PROBLEM SET 4 — DUE FRIDAY FEBRUARY 2
See the course website for policy on collaboration.

1. We review basic computations with 1-forms.
(a) Let z and y be coordinates on R2. Write d (¢® siny) as a linear combination of dz and dy.

(b) Let u, v be coordinates on R? and let z, y, z be coordinates on R3. Let ¢(u,v) =
(ucosv,usinv,v). Compute ¢*d(z? + y?).

2. In this problem we will prove the following result: Let U be an open subset of R and p a point
of U. Suppose there is a smooth map h : U x [0,1] — U such that, for all x € U, we have
h(z,1) = x and h(z,0) = p. Then any closed 1-form on U is exact.

We'll write (21,2, . .., xy,) for the coordinates on U and ¢ for the coordinate on [0, 1]. This will
give us many more situations where we can say that closed is the same as exact.

(a) Let w=>" fi(x1, ..., xn, t)dx;+g(x1,. .., 20, t)dt be a closed 1-form on U x [0, 1], meaning
v Y .
that gg; = TQ and %{; = g—ai. Put G(z1,...,2,) = leog(x1,...,xn7t)dt. Let wg and wy
be the 1-forms on U obtained by restricting w to U x {0} and U x {1}. Show that
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(b) Let h: U x [0,1] — U be as in the introduction to the problem. Let n be a closed 1-form
on U. Show that h*n is closed.

(¢c) Let h : U x [0,1] — U be as in the introduction to the problem and let n be a closed
1-form on U. Combine the previous parts to show that n is exact, in other words, there is
some function G on U with dG = 7.

(d) Suppose that, U is convex and nonempty, meaning that, for any points p and ¢ in U, the
line segment between p and ¢ is in U. Show that there is a map h: U x [0,1] = U as in
the problem statement.

3. This question applies Stokes’ Theorem to prove the Fundamental Theorem of Algebra.

(a) Let 0 <p<gandlet A= {(z,y):p* <2?+y?><q¢®} CR2 Let C1 = {(z,y) : 2® + ¢* =
p?*} and Cy = {(z,y) : 2> + y*> = ¢*}. Let ¢ : A — R?\ {(0,0)} be a smooth map. Show

that
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(b) Let n be a positive integer. Show that there is no smooth map ¢ : 4 — R2\ {(0,0)}

such that ¢(pcosf,psind) = (1,0) and ¢(gcosb, gsinf) = (cos(nh),sin(nd)). (Hint: Your

computations will be easier if you recall that xig;gg’” = dtan~!(y/x) whenever x # 0.)

Let’s prove the Fundamental Theorem of Algebra! Suppose for the sake of contradiction that

f(z) = apz™ + --- 4+ ap is a complex polynomial, with a,, # 0 and no complex zero. Let
F:R? - R2\ {(0,0)} be

Real(f(z +iy)), Im(f(z + zy))

(1+ /22 +y2)n

Choose 0 < p < ¢ and pick a continuous increasing function h : (p, ¢) — Rso with lim,_, ,+ h(r) =
0 and lim,_,,- h(r) = co. Put

o(z,y) = F(h(Vu? +v2)u, h(v/u?+v2)v).

(c) Show that ¢, defined as above, extends to a continuous function 4 — R?\ 0.

F(:l?,y) =

(d) Derive a contradiction. You may gloss over the issue of the smoothness of A at the
boundary.



4. This question looks at the frequent issue of how to think about double derivatives abstractly.
Let V be a finite dimensional real vector space, and g : V' — R a smooth function. Then
y — dgy is a function V' — V*. We’ll denote this function as Dg. We can then take D of Dg
so that, at every point y € V, we have a linear map D(Dg), : V — V*. For y € V and i, ¥
in V, we write (D?g), (%1, 72) to mean D(Dg),(th)(¥2).
(a) Show that (D?g), (71, 72) = (D?g)y(t2, 1).

Let U be another finite dimensional real vector space, and let ¢ : U — V be a smooth map.
Let z € U and 1y, iz € U. We define y = ¢(x) and 01 = (D)1, U2 = (D)2 and f = go¢.
(b) If ¢ is linear, show that (D?f), (i, d@2) = (D%g),(th, Ta).

(c) Give an example to show that the previous result need not hold if ¢ is not linear. Hint:
Take dimU = dim V' =1 and try almost anything.



