PROBLEM SET 6 – DUE FRIDAY MARCH 23

See the course website for policy on collaboration.

- 1. In this problem, we show that "connected" and "path connected" are the same for manifolds.
	- (a) For X a topological space, and x_0 and $x_1 \in X$, we define $x_0 \sim x_1$ if there is a continuous map $\phi : [0,1] \to X$ with $\phi(0) = x_0$ and $\phi(1) = x_1$. Show that ∼ is an equivalence relation.

The equivalence classes of \sim are called "path connected components" of X. Now, let X be a topological manifold.

- (b) Verify that the path connected components of X are open in X.
- (c) Verify that the path connected components of X are closed in X.
- 2. In this problem, we will explain why we don't need to include smoothness of the inverse in the axioms of a Lie group. You may wish to look at Problem 3 on the previous problem set. Let G be a smooth manifold and let $\mu : G \times G \to G$ be a smooth map making G into a group. Define $\tau: G \times G \to G \times G$ by

$$
\tau(g,h)=(g,gh).
$$

- (a) Show that τ is bijective and the linear map $D\tau_{(g,h)}$ is an isomorphism for all g and h.
- (b) Conclude that τ^{-1} is a smooth map; deduce that the map $g \mapsto g^{-1}$ from $G \to G$ is smooth.
- 3. In our definition of a manifold, we started with a topological space X and a bunch of patches $f: P \to U \subset X$. Sometimes, we are given X only as a set and want to use the patches to define the topology. This problem spells out the details. To make it shorter, we do the topological manifold version; the smooth version is analogous.

Let X be a set, and let U_i be subsets of X with $X = \bigcup_i U_i$. Let P_i be subsets of \mathbb{R}^d and let $f_i: P_i \to U_i$ be a bijection.

Suppose that, for all i and j, the set $f_i^{-1}(U_i \cap U_j)$ is open in P_i , and the map $f_j^{-1} \circ f_i$: $f_i^{-1}(U_i \cap U_j) \longrightarrow f_j^{-1}(U_i \cap U_j)$ is a homeomorphism. Define $V \subset X$ to be open if and only if, for all V, the set $f_i^{-1}(V)$ is open in P_i .

- (a) Show that this is a topology on X.
- (b) Show that the map $f_i: P_i \to U_i$ is a homeomorphism, in the subspace topology on X.
- 4. We finally get around to checking a claim from class a few weeks ago: Let V be a finite dimensional real vector space. Let $K\subset V$ be a subgroup (under addition) which is discrete (meaning that, for any $g \in K$, there is an open set $U \subset V$ with $U \cap K = \{g\}$). We show that $K = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_k$ for some linearly independent set $\{v_1, \ldots, v_k\}.$

Our proof is by induction on dim V, and we note that the theorem is obvious when $K = \{0\}$. So we assume dim $V > 0$ and $K \neq \{0\}$ from now on.

Choose a positive definite dot product at V, and let v_k minimize $v \cdot v$ over all nonzero $v \in K$. Put $V' = V / \mathbb{R} v_k$ and $K' = K / \mathbb{Z} v_k$.

- (a) Show that K' injects into V' .
- (b) Show that K' is a discrete subgroup of V' . (This is meant to be a bit challenging.) By induction, $K' = \mathbb{Z}v'_1 \oplus \cdots \oplus \mathbb{Z}v'_{k-1}$ for some linearly independent v'_1, \ldots, v'_{k-1} in V' .
- (c) Explain how to finish the proof and show $K = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_k$ for some linearly independent set $\{v_1, \ldots, v_k\}.$

One more challenging problem on back!

5. Let H be the Lie group of matrices of the form $\begin{cases} \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \end{bmatrix}$ 0 0 1 $\big] : x, y, z \in \mathbb{R} \big\}$. Let Z be the subgroup $\left\{\begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : z \in \mathbb{Z}\right\}$. In this problem, we will prove that H/Z is not a subgroup of any $GL_N(\mathbb{R})$. (a) Check that Z is a normal subgroup of H, so H/Z is a group.

Let $\bar{\rho}: H/Z \to GL_N(\mathbb{R})$ be a map which is both smooth and a group homomorphism. Our goal is to show that $\bar{\rho}$ is not injective. Let ρ be the composite $H \to H/Z \to GL_n(\mathbb{R})$. Let \mathfrak{h} be the Lie algebra of H, with basis $e = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $f = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $g = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Let $\mathfrak g$ be the Lie algebra of GL_n(\mathbb{R}). So $D\rho_{\text{Id}}$ maps $\mathfrak{h} \to \mathfrak{g}$; abbreviate $D\rho_{\text{Id}} = \sigma$.

- Recall from the November 17 IBL that $\rho(e^X) = e^{\sigma(X)}$ and $[\sigma(X), \sigma(Y)] = \sigma([X, Y]).$
- (b) Show that $\sigma(g)$ is diagonalizable with eigenvalues of the form $2\pi i k$.

Let m_k be the multiplicity of $2\pi i k$ as an eigenvalue of σg . We change bases so that $\sigma(g)$ is block diagonal, with blocks $(2\pi i k)\mathrm{Id}_{m_k}$.

(c) Show that $\sigma(e)$ and $\sigma(f)$ are block diagonal, with blocks of size $m_k \times m_k$.

We'll call these blocks E_k and F_k .

- (d) Show that $[E_k, F_k] = (2\pi i k) \mathrm{Id}_{m_k}$.
- (e) Show that $m_k = 0$ for $k \neq 0$. (Hint: This uses the previous part, and a clever little trick.)
- (f) Deduce, finally, that $\bar{\rho}$ is not injective.