$ and $\text{Span}(\vec{x}_2, \vec{y}_2)$ are perpindicular.
	- (d) Show that, for any orthogonal matrix V, we have $\text{Ker}(V \text{Id})^2 = \text{Ker} V \text{Id}$. (Hint: If $\vec{v} \in \text{Ker}(V - \text{Id})^2$ but not $\text{Ker}(V - \text{Id})$, what does $V^n \vec{v}$ look like?)
	- (e) Show that, for any real orthogonal matrix U, we can choose an orthonormal basis of \mathbb{R}^n on which U is block diagonal, with blocks of the form $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, [1] and [-1].
- 5. Let $N(k)$ be the $k \times k$ matrix where $N(k)_{ij}$ is 1 if $j = i + 1$ and 0 otherwise. For example,

$$
N(4) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

For $\vec{k} = (k_1, k_2, \ldots, k_r)$ a vector of positive integers with $k_1 \geq k_2 \geq \cdots \geq k_r$, let $N(\vec{k})$ be the block-diagonal matrix whose diagonal blocks are $N(k_1), N(k_2), \ldots, N(k_r)$.

- (a) Give a formula for dim Ker $N(\vec{k})^j$ in terms of \vec{k} and j.
- (b) Let $X: V \to V$ be a nilpotent matrix. We showed in class that X is similar to some $N(\vec{k})$. Show that X is similar to only on $N(\vec{k})$. Let $n = \sum k_i$ and let $U(\vec{k}) \subset \text{Mat}_{n \times n}(\mathbb{R})$ be the set of matrices similar to $N(\vec{k})$. So the set of nilpotent $n \times n$ matrices decomposes into pieces, $U(\vec{k})$. For your convenience, we list the possible k's for $n = 4$:

 $(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)$ (*).

(c) Let \vec{k} and $\vec{\ell}$ be vectors in the list (*). Determine, for which pairs \vec{k} and $\vec{\ell}$, the space $U(\vec{k})$ is contained in the closure $U(\vec{\ell})$.