
Problem Set 4 – due Friday February 2
See the course website for policy on collaboration.

1. We review basic computations with 1-forms.

(a) Let x and y be coordinates on R2. Write d (ex sin y) as a linear combination of dx and dy.

(b) Let u, v be coordinates on R2 and let x, y, z be coordinates on R3. Let φ(u, v) =
(u cos v, u sin v, v). Compute φ∗d(x2 + y2).

2. In this problem we will prove the following result: Let U be an open subset of Rn and p a point
of U . Suppose there is a smooth map h : U × [0, 1] → U such that, for all x ∈ U , we have
h(x, 1) = x and h(x, 0) = p. Then any closed 1-form on U is exact.

We’ll write (x1, x2, . . . , xn) for the coordinates on U and t for the coordinate on [0, 1]. This will
give us many more situations where we can say that closed is the same as exact.

(a) Let ω =
∑
fi(x1, . . . , xn, t)dxi+g(x1, . . . , xn, t)dt be a closed 1-form on U× [0, 1], meaning

that ∂fi
∂xj

=
∂fj
∂xi

and ∂fi
∂t = ∂g

∂xi
. Put G(x1, . . . , xn) =

∫ 1
t=0 g(x1, . . . , xn, t)dt. Let ω0 and ω1

be the 1-forms on U obtained by restricting ω to U × {0} and U × {1}. Show that

dG = ω1 − ω0.

(b) Let h : U × [0, 1]→ U be as in the introduction to the problem. Let η be a closed 1-form
on U . Show that h∗η is closed.

(c) Let h : U × [0, 1] → U be as in the introduction to the problem and let η be a closed
1-form on U . Combine the previous parts to show that η is exact, in other words, there is
some function G on U with dG = η.

(d) Suppose that, U is convex and nonempty, meaning that, for any points p and q in U , the
line segment between p and q is in U . Show that there is a map h : U × [0, 1] → U as in
the problem statement.

3. This question applies Stokes’ Theorem to prove the Fundamental Theorem of Algebra.

(a) Let 0 < p < q and let A = {(x, y) : p2 ≤ x2 + y2 ≤ q2} ⊂ R2. Let C1 = {(x, y) : x2 + y2 =
p2} and C2 = {(x, y) : x2 + y2 = q2}. Let φ : A → R2 \ {(0, 0)} be a smooth map. Show
that ∫

C1

φ∗
(
xdy − ydx
x2 + y2

)
=

∫
C2

φ∗
(
xdy − ydx
x2 + y2

)
.

(b) Let n be a positive integer. Show that there is no smooth map φ : A → R2 \ {(0, 0)}
such that φ(p cos θ, p sin θ) = (1, 0) and φ(q cos θ, q sin θ) = (cos(nθ), sin(nθ)). (Hint: Your
computations will be easier if you recall that xdy−ydx

x2+y2
= d tan−1(y/x) whenever x 6= 0.)

Let’s prove the Fundamental Theorem of Algebra! Suppose for the sake of contradiction that
f(z) = anz

n + · · · + a0 is a complex polynomial, with an 6= 0 and no complex zero. Let
F : R2 → R2 \ {(0, 0)} be

F (x, y) =
Real(f(x+ iy)), Im(f(x+ iy))

(1 +
√
x2 + y2)n

.

Choose 0 < p < q and pick a continuous increasing function h : (p, q)→ R>0 with limr→p+ h(r) =
0 and limr→q− h(r) =∞. Put

φ(x, y) = F (h(
√
u2 + v2)u, h(

√
u2 + v2)v).

(c) Show that φ, defined as above, extends to a continuous function A→ R2 \ 0.

(d) Derive a contradiction. You may gloss over the issue of the smoothness of A at the
boundary.



4. This question looks at the frequent issue of how to think about double derivatives abstractly.
Let V be a finite dimensional real vector space, and g : V → R a smooth function. Then
y 7→ dgy is a function V → V ∗. We’ll denote this function as Dg. We can then take D of Dg
so that, at every point y ∈ V , we have a linear map D(Dg)y : V → V ∗. For y ∈ V and ~v1, ~v2
in V , we write (D2g)y(~v1, ~v2) to mean D(Dg)y(~v1)(~v2).

(a) Show that (D2g)y(~v1, ~v2) = (D2g)y(~v2, ~v1).

Let U be another finite dimensional real vector space, and let φ : U → V be a smooth map.
Let x ∈ U and ~u1, ~u2 ∈ U . We define y = φ(x) and ~v1 = (Dφ)x~u1, ~v2 = (Dφ)x~u2 and f = g◦φ.

(b) If φ is linear, show that (D2f)x(~u1, ~u2) = (D2g)y(~v1, ~v2).

(c) Give an example to show that the previous result need not hold if φ is not linear. Hint:
Take dimU = dimV = 1 and try almost anything.


