Problem Set 6 – Due Friday March 9

See the course website for policy on collaboration.

1. (a) Show that

$$\left\{ \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} : \theta \in \mathbb{R} \right\}$$

is a maximal torus in SO(3). (See the IBL worksheets for definitions and the maximal torus criterion.)

- (b) Describe a maximal torus in SO(n), and prove your answer is correct. Hint: You'll want to consider the cases of n even and n odd separately.
- (c) Let $U(n) \subset \operatorname{GL}_n \mathbb{C}$ be the unitary group, consisting of those matrices with $XX^{\dagger} = \operatorname{Id}$. Let D be the subgroup of matrices of the form diag $(e^{i\theta_1}, e^{i\theta_2}, \ldots, e^{i\theta_n})$. Show that D is a maximal torus of U(n).
- 2. Let X be a topological space. Recall that X is called Hausdorff if, for x and y any two distinct points of X, there are open sets $U \ni x$ and $V \ni y$ with $U \cap V = \emptyset$.
 - (a) Let $\Delta \subset X \times X$ be the diagonal $\{(x, x) : x \in X\}$. Show that X is Hausdorff if and only if Δ is closed in the product topology on X.
 - (b) Let U_1, U_2, \ldots, U_n be an open cover of X. Show that X is Hausdorff if and only if, for all i and j, the set $\{(x, x) : x \in U_i \cap U_j\}$, is a closed subset of $U_i \times U_j$ (again, in the product topology).
- 3. Let f be a smooth function $\mathbb{R}^n \to \mathbb{R}$. Show that there exist smooth functions $g_1, g_2, \ldots, g_n : \mathbb{R}^n \to \mathbb{R}$ such that $f(x_1, \ldots, x_n) = f(0) + \sum_i x_i g_i(x_1, \ldots, x_n)$. There are several proofs, here is a hint to one of them: $f(x_1, \ldots, x_n) f(0, \ldots, 0) = \int_{t=0}^1 \frac{d}{dt} f(tx_1, \ldots, tx_n) dt$.
- 4. Let ~ be the equivalence relation on ℝⁿ \ {0} where v and w are equivalent if they are proportional. (In other words, if v = cw for some nonzero scalar c.) We define ℝℙⁿ⁻¹ to be (ℝⁿ \ {0})/ ~ with the quotient topology. In other words, a subset of ℝℙⁿ⁻¹ is open if and only if its preimage in ℝⁿ \ {0} is open. In this problem, we will show ℝℙⁿ⁻¹ is a manifold.

We write x_1, x_2, \ldots, x_n for the coordinates on \mathbb{R}^n . Let \tilde{U}_i be the open set $\{x_i \neq 0\}$ in $\mathbb{R}^n \setminus \{0\}$ and let U_i be \tilde{U}_i / \sim .

- (a) Show that the U_i are an open cover of \mathbb{RP}^{n-1} . (This is meant to be easy.)
- (b) Show that U_i is homeomorphic to \mathbb{R}^{n-1} . In other words, give inverse continuous maps $U_i \to \mathbb{R}^{n-1}$ and $\mathbb{R}^{n-1} \to U_i$. You have now shown that \mathbb{RP}^{n-1} is covered by open set homeomorphic to \mathbb{R}^{n-1} . To finish

You have now shown that \mathbb{RP}^{n-1} is covered by open set homeomorphic to \mathbb{R}^{n-1} . To finish off the problem:

(c) Show that \mathbb{RP}^{n-1} is Hausdorff.